
B
R

IC
S

N
S

-00-3
C

ousotetal.
(eds.):

G
E

T
C

O
’00

P
relim

inary
P

roceedings

BRICS
Basic Research in Computer Science

Preliminary Proceedings of the Workshop on

Geometry and Topology in
Concurrency Theory

GETCO ’00

State College, USA, August 21, 2000

Patrick Cousot
Eric Goubault
Jeremy Gunawardena
Maurice Herlihy
Martin Raussen
Vladimiro Sassone
(editors)

BRICS Notes Series NS-00-3

ISSN 0909-3206 August 2000

Copyright c© 2000, Patrick Cousot & Eric Goubault & Jeremy
Gunawardena & Maurice Herlihy & Martin
Raussen & Vladimiro Sassone
(editors).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/00/3/

.

GEometry and Topology in
COncurrency theory

Preliminary Proceedings of GETCO'2000
Satellite Workshop of Concur'2000
PennState, USA, August 21, 2000

Patrick Cousot

Eric Goubault

Jeremy Gunawardena

Maurice Herlihy

Martin Raussen

Vladimiro Sassone

Preliminary print under the patronage of

BRICS: Basic Research in Computer Science

Centre of the National Danish Research Foundation

.

GEometry and Topology in
COncurrency theory

Foreword

The main mathematical disciplines that have been used in theoretical com-

puter science are discrete mathematics (especially, graph theory and ordered

structures), logics (mostly proof theory for all kinds of logics, classical, intu-

itionistic, modal etc.) and category theory (cartesian closed categories, topoi

etc.). General Topology has also been used for instance in denotational seman-

tics, with relations to ordered structures in particular.

Recently, ideas and notions from mainstream \geometric" topology and al-

gebraic topology have entered the scene in Concurrency Theory and Distributed

Systems Theory (some of them based on older ideas). They have been applied

in particular to problems dealing with coordination of multi-processor and dis-

tributed systems. Among those are techniques borrowed from algebraic and

geometric topology: Simplicial techniques have led to new theoretical bounds

for coordination problems. Higher dimensional automata have been modelled

as cubical complexes with a partial order re
ecting the time
ows, and their

homotopy properties allow to reason about a system's global behaviour.

This workshop aims at bringing together researchers from both the math-

ematical (geometry, topology, algebraic topology etc.) and computer scienti�c

side (concurrency theorists, semanticians, researchers in distributed systems

etc.) with an active interest in these or related developments.

It follows the �rst workshop on the subject \Geometric and Topological

Methods in Concurrency Theory" which has been held in Aalborg, Denmark,

in June 1999.

The Workshop has been �nancially supported by Hewlett Packard's Basic

Research Institute in the Mathematical Sciences (Bristol, England) and the

Basic Research Institute in Computer Science (Aarhus, Denmark), and I thank

these institutions for this, and more speci�cally Jeremy Gunawardena and U�e

Engberg. I also wish to thank the referees, the authors and the programme

committee members for their very precise and timely job. Many thanks are also

due to Michael Mislove who kindly supported the workshop by letting us submit

the papers through the Electronic Notes in Theoretical Computer Science. Last

but not least, I wish to thank the Concur organizers, Catuscia Palamidessi and

Dale Miller, and the Workshop coordinator, Uwe Nestmann, for making this

possible.

Eric Goubault, the 28th of July 2000.

Programme

Monday 21 August

8:45 - 09:00 Opening

9:00 - 10:00 Tutorial: Topology and Directed Topology

by Martin Raussen

10:00 - 10:15 Co�ee break

10:15 - 11:15 Tutorial: Geometry of Fault-Tolerant Distributed Systems

by Maurice Herlihy

11:15 - 11:30 Co�ee break

11:30 - 12:00 Concurrent Processes with Loops from a Geometric Viewpoint

by Lisbeth Fajstrup and Stefan Sokolowski

12:00 - 12:30 First Informal Discussion

12:30 - 14:00 Lunch

14:00 - 14:30 A Study on Semi-Sheaves Associated to Transition Systems

by Ana Isabel de Azevedo Spinola and Edward Hermann Haeusler

14:30 - 15:00 Synchronous Message-Passing and Topology

by Maurice Herlihy, Mark Tuttle and Sergio Rajsbaum

15:00 - 15:15 Co�ee break

15:15 - 15:45 From Concurrency to Algebraic Topology

by Philippe Gaucher

15:45 - 16:15 Occurrence Counting Analysis for the �-calculus

by Jerome Feret

16:15 - 16:30 Co�ee break

16:30 - 17:10 Conclusion: Results, Perspectives and Open Problems

by Eric Goubault

17:10 - 17:30 Second Informal Discussion

Contents

p1{22 \(Di)topology with applications to concurrency. A tutorial",

by Martin Raussen (Aalborg University, Denmark).

p23{43 \In�nitely running concurrent processes with loops from a geometric view-

point",

by Lisbeth Fajstrup (Aalborg University, Denmark) and Stefan Sokolowski

(Polish Academy of Sciences, Gdansk, Poland).

p45{61 \A Study on Semi-Sheaves Associated to Transition Systems Representing

Reactive Systems",

by Ana Isabel de Azevedo Spinola (Universidade Federal Fluminense,

Niter�oi, Brazil) and Edward Hermann Haeusler (Pontif��cia Universidade

Cat�olica, Rio de Janeiro, Brazil).

p63{79 \Synchronous Message-Passing and Topology",

by Maurice Herlihy (Brown University, USA), Sergio Rajsbaum and Mark

R. Tuttle (Compaq Computer Corporation, Cambridge, USA).

p81{98 \From Concurrency to algebraic topology",

by Philippe Gaucher (IRMA, Strasbourg, France).

p99{116 \Occurrence Counting Analysis for the �-calculus",

by J�erôme Feret, (Ecole Normale Sup�erieure, Paris, France).

(Di)topology with applications to concurrency.
A tutorial

Martin Raussen, Department of Mathematical Sciences

Aalborg University, Fredrik Bajersvej 7E

DK-9220 Aalborg �st, Denmark

e-mail:raussen@math.auc.dk

July 27, 2000

1 Introduction

1.1 Topology in concurrency?

From a general perspective, concurrency theory is using many mathemati-
cal tools. Predominant are the use of graph theory (often labeled directed

graphs) and of logics. Topology has also played a role. Many people talk
about the topology of networks meaning nothing else than the graph deter-
mined by the connections in the netwok. General (or set-theoretic) topology
has been applied in, e.g., �xed point theory, and systematically in connection
with lattice theory in domain theory (work of D. Scott and al.; see [7] for a

classical reference).

We shall proceed in a di�erent direction: We want to give evidence for
that also classical algebraic topology (with roots in mainly geometric prob-
lems) has a capacity of modelling concurrent processes and interesting phe-

nomena attached to them { after a \twist".

1.2 Example: Progress graphs

The �rst \algebraic topological" seems to be that of a progress graph and

has appeared in operating systems theory, in particular for describing the
problem of \deadly embrace"1 in \multiprogramming systems". Progress

1as E. W. Dijkstra originally put it in citeD68, now more usually called deadlock.

1
1

graphs are introduced in [1], but attributed there to E. W. Dijkstra. In fact

they also appeared slightly earlier (for editorial reasons it seems) in [12].

The basic idea is to give a description of what can happen when several

processes are modifying shared ressources. Given a shared resource a, we

see it as its associated semaphore that rules its behaviour with respect to

processes. For instance, if a is an ordinary shared variable, it is customary

to use its semaphore to ensure that only one process at a time can write

on it (this is mutual exclusion). Then, given n deterministic sequential pro-

cesses Q1 : : : ; Qn, abstracted as a sequence of locks and unlocks on shared

objects, Qi = R1a
1

i :R2a
2

i : : :R
i
na

ni
i (Rk being P or V)2, there is a natural

way to understand the possible behaviours of their concurrent execution, by

associating to each process a coordinate line in Rn. The state of the system

corresponds to a point in Rn, whose ith coordinate describes the state (or

\local time") of the ith processor.

1.2.1 Example

Consider a system with �nitely many processes running altogether. We as-
sume that each process starts at (local time) 0 and �nishes at (local time) 1;
the P and V actions correspond to sequences of real numbers between 0 and

1, which re
ect the order of the P 's and V 's. The initial state is (0; :::; 0)
and the �nal state is (1; :::; 1). An example consisting of the two processes
T1 = Pa:Pb:Vb:Va and T2 = Pb:Pa:Va:Vb gives rise to the two dimensional
progress graph of Fig. 1.2.1.

The shaded area represents states which are not allowed in any execution

path, since they correspond to mutual exclusion. Such states constitute the
forbidden area. An execution path in an n-dimensional progess graph in
the unit square in Rn is a path from the initial state (0; :::; 0) to the �nal
state (1; :::; 1) avoiding the forbidden area and increasing in each coordinate

{ time cannot run backwards. We call these paths directed paths or dipaths.

This entails that paths reaching the states in the dashed square underneath

the forbidden region, marked \unsafe" are deemed to deadlock, i.e. they
cannot possibly reach the allowed terminal state which is (1; 1) in dimension
2. Similarly, by reversing the direction of time, the states in the square

above the forbidden region, marked \unreachable", cannot be reached from

the initial state, which is (0; 0) here. Also notice that all terminating paths
above the forbidden region are \equivalent" in some sense, given that they

are all characterized by the fact that T2 gets a and b before T1 (as far as
resources are concerned, we call this a schedule). Similarly, all paths below

2Using E.W. Dijkstra's notation P and V [2] for respectively acquiring and releasing a

lock on a semaphore.

2
2

Unsafe

Un-

reachable

(0,0)

Pa Pb Vb Va

Pb

Pa

Va

Vb

T2

T1

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
�

�
�
��

�
�
�

�
�
�

�
��

�
���

�
�
�
�

�
�
��

�
�
�

�
�
�

�
��
�
�
��

�
�
�
�

�
�
��

�
�
�

�
�
�

�
��
�
�
��

�
�
�
�

�
�
��

�
�
�

�
�
�

�
��

�
���

(1,1)

-

6

Figure 1: Example of a progress graph

the forbidden region are characterized by the fact that T1 gets a and b before

T2 does.

1.3 Directed homotopy

In this picture, one can already recognize many ingredients that are at the

center of the main problem of algebraic topology, namely the classi�cation
of shapes modulo \elastic deformation". As a matter of fact, the actual
coordinates that are chosen for representing the times at which Ps and Vs
occur are unimportant, and these can be \stretched" (preserving the order
on the axes) in any manner, so the properties (deadlocks, schedules etc.) are

invariant under some notion of deformation. A deformation of paths is called

a homotopy in topology. Since directions (partial orders) are essential, we
have to insist on that those are preserved under deformations. We call such an
order preserving deformation of paths a directed homotopy or dihomotopy.

Already for 2-dimensional progress graphs, this yields a di�erent concept:

Consider for instance the two homeomorphic shapes (deformable into each
other by an elastic deformation) with two holes in Fig. 2 and Fig. 3 In

Fig. 2, there are four essentially di�erent dipaths up to dihomotopy (i.e. four
schedules corresponding to all possibilities of accesses of resources a and b)

whereas in Fig. 3, there are only three dipaths up to dihomotopy.

3
3

Pa

Pa

Va

Pb

Vb

Va Pb Vb

Figure 2: The progress

graph corresponding to

Pa:Va:Pb:VbjPa:Va:Pb:Vb

VbPb Pa Va

Pa

Va

Pb

Vb

Figure 3: The progress

graph corresponding to

Pb:Vb:Pa:VajPa:Va:Pb:Vb

2 A short Tutorial in Topology

In this chapter, we touch upon central notions, methods and results from
algebraic topology that have been applied or modi�ed with applications in
concurrency in mind { or where there should be a potential to do so in
future work. Of course, these pages cannot replace a book; proofs are mainly

omitted. There are lots of nice books at all levels on Algebraic Topology on
the market; a nice one [9] is available on the internet.

2.1 Topological Spaces

Topological spaces are generalizations of metric spaces. They model \near-
ness" in more abstract situations. An axiomatic formulation makes use of
open subsets. In a metric space X with distance function d, a subset U � X

is open if, for every x 2 X there is a positive real nmber " > 0, such that

U"(x) = fy 2 Xj d(x; y) < "g � U .

De�nition 2.1 1. A topological space is a pair (X;U) with U � 2X a

system of (open) subsets such that

(a) X; ; 2 U ;

(b) Any union of open sets is open.

(c) Any �nite intersection of open sets is open.

2. A subset A � X is closed if and only if its complement X nA is open.

4
4

3. Two points x; y 2 X can be separated if there are open sets Ux; Uy 2 U

such that x 2 Ux; y 2 Uy and Ux \ Uy = ;.

4. A topological space such that any pair of points x 6= y 2 X can be

separated is called Hausdor�.

Example 2.2 1. A metric space is Hausdor�.

2. A strange topology on X = R2 is given by :U � X is open if and only

if for every (x; y) 2 U there is an " > 0 such that]x�"; x+"[�R � U .

This is a topological space in which two points on the same verical line

cannot be separated.

3. Many computer scientists are familiar with the Scott topology, which

is not Hausdor� in general.

Maps between topological spaces that preserve nearness are called con-
tinuous. They are generalizations of the continuous maps between metric
spaces mapping points \su�ciently close" to each other into points close to

each other. A neat formulation is:

De�nition 2.3 A map f : X ! Y between two topological spaces X and Y
is continuous if and only if f�1(U) � X is open for every open set U � Y .

Example 2.4 Let X = R2 be endowed with the topology from Ex. 2.2 and

Y = R2 endowed with the (standard) topology inherited from the standard
metric. The identity map id : X ! Y is not continusous, whereas the
identity map id : Y ! X is continuous.

De�nition 2.5 1. A map f : X ! Y between two topological spaces X

and Y is called a homeomorphism if it is a bijection and if both f and

its inverse f�1 : Y ! X are continuous.

2. Two topological spaces are called homeomorphic if and only if there
exists a homeomorphism f : X ! Y .

Example 2.6 1. The open interval]0; 1[is homeomorphic to the real
half-line]0;1[(both with standard topology inherited from the standard

metric). A homeomorphism is given by the map f :]0; 1[!]0;1[; f(x) =
x

1�x
with f�1(y) = y

1+y
. In particular, a bounded and a non-bounded

space can be homeomorphic.

2. A 2-dimensional sphere (boundary of a 3-dimensional ball) is homeo-

morphic to an ellipsoid, but not to a torus (doughnut).

5
5

3. The two topologies on R2 from Ex. 2.2.2 give rise to non-homeomorphic

spaces. It is easy to see that a space homeomrphic to a Hausdor� space

has to be Hausdor� again.

Homeomorphy is an equivalence relation. From the topological point of

view, one should not discriminate between two homeomorphic topological

spaces from each other.

2.2 Paths

Let I = [0; 1] denote the unit interval with standard metric and topology,

and let X denote a topological space. Any continuous map � : I ! X is

called a path in X.

How can one compose paths? In general this is not possible. But if the
endpoint �1(1) of �1 agrees with the start point �2(0) of �2, their concate-

nation �1 � �2 : I ! X is de�ned by (�1 � �2)(s) =

�
�1(2s); t � 1

2

�2(2s� 1); t � 1

2
:

(Both paths are pursued with \double speed"). Concatenation de�nes a

(non-commutative, non-associative) monoidal structure on the path space
P(X) of all paths on X. (OBS: Not all elements of P(X) can be composed
with each other).

De�nition 2.7 A topological space X is called path-connected if and only
if, for every pair of elements x0; x1 2 X, there exists a path � : I ! X with

�(0) = x0 and �(1) = x1.

2.3 Homotopy

What is a path in the space of maps between two topological spaces X and
Y ? Let again I denote the unit interval.

De�nition 2.8 1. A homotopy is a family Ht : X ! Y; t 2 I of maps,
such that the associated map H : X � I ! Y is continuous.

2. Two continuous maps f; g : X ! Y are homotopic if and only if there

is a homotopy H : X � I ! Y such that H(x; 0) = f(x) and H(x; 1) =
g(x) for all x 2 X.

Example 2.9 1. Let S1 = f(x; y)jx2 + y2 = 1g � R2 denote the unit

circle. The map H : S1� I ! R2; H((x; y); t) = (tx; ty) is a homotopy

between the constant map and the inclusion of the unit circle into R2.

6
6

2. There is no homotopy between the inclusion i : S1 ! R2 n f(0; 0)g in

the pointed plane and any constant map c : S1 ! R2 n f(0; 0)g.

Homeomorphy is still a quite �ne relation between topological spaces.

It is in general quite di�cult to �nd algebraic counterparts to help with a

classi�cation of certain spaces up to homeomorphism. The following relation

is coarser and often easier to handle algebraically:

De�nition 2.10 1. A continuous map f : X ! Y is called a homotopy

equivalence if there are a continuous map g : Y ! X and two ho-

motopies between g � f : X ! X and idX , resp. f � g : Y ! Y and

idY .

2. Two spaces X and Y are called homotopy equivalent if and only if

there is a homotopy equivalence f : X ! Y .

Example 2.11 1. The spaces X = S1 and Y = R2 n f(0; 0)g are homo-
topy equivalent (though of di�erent dimension) via the inclusion map i :
X ! Y and the \contraction" c : Y ! X with c(x; y) = (x

x2+y2
; y

x2+y2
).

In fact, c�i = idX ; the map H : Y �I ! Y; H((x; y); t) = (1�t)(x; y)+

t(x

x2+y2
; y

x2+y2
) de�nes a homotopy between idY (t = 0) and i � c(t = 1).

2. The spaces Z = R2 and Y (from above) are not homotopy equivalent,
as will be shown in Sect. 2.5

2.4 The fundamental group

2.4.1 De�nitions

We shall now introduce the �rst algebraic construction associating to a topo-

logical space X a group. We shall make use of (some of the) paths considered

in Sect. 2.2 \up to" a speci�c type of homotopy. More speci�cally: Let X
denote a topological space, and let x0 2 X denote an (arbitrarily chosen)

basepoint.

De�nition 2.12 1. A path � : I ! X is called a loop with basepoint x0
if �(0) = �(1) = x0. The set of loops with basepoint x0 is denoted
P1(X;x0).

2. Concatenation de�nes a binary operation C : P1(X;x0)�P1(X;x0) !

P1(X;x0).

3. A homotopy of loops at x0 is a family of loops Ht : I ! X at x0 such
that the associated map H : I� I ! X; H(x; t) = Ht(x) is continuous.

7
7

4. Two loops � and � at x0 are homotopic if there exists a homotopy Ht

of loops with H0 = � and H1 = �. In that case, we write: � ' �.

It is essential that every path in the homotopy is a loop, i.e., that Ht(0) =

Ht(1) for all t 2 I. Moreover, loops with the same basepoint can always be

concatenated.

Example 2.13 1. Let X = Rn and x0 2 Rn any base point. Any two

loops �; � at x0 are homotopic via the linear homotopy Ht = (1� t)�+

t�. The same result holds for a convex subset of Rn, and even for a

subset X that is star-shaped with respect to x0 2 X, i.e., containing

the line segment between x0 and every y 2 X.

2. The same argument does not work for Yn = Rn n f0g. It turns out that
two loops in Yn are always homotopic for n > 2, but not always for

n = 2.

3. A reparametrization of a path (loop) � in X is a composition � = ��'

where ' is a continuous map with '(0) = 0 and '(1) = 1. Essentially,

a reparametrization of � is a loop with the same base point running
along the same trace as �, but possibly at another \speed".

A loop � in X and every reparametrization � = � � ' are homotopic;
a homotopy is given by Ht(s) = �((1 � t)'(s) + ts).

Proposition 2.14 1. The homotopy relation on paths with �xed base-
point de�nes an equivalence relation. The set of equivalence classes is
denoted �1(X;x0).

2. Concatenation factors over the homotopy relation and thus de�nes a
binary operation. C : �1(X;x0) � �1(X;x0) ! �1(X;x0). We write
[�] � [�] for C([�]; [�]).

3. �1(X;x0) with the operation � is a group.

Proof. (Sketch)

1. Re
exivity: Homotopy constant in t. Symmetry: ~H(t) = H(1 � t).

Transitivity: Concatenation of two homotopies H1 and H2 \in the

parameter t": Ht =

�
H1(2t) t � 1

2

H2(2t� 1) t � 1

2
:

2. Concatenation of two homotopies H1 and H2 \in the parameter s":

Ht = H1

t �H
2

t .

8
8

3. Associativity: �1 � (�2 ��3) is a reparametrization of (�1 ��2)��3. Use

Ex. 2.13.3. Concatenation of any loop � at x0 with the constant loop

c (with c(s) = x0 for all s 2 I) yields a reparametrization of �; hence

[c] is a two-sided identity in �1(X;x0). The inverse path to a path in

X is de�ned by ��(s) = �(1 � s). The path �t(s) = �(ts) runs from

�(0) to �(t). For every t 2 I, the concatenation �t ��t is a loop at x0.

Altogether, these maps de�ne a homotopy of loops between � � �� and

c = �0 � �0. Replacing � with �� yields a homotopy between �� � � and

c, i.e., [��] is inverse to [�] in �1(X;x0).

2

Example 2.15 1. �1(R
n; x0) is the (one-element) trivial group.

2. The fundamental group of a circle is isomorphic to the integers. (To a

loop on the circle, you may associate its winding number counting the
total number of { directed { turns around the circle.)
The fundamental group of a higher-idmensional sphere is trivial.

3. The fundamental group of a space is in general not commutative. The
simplest example of a space with non-commutative fundamental group
consisting of two circles with one common point. It turns out that the
fundamental group of this space (with the common point as base point)
is a free group on two generators, cf. Ex. 2.23.2.

The de�nition of the fundamental group depends on the base point. But
it is easy to see, that fundamental groups corresponding to two points x0; x1
in the space X are isomorphic, if there exists a path � from x0 to x1. A
concrete isomorphism is given by [�] ! [� � � � ��1].

Remark 2.16 The geometric shapes under consideration are usually un-

countable, and so is the set of loops through a given point. The homotopy

relation has two important e�ects: it reduces the cardinality to something
typically discrete (�nite or at most countable) and it imposes an algebraic
(group) structure.

2.4.2 Induced homomorphisms.

A continuous map f : X ! Y induces a map f# : �1(X;x0) ! �1(Y; f(x0))

between the associated fundamental groups. The de�nition is easy: Associate
to a loop � in X the loop f � � in Y ; this map factors over the homotopy

relation. Moreover, f# is a group homomorphism.

9
9

Example 2.17 Let f : S1 ! S1 denote the circle self-map, that \doubles

angles", i.e., f(exp(it)) = exp(2it). The winding number of the loop f �� is

twice the winding number of the lopp � on S1. Hence, f# : Z �= �1(S
1; 1) !

�1(S
1; 1) �= Z corresponds to multiplication with 2.

The following two properties of induced homomorphism are easy to derive,

but essential:

1. let f1; f2 : X ! Y denote homotopic maps from X to Y . Then, the

induced maps f � j# : �1(X;x0) ! �1(Y ; f(x0)) coincide.

Corollary 2.18 Homotopy equivalent spaces have isomorphic funda-

mental groups.

2. Let g : Y ! Z denote another continuous map inducing the homo-
morphism g# : �1(Y ; f(x0)) ! �1(Z; g(f(x0))). The composite map

g � f : X ! Z induces the homomorphism (g � f)# : �1(X;x0) !
�1(Z; g(f(x0))).

Lemma 2.19 The homomorphisms (g � f)# = g# � f# : �1(X;x0) !
�1(Z; g(f(x0))) coincide.

Generally speaking, we have the �rst example of a functor (\translator")
that allows to associate to continuous geometric objects and their relations
(topological spaces and continuous maps) discret algebraic counterparts. The
aim is to allow geometric conclusions based on properties of these algebaic

images.

2.5 Functoriality: an example

The following is to serve as an example how the translation mechanims from

topology to algebra can serve to yield non-trivial topological reuslts. Let

Bn := fx 2 Rnjjjxjj � 1g denote an n-dimensional ball, and Sn�1 = @Bn =

fx 2 Rnjjjxjj = 1g an n� 1-dimensional sphere.

Theorem 2.20 (Brouwer's �xed point theorem) Every continuous self-
map f : Bn ! Bn has a �xed point x0 2 B

n (f(x0) = 0).

A proof for this theorem is elementary for n = 1. In that case, the continuous
map g : [0; 1] ! R; g(x) = f(x) � x has the number 0 amongst its values

since g(�1) � 0 and g(1) � 0. For n > 1, it is a consequence of the following

10
10

Lemma 2.21 There is no continuous map F : Bn ! Sn�1 extending the

identity on Sn�1.

Proof. The proof given here applies only to n = 2. For a proof in higher

dimensions, one needs higher homotopy or homology groups cf. e.g. [9]):

Let i : Sn�1 ! Bn denote the continuous inclusion map. A map F as

in the lemma would satisfy: F � i = id, the identity map on Sn�1. On the

fundamental groups level (choose x0 2 S
n�1), this amounts to

id# : �1(S
n�1;x0) = F# � i# : �1(S

n�1;x0) ! �1(B
n;x0) ! �1(S

n�1;x0):

Since Bn is convex (homotopy equivalent to a one-point space), we have

�1(B
n;x0) = 0, and thus id# has to be the zero-map. On the other hand,

id# is the identity map on �1(S
n�1;x0). This is a contradiction for n = 2,

where �1(S
1;x0) �= Z.

2

Proof. of Brouwer's �xed point theorem. Assume there is a continuous
map f : Bn ! Bn without �xed point. Then, one can construct a continuous
map F : Bn ! Sn�1 by associating to x the intersection of the half-line

starting at f(x) through x with Sn�1 (can be described by a formula using
the solution of a quadratic equation and is thus continuous). Obviously, F
restricts to the identity map on sn�1. The existence of F contradicts Lemma
2.21.

2

The general idea is, that the (highly structured) discrete structure corre-
sponding to a continuous structue is often easier to overlook than the original.
Most often, the methods gives rise to impossibility results. In some cases,
existence of objects or maps can be unveiled algebraically; this requires a

proof that the vanishing of an algebraic obstruction is not only necessary,

but indeed su�cient for the construction.

2.6 Compositions: The van Kampen theorem

The calculation of fundamental groups and of induced homomorphisms is
di�cult in general. One of the methods is a calculation \by recurrence", i.e.,

determining the fundamental group of a space by considering fundamental
groups of subspaces and of relations between those. We look at the simplest

case only:
Let A1; A2 � X denote subsets each containing the base point x0. Let

ij : Aj ! X, i12 : A1 \A2 ! A1 and i21 : A1 \A2 ! A2 denote the inclusion

11
11

maps. They satisfy: i1�i12 = i2�i21 : A1\A2 ! X, and the obvious relations

can be seen from the diagrams

A1 \A2
//

��

A1

��

�1(A1 \A2;x0) //

��

�1(A1;x0)

��

A2
// X �1(A2;x0) // �1(X;x0)

From the fundamental groups of the pieces Aj, one can construct the free

group �1(A1;x0) � �1(A2;x0) generated by the two fundamental groups. It

consists of all words in the two \alphabets". It contains the normal subgroup

N generated by all words of type i12(�)i21(�
�1) with � 2 �1(A1 \A2;x0).

Theorem 2.22 (van Kampen theorem) Let A1; A2 � X denote path-
connected (cf. Def. 2.7) open subsets with path-connected intersection A1 \

A2. The fundamental group �1(X;x0) is then isomorphic to the quotient
group of �1(A1;x0) � �1(A2;x0) by the normal group N described above.

A more categorical way to phrase van Kampen's theorem is as follows:

The push-out diagram of spaces on the left-hand side of the diagram above is
translated into a push-out diagram of groups on the right-hand side of that
diagram.

Example 2.23 1. It is essential that the intersection is path-connected,
as well. The van Kampen theorem does thus not apply to the calculation
of the fundamental group of the circle from the (trivial) fundamental

groups of two half-circles (well, a bit more than a half to ensure open-

ness of the pieces). The intersection consists of two \intervals" that
cannot be connected by a path.
On the other hand, the theorem shows that the fundamental group of

an n-sphere Sn is trivial for n > 1: An n-sphere can be described as

the union of two half-spheres, that are homeomorphic to n-dimensional

balls with trivial fundamental groups. Their intersection is homotopy
equivalent to an (n � 1)-dimensional sphere, which is path-connected
for n > 1.

2. The fundamental group of the \one point union" of two subspaces (in
which the base point has a neighborhood that is contractible (i.e., homo-

topy equivalent to a 1-point space) is the free product of the fundamental
group of the subspaces.

12
12

2.7 Further topics

Higher homotopy groups De�nition. Abelian groups. Di�cult to deter-

mine. Results on spheres.

Particular topological spaces Simplicial complexes. CW-complexes. Ap-

proximation.

Simplicial homology De�nition. Induced maps.

Singular homology De�nition. Induced maps. Naturality. Homotopy in-

variance.

Mayer-Vietoris Homology of unions and intersections. Long exact se-

quence.

Functoriality Brouwer. Euclidean spaces up to homeomorphism.

3 A tutorial in ditopology

3.1 Introduction

Ditopology is not yet a well-established discipline. It presents our attempt to
apply methodology from classical topology to the study of concurrency. The
main di�erence compared to classical topology is, that we have to work with
spaces and maps with an extra structure given by a (local) partial order. In

the applications, the partial order re
ects the time
ow for the processors
involved in the concurrent system under consideration.

Hence, we have to rephrase parts of the classical curriculum in topology

in a category of partially ordered spaces and maps between them. The term
ditopology (directed topology) was coined for this situation. It turns out,

that this rephrasing is not just a dull exercise, and that the partial orders
force you to invent notions that seem necessary for progressing with the

applications { sometimes with help from neighbouring disciplines like, e.g.,

relativity theory.
Algebraic topology has been highly successful in deriving results about

geometric structures that are robust under deformations. The key ingredient
is very often an algebraization of the geometric structures to be considered

and the use of functoriality, cf. Sect. 2.5. The introduction to [13] is a very
readable account of our dream how this methodology might be applied in

concurrency theory; moreover, it gives an elementary example (non-existence
of a simulation), in which this dream actually works out.

13
13

We have to admit from the very beginning, that ditopology is not at all

as advanced as classical topology is. The foundational de�nitions are still

under debate, only few general results or calculations are achieved so far.

Nevertheless, the few tools and results have shown to be useful in several

applications; to mention

� An algorithm detecting deadlocks and associated safe/unsafe (and reach-

able/unreachable) regions for concurrent systems generalising the progress

graphs studied in the introduction [3, 4, 6];

� Some results about the scheduling of actions [5];

� A topological underpinning of the result \2-phase locking is safe" used

as a data engineering approach to ensure serialisability of procotcols

for distributed databases [8, 5].

3.2 (Local) po-spaces

We start with elementary de�nitions and properties of po-spaces, cf. e.g. [7]:

De�nition 3.1 1. A partial order � on a set U is a re
exive, transitive
and antisymmetric relation. We write x < y for (x � y and x 6= y).

2. A partial order � on a topological space X is called closed if � is a
closed subset (cf. Def. 2.1.2) of X �X in the product topology. If � is

closed, we call (X;�) a po-space.

In fact some studies have been made for other reasons in the mathematical

litterature about such po-spaces, and in particular compact ones, see for

instance [10].

Remark 3.2 Let (X;�) denote a po-space.

1. For every x 2 X, the sets # x :== fy 2 Xjy � xg and " x = fy 2

Xjy � xg are closed.

2. For every pair of points y1; y2 2 X, the set [y1; y2] = fx 2 X y1 � x �

y2g =#y2\ "y1 is closed.

3. A po-space is Hausdor�[7].

Example 3.3 The progress graph � of a concurrent system modelling mutual

exclusion from Sect. 1.2 can be considered as a po-space as follows: Rn is

equipped with the partial order

(x1; : : : ; xn) � (y1; : : : ; yn) , 81 � i � n : xi � yi:

The progress graph � � Rn inherits the partial order as a subspace.

14
14

A loop cannot be given a consistent partial order: anti-symmetry will

always be violated. But locally, \within the loop", there is still an order

between the steps. We have thus to generalise our framework to include

situations where a partial order only can be established locally:

De�nition 3.4 Let X be a topological space. A collection U(X) of pairs

(U;�U) with partially ordered open subsets U covering X is a local partial

order on X if for every x 2 X there is a nonempty open neighbourhood

W (x) � X such that the restrictions of �U to W (x) coincide for all U 2

U(X) with x 2 U , i.e.,

y �U1
z () y �U2

z for all U1; U2 2 U(X) such that x 2 Ui

and for all y; z 2 W (x) \ U1 \ U2

A neighbourhoodW (x) with a well-determined partial order as above is called
a po-neighbourhood of x.

Example 3.5 The circle S1 = fei� 2 Cg has a local partial order: the open
subsets

U1 = fei� 2 S1j 0 < � <
3�

2
g and U2 = fei� 2 S1j� < � <

5�

2
g

are (partially) ordered by the order on the �'s. Notice that the relation on S1

generated by these local partial orders by taking the transitive closure is of no
use: it is the trivial relation: x � y for any pair of elements x, y 2 S1.

Remark 3.6 1. In the applications, only processes without loops can be
modelled by a partially ordered space. Processes allowing loops have to
be modelled by locally partially ordered spaces.

2. It is necessary to de�ne when two coverings by partially ordered sub-

spaces de�ne the same local partial order, cf. [5].

3.3 Dimaps and Dipaths

Looking back at our example on progress graphs, we observe that executions

correspond to paths (de�ned on a closed interval I with the usual order) in

the partially ordered space preserving that partial order. A generalisation of

this concept is as follows:

De�nition 3.7 Let (X;U) and (Y;V) be locally partially ordered spaces. A
continuous map f : X ! Y is called a dimap (directed map) if for any x 2 X

there are po-neighborhoods W (x) and W (f(x)) such that

x1 �W (x) x2) f(x1) �W (f(x)) f(x2) whenever x1; x2 2 f
�1(W (f(x))) \W (x)

15
15

It is not hard to see, that this de�nition does not depend on the choice of

representativeU of the equivalence class of local po-structures (cf. Rem. 3.6.2).

In the case of po-spaces (not just local ones), dimaps are the same as mono-

tone continuous maps. It is straightforward to see that local po-spaces and

dimaps form a category.

A dipath is a dimap de�ned on either the unit interval I (relevant for paths

in compact po-spaces; this is the approach used e.g. in [5, 11]), or, the half-

lineR�0 := ft 2 Rjt � 0g (relevant for paths in local po- spaces) { both with

the usual order as the partial order relation � on the domain. An execution

where one process loops in�nitely often corresponds to the exponential map

' : R�0 ! S1; '(t) = exp(2�it) considered as a dipath; two processors

looping in�nitely many times can be modelled by a dipath into the 2-torus

of type : R�0 ! T = S1 � S1; (t) = ('(mt); '(nt)); m; n > 0:

De�nition 3.8 Let X denote a local po-space.

1. A dipath in X is a dimap � : R�0 ! X.

2. We call � �nite it there is a real number T > 0 such that �s restriction
to [T;1[is constant.

3. We call a dipath � in X an extension of a dipath � in X if there is a
real number T > 0 and a surjective dimap ' : [0; T [! R�0 such that
the diagram

[0; T [
'

//

�

��

R�0

�

��

[0;1[
�

// X

commutes and such that �s restriction to [T;1[is non-constant.

4. A dipath � : R�0 ! X is called inextendible if it does not admit any

extension � : R�0 ! X.

5. A new local partial order � on X is de�ned as follows: x � y, there

is a �nite dipath from x to y.

6. For X0;X1 � X, we de�ne the dipath spaces

~P1(X;X0;X1) = f� : R�0 ! X �nite j �(0) 2 X0; �(T) 2 X1

for large Tg and
~P1(X;X0;1) = f� : R�0 ! X inextendible j �(0) 2 X0g:

16
16

Example 3.9 1. In a �nite mutual exclusion model (with PV semantics)

the state space is X = Innint(F), the complement of the interior of the

forbidden region F in a cube. X0 = f0g consists of the initial point;

X1 will typically either contain only the �nal point 1 or be a (�nite)

set of (deadlock { cf, Def. 3.11) points. For such a compact po-space,

it is a bit arti�cial to consider dipaths de�ned on R�0; dipaths de�ned

on a closed interval I give rise to an equivalent notion.

2. Let X = S1 denote a circle, or more general, X = (S1)n denote an n-

torus (with the product local partial order) modelling concurrent loops.

In that case, the interesting dipaths are the non-�nite ones. If a for-

bidden region is removed from X, �nite dipaths ending in a deadlock

arise naturally, as well.

We would like to have a clean de�nition for dimaps that send inextendible
dipaths to inextendible dipaths in order to imitate the set-up of homotopy

alluded to in Sect. 2. This is work in progress.

3.4 Dihomotopy

State spaces for concurrent systems tend to have an enormous (but �nite)

size. The main idea with the ditopology approach is to replace the �nite state
space by a continuous higher-dimensional (in�nite) one, and then to impose
relevant equivalent relations on the associated space of dipaths (and, as a
result, on the state space itself), yielding classi�cation patterns that apply
to the original state space. As an e�ect, the number of essentially di�erent

states can usually be reduced drastically.

The relevant equivalence relation is given by a special type of homotopy:

De�nition 3.10 Let X denote a local po-space with subspaces X0;X1 � X:

A continuous family Ht : R�0 ! X of dipaths (giving rise to a homotopy
H : R�0 � I ! X) is called

1. a dihomotopy from X0 to X1, if every map Ht 2 ~P1(X;X0;X1) is a
�nite dipath from X0 to X1.

2. an inextendible dihomotopy from X0 if every map Ht 2 ~P1(X;X0;1)

is an inextendible dipath from X0. .

These notions give rise to equivalence relations on the path spaces. Their

quotient sets are denoted by ~�1(X;X0;X1), resp. ~�1(X;X0;1):

17
17

Why is there any relation between dihomotopy and concurrency? In

fact, dihomotopy of dipaths corresponds to the commutativity of local ac-

tions. Consider the following basic example: There are (essentially, i.e., up

to reparametrization) two dipaths in the boundary of a rectangle from the

\bottom" edge to the \top" edge. As dipaths in the

boundary: they are not dihomotopic (even not homotopic with end points

�xed);

�lled-in rectangle: they are dihomotopic (connect them linearly).

At least in dimension two, it is quite convincing, that execution paths in

the mutual exclusion models discussed in the introduction yield equivalent

results if they are dihomotopic (and that you can invent situations where they

yield inequivalent results, if not). A theoretical classi�cation of dipaths up
to dihomotopy in 2-dimensionial mutual exclusion models and an algorithm
determining the (�nite) set ~P1(X;0;1) is described in [11].

The dihomotopy notion is certainly even more interesting and more promis-

ing { but also more involved in higher dimensions. Let us again consider the
basic example, dipaths from the bottom to the top on the boundary of a
3-dimensional cube. This boundary models a piece of shared memory, that
two, but not three processes can access and manipulate in a commutative
way. In this simple case, it is elementary to see that any execution is equiv-

alent to a serial one, and that all serial ones are equivalent { corresponding
to the fact, that all dipaths in the model are dihomotopic to each other.

The following example of a space consisting of a cube from which 3 for-
bidden \bars" are removed, is a bit more involved and probably already quite
di�cult to analyse combinatorially: It describes 3 concurrent processes that

access 3 shared objects, two of which can only handle one of them at any
given time while the \middle" one can handle access of two of them in paral-

lel. In this case, there exist �ve essentially di�erent schedules corresponding

to dihomotopy classes of dipaths. Two of those dipaths are in fact homo-
topic (with end points �xed), but not dihomotopic. An example in which the
schedules corresponding to those may lead to di�erent results of a concurrent

calculation is given in [5].

Which algebraic structures should one consider on top of the dihomotopy
set ~�1. This question is not quite settled yet. The most promising so far is

that of a partial order in non-published work of S. Soko lowski.

3.5 Deadlocks, unsafe and unreachable regions

We survey a fully-developped fast algorithm detecting deadlocks, unsafe and

unreachable regions for mutual exclusion models. Though it does not use the

18
18

Figure 4: Room with 3 barriers

general framework for local po-spaces nor the notion of dihomotopy, it was
conceived in the same geometrical spirit. Details can be found in [3, 4].

3.5.1 De�nitions

In the applications, a deadlock is a state in which the system under consider-
ation is blocked, i.e., there is no execution leaving that particular state. The
associated unsafe region is the set of states that are bound to be blocked in
that deadlock somewhere in the future. If executions are modelled by dipaths

in (local) po-spaces, both notions (and their relatives) have counterparts with
nice and clear de�nitions:

De�nition 3.11 1. An element x 2 X with " x = fxg is called a dead-

lock. The set of all deadlocks in X is denoted by D(X). (Sometimes,

a particular �nal state is exempted from D(X)).

2. The unsafe region Uns(X;X1) = U(X;X;X1) consists of all x 2 X

that cannot be connected to any point in X1 by a dipath, i.e.,

Uns(X;X1) = fx 2 Xj~P1(X;x;X1) = ;g = X n (#X1)

= fx 2 Xj("x) \X1 = ;g:

3. The unreachable region Unr(X;X0) = U(X;X0;X) consists of all x 2
X that cannot be reached from any point in X0 by a dipath, i.e.,

Unr(X;X0) = fx 2 Xj~P1(X;X0; x) = ;g

= X n ("X0) = fx 2 Xj(#x) \X0 = ;g:

19
19

Remark 3.12 1. The symbols " and # above have to be interpreted with

respect to the partial order � from Def. 3.8.

2. Consider the po-space associated to a PV-program discussed in Sect. 1.2

with �nal state 1. Then Uns(X;1) corresponds exactly to the unsafe

region of those states that can only reach a deadlock (di�erent from 1).

3.5.2 Detection of deadlocks and unsafe areas for mutual exclu-

sion models

Unsafe and unreachable regions can be algorithmically determined in the PV

model [4] and we recap here the basic idea of the algorithm.

Suppose the semantics of a PV program is given in terms of a forbidden

region F � In in a hypercube containing forbidden hyperrectangles Ri =Qn

j=1[a
i
j; b

i
j] � In (with n � 2). Each of those hyperrectangles models a

region that only a limited number of processes can enter simultaneously.
We assume moreover that the coordinates aij are pairwise di�erent for every
1 � j � n (geometrically, this is a genericity assumption). The relevant state

space is X = In n int(F).
For any nonempty index set J = fi1; : : : ; ikg de�ne

RJ = Ri1 \ � � � \ Rik = [aJ
1
; bJ

1
]� � � � � [aJn; b

J
n]

with aJj = maxfaijji 2 Jg and bJj = minfbijji 2 Jg. This set is again
an n�rectangle unless it is empty (if akj > blj for some 1 � j � n and
k; l 2 J). Let aJ = [aJ

1
; : : : ; aJn] = minRJ denote the minimal point in that

hyperrectangle.

For every 1 � j � n, we choose faJj as the \second largest" of the ailj ,

i.e.,faJj = aisj with ailj � aisj < aJj for all ailj 6= aJj ; and consider the associated

hyperrectangle UJ = [faJ
1
; aJ

1
]�� � �� [faJn; aJn] \below\ RJ ; the interior of which

is unsafe with respect to aJ . Usually, it models a large number of \states";

this is where we exploit higher-dimensionality.
Deadlock points in the interior of In are then exactly the minimal points

minRJ of intersections with index set J of cardinality n (the number of

processes, i.e. the dimension of the geometric shape we are studying) such

that RJ 6= ; and minRJ not contained in any Ri with i 62 J . Deadlock points

on the boundary @In can be found using the same recipe after modi�cation
of the hyperrectangles used in the description (cf. [3, 4]).

This description allows to �nd the set D of deadlocks in X and, for

every deadlock a 2 D corresponding to a set of indices Ja, the unsafe

hyperrectangle UJa \just below". To detect the entire unsafe region, let

20
20

F1 = F [
S

a2D U
Ja. Find the set D1 of deadlocks in X1 = X n int(F1) � X,

and, for every deadlock a 2 D1, the unsafe corresponding hyperrectangle

UJa. Let F2 = F1 [
S

a2D1
UJa etc. (see Fig. 5 { 8 for an example).

The algorithm stops after a �nite number l of loops ending with a set

U = Fl and such that Xl = X n int(U) does no longer contain any deadlocks.

The set U consists precisely of the forbidden and of the unsafe points.

Figure 5: The
forbidden
region

Figure 6: First
step of the algo-
rithm

Figure 7: Sec-
ond step of the
algorithm

Figure 8: Last
step of the algo-
rithm

Literally the same algorithm willl �nd the unreachable regions after a
time reversal (re
ection in the barycenter of In).

3.6 Further topics

Application 2-phase locked protocols

Related concepts Dicoverings. Po-structure. Homotopy history. Dicom-
ponents.

Models: Cubical complexes with local partial order

More structure higher dihomotopy, structure(s), dihomology, functoriality

and applications, relations to classical paradigma in concurrency

References

[1] E.G. Co�man, M.J. Elphick, and A. Shoshani, System deadlocks, Com-

put. Surveys 3 (1971), no. 2, 67 { 78.

[2] E.W. Dijkstra, Co-operating sequential processes, Programming Lan-
guages (F. Genuys, ed.), Academic Press, New York, 1968, pp. 43{110.

21
21

[3] L. Fajstrup, �E. Goubault, and M. Raussen, Detecting Deadlocks in Con-

current Systems, DTA/LETI/DEIN/SLA 98-61, LETI (CEA - Tech-

nologies Avanc�ees), Saclay, France, August 1998, 25 pp.

[4] , Detecting Deadlocks in Concurrent Systems, CONCUR '98;

Concurrency Theory (Nice, France) (D. Sangiorgi and R. de Simone,

eds.), Lect. Notes Comp. Science, vol. 1466, Springer-Verlag, September

1998, 9th Int. Conf., Proceedings, pp. 332 { 347.

[5] , Algebraic topology and concurrency, Tech. Report R-99-2008,

Department of Mathematical Sciences, Aalborg University, DK-9220

Aalborg �st, June 1999.

[6] Lisbeth Fajstrup, Loops, ditopology, and deadlocks, Tech. Report R-99-

2023, Department of Mathematical Sciences, Aalborg University, DK-
9220 Aalborg �st, 1999, 30 pages, to appear in Math. Structures Com-
put. Sci.

[7] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S.
Scott, A Compendium of Continuous Lattices, Springer-Verlag, 1980.

[8] J. Gunawardena, Homotopy and concurrency, Bulletin of the EATCS
54 (1994), 184{193.

[9] Alan Hatcher, Algebraic Topology, to appear at Cambridge University
Press; currently available at http://www.math.cornell.edu/ hatcher/#
AT1, 2000.

[10] L. Nachbin, Topology and order, Van Nostrand, Princeton, 1965.

[11] M. Raussen, On the classi�cation of dipaths in geometric models for

concurrency, Tech. Report R-99-2025, Dept. of Mathematics, Aalborg

University, Aalborg, Denmark, 1999, 42 pages, to appear in Math. Struc-
tures Comput. Sci.

[12] A. Shoshani and E.G. Co�man, Sequencing tasks in multiprocess sys-

tems to avoid deadlocks, Eleventh Annual Symposium on Switching and
Automata Theory (Santa Monica, CA, USA), no. 225 - 235, IEEE, 1970.

[13] S. Soko lowski, Investigation of concurrent processes by means of homo-

topy functors, Manuscript. Kansas State University. Submitted to Math.

Structures Comput. Sci., August 1999.

22
22

In�nitely running concurrent processes with

loops from a geometric viewpoint

Lisbeth Fajstrup 1

Department of Mathematical Sciences, Aalborg University

Fredrik Bajers Vej 7E, DK-9220 Aalborg �, Denmark

e-mail: fajstrup@math.auc.dk.

Stefan Soko lowski 2

Institute of Computer Science, Polish Academy of Sciences

Gda�nsk Div., ul. Abrahama 18, 81-825 Sopot, Poland

e-mail: stefan@ipipan.gda.pl.

Abstract

This report gives a formal topological semantics to inductively de�ned concurrent

systems and investigates the properties of such systems. We allow loops and in-

�nitely running computations, which is new in the topological investigations of

concurrency. In this more general setting, we prove the equivalent to the result

from [2] that deadlocks and unsafe points can be found using a �nite number of

deloopings.

1 Introduction

The idea of using geometric methods for concurrency is not new. The geomet-

ric viewpoint referred to in the title goes back to Dijkstra [1], who introduces

higher dimensional geometric objects, progress graphs, and abstracts a process

to be a series of actions locking and releasing a set of resources, which may

then be shared with other processes thus giving rise to coordination problems.

This idea has later been re�ned or independently reinvented by a number of

authors. For an overview see, for instance, [3].

Concurrent systems, as most things in computer science, operate in discrete

time. One way of applying geometric and topological methods is to come up

1 Partially supported by the Danish National Science Research Council.
2 Supported by the Dept. of Computing and Information Sciences, Kansas State University,
and by the ICS PAS.

Preprint submitted to Elsevier Preprint Version of 25th July 2000

23

with a discrete counterpart of such notions as connectedness or homotopy,

as do, for instance, [6,9]. An alternative approach is to assign topological

spaces to concurrent systems and to work directly in topology [7,3,4,2]. One

contribution of this paper is to make such an assignment explicit. Concurrent

systems are de�ned in the computer science tradition as syntax objects and

a \topological semantics" is de�ned by structural induction on the syntax.

Certain good properties of that semantics are proved.

Along with concurrent system computations, that begin in a certain time

point and end in another, we are studying computations which may run for

ever, such as operating systems. In such systems, termination can only hap-

pen when something goes wrong. In computer science applications (unlike in

physics | cf. [8]), time does not run from �1 to +1. There is a beginning

but no ending; the past is �nite, while the future is not. In other words, at

a certain well-de�ned point in time all the processes are started o� and never

stopped again. Our formalism covers in�nite computations in both discrete

and topological settings.

In [4], geometric methods were used to develop an algorithm for detecting

deadlocks and associated unsafe areas from which no executions could �nish.

In that approach, loops were not allowed. A later [2] extended the technique to

investigating processes with loops via their loopless realizations (deloopings)

and proved that deadlocks and unsafe points could be found using a �nite

number of deloopings even though the con�guration space of a system with

nontrivial loops was in�nite. However, computations were not allowed to

run inde�nitely. Another contribution of the present paper is the proof that

when the safe states are the ones from which there is a computation which

runs inde�nitely, these safe states can be identi�ed by studying a �nite set of

deloopings of the system (cf. Thm. 5.5).

2 Concurrent systems and their executions

We are given a set O of resources that the processes may lock or release. In

compliance with a longstanding tradition, locking a resource A 2 O will be

denoted by PA and releasing a resource A 2 O will be denoted by VA. We

assume that a process that has locked a resource cannot lock it again before

releasing this resource; and that a process cannot release a resource without

having it locked.

But there may be more than one process locking a given resource. Every

resource A 2 O has a certain capacity sA with the intended meaning that

it can be used simultaneously by not more than sA di�erent processes. The

simplest resources protected by the classical critical regions have capacity 1.

2

24

2.1 Looping processes

When studying cooperation, it is customary to abstract from private actions

by particular processes. By this abstraction, a process is a sequence of com-

munications, i.e., in our setting, of actions PA and VA for various A 2 O. This

is the sequence of communications that the process \wants" to perform; or

\would" perform if no other process got in its way. After completing this

sequence of actions, the process terminates.

De�nition 2.1 Consider the set of strings of actions given by the following

production:

t : T0 ::= 1 j t.PA j t.VA j t1.(t2)
� (1)

The operation . is the concatenation; we may extend it to arbitrary

strings, with the second argument not necessarily single-action as in (1), by

decreeing that it is associative and that 1 (empty string) is its right unit 3 .

Loop .()� is another formal operation on T0; intuitively, t1.(t2)
� describes

the processes that perform t1 and then run 0 or more times the sequence t2.

By another decree, t.(1)� = t.

In accordance with the usual understanding of grammars, all elements

of T0 are �nite strings. The way they de�ne in�nite executions, is discussed

in Sec. 2.5 on page 9.

T0 is too large for our set of processes. For instance, PA.PA 2 T0, while we

do not want to allow any process to lock same resource twice without releasing

it. We de�ne its subset, T � T0, which will be referred to as the set of looping

processes.

We want every looping process t 2 T to satisfy the following (informal)

constraints:

(i) between any two actions PA in t, there is an intervening action VA,

(ii) between any two actions VA in t, there is an intervening action PA,

(iii) for every contiguous subsequence t1.(t2)
� of t, the numbers of PA's and

of VA's in t2 are equal,

(iv) before every action VA in t, there must occur a corresponding action PA.

These constraints take care of the assumptions in the beginning of Sec. 2.

We de�ne resource use characteristics of a process as the number of locks

acquired on a resource A 2 O by the process t, for instance rA(PA.VA.PB) = 0.

We only allow such t2 in t1.(t2)
� that rA t2 = 0.

3 It follows easily that 1 is its left unit too. By (1), each element of T0 must begin with 1,
but we will often take the liberty of simplifying the initial 1.t to t.

3

25

2.2 Looping vs. loopless processes

De�nition 2.2 A loopless process is a looping process without the operation

.()�. Again, we distinguish two sets:

D1
def
= ft 2 T1 j no occurrence of .()� in tg and D

def
= D1 \ T

A loopless process does not have to eventually release a resource. E.g.,

it may lock it for ever; or it may never release a resource before acquiring

another. For instance, PA is a valid loopless process.

Looping processes are a convenient way of describing in�nite sets of related

loopless processes. This is done by means of a relation between the one and

the other, as described below:

De�nition 2.3 Let . � D1 � T1 be the least relation de�ned by the following

inference system:

1 . 1

d . t

d.PA . t.PA

d . t

d.VA . t.VA

d0 . t0 d1 . t1 : : : dk . t1

d0.d1. : : : .dk . t0.(t1)
�

(k � 0)

Whenever d . t for a certain d 2 D and a certain t 2 T , the process d is called

a delooping of the process t.

Proposition 2.4 If d1 . t1 and d2 . t2 then d1.d2 . t1.t2. If d . t then rA d = rA t.

Two loopless processes d and d0, which deloop the same looping process t,

may be compared on the number of \turns" of the t's loops needed to generate

them.

De�nition 2.5 De�ne l � D1 � T1 �D1 as the least (ternary!) relation

such that:

(i) 1 l1 1,

(ii) if d lt
�d then d.PA lt.PA

�d.PA and d.VA lt.VA
�d.VA for every A 2 O,

(iii) if t1 6= 1 and

d0 lt0
�d0 d1 lt1

�d1 : : : dk lt1
�dk (2)

then d0.d1. : : : .d` lt0.(t1)�
�d0. �d1. : : : . �dk for every ` � k.

dlt
�d reads: �d is a further delooping of t than d. Informally, d lt

�d means

that a loop within t is run more times to produce �d than to produce d.

Pt. (iii) in the de�nition above describes the only possibility of two loopless

processes to be lt-related and not equal: this happens whenever in some

derivation of the delooping relations i.e., sequences of the basic inferences, of

4

26

d1 . t and d2 . t we have` < k, i.e., some of the deloopings are skipped at the

left-hand side .Two such derivations giving d1 lt d2 are said to realize d1 lt d2.

Proposition 2.6 If d1 lt d2 then d1 . t and d2 . t.

Lemma 2.7 If d1 lt d2 then length d1 � length d2.

Proposition 2.8 For every t 2 T1, the relation lt is a partial order on the

set

fd 2 D1 j d . tg.

Whenever d = d1.d2 2 D0, the loopless process d1 is called a pre�x of d,

denoted d1 v d. The pre�x relation is a partial order inD0. The set of pre�xes

of a loopless process d is denoted by Prefd.

A bit arti�cially, the notion of pre�x may be generalized to looping pro-

cesses.

De�nition 2.9 For any t 2 T0, the set Preft �
S1

i=1 T
i

0 (the union of Carte-

sian powers of T0) of pre�xes of t is de�ned inductively as follows:

Pref1
def
= f1g Preft.PA

def
= Preft [ft.PAg Preft.VA

def
= Preft [ft.VAg

Preft1.(t2)�
def
= (Preft1 [fht1; ti j t 2 Preft2g)�t1= ht1;1i= ht1; t2i

Note that this boils down to the former pre�x in the absence of loops in t.

The pre�x partial order v on D0 induces a relation in Preft, but this relation

is not a partial order any more; still, we are going to denote it by v.

Proposition 2.10 (i) For every derivation of the delooping relation d . t,

induction over the basic inferences de�nes a mapping �d.t : Prefd ! Preft
translating the partial order v to the induced relation in Preft. (This

actually de�nes the relation in Preft.

(ii) Given derivations of d . t and �d . t realizing dlt
�d, there exists a natural

mapping 	
dlt

�d : Pref �d ! Prefd \forgetting" the extra turns of the loops

in �d.

(iii) For any realization of dlt
�d, � �d.t �	dlt

�d = �d.t

Do not confuse the di�erent partial orders on D: v | the pre�x order,

and lt for a given t | number-of-turns order. Note also that for t1 6= t2, the

orders lt1
and lt2

are, in general, di�erent.

2.3 Concurrent systems and their con�gurations

De�nition 2.11 A concurrent system C = (O; s; C) consists of

5

27

� a set O of resources,

� a capacity function s : O ! N (natural numbers),

� a �nite set C of (looping) processes in T de�ned over O | i.e., whenever

a PA or a VA occurs in a t 2 C, A 2 O.

De�nition 2.12 A con�guration of a concurrent system C = (O; s; C) is a

function � assigning to every looping process t 2 C a pre�x: � t 2 Preft. The

set of con�gurations of a system C will be denoted by Conf C. The initial

con�guration is de�ned by �1 t
def
= 1 for every t 2 C.

Intuitively, every con�guration � is an account of how the particular pro-

cesses in C procede. Whenever a process t performs an action

a 2 ActO
def
= fPA j A 2 Og [fVA j A 2 Og [f1g (3)

a corresponding con�guration �1 moves to another con�guration �2.

De�nition 2.13 For every process t 2 C, de�ne a computation step by t as

the following relation:

�1
t

7! �2
def
() 8t0 6=t �2 t

0 = �1 t
0 &

9a2ActO �2 t = (�1 t).a &

�2 t 2 Preft

The union 7!
def
=
S

t

t

7! is called a computation step. Whenever �1 7! �2, the

con�guration �2 is called a successor of the con�guration �1. The transitive

closure of the successor relation 7! is denoted by v. In a loopless concurrent

system, the relation v is a partial order.

Proposition 2.14 For all con�gurations �1 and �2,

�1 v �2 () 8t2C �1 t v �2 t

(the symbol v at the right hand side denotes the pre�x relation).

If C is a system of only one process, t, then Conf C = Preft with the relation

v The functions rA describing the number of locks on a resource A acquired

by a given process, are extended to con�gurations of a concurrent system:

De�nition 2.15 Resource use characteristics of a con�guration is de�ned by

rA �
def
=
X
t2C

rA(� t)

6

28

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

- - - -

- - - -

- - - -

- - - -

- - - -

h1;

1i

h0;0i

hPA;

1i

h1;0i

hPA.PB;

1i

h1;1i

hPA.PB.VB ;

1i

h1;0i

hPA.PB.VB.VA;

1i

h0;0i

h1;

PBi

h0; 1i

hPA;

PBi

h1;1i

hPA.PB;

PBi

h1;2i

hPA.PB.VB ;

PBi

h1;1i

hPA.PB.VB.VA;

PBi

h0;1i

h1;

PB.PAi

h1; 1i

hPA;

PB.PAi

h2;1i

hPA.PB;

PB.PAi

h2;2i

hPA.PB.VB ;

PB .PAi

h2;1i

hPA.PB.VB.VA;

PB.PAi

h1;1i

h1;

PB.PA.VAi

h0;1i

hPA;

PB.PA.VAi

h1;1i

hPA.PB;

PB.PA.VAi

h1; 2i

hPA.PB .VB ;

PB.PA.VAi

h1;1i

hPA.PB.VB.VA;

PB.PA.VAi

h0;1i

h1;

PB.PA.VA.VBi

h0;0i

hPA;

PB.PA.VA.VBi

h1;0i

hPA.PB;

PB.PA.VA.VBi

h1; 1i

hPA.PB .VB ;

PB.PA.VA.VBi

h1;0i

hPA.PB.VB.VA;

PB.PA.VA.VBi

h0;0i

Fig. 1. System C1 from Ex. 2.16.

A con�guration � is forbidden if it is using resources beyond their capacities;

i.e., if rA � > sA for some resource A 2 O. An allowed con�guration is one

which is not forbidden. The set of all allowed con�gurations of a system C is

denoted by AC:

AC
def
= f� 2 Conf C j 8A2O rA� � sAg

Example 2.16 Consider a more complex system C1
def
= (O; s; C) with two

resources O
def
= fA;Bg whose capacities are sA

def
= 1 and sB

def
= 1, and two

processes

C
def
= fPA.PB.VB.VA ; PB.PA.VA.VBg

(see Fig. 1). The pairs of numbers under the con�gurations are the values of rA
and of rB. The �ve forbidden con�gurations are shaded.

This system and other similar are often referred to as the Swiss
ag.

7

29

6 6 6

6 6 6

-

1

)

-

1

)

-

1

)

h1; 1i

0

h1; PAi

1

h1; PA.VAi

0

hPA ; 1i

1

hPA ; PAi

2

hPA ; PA.VAi

1

hPA.VA ; 1i

0

hPA.VA ; PAi

1

hPA.VA ; PA.VAi

0

Fig. 2. System C2 from Ex. 2.17.

Example 2.17 Take the case, where one of the processes contains a loop:

C2
def
= (O; s; C) with a single resource O

def
= fAg whose capacity is sA

def
= 1,

and with two processes:

C
def
= fPA.(VA.PA)

� ; PA.VAg

The set of con�gurations of C2 is depicted in Fig. 2.

Forbidden con�gurations are the ones that cannot be entered in a normal

\life" of a concurrent system. On the other hand, such \life" may only procede

increasingly with respect to the partial order v on con�gurations. There may,

therefore, exist con�gurations from which there is no way out, corresponding

to deadlocks. For instance, in Example 2.16, hPA; PBi is a deadlock | one

process has claimed the resource A and waits for B; the other has locked B

and waits for A. Dually, there may exist allowed con�gurations with no way

in: cf. hPA.PB.VB ; PB.PA.VAi in Ex. 2.16.

Deadlocks and other related notions will be discussed in Sec. 2.5.

The notion of delooping . from Def. 2.3 on p. 4 is extended to concurrent

systems as follows:

De�nition 2.18 Assume C = (O; s; C) and C0 = (O; s; C 0) are concurrent sys-

tems sharing the set of resources, and C is loopless, i.e., all its processes are

loopless. Let f : C ! C 0 be a bijection such that d . f d for every d 2 C. Then

the system C is called an f -delooping of the system C0, denoted C .f C
0.

The partial orders lt from from Def. 2.5 on p. 4 are extended to concurrent

systems as follows:

De�nition 2.19 Assume C1 = (O; s; C1) and C2 = (O; s; C2) are loopless and

C = (O; s; C) is a looping system and all three systems share the set of re-

sources. Let C1 .f1 C and C2 .f2 C for some bijections f1 and f2. The pair

8

30

(C2; f2) is said to be a further delooping of C than the pair (C1; f1), denoted

(C1; f1)lC (C2; f2), if d1 lf1d1
f�12 (f1 d1) for all d1 2 C1.

2.4 Morphisms of concurrent systems

De�nition 2.20 A morphism between concurrent systems C = (O; s; C) and

C0 = (O0; s0; C 0) is a triple (f; g; ') consisting of:

� f : C ! C 0 | assignment of processes in C0 to processes in C,

� g : O ! O0 | assignment of resources in C0 to resources in C,

� ' : Conf C ! Conf C0 | mapping of con�gurations

such that

(i) ' �1 = �10,

(ii) if �1 v �2 then '�1 v
0 '�2 for �1; �2 2 Conf C ,

(iii)
P
fsA j g A = Bg � s0

B
for B 2 O0,

(iv) rB('� t
0) �
P
frA(� t) j f t = t0 & g A = Bg for B 2 O0, � 2 Conf C and

t0 2 C 0.

It is clear that concurrent systems with their morphisms form a category.

Proposition 2.21 A morphism takes allowed con�gurations to allowed con-

�gurations,

i.e., if (f; g; ') : C ! C0 then '(AC) � AC0 .

Proposition 2.22 Assume C = (O; s; C) is an f -delooping of a looping sys-

tem C0 = (O; s; C 0) with the same set of resources, for a certain bijection

f : C ! C 0, i.e., C .f C
0. Then for every derivation of the delooping relation,

there exists a natural morphism of concurrent systems (f; IdO; ').

Example 2.23 Let C = (O; s; C)) be a concurrent system of which t is one

of the processes. There is an inclusion morphism it : (O; s; ftg)! C: f is the

inclusion t! C, ' is de�ned by '(�) t = � and '(�) t0 = 1 for t` 6= t. g is the

identity.

Similarly there is a projection �t : C ! (O; s; ftg): f(t0) = t for all t0 2 C,

'(�) = � t and g is the identity.

When F = (f; g; ') : C ! C 0 is a morphism of two concurrent systems and

t is one of the processes in C, we de�ne the restriction Fjt = �f(t) � F � it :

(O; s; ftg)! (O0; s0; ff(t)g)

2.5 Execution trajectories

De�nition 2.24 Given a concurrent system C = (O; s; C), a trajectory from

a con�guration �0 is any sequence �0�1�2 : : : of allowed con�gurations, such

9

31

that �i�1 7! �i for i = 1; 2; : : :. The length of a trajectory �0�1�2 : : : is the

cardinality of the set f�0; �1; �2; : : : g minus 1. A trajectory is �nite if its

length is a natural number and it is in�nite if it is +1.

Each trajectory may be viewed as a possible history of the \life" of a given

system. Every concurrent system, in which a process contains a true loop,

i.e., such t1.(t2)
� that t2 6= 1, has a potential for in�nite trajectories; but this

potential may not be used if there are too many forbidden con�gurations.

We could have excluded trajectories with repeated con�gurations. But this

would restrict the framework to in�nite trajectories only, depriving us of the

capability of discussing some unwelcome phenomena, such as deadlocks.

De�nition 2.25 For a �nite trajectory �0�1�2 : : : ��� : : :, where � is the last

(in�nitely repeated) con�guration, �0 is called its beginning, � its end, and

the trajectory is said to go from �0 to �. An existence of a trajectory from �1
to �2 is denoted by �1 � �2. An existence of an in�nite trajectory from � is

denoted by � � 1.

Because of the requirement that all the intervening con�gurations be al-

lowed, �1 v �2 does not necessarily imply �1 � �2.

De�nition 2.26 For an arbitrary allowed con�guration � 2 AC, we de�ne

� the future: "�
def
= f�0 2 AC [f1g j � � �0g, and

� the past: #�
def
= f�0 2 AC j �

0 � �g.

De�nition 2.27 Assume a certain set F � AC [f1g of allowed con�gura-

tions, called �nal con�gurations, is given. A con�guration � 2 AC is a dead-

lock with respect to F if "� = f�g and � =2 F. A con�guration � is safe with

respect to F if "� \ F 6= ;. It is unsafe if it is not safe.

Informally, a con�guration is a deadlock if it is allowed, not �nal and there

is no outgoing trajectory. The life of a concurrent system, that has reached

a deadlock con�guration, ends there. A con�guration is unsafe if there is no

way of reaching a �nal state from it and no way to continue inde�nitely, if the

set F allows for this. Every deadlock is, of course, unsafe.

Example 2.28 Consider the system C1 in Example 2.16 on page 7. With

F = ;, there are two deadlock con�gurations,

hPA; PBi

hPA.PB.VB.VA ; PB.PA.VA.VBi

and every con�guration is unsafe. WithF = fhPA.PB.VB.VA ; PB.PA.VA.VBig,

the only unsafe con�guration, which is also a deadlock, is hPA; PBi. And if

10

32

F = fhPA; PBig, the only deadlock is hPA.PB.VB.VA ; PB.PA.VA.VBi while all

con�gurations with the exception of h1;1i, hPA;1i, h1; PBi and hPA; PBi are

unsafe.

De�nition 2.29 Call a �nite trajectory from �1 to �2 left-maximal [resp.,

right-maximal] if it cannot be extended to the left [resp., to the right], i.e.,

#�1 = f�1g [resp., "�2 = f�2g].

Proposition 2.30 Let C = (O; s; C) be a loopless system, i.e., C � D. A

con�guration � 2 AC is unsafe if and only if every right-maximal trajectory

beginning in � ends in a deadlock.

Example 2.31 Consider the system C2 in Example 2.17 on page 8. Whatever

the set F , there are no deadlocks. If 1 2 F then all con�gurations are safe.

If F = ; then every con�guration is unsafe. This shows that Prop. 2.30 is not

true for looping systems.

Proposition 2.32 Let C = (O; s; C) be a concurrent system (either loopless

or looping). A con�guration � 2 AC is unsafe if and only if every right-

maximal trajectory beginning in � either ends in a deadlock, or is in�nite

and 1 =2 F .

3 Geometry of concurrency

In this section, we are studying the geometric and topological notions which

will later be used for giving the topological semantics of the processes from

Section 2.

3.1 Ditopology

De�nition 3.1 A partial order � on a topological space X is called closed if

� is a closed subset of X �X in the product topology. In that case, (X;�)

is called a po-space.

De�nition 3.2 Let X be a topological space. A collection U(X) of pairs

(U;�U) with partially ordered open subsets U covering X is a local partial

order on X if for every x 2 X there is a nonempty open neighbourhood

W (x) � X with a partial order �W (x) such that the restrictions of �U and

�W (x) to U \W (x) coincide for all U 2 U(X) with x 2 U , i.e.,

y �U z () y �W (x) z for all U 2 U(X) such that x 2 U

and for all y; z 2 W (x) \ U

(4)

11

33

A neighbourhood W (x) with the partial order as in Def. 3.2 is called a po-

neighbourhood of x.

Example 3.3 The circle S1
def
= fei� 2 C j 0 � � � 2�g has a local partial or-

der: the open subsets U1 = fei� j 0 < � < 2�g and U2 = fei� j �� < � <

�g are (partially) ordered by the order on the �'s 4 . Notice that the transitive

closure of the union of these local partial orders is x � y for any pair x, y.

Hence we do not take transitive closure of the local orders!

De�nition 3.4 Two local partial orders U(X) and V(X) on X are equivalent

if their union U(X)[V(X) is a local partial order; in other words, U(X) and

V(X) are equivalent if and only if for every x 2 X there is a nonempty open

neighbourhood W (x) � X such that the restrictions of �U and �V to W (x)

coincide for all U 2 U(X) and V 2 V(X) with x 2 U and x 2 V . A topological

space X together with an equivalence class of local partial orders is called a

locally partially ordered space. If, moreover, there is a covering U in the

equivalence class such that all (U;�U) 2 U are po-spaces, then X is a local

po-space.

We let (X;U) denote the locally partially ordered space which has U as

a representative of the equivalence class of local partial orders. When (X;U)

is a local po-space, we always assume that the representative U is in fact a

covering by po-spaces. As will be seen (Sec. 4.1), po-spaces correspond to

loopless processes while local po-spaces correspond to looping processes.

A local po-space is Hausdor� by the usual argument for a po-space.

Some standard operations on topological spaces and on partial orders carry

over to local po-spaces.

De�nition 3.5 If (X;U) is a local po-space and A � X, then de�ne the

restriction (A; fU \A j U 2 Ug of (X;U) with partial order on U \A inherited

from U . If (X;U) and (Y;V) are local po-spaces, then de�ne their Cartesian

product (X � Y ; fU � V j U 2 U ; V 2 Vg with partial order on U � V

given by hu1; v1i � hu2; v2i
def
() u1 �U u2 & v1 �V v2 If (X0;U0) and

(X1;U1) are local po-spaces, then de�ne their disjoint union X0 t X1
def
=

(X0�f0g [X1�f1g ; fU0�f0g j U0 2 U0g [fU1�f1g j U1 2 U1g with partial

order on Ui�fig given by hu1; ii �Ui
hu2; ii

def
() u1 � u2 for i = 0; 1.

Proposition 3.6 The constructions of restriction, Cartesian product and dis-

joint union of local po-spaces in Def. 3.5 do not depend on the selection of a

representative covering from the equivalence classes. Moreover, when applied

4 The condition (4) di�ers slightly from the one in [3]. For instance, the cover fU1; U2g in
Example 3.3 does not satisfy the old de�nition.

12

34

to local po-spaces, these constructions result in local po-spaces; and when

applied to po-spaces, these constructions result in po-spaces.

Another construction that we need is identi�cation of a pair of points.

In general, a quotient of a topological space does not inherit the topological

properties of the original space. Even a quotient of a metric space may fail

to be T0. But, as shown below, the identi�cation of two points in a local

po-space results in a local po-space.

De�nition 3.7 Assume (X;U) is a local po-space and x1; x2 2 X. Let

X=x1 � x2 have the quotient topology. De�ne a local po-structure eU on

X=x1 � x2 as follows. If x1 = x2, let eU = U . If x1 6= x2, let W (x1) and W (x2)

be disjoint po-neighbourhoods of x1 and x2 and let eU = (W (x1)[W (x2))=x1 �

x2 with partial order given by the transitive hull of the relations in �W (x1) and

�W (x2). Then de�ne eU def
= feUg [fU r fx1; x2g j U 2 Ug where the partial

order on U r fx1; x2g is the restriction of the partial order on U .

Notice that the only relations which are in the quotient and not in the

original space are induced by these: let y 2 W (x1) and z 2 W (x2); then

� if y �W (x1) x1 and x2 �W (x2) z then y �
eU
z,

� if y �W (x1) x1 and x2 �W (x2) z then y �
eU
z.

Proposition 3.8 Let (X;U) be a local po-space and let x1; x2 2 X. Then:

(i) X=x1�x2 with cover as above is a local po-space.

(ii) If U and V are equivalent local po-structures on X then the local po-

structures eU and eV are equivalent local po-structures on X=x1�x2.

(iii) The restriction of U to X r fx1; x2g is equivalent to the restriction of eU
to

(X=x1 � x2) r f[x1]g

3.9 Remark If X is a po-space, then an identi�cation of two points will

usually result in a local po-space which is not a po-space. For instance, the

circle with the local po-structure in Ex. 3.3 could be thought of as coming

from identifying the endpoints on an interval. But the disjoint union with

amalgamationX1 tX2=x1�x2 (where x1 2 X1 and x2 2 X2) of two po-spaces

is a po-space.

3.2 Morphisms of local po-spaces

De�nition 3.10 Let (X;U) and (Y;V) be locally partially ordered spaces. A

continuous map f : X ! Y is called a dimap (directed map) if for any x 2 X

13

35

there are po-neighbourhoods W (x) and W (f(x)) such that x1 �W (x) x2)

f(x1) �W (f(x)) f(x2) whenever x1; x2 2 f�1(W (f(x))) \W (x).

It is not hard to see, that dimaps are well de�ned, i.e., that the de�nition

does not depend on the choice of representative U of the equivalence class of

local po-structures. In the case of po-spaces, dimaps are the same as monotone

continuous maps. It is also straightforward to see that local po-spaces and

dimaps form a category.

A dimap with an inverse which is also a dimap is called a dihomeomor-

phism.

3.3 Dipaths

The topological counterpart of execution trajectories in a local po-space X

are dimaps from the half-straight line R+ (with the usual topology and order)

to X:

De�nition 3.11 Let X be a local po-space. Every dimap ' : R+ ! X is

called a dipath in X. The point ' 0 2 X is called the beginning of the dipath.

If there exists an x 2 X such that the counterimage '�1(x) contains a half-

straight line, the dipath is referred to as �nite and that point is called its end.

The existence of a �nite dipath with beginning x and end y is denoted x � y.

We are also interested in in�nite dipaths, but only the ones that do not

shrink big subsets of R+ to small subsets of X. This corresponds to the

execution trajectories (see Sec. 2.5 on p. 9) proceeding with a constant \speed",

i.e., not ending with an in�nite sequence of repetitions. Actually, we do not

care for that speed to be constant, we only want to make sure that it never

goes close to zero. Formally, this is expressed as follows:

De�nition 3.12 A dipath is called proper if it does not converge to a point,

i.e., if every y 2 Y has a po-neighbourhood W (y) such that the counterimage

'�1(W (y)) does not contain a half-straight line. The existence of a proper

dipath with beginning x is denoted x � 1.

De�nition 3.13 Assume X is a local po-space and x 2 X. Then we de�ne

� the future: "x
def
= fy 2 X [f1g j x � yg, and

� the past: #x
def
= fy 2 X j y � xg.

4 Topological semantics of concurrent systems

We have separately discussed the discrete concurrent systems (Sec. 2) and the

local po-spaces (Sec. 3) which are supposed to model them in a continuous

way. Here, we are giving formal details pertaining to that modeling.

14

36

4.1 Geometric realization of concurrent processes

De�nition 4.1 To every looping process t 2 T1, as de�ned in Sec. 2.1, assign:

� a local po-space Gt called the geometric realization of t,

� points bt; et 2 Gt (for begin and end),

� resource-use characteristics rt;A : Gt !Zyielding the number of locks pro-

cess t holds on resource A at a given point | this number may a priori be

less than 0 or greater than 1, and it requires a proof that this is not the

case for t 2 T .

This is done by structural induction on T0 (cf. the de�ning production (1) on

page 3) in the following way 5 :

G1

def
= f?g (singleton); b1

def
= ? e1

def
= ?; r1;A x

def
= 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

GPA

def
= [0; 1]

bPA
def
= 0 ePA

def
= 1

rPA;B x

def
=

8>>><
>>>:

0 if B 6= A

0 if B = A and x = 0

1 if B = A and x > 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

GVA

def
= [0; 1]

bVA
def
= 0 eVA

def
= 1

rVA;B x

def
=

8>>><
>>>:

0 if B 6= A

0 if B = A and x < 1

�1 if B = A and x = 1

8>>>>>>>>>><
>>>>>>>>>>:

Gt1.t2
def
= Gt1

tGt2
=bt2�et1

bt1.t2
def
= bt1 et1.t2

def
= et2

rt1.t2;A x

def
=

8<
:
rt1;A x if x 2 Gt1

rt1;A et1 + rt2;A x if x =2 Gt1

8>>>>>>>>>><
>>>>>>>>>>:

Gt1.(t2)�
def
= Gt1

t Gt2
=et2�bt2�et1

bt1.(t2)�
def
= bt1 et1.(t2)�

def
= et2

rt1.(t2)�;A x

def
=

8<
:
rt1;A x if x 2 Gt1

rt1;A et1 + rt2;A x if x =2 Gt1

According to the above de�nition, a command PA acquires the resource A

at the beginning of its execution; similarly, a command VA releases the re-

source A at the end of its execution.

Proposition 4.2 If t 2 T then 8x2Gt
8A2O 0 � rt;A x � 1.

If t 2 T then 8A2O rt;A et = rA t (as de�ned in Sec. 2.1, page 3).

5 I = [0; 1] is the unit interval with the obvious po-structure. For local po-structures on
the disjoint union and quotient, see Sec. 3.1.

15

37

�b

�e

6 6

-

-

�b �e

?

?

6

j

j
*

*

BC1 BC2

Fig. 3. Geometric realizations of concurrent systems, see Ex. 4.4.

We get a geometric representation of all con�gurations by taking GC
def
=Q

t2C Gt but we are only interested in the allowed states and hence the follow-

ing de�nition.

De�nition 4.3 The geometric realization BC of a concurrent system

C = (O; s; C) (cf. Sec. 2.3) is the local po-space

BC
def
= f�x 2

Y
t2C

Gt j 8A2O 0 �
X
t2C

rt;A xt � sAg

(
Q

denotes the Cartesian product; xt is the t-th component of �x).

Example 4.4 Fig. 3 presents the geometric realizations of the concurrent

system with two resources from Ex. 2.16 (Swiss
ag), and of the concurrent

looping system with one resource from Ex. 2.17. The shaded areas correspond

to forbidden con�gurations (the removed complement
Q

t2C Gt rBC).

De�nition 4.5 Let � be a con�guration (a pre�x) for a process t. The point

in Gt corresponding to � is an endpoint found inductively by 1 ! e(G1),

ft:PAg ! e(Gt:PA
), ft:VAg ! e(Gt:VA

) and for loops: t1:(t2)
�, the pre�x

ht1; ti ! e(t) (which is included in Gt1:t
�

2
in the obvious way.).For more than

one process, GC is a cartesian product and con�gurations are tuples of end-

points.

Geometric realization is a functor:

De�nition 4.6 Let F : (O; s; ftg) ! (O0; s0; ft0g) be a morphism between

two concurrent systems, each consisting of only one process. We de�ne BF :

Gt ! Gt0 iteratively using the map of con�gurations.

Let F : C ! C0 be a morphism of concurrent systems. Then we de�ne a

morphism of the geometric representation of all con�gurations, BF : GC !

GC0 =
Q

t2C BF jt.

16

38

Since the morphisms of concurrent systems map allowed states to allowed

states, BF : BC ! BC0

To see that this de�nition makes sense, for the systems of one proces,

notice that the con�gurations in that case are the pre�xes. Hence we have

de�ned a map from all endpoints of the intervals constituting Gt. This gives

a continuous map from Gt to Gt0 , since the glueings in the construction of the

geometric realizations correspond to the identi�cations made in the pre�xes in

case of a loop and to the successor relations, which are preserved by morphisms

of concurrent systems. 6

It is not hard to see that the �nite trajectories go to �nite dipaths and

in�nite trajectories map to proper dipaths.

4.2 General properties of the (local) po-spaces arising from con-

current processes

Proposition 4.8 For an arbitrary concurrent system C, the space BC is com-

pact.

Proposition 4.9 If C = (O; s; C) and C � D (i.e., there are only loopless

processes in system C) then BC is a po-space, with the points �b; �e 2 BC, de�ned

6 We spell out the geometric realization of the morphism from a delooping to the looped
system:

De�nition 4.7 Let C1 .f C2 be an f-delooping. Then for any sequence s of the inferences
from Def. 2.3 on p. 4 which derives the relation C1 .f C2, we de�ne a map Bs : BC1 ! BC2 of
the geometric realizations by induction on the geometric realization of the basic inferences
(we omit the obvious generalization from 1-dimensional to higher-dimensional systems).

� The geometric realization of B1.1 : B1 ! B1 is the identity.

� Given Bd.t we de�ne Bd:PA.t:PA. This is
(i) A map from Gd:PA = Gd t GPA to Gt:PA = Gt t GPA, which we set to Bd.t on the

�rst component and the identity on GPA,
(ii) A map of beginnings and ends: Bd:PA(bd:PA) = bt:PA, Bd:PA(ed:PA) = et:PA.

� Given Bd.t we de�ne Bd:VA.t:VA in the same way.

� Given Bd0.t0, Bd1.t1 , Bd2.t1 ; : : : ; Bdk.t1 , we have to de�ne Bd0:d1:::dk.t0:(t1)� . Again this
is de�ned componentwise on Gd0:d1:::dk = Gd0 t : : :t Gdk mapping Gd0 to Gt0 and the
last k components (if any) to Gt1. The beginning, bd0:d1:::dk maps to bt0:(t1)� and the end
bd0:d1:::dk maps to et0:(t1)� .

This gives a map from GC1 to GC2 , and we have to see that it restricts to a map from BC1

to BC2 . For this, it su�ces to show that the resource use characteristic commutes with Bs

and that is not hard to see. Remember that the e�ect on the resource use characteristic
from traversing a loop is trivial.

One has to check that these maps are well de�ned, i.e., that identi�cations of beginnings
and ends made in the iterative construction of GC1 are preserved upon mapping to GC2, but
this is easy to see.

17

39

by �b t
def
= bt and �e t

def
= et for t 2 C, being, respectively, its least and greatest

elements. Moreover, BC is dihomeomorphic to [0; 1]card(C) r F , for a certain

subset F which is the union of a �nite set of open rectangles:

F =

n[
i=1

Y
t2C

Uit where t 2 C and Uit � [0; 1] are open intervals

5 Geometric study of run-time properties of concur-

rency

5.1 Deadlocks and unsafe areas

De�nition 5.1 Let X be a local po-space. Let F � X [f1g be a set of

�nal points. Then x 2 X is a deadlock with respect to F if " x = fxg and

x =2 F . A point x 2 X is safe with respect to F if " x \ F 6= ;. A point is

unsafe with respect to F if it is not safe.

We leave it to the reader to see that the geometric realization functor

realizes the notions safe, unsafe, deadlock etc. as one would want it.

Proposition 5.2 Let C1.f C2 be an f -delooping. Then the maps Bs from BC1

to BC2 de�ned by choosing a derivation s of the relation C1 .f C2 are dimaps

which map deadlocks to deadlocks and for all x 2 BC1 Bs("x) �"Bs(x).

5.3 Remark If C has no loops, then by Prop. 4.9 there are no proper dipaths

inBC, since a dimap
 fromR+ toBC would be an increasing path in a compact

subset of Rn so it would converge to a point p. For any neighbourhood W (p),

�1(W (p)) contains a half-straight line.

5.2 Minimal �nitary approximation of a looping process

In [2] it is proven that when we only allow �nite trajectories, it su�ces to

consider �nitely many deloopings:

Theorem 5.4 Let C be a concurrent system. Assume a set of �nal states

F � BC is non-empty and 1 =2 F . Then the unsafe area of BC to F can be

found as the intersection of the projections of the unsafe areas BCi of �nitely

many deloopings Ci of C.

When 1 2 F , we need in�nite trajectories and thus po-proper dipaths.

Theorem 5.5 Let BC be the realization of a concurrent system C. A point

x 2 BC is safe with respect to the set F = f1g if and only if there is a

delooping C1 .f C and a corresponding projection � : BC1 ! BC such that

18

40

there is an ex 2 BC1 with �(ex) = x and a dipath
 : I ! BC1 with
(t0) = ex
and t1; t2 2 I such that t0 < t1 < t2 and �(
 t1) = �(
 t2).

For the proof of Theorem 5.5, we need an auxiliary de�nition and three

lemmas.

De�nition 5.6 A proper dipath
 : R+ ! BC is eventually periodic if there

are non negative real numbers p and T such that for all t � T ,
(t+p) =
(p).

We subdivide BC into �nitely many k-dimensional cubes, k � n and get a

translation from \continuous to discrete":

Lemma 5.7 Let
 : R+ ! BC be a dipath in BC, where BC is the geometric

realization of a concurrent system. Then there is a (non-unique) choice of an

ordered set L1; L2; : : : ; Lk; : : : of cubes in the canonical subdivision of BC such

that

�
(I) �
S

i
Li and the ordering on the cubes is by the order in which

traverses them.

� There is a dipath which traverses all these cubes in the same order as
 and

intersects their central points ci.

� Let x 2 Lk. Then there is a dipath
 which intersects x and traverses the

cubes Li in the speci�ed order.

Lemma 5.8 Let x 2 BC. If there is a proper dipath
 : R+ ! BC with

x 2 BC then there is an eventually periodic dipath through x.

Hence, all safe points can be found in the �nite deloopings, even if we allow

and in fact prescribe in�nite behaviour. Moreover, since a point p is safe only

if there is a cube L with p 2 L and such that the central point of L is safe,

we only have to consider central points of cubes. But how do we know when

to stop looking for more safe points, i.e., to stop delooping further? This is

covered in the following proposition:

Proposition 5.9 Let p be a central point of a cube in BC. If BC0 is the

geometric realization of a delooping C0.fC and� : BC0 ! BC is a corresponding

projection such that there is a dipath
 : I ! BC0 which projects to a periodic

path: p = �(
(t1)) = �(
(t2)), t1 6= t2, and if there are no smaller (wrt. lC)

deloopings with a dipath projecting to a periodic path through p, then there

is an increasing sequence of deloopings C1 lC C2 lC : : :Cm�1 lC Cm = C0 such

that

� C1 has at most one copy of each loop in C.

� If Ci lC C� lC Ci+1, then C� = Ci or C� = Ci+1.

19

41

� The future of p is increased at each further delooping in the following sense:

�i("�
�1
i
(p)) �i+1("�

�1
i+1(p)) where �i : BCi ! BC.

This answers the question when to stop delooping further: when the fu-

ture is not increasing anymore. Hence, to see if there is a periodic dipath

containing a point p, we need to study the future of ��1(p) in further and

further deloopings, see if the projections of these sets are increasing and if one

contains p. Finding futures is a reachability question, and this can be studied

using the deadlock algorithm on BC with the local partial order (i.e. time)

reversed.

Acknowledgement

It is our pleasure to thank Martin Raussen for many very helpful discussions

along the way. Moreover, the development of ditopology itself has been and

still is a joint work with Martin, Eric Goubault and with others.

References

[1] E. W. Dijkstra, Co-operating sequential processes, in: F. Genuys ed.,

Programming Languages (Academic Press, New York, 1968) 43{110.

[2] L. Fajstrup, Loops, ditopology and deadlocks, Mathematical Structures in

Computer Science 10 (2000) 1{22.

[3] L. Fajstrup, E. Goubault and M. Rau�en, Algebraic Topology and Concurrency,

Report R-99-2008 (Department of Mathematical Sciences, Aalborg University,

1999), 47 pp.

[4] L. Fajstrup, E. Goubault and M. Rau�en, Detecting deadlocks in concurrent

systems, in: D. Sangiorgi and R. de Simone, eds., CONCUR'98; Proceedings of

the 9th Int. Conf. on Concurrency Theory, Nice, France (Lect. Notes Comp.

Science 1466, Springer-Verlag, 1998) 332{347.

[5] G. Giertz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott,

A Compendium of Continuous Lattices, (Springer-Verlag, Berlin Heidelberg

New York, 1980).

[6] E. Goubault, The Geometry of Concurrency, Ph.D. thesis, Ecole Normale

Superieure, Paris (1995).

[7] J. Gunawardena, Homotopy and concurrency, Bulletin of the EATCS 54 (1994)

184{193.

[8] R. Penrose, Techniques of Di�erential Topology in Relativity, Conference

Board of the Mathematical Sciences, Regional Conference Series in Applied

Mathematics 7 (SIAM, Philadelphia, USA, 1972).

20

42

[9] S. Soko lowski, Investigation of concurrent processes by means of homotopy

functors, (to appear in Mathematical Structures in Computer Science, 2000).

21

43

44

GETCO'00 to appear

A Study on Semi-Sheaves Associated to
Transition Systems Representing Reactive

Systems

Ana Isabel de Azevedo Spinola

Dept. of Analysis

Universidade Federal Fluminense

Niter�oi, RJ, Brazil

Email: spinola@vm.uff.br

Edward Hermann Haeusler

Dept. of Informatics

Pontif��cia Universidade Cat�olica

Rio de Janeiro, RJ, Brazil

Email: hermann@inf.puc-rio.br

Abstract

The aim of this paper is to develop a study on the behaviour of reactive systems

by means of sheaf theory. A concept of semi-topology can be de�ned in order to

categorically transform transition systems modeling reactive systems into \semi-

sheaves". This induces a category SS(Act,I) that is an elementary topos. We

present in this paper the idea behind this construction and the proof that this

category is really a topos exhibiting its terminal object and its subobject classi�er.

Then we investigate the internal logic of SS(Act,I) proving that it is classical, as

the topos is boolean.

1 Introduction

The idea of using the theory of sheaves to model concurrent computational
systems is not a very recent one. For example, Monteiro in [7] (1986), Goguen

in [2] (1992) and Winskel in [5](1993) and in [1] (1996) have all used sheaves

(or pre-sheaves) in order to model situations of concurrency. We also wanted
to study reactive systems from the viewpoint of sheaf theory, although in

a di�erent approach from those authors. A sheaf (of germs) over a topo-
logical space I (called base space) is a pair (A; f) where A is a topological

space (called stalk space) and f : A �! I is a continuous function that is
This is a preliminary version. The �nal version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume39.html

45

Spinola and Haeusler

a local homeomorphism. 1 \Homeomorphic" means \topologically indistin-

guishable", so the local homeomorphism of this de�nition is responsible for

the fact that sheaves are always suitable for studying geometric applications

where one goes from local to global properties. We can think of A as being a

pasting of little pieces, each one homeomorphic to an open set of I. 2 There

is a close relation between the concepts of reactivity and concurrency. When

we put the enviroment of a reactive system and the system itself together into

a larger system, we have a concurrent system. Conversely, in any concurrent

system composed by independent communicating processes, each process can

be thought of as a reactive system in the sense that each process mantains

a reactive interaction with the other processes, receiving stimuli and reacting

to them through actions. In order to conduct a precise study of the external

behaviour of reactive systems we use transition systems as a �rst semantics,

and then we add the geometric notion of \semi-sheaf" to broaden our intu-

ition. The geometric meaning behind the concept of a \semi-sheaf" is given

by the \semi-topology" of the stalk space and the topology of the base space.

We introduce those notions in this paper.

In 1976 Dana Scott introduced in [10] a mathematical theory of compu-
tation where the values involved in a computation should live in a speci�c
structure called (Scott) Domain. In this way he created the theory of do-
mains. We point two important references about this subject. A book written

by Stoy [14] using the theory of domains in the semantic of programming
languages and [13], with a mathematical theory of domains. Each state of a
transition system is described by its attributes, which are data represented
by variables having certain types. The base space of the semi-sheaf will be
de�ned as the set of all the possible values assumed by variables of all data

types. So it seems natural to choose the domain structure for the base space
as it models the notion of approximation and computation.

De�nition 1.1 A complete partial order (cpo) D is a Scott-Ershov Domain,
or simply a Domain if D is an algebraic cpo and if the set fa; bg � Dc is
consistent and a t b = tfa; bg exists in D (where Dc consists of the compact
(�nite) elements of D).

De�nition 1.2 The Scott Topology for a domain D=(D;v;?) is given by

U � D is open if:

Alexandrof condition x 2 U and x v y) y 2 U

Scott condition A � D directed and tA 2 U) (9x 2 A)((x 2 U).

Furthermore, the collection of semi-sheaves over a topological space I to-

1 This formulation was �rst proposed and developed by Henri Cartan in 1950. There are
good historical notes about the origin of sheaves, as well as of topoi, in [4]
2 There is an analogy between the sheaf and the topological manifold, which is the gener-
alization of the concept of surface. The identi�cation between the two concepts is very well
explained by Mac Lane in [6].

2

46

Spinola and Haeusler

gether with the collection of morphisms between such semi-sheaves form a

category SS(Act; I), which, in turn, is a topos. This means, among other

things, that this category has an internal logic which will be interpreted in

this work. We have drawn the conclusion that the topos is boolean (although

not bivalent), which means that the logic governing truth in SS(Act; I) is the

usual (classical) logic.

2 Studying Reactive Systems through the Category of

Transition Systems

We restrict ourselves to computational reactive systems. Thus we can assume

the existence of an enumeration k : N �! RS of RS, the set of computational

reactive systems. Reactive systems interact with their environment, receive

stimuli and react to them through actions, or rather, their actions are the

reactions. Each action changes the state of the system. A run of a reactive

system may never stop, and its set of inputs and outputs can be in�nite.

Classical examples are operational systems. Their behaviour can be very well
captured by transition systems. There are di�erent kinds of transition systems

(simple, labelled, parametrized, with dependency, timed, etc.). For us, as the
description of a reactive system will be a pair (A; f) { a semi-sheaf { the
structure of the system should be well re
ected in the structure of (A; f). So,
our de�nition of transition system is a little richer than the standard one in
the sense that it contains information about the attributes that describe the

states during the evolution of the system. In other words, a structure storing
the values of the variables which represent those attributes of the states, and
of course, basic information about the set of states and the transition relation
between states.

De�nition 2.1 A transition system is a structure

S = (K; q1;Act;!;Atrib; f�ai : ai 2 Atribg); where:

K =f qkgk2N is an enumerable set whose elements are the states of the system.

q1 2 K is the initial state. It determines where the run of the system begins.

Act is the set of transition labels. Its elements are the possible names of the
actions performed by the system, and it includes � and idle:
� is the label of any internal action performed by the system. We mean by

\internal" an action that cannot be observed by an external observer.

idle is the label of any transition without an action, any transition that
doesn't change the con�guration of the state.

! � K�Act�K is a relation between states such that the sucessor of a state

is determined when an action is performed. ! is said to be the transition

relation and if (qi; t; qk) 2! then we represent that by qi
t
! qk. When

t = idle then qi
idle
! qi.

Atrib =f a1; : : : ; an g is the set of attributes that describe each state of the

3

47

Spinola and Haeusler

system.

�ai :K! [[�Si]] is a function that maps a state q to the value of the data type

of the variable that describes attribute ai of state q. �ai(q) 2 [[�Si]] where �Si
is the data type of the variable Si which describes attribute ai of q. [[�Si]] is

naturally a Scott domain with partial order v.

If q
a
! q0 then it is not the case that �a(q

0) v �a(q), because the tran-

sitions represent computable actions, and thus there cannot be any loss of

information. A reactive system has the following structure:

S = (K; q1;Act;!;Attrib; f�ai : ai 2 Attribg)

De�nition 2.2 Let us consider

T1 = (K1; q11;Act1;�!1;Attrib1; f�ai : ai 2 Attrib1g)

T2 = (K2; q12;Act2;�!2;Attrib2; f�aj : aj 2 Attrib2g)

transition systems. A morphism f : T1 �! T2 is a triple f = (�; �; �)

where:

� : K1 �! K2 is such that �(q11) = q12

� : Act1 �! Act2 is a partial function such that:

(q; a; q0) 2�!1 then

8<
:
(�(q); �(a); �(q0)) 2�!2 if �(a) is de�ned

�(q) = �(q0) if �(a) is unde�ned

� : Attrib1 �! Attrib2 is a function which associates attributes of states of
T1 to attributes of states of T2.

We de�ne the composition of two morphisms between transition systems
componentwise, that is, if f = (�; �; �) : T1 �! T2 and g = (�0; �0; �0) : T2 �!
T3, then g � f = (�0 � �; �0 � �; �0 � �) : T1 �! T3. If 1K : K �! K is the

identity function between states, 1Act : Act �! Act the identity function

between actions, and 1Attrib : Attrib �! Attrib, then (1K; 1Act; 1Attrib) is
the identity morphism. Let TS be the category whose objects are transition

systems with these morphisms de�ned above. We restrict ourselves to the

subcategory TS(Act) whose objects are transition systems over the same set,
Act, of transition labels and with its morphisms de�ned as above. It is clear

that in this case we have � : Act �! Act.

De�nition 2.3 Let S be a transition system. The unfolded tree of S is a

rooted tree whose vertices represent instances of states (�nite runs) of the
system. The root represents the initial state (empty run <>) of the system,

and if there is a transition from one state to another then there is an edge
between the respective vertices representing these instances of states.

Notation: UT (S) = Unfolded tree of S

4

48

Spinola and Haeusler

��
�
�
�
�

��
���
���
���
������
���
���
���

c

e

d

��
�
�
�
�

��
��������
��������

c

e

d

�
�
�
� �

�
�
�

�
�
�
�������

������
c

e

d

��
��
��
�� ����

��
��
��
������

����
����
��������
����
����
����

c

e

d

��
��

�
�
�
�������

������
c

e

d

����
����

��
��
��
������

����
����
������������

c

e

d

�
�
�
� �

�
�
�

��
��������
��������

c

e

d

�
�
�
� ����

����

������
���
���
���
���

q1 q2

q3 q4

c

d

a

a

b

...

b e

Fig. 1. The unfolded tree of a transition system with initial state q1

3 Semi-Sheaf Associated to a Reactive System

3.1 The origin of semi-sheaves

To each reactive system Sj of the countabe set RS of all such systems we
will associate a semi-sheaf (Aj; f). Each Sj has a formal version behaving as

a transition system over a set of labels Act. For simplicity we refer to the
unfolded tree of a reactive system, instead of referring to the unfolded tree of
the transition system which represents the reactive system. Let Aj be the set
of vertices of the unfolded tree of Sj . The topology of Aj will be based upon
the actions performed by the system, re
ecting the external behaviour of the

system and a notion of proximity between computations. We have chosen a
notion of proximity which is represented by the following family which is a
topological base in Aj:

� = collection of vertices of all connected subgraphs of the unfolded tree

of Sj

De�nition 3.1 A topological base B in X generates a topology in X con-
sidering as open sets exactly the subsets of X that are unions of elements of

B.

So we have available the topology generated by the base. At this point

a naturally arising question is why de�ne \semi-topology" { as announced
in the introduction { if we have a real topology in our hands? There is a

technical problem here. According to the last de�nition, a set de�ned as the
union of two disjoint connected subgraphs of the unfolded tree would be an

open set. In this case, there would exist a pair x; y of vertices of this open

5

49

Spinola and Haeusler

set such that there is no way connecting x to y (if x is in an open set disjoint

from the one containing y). At this point we have to decide whether to stay

with the topology and lose our idea of proximity. We have chosen to propose

another concept very similar to that of a topology, in order to avoid open sets

containing unconnected vertices. In this way we lose the topology and have

to de�ne the notion of semi-topology. Henceforth we will be dealing with a

semi-topology, instead of a topology, for the stalk space Aj.

De�nition 3.2 Let X 6= ; be a set. A family B � P(X) is a semi-topological

base in X if
S
B = X and (there exists an enumeration of B such that

(
S

j�nBj) \ Bn+1 6= ;; 8n) and (if B1; B2 2 B and x 2 B1 \ B2 then

9B3 2 B such that x 2 B3 � B1 \ B2).

De�nition 3.3 Let A be a non-empty set. A semi-topology over A is a family

� � P(A) such that:

(i) A; ; 2 �

(ii) If U; V 2 � then U \ V 2 �

(iii) Let J be an arbitrary set of indexes. If Ui 2 � for all i;2 J and any two
of them are not pairwise disjoint then

S
i2J Ui 2 � .

Each element of a semi-topology is called an s-open set over A. A non-
empty set A for which a semi-topology � has been speci�ed is called a semi-

topological space.

De�nition 3.4 A semi-topological base B in X generates a semi-topology
in X considering as s-open sets exactly the subsets of X that are unions of
pairwise not disjoint elements of B.

The collection of vertices of all connected subgraphs of the unfolded tree
of Sj { � { is a semi-topological base generating a semi-topology for Aj. Now

we should rede�ne the concepts of continuous functions. Although a \truth
topology" is missing, we still have the notion of proximity. We will make
precise the meaning of \continuous function" between two semi-topological

spaces, and of \continuous function" between a semi-topological space and a
topological one.

De�nition 3.5 Let X;Y be semi-topological spaces. f : X �! Y is called

an s-continuous function if given an s-open set V over Y then f�1(V) is s-open
over X.

De�nition 3.6 Let X be a semi-topological space and Y a topological space.

f : X �! Y is called an ss-continuous function if given an open set V in

Y then f�1(V) is s-open in X. Analogously, g : Y �! X is called an ss-

continuous function if given an s-open set V in X then g�1(V) is open in
Y . f : X �! Y is called a semi-homeomorphism if f is bijective and ss-

continuous, and f�1 is ss-continuous. f is called a local semi-homeomorphism

if for all x 2 X, exists an s-open set O in X, x 2 O such that fjO (f restricted

6

50

Spinola and Haeusler

to O) is a semi-homeomorphism over an open set in Y .

De�nition 3.7 Let I be a topological space and A a semi-topological space.

A semi-sheaf is a pair (A; f) where f : A �! I is an ss-continuous function

that is a semi-local homeomorphism. A is said to be the stalk space and I is

said to be the base space of the semi-sheaf.

3.2 Stalk Space of the Semi-Sheaf

The set of all states of all systems in RS is an enumerable set. 3 We will

display its elements in the following way:

f q11; q21; q31; : : : ;| {z }
K(S1) states of S1

: : : q1j; q2j; q3j; : : :| {z }
K(Sj) states of Sj

g

The elements of Aj will be labelled as Aj = fv
ij
t gt2Traces(UT (Sj)) where ij is

the index of the state qij represented by this vertex in UT (Sj); and t is a trace;

in other words, t is the sequence of actions performed from the initial state q1j
to qij. Aj is a semi-topological space with the semi-topology generated by the
semi-topological base � (consisting of the collection of vertices of all conected

subgraphs of the unfolded tree of Sj). Aj is the stalk-space of the semi-sheaf
representing the reactive system Sj.

3.3 Base Space of the Semi-Sheaf

Let Attribj be the set of attributes of the states of Sj. Attribj is a �nite set
and we will write Attribj = f a1; : : : ; an g. Consider the following sets, for
each j 2 N:

DAttribj =

8>>><
>>>:

0
BBB@
�a1(qkj)
...

�an(qkj)

1
CCCA =qkj 2 K(Sj)

9>>>=
>>>;

Each coordinate of each element of DAttribj ranges over the Scott domain
[[�si]] (i=1,...,n) of possible values that are assumed by the data type of variable

si describing the attribute ai of the state. For each system Sj of RS we have,

thus, a domain DAttribj . Let the base space I be:

I = DAttrib1
�DAttrib2

� : : : = �!
j=1DAttribj

I is an arbitrary product of domains, and hence is a Scott domain. This is

proved in [11]. So, I is naturally a topological space with the Scott topology,

which is the product topology (Tychono�) of the Scott topologies of each
domain, as it is well presented in [13]. We use a special notation to refer to

3 as it is the enumerable union of enumerable sets (sets of states of each system in RS.)

7

51

Spinola and Haeusler

some elements of I:

Iqi1 =

0
BBB@
��1(qi1)

...

��l(qi1)

1
CCCA 2 DAttrib1

where Attrib1 = f�1; : : : ; �lg

...

Iqij =

0
BBB@
�a1(qij)

...

�an(qij)

1
CCCA 2 DAttribj where Attribj = fa1; : : : ; ang

...

When j varies we have the information of the values of the attributes of

the same state qi in di�erent systems S1; S2; S3; : : : of RS. Notice that if we

de�ne Iqi =< Iqi1; Iqi2; Iqi3; : : : >, then each Iqi is an element of I, because each
Iqij 2 DAttribj .

Iq1 = < Iq11; Iq12; Iq13; : : : >

Iq2 = < Iq21; Iq22; Iq23; : : : >
...

3.4 Function Between Stalk and Base Space

Let Aj be the stalk space associated to a transition system Sj . Let us de�ne

f in the following way:

f : Aj �! I

v
ij
t 7! "< Iqi1; : : : ; Iqij ; : : : >=" Iqi

where " J = fK=J v Kg. If qi doesn't exist in Sj then Iqij is unde�ned,

in other words, is equal to f ? g.

Theorem 3.8 f is ss-continuous and f is a semi-local homeomorphism.

Proof. This is proved in [11]. 2

4 The Category of Semi-Sheaves

Let Aj be the set of vertices of the unfolded tree of a transition system Sj and

f : Aj �! I be a semi-local homeomorphism such that f(vijt) =" Iqi. We will
now de�ne a functor F from the category TS(Act) in order to construct a

category of semi-sheaves. Having a transition system Sj, we can always �nd

8

52

Spinola and Haeusler

a semi-sheaf F (Sj) = (Aj; f) . Let SS(Act,I) be the category whose objects

are semi-sheaves over I associated to transition systems with label set Act.

The question remains: \what is the action of the functor F over a morphism

(�; �; �) of TS(Act)? What should k = F (�; �; �) satisfy in order to be the

image of a morphism via this functor F?" We answer those questions in the

de�nition of the SS(Act,I)-morphisms below.

F : TS(Act) �! SS(Act; I)

Sj 7! F (Sj) = (Aj; f)

Sj
(�;�;�)
�! Sl 7! (Aj; f)

k
�! (Al; g)

Objects of SS(Act,I): Semi-sheaves (A,f) over I such that

(i) A is the set of vertices of the unfolded tree of some transition system

over Act as a semi-topological space (with the semi-topology described

in section 3) 4 .

(ii) I is a set containing denotable values, with the Scott topology, as de-

scribed in section 3.

(iii) The function f is de�ned as f(vijt) =" Iqi where " Iqi =< Iqi1; : : : ; Iqij ; : : : >.

Morphisms of SS(Act,I): k : (A; f) �! (B; g) s-continuous such that f =
g � k.

Considering (�; �; �) as a morphism between the two transition systems Sj
and Sl, (�; �; �) : Sj �! Sl then we can de�ne F (�; �; �) as:

F (�; �; �) : F (Sj) �! F (Sl)

vijt 7! vplr

(where vplr is the vertex representing state qpl of Sl in its unfolded tree with

trace r) if:

� �(qij) = qpl

� �an(qij) = ��(an)(�(qij)); 8an 2 Attrib1, because k should be such that

g � k = f , thus vertices of A should be mapped by f to the same attribute

values if mapped by g � k; and it signi�es that states qij and �(qij) assume
the same attribute values in the corresponding attributes.

� Se t =< b1; : : : ; bm > then we have three cases:
(i) �(bl) is de�ned 8bl. In this case, r =< �(b1); : : : ; �(bm) >

(ii) �(bl) is unde�ned for any bl. In this case, r =<>.

(iii) 9y; by is unde�ned. In this case, r =< �(b1); : : : ; �(by�1); �(by+1); : : : ; �(bm) >.

5 SS(Act,I) is a Topos

Theorem 5.1 SS(Act,I) has a terminal object.

4 sets of vertices of connected subgraphs

9

53

Spinola and Haeusler

Proof(Sketch):

The terminal object of SS(Act,I) is denoted by (Te; p) where Te is the

set of vertices of the tree which contains all the unfolded trees of the other

systems. For convenience, we consider Te as being the set of vertices of the

unfolded tree of S1, the �rst system of the enumeration. Labels of the original

trees do not change in Te. Thus, if v
ij
t is the label of the vertex representing

state qi in the unfolded tree of Sj, then this vertex (which certainly exists in

Te) receives the same label v
ij
t . The only exception is the root, whose label is

v11<>. We specify the same semi-topology for Te, ie, the s-open sets are formed

by vertices of connected subgraphs of the unfolded tree whose set of vertices

is Te. De�ning

p : Te �! I

v
ij
t 7! " Iqi

in the same way as before one can easily prove that p is an ss-continuous

function and a semi-local homeomorphism. In order to prove that (Te; p) is

the terminal object of SS(Act,I) one should �rst de�ne a function

cpAj : Aj �! Te

v
ij
t 7!

8<
:
v
ij
t if i 6= 1

v11<> if i = 1

that maps Aj to its copy in Te, for each given semi-sheaf (Aj; f).Observe
that p � cpAj = f and that cpAj is an s-continuous function. So, cpAj is an
SS(Act,I)-morphism. We can also prove that cpAj is the only morphism from
Aj to Te.

2

Theorem 5.2 SS(Act,I) has pullbacks and exponentials.

Proof. The proof is analogous to the one that Top(I) (spatial topos whose

objects are sheaves) has pullbacks and exponentials. 2

Theorem 5.3 SS(Act,I) has a subobject classi�er.

Proof(Sketch): We provide a guide to the proof and develop parts 1 and 3.

Part 1 Exhibit a potential classi�er, an object
 = (bI; bp) of SS(Act,I).
Part 2 Exhibit a morphism true > : 1 �!

Part 3 For each k : A ,! B, exhibit the characteristic function �k.

Part 4 Show that the diagram of �gure 2 commutes.

Part 5 Prove the �nal condition for being a pullback. In other words, show

that whenever Te
cpE
 � E

g
�! B are such that �k � g = > � cpE then there

exists a unique SS(Act,I)-morphism e : E �! A such that k � e = g and

cpA � e = cpE .

10

54

Spinola and Haeusler

k

!

1 Ω

χ
k

BA

T

Fig. 2.
-axiom

2

Proof of Part 1:

We de�ne an equivalence relation between the s-open sets of the terminal

object Te. Consider v
ij
t 2 Te. For U; V � Te, U; V s-open sets, we de�ne:

U �
v
ij
t
V i� 9W s-open ; v

ij
t 2 W and U \W = V \W

We can draw some conclusions about the classes:

(i) If vijt 2 U \ V then making W = fvijt g we have that U �v
ij
t
V .

(ii) If vijt 62 U [V then making W = fvijt g we have that U �v
ij
t
V .

(iii) If vijt 2 U and v
ij
t 62 V then we have that U 6�

v
ij
t
V .

For each v 2 Te, an equivalence relation �v divides Te into two classes:
the one of s-open sets containing v and the other of s-open sets not containing
v. In other words, given U an s-open set of Te, we have:

[U]v =

8<
:

Class of s-open sets that contain v if v 2 U

Class of s-open sets that do not contain v if v 62 U

We write [C]v to designate the class of s-open sets that contain v, and
[NC]v to the class of s-open sets which do not contain v. Considering

v
ij
t
= f[U]

v
ij
t
=U s-open set Teg

we can de�ne the stalk space of the potential subobject classi�er and bp as:
bI = fx=x 2

v
ij
t
; for some vijt g

bp : bI �! I

bp([U]
v
ij
t
) 7! " Iqi

As bp is ss-continuous and a semi-local homeomorphism,
 = (bI; bp) is an
object of the category SS(Act,I). Now, we should be able to see bI as the

unfolded tree of some transition system. Each class of bI will label a vertex of

the tree. Let us now describe the edges of the unfolded tree whose vertices are

the classes of bI. Consider the root of the universal tree whose set of vertices
is Te, v11<>. Let the class [C]v11<> be the root of the tree we are generating. In

this universal tree there exists an edge from v11<> to vl1ai which is labelled by

ai, for all l which are indexes of vertices of the second level of the universal
tree. In this way we have generated an edge in the tree whose set of vertices

11

55

Spinola and Haeusler

is bI, incident to the class [C]v11<> and to the class of s-open sets that contain

vl1ai. This means that:

If v11<>
ai
�! vl1ai then [C]v11<>

ai
�! [C]vl1ai

Besides such edges which are incident to the root [C]v11<>, we add one more,

labelled by a1, incident to [NC]v11<>. From the third level on, we repeat the

procedure (Figure 3).

< >
11v

v22
a

v32
ab v42

ac...

...

[NC]

[NC]

τ τ

42v
[NC]32v

... ...

abτ acτ

...

[C]v42
ac

11v [C]v

[C]v

τ

τ

[C]
< >
11v

a

22
a

b

τ

32
ab

22[NC]
v aτ

c

2

UT of system S 3

Remainder of the

System S Tree corresponding to Î

Fig. 3. Tree whose vertices are the elements of bI

2

Proof of Part 3:

Let A be an open subset of B, that is, A is a set of vertices of a connected

subgraph of B. Let k be k : A
k
,! B monic such that q � k = f . The

characteristic function �k : (B; q) �! (bI; bp) should be such that bp � �k = q.
Recall that as (B; q) is a semi-sheaf, then given v

ij
t 2 B, we know that 9S

v
ij
t

neighbourhood of vijt such that qjS
v
ij
t

is a semi-homeomorphism. And also we

have that as Te is the terminal object, then there exists a unique morphism
cpB : B �! Te.

Let �k be de�ned as:

�k(v
ij
t) = [p�1(q(A\ S

v
ij
t
))]

cpB(v
ij
t)

2

The very �rst de�nition of topos presented by Lawvere and Tierney in

12

56

Spinola and Haeusler

p̂

χ
A

k
B

ITe ^

I
k

cp
A

q

p

f

Fig. 4. De�nition of �k

1969 was the following one:

De�nition 5.4 An (elementary) topos is a category C satisfying:

(i) C is �nitely complete.

(ii) C is �nitely co-complete.

(iii) C has exponentiation.

(iv) C has a subobject classi�er.

Remark that we can substitute condition (1) of this de�nition by \C has
a terminal object and pullbacks". It was later shown that conditions (1),(3)
and (4) impliy condition (2). Because of that, for some authors a topos is
simply a cartesian closed category 5 with a subobject classi�er.

In this way, we have proved above that SS(Act,I) is an elementary topos.

6 Analysis of the Characteristic Function

We can now analyse the action of the characteristic function over each vertex

vijt (how it classi�es such a vertex).

�k(v
ij
t) = [p�1(q(A\ S

v
ij
t
))]

cpB(v
ij
t)

Case v
ij
t 2 A: Then v

ij
t 2 (A \ S

v
ij
t
) and so �k(v

ij
t) = [C]

v
ij
t
.

Case v
ij
t 62 A: Then we have two subcases to analyse. First, if A \ S = ;

then �k(v
ij
t) = [;]

v
ij
t
= [NC]

v
ij
t
. And �nally, if A \ S 6= ; then S \ A = R

for some set of vertices R. Then �k(v
ij
t) = [p�1(q(R))]

v
ij
t
= [NC]

v
ij
t
.

We expected to capture a better classi�cation according to how close a
general vertex, vijt , is to A, more subtle distinctions about the proximity of a
vertex from a subsystem, but it does not seem to be the case.

5 A category satisfying conditions (1) and (3)

13

57

Spinola and Haeusler

7 Properties of the topos SS(Act,I)

It is important to stress that although each stalk yields two classes of equiva-

lence:

>(vijt) = [Te]
v
ij
t
= [C]

v
ij
t
; 8v

ij
t in Te

? (vijt) = [NC]
v
ij
t
; 8v

ij
t in Te

it is not the case that SS(Act; I) is a bivalent topos. We recall that a

bivalent topos (two-valued) is a non-degenerate one (true 6�= false) in which

true and false are the only truth-values (elements of
). But there are other

SS(Act; I)-arrows x : (Te; p) �! (bI; bp) (elements of
) di�erent from true

and false.

We want now to characterize the behaviour of subobjects in SS(Act,I).

The operations of complement, intersection and union on the collection of

subobjects of a semi-sheaf (A; f) are de�ned in terms of the truth arrows {

negation, conjunction, disjunction and implication { which are, in turn, char-

acter arrows in SS(Act,I). We will only present as examples, negation and
conjunction as SS(Act,I)-arrows. We also present the operations of comple-

ment and intersection in (Sub(A,f),�).

(i) Two truth-arrows:

(a) Negation:

: : (bI; bp) �! (bI; bp) is the unique SS(Act,I)-arrow such that the
diagram in Figure 5 is a pullback in SS(Act,I). Thus, : = �? (where
? itself is the character of ! : ; �! Te).

p̂
Î

Î p̂Te

Te

I

p

p

Fig. 5. Negation as a characteristic function

(b) Conjunction:

^ : bI � bI �! bI is the character in SS(Act,I) of the product arrow

< >;> >: Te �! bI � bI.
(ii) Complements:

Given g : (C; h) �! (A; f), the complement of g (relative to (A; f)) is

the subobject �g : �(C; h) �! (A; f) whose character is : � �g. Thus
�g is de�ned to be the pullback of > along : � �g yielding ��g = : � �g
by de�nition.

14

58

Spinola and Haeusler

(iii) Intersection:

The intersection of k : (C; g) �! (A; f) and h : (D; l) �! (A; f) is the

subobject k \ h : (C; g) \ (D; l) �! (A; f) obtained by pulling > back

along �k ^ �h = ^� < �k; �h >.

(A,f)

Ω

χ
k

χ
h

(Te,p)

(C,g) (D,l)

T

k h

Fig. 6. Intersection of subobjects of (A, f)

Hence �k\h = �k ^ �h.

De�nition 7.1 A topos E is said to be boolean if for each object d, (Sub(d),�)

is a boolean algebra.

It is easy to prove that in SS(Act,I) we have :: = id and it is also easy to
prove that the co-product arrow [>;?] is an iso arrow (a condition for a topos

to be classical), ie, Te+Te �= bI. From an internal point of view it means that
Te + Te is the truth-value object of the topos. These results are known to
be equivalent to saying that SS(Act,I) is a boolean topos. This means that
our topos is a boolean one (although not bivalent), and this is a proof that its

internal logic is classical.

8 Conclusions

The motivation of this work was to understand the behaviour of reactive
systems using a categorical formulation, more speci�cally, a sheaf-theoretical
formulation. For each Sj of an enumeration of the set of all reactive systems

seen as transition systems, we have constructed a semi-sheaf (Aj; f) associated

to it. The stalk space Aj is formed by the vertices of the unfolded tree of Sj .
The elements of Aj were appropriately labelled taking into account the trace
(the sequence of actions performed from the root until reaching the vertex

under consideration), the index of the represented state and the index of the

system (in that case, j). The base space I is formed by in�nite tuples, each

one containing the values of the attributes of one speci�c state in all systems
of the enumeration. And �nally, the function f : Aj �! I was de�ned
mapping one vertex of Aj to the ascending chain of tuples (with values) from

the image tuple of such vertex. The concepts of semi-topological base, semi-

topology, semi-topological space, s-continuous function, ss-continuous function
and semi-local homeomorphismhave been introduced to de�ne semi-sheaf. We

have speci�ed a semi-topology for Aj based on the actions performed by the
system, and we have also speci�ed a topology for I (the Scott topology), and

we have shown that f : Aj �! I is an ss-continuous function that is a semi-

15

59

Spinola and Haeusler

local homeomorphism. Objects of type (Aj; f) are called semi-sheaves over

I associated to transition systems whose set of labels of actions is Act, and

form the category SS(Act,I). The morphisms of this category were suitably

de�ned in order to make SS(Act,I) an elementary topos. The construction of

the terminal object and of the subobject classi�er were also exhibited. Then

we analysed the action of the characteristic function over the vertices of Te in

order to understand the
-axiom and conducted a �rst study of the internal

logic of this topos. The classi�cation made by the subobject classi�er is coarser

than we expected. Our very �rst intuition was that we could obtain thinner

distinctions by classi�ng according to how close vijt is to A. In other words, we

expected to obtain a better notion to measure proximity between behaviours,

but it does not seem to be the case. We, then, wanted to answer the question:

\What does the logic of SS(Act,I) look like?" Analysing the behaviour of

the subobjects of an arbitrary object (A; f), which forms a boolean algebra,

we could conclude that the logic governing truth in SS(Act,I) is the (usual)

classical logic.

We highlight some potential applications of our work. First, the study

of the relation between monomorphisms (A; f) ,! (B; g) and the notion of
(bi)simulation. We also point out that the intersection of two subobjects of
(B; g) seems to re
ect the synchronous product of two systems, and we wonder
what the union operation might represent.

References

[1] Cattani,G.L. and G.Winskel, \Presheaf Models for Concurrency", Proc. of CSL

96, LNCS (1996), 58{75.

[2] Goguen,J.A. \Sheaf Semantics for Concurrent Interacting Objects",

Mathematical Structures in Computer Science MSCS (2)2(1992), 159{191.

[3] Goldblatt,R. \Topoi: The Categorical Analysis of Logic", North-Holland

Publishing Company, 1979.

[4] Gray,J.W. \Fragments of the History of Sheaf Theory", Applications of Sheaves

in Lecture Notes in Mathematics LNM 753(1977), 1{79.

[5] Joyal,A., M.Nielsen and G.Winskel \Bisimulation from Open Maps", LICS

(1993), 418{427.

[6] Mac Lane,S. and I. Moerdijk, \Sheaves in Geometry and Logic - A �rst

Introduction to Topos Theory", Springer-Verlag, 1992.

[7] Monteiro, L.F. and F.C.N. Pereira, \A Sheaf-Theoretic Model of Concurrency",

Proc. of LICS(Symposium on Logic in Computer Science), IEEE Press, 1986,

66{76.

[8] Pnueli,A. \Linear and Branching Structures in the Semantics and Logics of

Reactive Systems", Proceedings of the 12th ICALP, LNCS 194(1985),15{32,

Springer-Verlag, New York.

16

60

Spinola and Haeusler

[9] Pnueli,A. \Applications of Temporal Logic to the Speci�cation and Veri�cation

of Reactive Systems: a Survey of Current Trends", in Current Trends in

Cuncurrency (G.Goos and J.hartmanis Eds.), LNCS 224(1986), 510{584.

[10] Scott, D. \Data Types as Lattices", SIAM J. Comput. vol 5 no 3 (1976), 522{

587.

[11] Spinola, A.I.A. \Sistemas Reativos: Uma Abordagem Geom�etrica", PhD Thesis,

Dep. Inform�atica, PUC-Rio, 1999.

[12] Spinola, A.I.A. and E.H. Haeusler, \A Semi-Sheaf-Theoretic Approach to

Reactive Systems", BEJMC-Brazilian Electronic Journal on Mathematics of

Computation,1(1999). With associated web site http://www.bejmc.tche.br

[13] Stoltenberg-Hansen,V., I.Lindstr�om and E.R.Gri�or, \Mathematical Theory of

Domains", Cambridge Unversity Press, 1994.

[14] Stoy, J.E. \Denotational Semantics: the Scott-Strachey Approach to

Programming Language Theory", MIT Press , 1977.

17

61

62

GETCO’00 to appear

An Overview of Synchronous Message-Passing
and Topology

Maurice Herlihy

Brown University
Providence, RI 02912
herlihy@cs.brown.edu

Sergio Rajsbaum 1

Compaq Computer Corporation
One Cambridge Center

Cambridge, MA 02142-1612
rajsbaum@crl.dec.com

Mark R. Tuttle

Compaq Computer Corporation
One Cambridge Center

Cambridge, MA 02142-1612
tuttle@crl.dec.com

Abstract

A slowly-growing number of computer scientists have found that ideas from topology
can be used to analyze and understand problems in distributed computing. In this
paper, we review one approach we have used in the past to write a succinct proof
of the lower bound for the number of rounds needed to solve the k-set agreement
problem in a synchronous, message-passing model of computation. The central idea
in this approach is a simple combinatorial structure we call a pseudosphere in which
each process from a set of processes is independently assigned a value from a set
of values. Pseudospheres have a number of nice combinatorial properties, but their
principal interest lies in the observation that the global states that arise in the syn-
chronous, message-passing model can be viewed as simple unions of pseudospheres,
and the fact that topological properties of unions of pseudospheres are so easy to
prove. We choose this work to review because it is a simple example of how we
model distributed systems with topology, and because it is the basis of on-going
work to simplify the proof of this result.

This is a preliminary version. The final version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume39.html

63

Herlihy, Rajsbaum and Tuttle

1 Introduction

Computer scientists have a long tradition of using ideas from topology in their
work on problems from semantics and concurrency theory, but only recently
have ideas from topology played a role in proving powerful new results in dis-
tributed computing. Beginning with a trio of papers independently proving
the impossibility of solving the k-set agreement problem in asynchronous sys-
tems [BG93,HS99,SZ93], these ideas have been used to study other problems in
many other models of computation [AR96,GK99,HR94,HR95,CHLT93,HRT98].
The purpose of this paper is to illustrate how topology is used to model com-
putation in a distributed system, and how ideas from topology can be used
to reason about distributed computation. We illustrate these ideas by sketch-
ing a recent proof [HRT98] we wrote of a known lower bound [CHLT93] on
the number of rounds of communication needed to solve k-set agreement in a
synchronous, message-passing model of computation. Our proof is the basis
of work in progress to use topology to write proofs of this and other lower
bounds that are as succinct as possible, deriving new topological tools for an-
alyzing distributed computation along the way. Let us begin by illustrating
why topology is a natural tool for proving the lower bound for k-set agreement,
borrowing liberally from introduction to the original proof [CHLT93].

The k-set agreement problem [Cha93] is defined as follows. Each processor
has a read-only input register and a write-only output register. Each proces-
sor begins with an arbitrary input value in its input register from a set V
containing at least k + 1 values v0, . . . , vk, and nothing in its output register.
A protocol solves k-set agreement if, in every execution, the nonfaulty proces-
sors halt after writing output values to their output registers that satisfy two
conditions:

(i) validity : every processor’s output value is some processor’s input value,
and

(ii) agreement: the set of output values chosen must contain at most k dis-
tinct values.

The first condition rules out trivial solutions in which a single value is hard-
wired into the protocol and chosen by all processors in all executions, and
the second condition requires that the processors coordinate their choices to
some degree. In the special case of k = 1, the 1-set agreement is equivalent to
the well-known consensus problem [LSP82,PSL80,FL82,FLP85,Dol82,Fis83]
in when all processors are required to choose the same output value. Consensus
is known to be the “hardest” problem in distributed computing, in the sense
that all other decision problems can be reduced to it.

We consider the k-set agreement problem in a synchronous, message-
passing model with crash failures. In this model, n processors communicate

1 On leave from Instituto de Matemáticas, U.N.A.M., D.F. 04510, México, rajs-
baum@math.unam.mx

2

64

Herlihy, Rajsbaum and Tuttle

by sending messages over a completely connected network. Computation in
this model proceeds in a sequence of rounds. In each round, processors send
messages to other processors, then receive messages sent to them in the same
round, and then perform some local computation and change state. This
means that all processors take steps at the same rate, and that all messages
take the same amount of time to be delivered. Communication is reliable, but
up to f processors can fail by crashing in the middle of a round. When a
processor crashes, it sends some subset of the messages it is required to send
in that round by the protocol, and then sends no messages in any later round.

The primary contribution of this paper is a (tight) lower bound on the
amount of time required to solve k-set agreement. We prove that any protocol
solving k-set agreement requires bf/kc+1 rounds of communication, where f
is the bound on the number of processors allowed to fail in any execution
of the protocol. Since consensus is just 1-set agreement, this lower bound
implies the famous lower bound of f + 1 rounds for solving consensus [FL82].
More important, the running time r = bf/kc+1 demonstrates that there is a
smooth but inescapable tradeoff among the number f of faults tolerated, the
degree k of coordination achieved, and the time r the protocol must run.

Suppose P is a protocol that solves k-set agreement and tolerates the
failure of f out of n processors, and suppose P halts in r < bf/kc+ 1 rounds.
This means that all nonfaulty processors have chosen an output value at time r
in every execution of P . In addition, suppose n ≥ f + k + 1, which means
that at least k + 1 processors never fail. Our goal is to consider the global
states that occur at time r in executions of P , and to show that in one of
these states there are k + 1 processors that have chosen k + 1 distinct values,
violating k-set agreement and showing that P could not possibly have solve k-
set agreement in only r rounds.

Since consensus is a special case of k-set agreement, it is helpful to review
the standard proof of the f + 1 round lower bound for consensus
[FL82,DS83,Mer85,DM90] to see why new ideas from topology are needed
for k-set agreement. Suppose that the protocol P is a consensus protocol,
which means that in all executions of P all nonfaulty processors have chosen
the same output value at time r. Two global states g1 and g2 at time r are
said to be similar if some nonfaulty processor p has the same local state in
both global states. The crucial property of similarity is that the decision value
of any processor in one global state completely determines the decision value
for any processor in all similar global states. For example, if all processors
decide v in g1, then certainly p decides v in g1. Since p has the same local
state in g1 and g2, and since p’s decision value is a function of its local state,
processor p also decides v in g2. Since all processors agree with p in g2, all
processors decide v in g2, and it follows that the decision value in g1 deter-
mines the decision value in g2. A similarity chain is a sequence of global
states, g1, . . . , g`, such that gi is similar to gi+1. A simple inductive argument
shows that the decision value in g1 determines the decision value in g`. The

3

65

Herlihy, Rajsbaum and Tuttle

Fig. 1. Modeling global states with a simplicial complex.

lower bound proof involves showing that two time r global states of P , one in
which all processors start with 0 and one in which all processors start with 1,
lie on a single similarity chain. Since there is a similarity chain from one state
to the other, processors must choose the same value in both states, violating
the definition of consensus.

The problem with k-set agreement is that the decision values in one global
state do not determine the decision values in similar global states. If p has
the same local state in g1 and g2, then p must choose the same value in both
states, but the values chosen by the other processors are not determined. Even
if n− 1 processors have the same local state in g1 and g2, the decision value
of the last processor is still not determined. The fundamental insight in all
proofs of this lower bound [CHLT93,HRT98] is that k-set agreement requires
considering all “degrees” of similarity at once—similarity to one processor, to
two processors, to three processors—focusing on the number and identity of
local states common to two global states. While this seems difficult—if not
impossible—to do using conventional graph theoretic techniques like similarity
chains, the notions of a simplex and a simplicial complex provides a compact
way of capturing all degrees of similarity simultaneously, and are the basis of
our proof.

A simplex is just the natural generalization of a triangle to n dimensions:
for example, a 0-dimensional simplex is a vertex, a 1-dimensional simplex is
an edge linking two vertices, a 2-dimensional simplex is a solid triangle, and
a 3-dimensional simplex is a solid tetrahedron. As illustrated in Figure 1, we
can represent a local state for one processor p with a single vertex and a global
state for four processors p, q, r, and s with a 3-dimensional simplex. We la-

4

66

Herlihy, Rajsbaum and Tuttle

Fig. 2. Global states for zero, one, and two-round protocols.

bel a single vertex representing a processor’s local state with the processor’s
name p and local state a, and we label a 3-dimensional simplex representing a
global state for p, q, r, and s by labeling the vertexes corresponding to p, q, r,
and s in the same way. Representing all global states as simplexes in this way,
the intersection of two simplexes naturally captures the degree of similarity
between the two corresponding global states. For example, referring again to
Figure 1, two global states similar to p are represented by two simplexes inter-
secting only in p’s vertex, two global states similar to p and q are represented
by two simplexes intersecting in the edge between p and q, and two global
states similar to p, q, and r are represented by two simplexes intersecting in
the entire face containing p, q, and r.

Figure 2 shows the simplicial complexes — called protocol complexes —

5

67

Herlihy, Rajsbaum and Tuttle

P,1

Q,1R,1

P,0

P,1

Q,1R,1

Q,0 R,0

P

QR

P,0

Q,0 R,0

Fig. 3. Construction of a three-process binary pseudosphere.

representing the global states reachable after zero, one, and two rounds of
computation in a simple protocol in which each of three processors repeatedly
sends its state to the others. Each process begins with a binary input. The
first picture shows the possible global states after zero rounds: since no com-
munication has occurred, each processor’s state consists only of its input. It
is easy to check that the simplexes corresponding to these global states form
an octahedron. The next picture shows the complex after one round. Each
triangle corresponds to a failure-free execution, each free-standing edge to a
single-failure execution, and so on. The third picture shows the possible global
states after three rounds.

The connection between these protocol complexes and k-set agreement
is the following theorem. Let P be a protocol, and let C be the simplicial
complex representing the set of global states reachable by following P for r
rounds of computation. The theorem states that if C is (k − 1)-connected,
then P cannot solve k-set agreement in r rounds. Proving our lower bound
reduces to reasoning about the connectivity of such simplicial complexes.

The key to our proof is the notion of a pseudosphere, a simplicial complex in
which each process from a set of processes is independently assigned a value
from a set of values. Pseudospheres have a number of nice combinatorial
properties, but their principal interest lies in the observation that protocol
complexes in the synchronous model can be characterized as simple unions
of pseudospheres. Because of the simple combinatorial properties of pseudo-
spheres, reasoning about these unions can be accomplished by straightforward
combinatorial arguments.

A pseudosphere can be defined very simply, as illustrated in Figure 3. Start
with an n-dimensional simplex where each vertex is labeled with a process id,
and choose a finite set of values taken from an arbitrary domain. The pseu-
dosphere is the complex constructed by taking multiple copies of this simplex
and independently labeling each vertex with a value from the domain. For
example, Figure 3 shows how to construct a pseudosphere by independently
assigning binary values to a set of three processes. The left-hand figure shows
a triangle labeled with process ids P , Q, and R. The central figure shows

6

68

Herlihy, Rajsbaum and Tuttle

an intermediate stage where two copies of the triangle are each labeled with
zeros and ones. The right-hand figure shows the complete construction, where
copies of the triangle are labeled with all combinations of zeros and ones. We
can just as easily assign values from a larger set than {0, 1}, although the
result is harder to illustrate. We call this construct a pseudosphere because it
is easily shown that the result of assigning binary values to n + 1 processes is
topologically equivalent to an n-dimensional sphere.

The collection of initial global states for consensus or k-set agreement
clearly forms a pseudosphere whose vertices are labeled with input values.
For example, the right-hand figure in Figure 3 is the input complex for three-
process consensus. The basic insight underlying the work presented in this
paper is that protocol complexes in the synchronous model have natural rep-
resentations as unions of pseudospheres, except that the vertices are labeled
failure information instead of input values. Reasoning about these protocol
complexes reduces to the purely combinatorial problem of reasoning about
unions of pseudospheres. We express the one-round executions as the union of
pseudospheres. An r-round execution is constructed by inductively replacing
each simplex in the single-round execution with the union of pseudospheres
produced by the (r − 1)-round protocol. The protocol complex produced by
this iterative construction represents only a subset of the global states reach-
able in the model, but this set is large enough to prove the desired results for
consensus, k-set agreement, renaming, and so on.

2 Basic Topology

A vertex ~v is a point in a high-dimensional Euclidian space. Vertexes ~v0, . . . , ~vn

are affinely independent if ~v1 −~v0, . . . , ~vn −~v0 are linearly independent. An n-
dimensional simplex (or n-simplex) Sn = (~s0, . . . , ~sn) is the convex hull of a set
of n+ 1 affinely-independent vertexes. For example, a 0-simplex is a vertex,
a 1-simplex a line segment, a 2-simplex a solid triangle, and a 3-simplex a solid
tetrahedron. Where convenient, we use superscripts to indicate dimensions of
simplexes. We say that the ~s0, . . . , ~sn span Sn. By convention, a simplex of
dimension d < 0 is an empty simplex. Simplex Sm is a (proper) face of T n if
the vertexes of Sm are a (proper) subset of the vertexes of T .

A simplicial complex (or complex) is a set of simplexes closed under con-
tainment and intersection. The dimension of a complex is the highest dimen-
sion of any of its simplexes. In this paper all the complexes of dimension n
are full in the sense that every simplex is contained in some n-simplex. L is
a subcomplex of K if every simplex of L is a simplex of K. The m-skeleton
of K, denoted skelm(K), is the subcomplex consisting of all simplexes of K of
dimension at most m. A map µ : K → L carrying vertexes to vertexes is sim-
plicial if it also carries simplexes to simplexes. Two complexes K and L are
isomorphic, written K ∼= L, if there is a surjective and one-to-one simplicial
map ι : K → L.

7

69

Herlihy, Rajsbaum and Tuttle

Informally, a complex is k-connected if it has no holes in dimensions k or
less. More precisely,

Definition 2.1 A complex K is k-connected if every continuous map of the k-
sphere to K can be extended to a continuous map of the (k + 1)-disk [Spa66,
p. 51]. (By convention, a complex is (−1)-connected if it is nonempty, and
every complex is k-connected for k < −1.)

This definition says that a complex is 0-connected if it is connected in the
graph-theoretic sense. The following theorem is an elementary consequence of
the Mayer-Vietoris sequence [Mun84, p. 142]. It allows us to reason about a
complex’s connectivity in terms of the connectivity of its components.

Theorem 2.2 If K and L are complexes such that K and L are k-connected,
and K ∩ L is nonempty and (k − 1)-connected, then K ∪ L is k-connected.

3 Model

A set of n+ 1 sequential processes communicate by sending messages to one
another. At any point, a process may crash: it stops and sends no more
messages. There is a bound f on the number of processes that can fail. In the
synchronous model, processes take steps at the same rate, and messages take
the same amount of time to be delivered, and message delivery is reliable and
FIFO.

Each process starts with an input value taken from a set V , and then
executes a deterministic protocol in which it repeatedly receives one or more
messages, changes its local state, and sends one or more messages. After a
finite number of steps, each process chooses a decision value and halts. At any
instant, a process’s local state is given by its view : the input value and the the
sequence of messages received so far. A protocol is uniquely determined by its
message function and its decision function. The message function determines
which messages a process should send in a given state, and the decision func-
tion determines which output value a process should choose in a given state
(if any). A protocol is a full-information protocol [Had83,FL82,PSL80] if the
message function causes each process to send its entire local state when it sends
a message. We can assume without loss of generality that all protocols P we
consider are full-information protocols [Had83,FL82,PSL80,DM90].

In the k-set agreement task [Cha91], processes are required to (1) choose a
decision value after a finite number of steps, (2) choose as decision value some
process’s input value, and (3) collectively choose no more than k distinct
decision values. When k = 1, this problem is usually called consensus.

We now show how to apply concepts from combinatorial topology to this
model. An initial local state of process P is modeled as a vertex ~v = 〈P, v〉 la-
beled with P ’s process id and initial value v. An initial global state is modeled
as an n-simplex Sn = (〈P0, v0〉 , . . . , 〈Pn, vn〉), where the Pi are distinct. We
use ids(Sn) to denote the set of process ids associated with Sn, and vals(Sn)

8

70

Herlihy, Rajsbaum and Tuttle

the set of values. The set of all possible initial global states forms a complex,
called the input complex.

Any protocol has an associated protocol complex P, defined as follows.
Each vertex is labeled with a process id and a possible view for that process.
A set of vertexes 〈Pi0 , vi0〉 , . . . , 〈Pid, vid〉 spans a simplex of P if and only if
there is some protocol execution in which Pi0 , . . . , Pid finish the protocol with
respective views vi0 , . . . , vid. Each simplex thus corresponds to an equivalence
class of executions that “look the same” to the processes at its vertexes. The
protocol complex P depends both on the protocol and on the timing and
failure characteristics of the model.

We use P(Sm) to denote the subcomplex of P corresponding to executions
in which only the processes in ids(Sm) participate (the rest fail before sending
any messages). If m < n − f , then there are no such executions, and P(Sm)
is empty. More generally, if I is a subcomplex of the input complex, then we
define P(I) to be the union of P(Sm) for all Sm in I. A protocol solves k-set
agreement if the protocol’s decision map δ carries vertexes of P to values in V
such that if ~p ∈ P(Sn), then δ(~p) ∈ vals(Sn).

4 Pseudospheres

Informally, a pseudosphere is a combinatorial structure in which each process
from a set of processes is independently assigned a value from a set of values.

Definition 4.1 Let Sm = (~s0, . . . , ~sm) be a simplex and U0, . . . , Um be a se-
quence of finite sets. The pseudosphere ψ(Sm;U0, . . . , Um) is the following
complex. Each vertex is a pair 〈~si, ui〉, where ~si is a vertex of Sm and ui ∈ Ui.
Vertexes 〈~si0 , ui0〉 , . . . , 〈~si` , ui`〉 span a simplex of ψ(Sm;U0, . . . , Um) if and
only if the ~si are distinct. A pseudosphere in which all Ui equal U is simply
written ψ(Sm;U).

We call this construct a pseudosphere because if Sn is an n-dimensional
simplex, then ψ(Sn; {0, 1}) is homeomorphic to an n-dimensional sphere. Pseu-
dospheres are important because every complex considered here is either a
pseudosphere or the union of pseudospheres. Because any process can start
with any input from V , the input complex to k-set agreement is the pseu-
dosphere ψ(P n;V), where P n is a simplex whose vertexes are labeled with
the n+ 1 distinct process ids.

Lemma 4.2 Pseudospheres satisfy the following simple combinatorial prop-
erties.

(i) If U is a singleton set, then ψ(Sm, U) ∼= Sm.

(ii) Let Sm = (~s0, . . . , ~sm), and Sm−1 = (~s0, . . . , ~̂si, . . . ~sm), where circumflex
denotes omission. If Ui = ∅, then

ψ(Sm;U0, . . . , Um) ∼= ψ(Sm−1;U0, . . . , Ûi, . . . , Um).

9

71

Herlihy, Rajsbaum and Tuttle

0s ,0

0s ,0 0s ,20s ,11s ,0

1s ,1

0s ,1

1s ,0 1s ,1

1s ,2

Fig. 4. Pseudospheres ψ({P0, P1} ; {0, 1}) and ψ({P0, P1} ; {0, 1, 2}).

(iii) ψ(S0;U0, . . . , Um)∩ψ(S1;V0, . . . , Vm) ∼= ψ(S0 ∩S1;U0 ∩V0, . . . , Um ∩Vm).

The next theorem shows how to exploit the nice combinatorial properties
of pseudospheres. It states that if applying a protocol to a single simplex
preserves connectivity below some dimension, then applying that protocol
to any input pseudosphere also preserves that degree of connectivity. It is
actually a theorem in topology, and so it applies to any model of computation.

Theorem 4.3 Let P be a protocol, Sm be a simplex, and c be a constant. If for
every face S` of Sm and for every sequence V0, . . . , V` of singleton sets the pro-
tocol complex P(ψ(S`;V0, . . . , V`)) is (`− c− 1)-connected, then for every se-
quence U0, . . . , Um of nonempty sets the protocol complex P(ψ(Sm;U0, . . . , Um))
is (m− c− 1)-connected.

A consequence of this theorem is that any n-dimensional pseudosphere is
(n− 1)-connected (just let P be the trivial protocol in which each process
halts immediately):

Corollary 4.4 If U0, . . . , Um are all nonempty, then ψ(Sm;U0, . . . , Um) is
(m− 1)-connected.

Naively, one might think that Sm is always m-connected, but note that
although the empty simplex has dimension −1, it is not (−1)-connected. We
can generalize Theorem 4.3 to multiple pseudospheres.

Theorem 4.5 Let P be a protocol satisfying the precondition of Theorem 4.3,
and let A0, . . . , A` be a sequence of finite sets. If ∩`

i=0Ai 6= ∅ then

P
(⋃̀

i=0

ψ(Sm;Ai)

)
is (m− c− 1)-connected.

Letting P be the trivial protocol in which each process decides its input:

Corollary 4.6 If A0, . . . , A` is a sequence of finite sets such that ∩`
i=0Ai 6= ∅

10

72

Herlihy, Rajsbaum and Tuttle

Fig. 5. Simplicial complex, subdivision, and polyhedron

then ⋃̀
i=0

ψ(Sm;Ai) is (m− 1)-connected.

5 Connectivity vs k-Set Agreement

The notion of k-connectivity lies at the heart of all known lower bounds for k-
set agreement. In this section, we prove a general theorem linking (k − 1)-
connectivity with impossibility of k-set agreement. This theorem is model
independent in the sense that it depends on the connectivity properties of
protocol complexes, not on explicit timing or failure properties of the model.
This result was originally stated elsewhere [HR94], but for the sake of making
this paper self-contained, we present the full proof here.

The point-set occupied by a complex C is called its polyhedron, and is
denoted by |C|. Any simplicial map φ : A → B induces a piece-wise linear
map |φ| : |A| → |B| that agrees with φ on vertexes of A.

A subdivision of a complex A is a complex B such that (1) each simplex
of B is contained in a simplex of A, and (2) each simplex of A is the union
of finitely many simplexes of B [Mun84, p. 83]. This definition implies that

|A| = |B|. If ~b is a vertex of B, the carrier of ~b in A, denoted carrier(~b,A),

is the smallest simplex of A that contains ~b. Figure 5 illustrates a complex, a
subdivision of that complex, and their underlying polyhedron.

We will need a step-by-step method for constructing subdivisions. Let C
be a complex, and ~w a point with the property that any ray emanating from ~w
intersects |C| in at most one point. Define the cone ~w · C to be the collection
of all simplexes of the form (~w,~s0, . . . , ~sk), where (~s0, . . . , ~sk) is a simplex
of C, together with all faces of such simplexes. This cone is itself a complex,
having C as a subcomplex [Mun84, p. 44]. Let σ be a subdivision of skel`−1(C),
and S`

0, . . . , S
`
L the `-simplexes of skel`(C). For 0 ≤ i ≤ L, let ~wi be an interior

point of |S`
i |. Each cone ~wi ·σ(S`

i) is a subdivision of S`
i , and the union of these

cones as i ranges from 0 to L is a subdivision of skel`(C) that agrees with σ
on the (`− 1) skeleton [Mun84, p. 85]. The result is called the subdivision

11

73

Herlihy, Rajsbaum and Tuttle

P;PQR

R;PQR Q;PQR

Q;QR

Q;PQ

R;QR

P;PQ

R;PR

P;PR

P fails

Q fails R fails

no failures

P;PQR

R;PQR Q;PQR
no failures

P;PQRQ;PQR

R fails

P;PQ Q;PQ

Fig. 6. Construction of a one-round three-process protocol complex.

of skel`(C) obtained by starring σ. The subdivision shown in Figure 5 is the
result of successive starring.

We use the following variant of Sperner’s Lemma [Lef49, Lemma 5.5]:

Lemma 5.1 (Sperner’s Lemma) Let σ(Sn) be a subdivision of simplex Sn.
If F : σ(Sn) → Sn is a map sending each vertex of σ(Sn) to a vertex in its
carrier, then there is at least one n-simplex T n = (~t0, . . . ,~tn) in σ(Sn) such
that the F (~ti) are all distinct.

We also exploit the following extension lemma, which appears in Glaser [Gla70,
Theorem IV.2].

Lemma 5.2 Let A, B, and C be complexes such that A ⊂ B, and f : |B| → |C|
is a continuous map such that f restricted to |A| is simplicial. There exists a
subdivision τ of B such that τ(A) = A, and a simplicial map φ : τ(B) → C
extending the restriction of f to |A|.
Theorem 5.3 Let V = {v0, . . . , vk} be a set of k + 1 possible input values,
and P a protocol with input complex ψ(P0, . . . , Pn;V). If P has the prop-
erty that for every n-dimensional pseudosphere ψ(P0, . . . , Pn;U), where U is a
nonempty subset of V , P(ψ(P0, . . . , Pn;U) is (k − 1)-connected, then P cannot
solve k-set agreement.

Theorems 4.3 and 5.3 imply

Corollary 5.4 If P(Sm) is (m− (n− k) − 1)-connected for all m where with
n − f ≤ m ≤ n, then P cannot solve k-set agreement in the presence of f
failures.

6 Synchronous Computation

We now define the r-round synchronous protocol complex Sr(Sm). Here too,
we consider only a subset of all possible executions: executions in which no
more than k processes fail in any round. We are interested in executions
where no more than k processes fail in any round. Informally, we will show
that the one-round protocol complex is the union of pseudospheres, where
each pseudosphere corresponds to the set of executions in which a fixed set

12

74

Herlihy, Rajsbaum and Tuttle

of processes fail. For example, Figure 6 illustrates the possible executions of
a one-round protocol for three processes, P , Q, and R, starting from a fixed
input simplex, in which no more than one process fails. Here, each vertex is
labeled with a process, followed by the processes from which it has received
messages. The figure on the left represents the execution in which in which
no processes fail: this is a (degenerate) pseudosphere in which each process
receives the same set of messages. The figure in the middle represents the
executions in which R alone fails. This complex is a pseudosphere: P and Q
independently do or do not receive a message from R. The figure on the
right represents the entire one-faulty protocol complex. It is the union of the
failure-free pseudosphere with the three single-failure pseudospheres.

6.1 Single-Round Protocols

Let S1(Sn) be the complex of one-round executions of an (n+ 1)-process pro-
tocol with input simplex Sn in which at most k processes fail. It is the union of
complexes S1

K(Sn) of one-round executions starting from Sn in which exactly
the processes in K fail. Given a set K of process ids, let Sn\K be the face
of Sn labeled with the process ids not in K. Our next result says that S1

K(Sn)
is a pseudosphere, which means that S1(Sn) is a union of pseudospheres:

Lemma 6.1 If m ≥ n − f and K is a subset of ids(Sm) of size at most
f − (n−m), then

S1
K(Sm) ∼= ψ(Sm\K; 2K).

The one-round complex is a union of pseudospheres in the synchronous
model (Lemma 6.1). To compute the connectivity of this union using Theorem
2.2, we need to understand the intersections. The next lemma shows that
these intersections have a simple structure: they are themselves the union
of pseudospheres. Order the process sets lexicographically: the empty set
first, followed by singleton sets, followed by two-element sets, and so on. Let
K0, . . . , K` be the sequence of sets of process ids less than or equal to K`,
listed in lexicographic order.

Lemma 6.2 Let m ≥ n − f and let K0, . . . , Kk be the subsets of ids(Sm) of
size at most f − (n−m) arranged in lexicographical order. If K0, . . . , K` is a
prefix of this sequence, then

`−1⋃
i=0

S1
Ki

(Sm) ∩ S1
K`

(Sm) =
⋃

p∈K`

ψ(Sm\K`; 2
K`−{p}).

Let S1(Sn) denote the protocol complex for a one-round synchronous
(n+ 1)-process protocol with input simplex Sn where no more than than k
processes fail.

Lemma 6.3 S1(Sm) is (m− (n− k) − 1)-connected if m ≥ (n− f) + k and
n ≥ 2k.

13

75

Herlihy, Rajsbaum and Tuttle

6.2 Multi-Round Protocols

Let Sr(Sn) be the protocol complex for an r-round synchronous (n+ 1)-
process protocol with input simplex Sn where no more than than k processes
fail in each round. We can decompose this complex as follows. Let K0, . . . , K`

be a sequence of sets of k or fewer process ids in lexicographic order. Re-
call that S1

Ki
(Sn) = ψ(Sn\Ki; 2

Ki) is the complex of one-round executions
in which exactly the processes in Ki fail. The set of r-round executions in
which exactly the processes in Ki fail in the first round can be written as
Sr−1

i (S1
Ki

(Sn)), where Sr−1
i is the complex for an (r − 1)-round, (f − |Ki|)-

faulty, (n− |Ki| + 1)-process full-information protocol. The Sr−1
i are consid-

ered distinct protocols because the S1
Ki

(Sn) have varying dimensions. Taking
the union over all the Ki, we have

Sr(Sn) =
⋃̀
i=0

Sr−1
i (S1

Ki
(Sn)).

The connectivity of a protocol P depends on the degree of the protocol.
Consider the multi-round executions of P in which fi is the maximum number
of processes that fail at round i. The degree of P is the minimum fi for any
round. Define S̃r−1

` to be the protocol identical to Sr−1
` except that it fails

at most k − 1 processes in its first round. While Sr−1
` has degree k, S̃r−1

`

has degree k − 1. Our next result implies that intersections of the complexes
comprising Sr are equivalent to S̃r−1

` applied to a union of pseudospheres,
which makes it possible to use Theorem 2.2 to analyze the connectivity of Sr.

Lemma 6.4

`−1⋃
i=0

Sr−1
i (S1

Ki
(Sn)) ∩ Sr−1

` (S1
K`

(Sn)) = S̃r−1
`

(⋃
j∈K`

ψ(Sn\K`; 2
K`−{j})

)
.

Define

SP
K(Sm) =

 T if ids(Sm) ⊆ P and P − ids(Sm) ⊆ K

∅ otherwise

where T is the complex of one-round executions of the full-information proto-
col in which only the processes in K fail, starting with the processes in P and
the input simplex Sm. The condition ids(Sm) ⊆ P says that initial inputs are
provided for some of the processes, and the condition P − ids(Sm) ⊆ K says
that processes for which no input is provided can be considered to have failed
immediately before having sent a single message. In general, define

SP
Kr,Kr−1,...,K1

(Sm) = SPr
Kr
SPr−1

Kr−1
· · · SP1

K1
(Sm) where Pi = P −

i−1⋃
j=1

Kj.

14

76

Herlihy, Rajsbaum and Tuttle

A consequence of these definitions is that the complex SP
Kr ,Kr−1,...,K1

(Sm) is
the empty set unless ids(Sm) ⊆ P and P − ids(Sm) ⊆ K1.

Define a failure pattern to be a sequence σ = σr, . . . , σ1 of integers rep-
resenting upper bounds on the number of processes allowed to fail in each
of the first r rounds of the full-information protocol. The failure pattern of
most interest to us will be the failure pattern in which k processes fail in each
round. We say that the failure pattern σ has degree k if it is a nondecreasing
sequence of integers

k = σ1 ≤ σ2 ≤ · · · ≤ σr

beginning with k. We say that a sequence Σ = Kr, . . . , K1 of process sets satis-
fies σ if |Ki| ≤ σi for each i, and we write Σ ∼ σ. Generalizing SP

Kr,Kr−1,...,K1
(Sm),

we define
SP

σ (Sm) =
⋃
Σ∼σ

SP
Σ (Sm)

to be the complex of r-round executions of the full-information protocol with
failure pattern σ, starting with the processes in P and the input simplex Sm.
We say that SP

σ (Sm) has degree k if σ has degree k.

Lemma 6.5 Let σ = (kr, kr−1, . . . , k1) be a failure pattern and P be a set of
processors. Let τ = (kr, kr−1, . . . , k2) and τ ′ = (kr, kr−1, . . . , k2 − 1), and let
K1, . . . , Kk be the subsets of P of size at most k1 listed in lexicographical order.

`−1⋃
i=0

SP−Ki
τ (SP

Ki
(Sm)) ∩ SP−K`

τ (SP
K`

(Sm))

=SP−K`
τ ′

(⋃
p∈K`

ψ(Sm\K`; 2
K`−{p})

)
.

Lemma 6.6 Let σ = (kr, . . . , k1) be a failure pattern of degree k, and let P
be a set of processors of size n. If n ≥ kr + · · · + k1 + k and ids(Sm) ⊆ P ,
then SP

σ (Sm) is (m− (n− k) − 1)-connected.

The connectivity of this protocol complex implies the lower bound for
synchronous k-set agreement [CHLT93]:

Theorem 6.7 If n ≥ f+k, then any synchronous f -resilient k-set agreement
protocol requires bf/kc + 1 rounds. If n < f + k, then any synchronous f -
resilient k-set agreement protocol requires bf/kc rounds.

Proof. If n− k ≥ f , then Sbf/kc(I) is (k − 1)-connected. If n− k < f , then
Sbf/kc−1(I) is (k − 1)-connected. Either way, Theorem 5.3 states that the
protocol cannot solve k-set agreement.

References

[AR96] Hagit Attiya and Sergio Rajsbaum. The combinatorial structure of wait-
free solvable tasks. In Proceedings of the 10th International Workshop

15

77

Herlihy, Rajsbaum and Tuttle

on Distributed Algorithms, volume 1151 of Lecture Notes in Computer
Science, pages 322–343. Springer-Verlag, Berlin, October 1996.

[BG93] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result
for t-resilient asynchronous computations. In Proceedings of the 25th
ACM Symposium on Theory of Computing, pages 91–100, May 1993.

[Cha91] Soma Chaudhuri. Towards a complexity hierarchy of wait-free concurrent
objects. In Proceedings of the 3rd IEEE Symposium on Parallel and
Distributed Processing, December 1991.

[Cha93] Soma Chaudhuri. More choices allow more faults: Set consensus problems
in totally asynchronous systems. Information and Computation,
105(1):132–158, July 1993.

[CHLT93] Soma Chaudhuri, Maurice Herlihy, Nancy Lynch, and Mark R. Tuttle.
A tight lower bound for k-set agreement. In Proceedings of the 34th
IEEE Symposium on Foundations of Computer Science, pages 206–215,
November 1993.

[DM90] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in
a Byzantine environment: Crash failures. Information and Computation,
88(2):156–186, October 1990.

[Dol82] Danny Dolev. The Byzantine generals strike again. Journal of
Algorithms, 3(1):14–30, March 1982.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
Byzantine agreement. SIAM Journal on Computing, 12(3):656–666,
November 1983.

[Fis83] Michael J. Fischer. The consensus problem in unreliable distributed
systems (a brief survey). In Marek Karpinsky, editor, Proceedings
of the 10th International Colloquium on Automata, Languages, and
Programming, pages 127–140. Springer-Verlag, 1983.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to
assure interactive consistency. Information Processing Letters, 14(4):183–
186, June 1982.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty processor. Journal
of the ACM, 32(2):374–382, April 1985.

[GK99] Eli Gafni and Elias Koutsoupias. Three-processor tasks are undecidable.
SIAM Journal on Computing, 28(3):970–983, 1999.

[Gla70] L. C. Glaser. Geometrical Combinatorial Topology, volume 1. Van
Nostrand Reinhold, New York, 1970.

[Had83] Vassos Hadzilacos. A lower bound for Byzantine agreement with fail-stop
processors. Technical Report TR–21–83, Harvard University, 1983.

16

78

Herlihy, Rajsbaum and Tuttle

[HR94] Maurice Herlihy and Sergio Rajsbaum. Set consensus using arbitrary
objects. In Proceedings of the 13th Annual ACM Symposium on
Principles of Distributed Computing, pages 324–333, August 1994.

[HR95] Maurice Herlihy and Sergio Rajsbaum. Algebraic spans. In Proceedings
of the 14th Annual ACM Symposium on Principles of Distributed
Computing, pages 90–99, August 1995. Mathematical Structures in
Computer Science, to appear.

[HRT98] Maurice Herlihy, Sergio Rajsbaum, and Mark R. Tuttle. Unifying
synchronous and asynchronous message-passing models. In Proceedings
of the 17th Annual ACM Symposium on Principles of Distributed
Computing, pages 133–142. ACM, June 1998.

[HS99] Maurice P. Herlihy and Nir Shavit. The topological structure of
asynchronous computability. Journal of the ACM, November 1999.

[Lef49] S. Lefschetz. Introduction to Topology. Princeton University Press,
Princeton, New Jersey, 1949.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, July 1982.

[Mer85] Michael Merritt. Notes on the Dolev-Strong lower bound for byzantine
agreement. Unpublished manuscript, 1985.

[Mun84] J. R. Munkres. Elements Of Algebraic Topology. Addison Wesley,
Reading MA, 1984.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching
agreement in the presence of faults. Journal of the ACM, 27(2):228–234,
1980.

[Spa66] Edwin H. Spanier. Algebraic Topology. Springer-Verlag, New York, 1966.

[SZ93] Michael Saks and Fotis Zaharoglou. Wait-free k-set agreement is
impossible: The topology of public knowledge. In Proceedings of the 25th
ACM Symposium on Theory of Computing, pages 101–110, May 1993.
SIAM Journal on Computing, to appear.

17

79

80

GETCO'00 to appear

From concurrency to algebraic topology

Philippe Gaucher

Institut de Recherche Math�ematique Avanc�ee, ULP et CNRS, 7 rue Ren�e

Descartes, 67084 Strasbourg Cedex, France, gaucher@math.u-strasbg.fr

Abstract

This paper is a survey of the new notions and results scattered in [13], [11] and

[12]. Starting from a formalization of higher dimensional automata (HDA) by strict

globular !-categories, the construction of a diagram of simplicial sets over the three-

object small category � gl ! + is exposed. Some of the properties discovered so

far on the corresponding simplicial homology theories are explained, in particular

their links with geometric problems coming from concurrency theory in computer

science.

1 Introduction

We have already argued in [13] for modeling higher dimensional automata

(HDA) using strict globular !-categories. To our knowledge, the link between
globular !-categories and concurrent automata was �rst noticed in [21]. Pa-

pers [13] [11] and [12] show that this way of formalizing HDA is very well
adapted to getting interesting new functors deeply related to the computer-
scienti�c properties of the HDA.We would like to explain here the construction

of these functors, some of their known properties and some perspectives. Many
explanations are given in a very informal way. We refer to the bibliography
for more details.

In [21] and [14], HDA are formalized using cubical sets in the sense of [6].
The link between cubical sets and !-categories will be described at the end of

Section 3. There are two equivalent approaches of the notion of !-category :

a cubical one and a globular one [3]. The globular approach will be used

everywhere in this paper except in Figure 6 where cubical subdivisions are

depicted. An example of globular subdivision is depicted in Figure 3(a). An
informal topological description of HDA is also used in Section 2. The link

between all these descriptions of HDA is summarized from the point of view

of the homotopy of HDA in Section 6.

This survey is intended to be readable by non-specialists in algebraic topol-
ogy. Only a small background is required : the de�nition of simplicial set (their

face maps will be denoted by @i and their degeneracy maps by �i) and of the as-
This is a preliminary version. The �nal version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume39.html

81

Gaucher

sociated simplicial homology H�, and therefore the de�nition of the homology

of a chain complex of abelian groups [20] [27] [23].

Some geometric intuitions are introduced in Section 2. The de�nition of

globular !-category is recalled in Section 3. This section also provides a de-

scription of the !-categories associated to the n-cubes and to the n-simplexes

for all n. The three nerves and the two morphisms h� and h+ are described in

Section 4. In Section 5, we speculate about what should be a good invariant

of HDA.

2 The topology of HDA in an informal way

To explain the geometric intuition which underlies the constructions of this

paper, let us make a digression by considering a continuous model instead of

a discrete one. The main ideas are indeed much simpler to understand in a

continuous setting for a reader not familiar with the !-categorical style.

HDA can be seen as
ows of execution paths on a topological space X as

in Figure 1(a). The points of the topological space correspond to the states of

the HDA. The closest formalism is that of locally partially ordered topological
spaces developed in [10] for an algorithmic purpose.

The easy case is when a clock is running concurrently to the HDA. This
clock is supposed to represent an absolute time. This situation is drawn in

Figure 1(a). The date map DX , which associates to every point of the above
topological space (that is to say a state of the corresponding HDA) the date
when it occurs, is the projection map on the temporal line. Two achronal cuts

(the term \achronal" is borrowed from [10]) D�1
X (T) and D�1

X (T 0) at the date
T and T 0 are depicted in Figure 1(a). In this situation, the execution paths

are the continuous map � from [0; 1] to X such that DX Æ� is a non-decreasing
map from [0; 1] to R.

Deforming the HDA of the picture means deforming every cut of (X;DX)
in a continuous way. In other terms, in most cases, whenever f and g are two
morphisms of topological spaces from X to Y (resp. from Y to X) such that

for every t 2 R, the maps f and g induce reciprocal homotopy equivalences

between (DX)
�1(t) and (DY)

�1(t) and such that DX(X) and DY (Y) are two

homeomorphic subsets of R, then one can say that f and g are reciprocal

deformations between (X;DX) and (Y;DY). In this case, both HDAs (X;DX)
and (Y;DY) are equal up to deformation.

There are some exceptions anyway. In a good theory it is indeed almost
sure that an oriented line from a state � to another state � does not represent

the same HDA as the HDA corresponding to one point. In the �rst case, there

is a computation and in the second case there is not. Therefore these two
HDAs are not equal up to deformation. In other terms, one cannot contract

a temporal line to one of these extremal points. There are other exceptions
mentioned to me by Stefan Sokolowski. They do not matter because we only

want to give a geometric intuition of the content of this paper. The precise

2

82

Gaucher

T T’ TIME

(a) A HDA as a
ow of execution
paths

(b) The room with three barriers

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

PB

PA

PA PB VB VA

VA

VB

(c) The Swiss Flag

Fig. 1. Examples of HDA

link between the topological and the !-categorical approach is still an open
question (see the end of Section 6).

So a good way to think of invariants of HDA as in Figure 1(a) consists of
thinking that an invariant of HDA is an invariant of cuts. And one can start

constructing an invariant of HDA by choosing one real number t, one invariant

coming from algebraic topology F , and by considering the map (X;DX) 7!
F Æ (DX)

�1(t).

Now let us remove the hypothesis of an absolute time. It becomes im-
possible to consider a map as above. The main idea of this paper is then as

follows. There are three kind of geometric regions in a HDA : 1) the branching
areas of execution paths, 2) the merging areas of execution paths, 3) and the

oriented globes. And each of these regions gives rise to one simplicial set (the

3

83

Gaucher

TIME

branching area
merging area

Fig. 2. The fundamental structure

branching nerve, the merging nerve and the globular nerve) which represents

respectively the topology of all cuts close to branching or merging areas of

execution paths or in the middle of the globes. Moreover, as depicted in Fig-

ure 2, each topological cut in a middle of a globe can also be considered as

a topological cut close to a branching and a merging area of execution paths

(it suÆces to hide {for example{ the right part of Figure 2 with the hand to
see a branching area appearing). Therefore there will be two morphisms of
simplicial sets from the globular nerve to respectively the branching and the

merging nerves.

Considering only achronal cuts is not suÆcient to characterize the homo-
topy type of an HDA. Loosely speacking, if it was suÆcient, the simplicial set
N�(X) = C0

achronal(�
�; X), where �n would be here the usual topological n-

simplex and where C0
achronal(�

�; X) would be the continuous maps f from ��

to X such that f(x) � f(y) if and only if f(x) = f(y), would contain enough
information to characterize the homotopy class of the HDA X. But the in-

formation that tells us how a given vertical simplex is related to another one
along the
ow of execution paths is missing. There are too many simplexes in

this simplicial set and there is not enough information to make the required
identi�cations. In the room with three barriers of Figure 1(b) (borrowed from
[10]), there are two non-dihomotopic execution paths althrough all achronal

cuts in this example are path-connected. We will explain later that the three

simplicial nerves constructed in this paper do see this situation. This means

that the three nerves will also contain information not corresponding to any

achronal cut.

The interest of considering such invariants is detailed in many papers [14]

[13]. Loosely speaking, such deformations leave the most interesting properties
of a HDA unchanged. For example both HDAs of Figure 1(c) are essentially

the same (beware of the fact that there is no absolute time in this latter

example). As explained in [9], the state
 represents a deadlock and the state
Æ an unreachable state. Compare the possible execution paths on the left and

the four execution paths on the right. These are essentially the same ! This
means that an algorithm reducing an HDA by a deformation before doing

calculations would be more eÆcient than any other algorithm.

4

84

Gaucher

3 Modeling HDA by means of globular !-categories

Roughly speaking, in a given globular !-category C, 0-morphisms represent

the states of the corresponding automaton, 1-morphisms represent all pos-

sible execution paths in the HDA and higher dimensional morphisms rep-

resent homotopies between morphisms of lower dimension. They represent

the execution of several tasks carried out at the same time. In particular 2-

morphisms represent homotopies between execution paths. The composition

of execution paths matches exactly the composition of 1-morphisms. Higher

dimensional composition laws formalize the composition of higher dimensional

homotopies (cf. Figure 3(a)). As already noticed in [21], the axioms of globu-

lar !-categories encode the geometric properties of compositions of execution

paths and homotopies between them.

Let us recall the de�nition of !-category in three steps (see [5] [26] [24] for

more details) :

De�nition 3.1 A 1-category is a pair (A; (�; s; t)) satisfying the following

axioms :

(i) A is a set

(ii) s and t are set maps from A to A respectively called the source map and

the target map

(iii) for x; y 2 A, x � y is de�ned as soon as tx = sy

(iv) x � (y � z) = (x � y) � z as soon as both members of the equality exist

(v) sx �x = x � tx = x, s(x � y) = sx and t(x � y) = ty (this implies ssx = sx

and ttx = tx).

De�nition 3.2 A 2-category is a triple (A; (�0; s0; t0); (�1; s1; t1)) such that

(i) both pairs (A; (�0; s0; t0)) and (A; (�1; s1; t1)) are 1-categories

(ii) s0s1 = s0t1 = s0, t0s1 = t0t1 = t0, and for i � j, sisj = tisj = sj and
sitj = titj = tj (Globular axioms)

(iii) (x �0 y) �1 (z �0 t) = (x �1 z) �0 (y �1 t) (Godement axiom)

(iv) if i 6= j, then si(x �j y) = six �j siy and ti(x �j y) = tix �j tiy.

De�nition 3.3 A globular !-category C is a set A together with a family
(�n; sn; tn)n�0 such that

(i) for any n � 0, (A; (�n; sn; tn)) is a 1-category

(ii) for any m;n � 0 with m < n, (A; (�m; sm; tm); (�n; sn; tn)) is a 2-category

(iii) for any x 2 A, there exists n � 0 such that snx = tnx = x (the smallest

of these n is called the dimension of x).

A n-dimensional element of C is called a n-morphism. A 0-morphism is

also called a state of C, and a 1-morphism an arrow. If x is a morphism of

an !-category C, we call sn(x) the n-source of x and tn(x) the n-target of x.

5

85

Gaucher

�
��

�� ��
�� A

CC�� ��
�� B

// �

(a) Composi-
tion of two 2-
morphims

(0)

(2)

(02)

>>~~~~~~~~~~~~~~~~

(12)
// (1)

(01)

OO

(012)

\d@@@@@@@

@@@@@@@

(b) The !-category

�2

+0� //
++0

��?
??

??
??

+�0
??

?

��?
??

+0� //
++0

��?
??

??
??

0��
??�������

�0� //

��0 ��?
??

??
??

0+����

??���

�+0
??

?

��?
??

00�???
???

[c??????

000 _ *4

0��
??�������

��0 ��?
??

??
??

+00��� ���

;C������

+0+ //

�0+
//

�00��� ���

;C������
0++

??�������

0+0

KS

0�+���

??���

�0+
//

0�0

KS

00+???
???

[c??????

0++

??�������

(c) The !-category I3

Fig. 3. Some !-categories (a k-fold arrow symbolizes a k-morphism)

The category of all !-categories (with the obvious morphisms) is denoted by

!Cat. The corresponding morphisms are called !-functors.

As fundamental examples of !-categories, there are the !-category In asso-

ciated to the n-dimensional cube and that of the n-dimensional simplex (this
latter is denoted by �n). For the cube, the older attempt of constructing a
structure of !-category on the set of faces of the n-cube is maybe in [1]. As

for the n-simplex, the seminal work is [26]. Since then, many constructions
have been proposed.

Both families of !-categories can be characterized in the same way. The

�rst step consists of labelling all faces of the n-cube and of the n-simplex.

For the n-cube, this consists of considering all words of length n in the al-
phabet f�; 0;+g, one word corresponding to the barycenter of a face (with
00 : : : 0 (n times) =: 0n corresponding to its interior). As for the n-simplex,

its faces are in bijection with strictly increasing sequences of elements of

f0; 1; : : : ; ng. A sequence of length p + 1 will be of dimension p. If x is a

face, let R(x) be the set of faces of x seen respectively as a sub-cube or a
sub-simplex. If X is a set of faces, then let R(X) =

S
x2X R(x). Notice that

R(X [Y) = R(X)[R(Y) and that R(fxg) = R(x). Then In and �n are the

free !-categories generated by the R(x) with the rules

(i) For x p-dimensional with p � 1, sp�1(R(x)) = R(sx) and tp�1(R(x)) =

R(tx) where sx and tx are the sets of faces de�ned below.

6

86

Gaucher

����

���+

��++

�+++

++++

+++�

++��

+���

�++�

�+��

��+�

FF

�� �0

11
11

11
11

1

��

0 ���
MMMMMMMM

&&
�0� �

qqqqqqqq

88
�� 0�

qqqqqqqq

88
�� 0+

?
?

���� 00

MMMMMMMM

&&
�0 + +

(
(

(
(
(

(
(

��

�0 + 0

FF

�� +0

11
11

11
11

1

��

0 + ++

�
�
�
�
�
�
�
�

��

0 + +0

FF

� + +0

FF

+ + +0

qqqqqqqq88
+ + 0�

111111111��

0 + +�

MMMMMMMM&&
+0� �

�
�
�
�
�
�
�

��

0 + 0�

111111111��

0 +��

�
�

��00 ��
qqqqqqqq88
� + 0�

MMMMMMMM&&
�0 + �

�
�
�
�
�

��

�00�

�000

}}{{
{{

{{
{{

000�

!!C
CC

CC
CC

C

����

���+

��++

�+++

++++

+++�

++��

+���

�++�

�+�+

�+��

FF

�� �0

11
11

11
11

1

��

0 ���
MMMMMMMM

&&
�0 ��

qqqqqqqq

88
�� 0+

MMMMMMMM

&&
�0 � +

(
(
(

(
(
(

(

��

�0� 0

MMMMMMMM

&&
�0 + +

�
�
�
�
�

��

�00+

11
11

11
11

1

��

0 + ++

�
�
�
�
�
�
�
�

��

0 + +0

FF

� + +0qqqqqqqq88
� + 0+

FF

+ + +0

qqqqqqqq88
+ + 0�

111111111��

0 + +�

MMMMMMMM&&
+0� �

�
�
�
�
�
�
�

��

0 + 0�

111111111��

0 +��

�
�

��00 ��

?
?

��� + 00

qqqqqqqq88
� + 0�

FF

� +�0

0+00

��

����

���+

��++

�+++

++++

+++�

++��

+���

+�+�

�++�

��+�

FF

�� �0

11
11

11
11

1

��

0 ���

qqqqqqqq

88
�� 0�

qqqqqqqq

88
�� 0+

?
?

���� 00

MMMMMMMM

&&
�0 + +

(
(

(
(
(

(
(

��

�0 + 0

FF

�� +0

11
11

11
11

1

��

0 + ++

�
�
�
�
�
�
�
�

��

0 + +0

FF

� + +0

FF

+ + +0

qqqqqqqq88
+ + 0�

MMMMMMMM&&
+0 +�

111111111��

0 + +�

MMMMMMMM&&
+0� � �

�
�
�
�

��

+00�

qqqqqqqq

88
+� 0�

�
�
�
�
�
�
�

��

0� 0� �
�

��00 + �

111111111��

0� +�

MMMMMMMM&&
�0 + �

00+0

��

����

���+

��++

�+++

++++

+++�

++��

+���

++�+

�+�+

�+��

FF

�� �0

11
11

11
11

1

��

0 ���
MMMMMMMM

&&
�0 ��

qqqqqqqq

88
�� 0+

MMMMMMMM

&&
�0 � +

(
(
(

(
(
(

(

��

�0� 0

MMMMMMMM

&&
�0 + +

�
�
�
�
�

��

�00+

11
11

11
11

1

��

0 + ++

�
�
�
�
�
�
�

��

0 + 0+

qqqqqqqq88
� + 0+

FF

+ + +0qqqqqqqq88
+ + 0+

qqqqqqqq88
+ + 0�

?
?

��+ + 00

MMMMMMMM&&
+0� �

FF

+ +�0

�
�
�
�
�
�
�
�

��

0 + �0111111111��

0 +��

�
�

��00 ��

111111111��

0 +�+

FF

� +�0

00�0

��

0000 +3
����

���+

��++

�+++

++++

+++�

++��

+���

+�++

+�+�

��+�

FF

�� �0

11
11

11
11

1

��

0 ���

qqqqqqqq

88
�� 0�

qqqqqqqq

88
�� 0+

?
?

���� 00

MMMMMMMM

&&
�0 + +

11
11

11
11

1

��

0 � ++

�
�
�
�
�
�
�
�

��

0� +0

FF

�� +0

11
11

11
11

1

��

0 + ++

�
�

��00 + +

FF

+ + +0

MMMMMMMM&&
+0 + +

qqqqqqqq88
+ + 0�

(
(

(
(
(

(
(

��

+0 + 0

MMMMMMMM&&
+0 +�

MMMMMMMM&&
+0� � �

�
�
�
�

��

+00�

qqqqqqqq

88
+� 0�

�
�
�
�
�
�
�

��

0� 0�

FF

+� +0

111111111��

0� +�

0�00

��

����

���+

��++

�+++

++++

+++�

++��

+���

++�+

+��+

�+�+

FF

�� �0

11
11

11
11

1

��

0 ���

qqqqqqqq

88
�� 0+

�
�
�
�
�
�
�
�

��

0 ��0

11
11

11
11

1

��

0 ��+
MMMMMMMM

&&
�0 � +

MMMMMMMM

&&
�0 + +

�
�
�
�
�

��

�00+

11
11

11
11

1

��

0 + ++

�
�
�
�
�
�
�

��

0 + 0+

qqqqqqqq88
� + 0+

FF

+ + +0qqqqqqqq88
+ + 0+

qqqqqqqq88
+ + 0�

?
?

��+ + 00

MMMMMMMM&&
+0� �

FF

+ +�0

(
(
(

(
(
(

(

��

+0� 0

FF

+� �0

MMMMMMMM&&
+0� +

111111111��

0 +�+

�
�

��00 � +

000+

!!C
CC

CC
CC

C

����

���+

��++

�+++

++++

+++�

++��

+���

+�++

+�+�

+��+

FF

�� �0

11
11

11
11

1

��

0 ���

qqqqqqqq

88
�� 0+

�
�
�
�
�
�
�
�

��

0� �0

11
11

11
11

1

��

0 ��+

MMMMMMMM

&&
�0 + +

11
11

11
11

1

��

0 � ++

�
�
�
�
�
�
�

��

0� 0+

11
11

11
11

1

��

0 + ++

�
�

��00 + +

FF

+ + +0

MMMMMMMM&&
+0 + +

qqqqqqqq88
+ + 0�

(
(

(
(
(

(
(

��

+0 + 0

MMMMMMMM&&
+0 +�

MMMMMMMM&&
+0� � �

�
�
�
�

��

+00�

qqqqqqqq

88
+� 0�

FF

+� �0

FF

+� +0qqqqqqqq88
+� 0+

?
?

��+� 00

+000

}}{{
{{

{{
{{

����

���+

��++

�+++

++++

+++�

++��

+���

++�+

+�++

+��+

FF

�� �0

11
11

11
11

1

��

0 ���

qqqqqqqq

88
�� 0+

�
�
�
�
�
�
�
�

��

0� �0

11
11

11
11

1

��

0 ��+

MMMMMMMM

&&
�0 + +

11
11

11
11

1

��

0 � ++

�
�
�
�
�
�
�

��

0� 0+

11
11

11
11

1

��

0 + ++

�
�

��00 + +

FF

+ + +0qqqqqqqq88
+ + 0+

MMMMMMMM&&
+0 + +

qqqqqqqq88
+ + 0�

?
?

��+ + 00

MMMMMMMM&&
+0� �

FF

+ +�0

(
(
(

(
(
(

(

��

+0� 0

FF

+� �0

�
�
�
�
�

��

+00+MMMMMMMM&&
+0� +

qqqqqqqq88
+� 0+

Fig. 4. The !-category I4

7

87

Gaucher

(ii) If X and Y are two elements of In (resp. �n) such that tp(X) = sp(Y)

for some p, then X [Y belongs to In (resp. �n) and X [Y = X �p Y .
The slogan is : \Composition means union".

Only the de�nition of sx and tx di�ers from one case to the other one. Let

us give the computation rule in some examples. For the cube, the i-th zero

is replaced by (�)i (resp. (�)i+1) for sx (resp. tx). For example, one has

s0+00 = f-+00; 0++0; 0+0-g and t0+00 = f++00; 0+-0; 0+0+g.

For the simplex, s(04589) = f(4589); (0489); (0458)g (the elements in odd

position are removed) and t(04589) = f(0589); (0459)g (the elements in even

position are removed).

The above constructions are examples of free !-categories generated by

some data (see for example [15], [17] or [25] for possible descriptions of these

data). Using the construction of In, one can construct the free !-category

generated by a cubical set. A cubical set K is indeed a set-valued presheaf

over some small category � whose objects are natural numbers and whose

morphisms encode the axioms of cubical sets (exactly in the same way that

the small category � does for simplicial sets) [7] [16]. It is a general fact
that a cubical set K is in a canonical way the direct limit of its cubes :

K =
R n2�

Kn:�(�; n) where the integral sign is the coend construction [19]

and Kn:�(�; n) means the sum of \cardinal of Kn" copies of �(�; n). It then
suÆces to paste the !-categories associated to every n-cube of K in the same

way that they are pasted in K, that is to consider
R n2�

Kn:I
n, to obtain the

!-categorical realization of the cubical set K. For instance the !-categorical
realization of a 1-dimensional cubical set is an !-category whose 1-morphisms
are exactly the arrows of the cubical set and all possible compositions of these

arrows (further details in the informal part of [13]). Exactly in the same way,

the topological space
R n2�

Kn:[0; 1]
n, where [0; 1]n is the topological n-cube,

is nothing else but the usual geometric realization of the cubical set K [19].

4 Fundamental constructions

First of all here are some important de�nitions. The N-graded set C[1] is ob-
tained from C by removing the 0-morphisms, by considering the 1-morphisms

of C as the 0-morphisms of C[1], the 2-morphisms of C as the 1-morphisms

of C[1], etc. with an obvious de�nition of the source and target maps and of
the composition laws. The map T : C 7! C[1] does not induce a functor from

!Cat to itself because !-functors can contract 1-morphisms and because with

our conventions, a 1-source or a 1-target can be 0-dimensional. Hence the

following de�nition :

De�nition 4.1 [13] An !-category C is non-1-contracting if C[1] is an !-

category (or equivalently if s1x and t1x are 1-dimensional as soon as x is
not 0-dimensional). Let f be an !-functor from C to D. The morphism f

is non-1-contracting if for any 1-dimensional x 2 C, the morphism f(x) is a

8

88

Gaucher

1-dimensional morphism of D.

De�nition 4.2 The category of non-1-contracting !-categories with the non-

1-contracting !-functors is denoted by !Cat1.

Following [8], an augmented simplicial set is a simplicial set (Xn)n�0 en-

dowed with an additional set X�1 and an additional set map @�1 from X0 to

X�1 such that @�1@0 = @�1@1 where @0 and @1 are the two face maps from

X1 to X0. The \simplicial homology" functor H� from the category of aug-

mented simplicial sets Sets�
op

+ to the category of abelian groups Ab is de�ned

as the usual one for � � 1 and by setting H0(X) = Ker(@�1)=Im(@0�@1) and

H�1(X) = ZX�1=Im(@�1) whenever X is an augmented simplicial set.

4.1 The branching and merging nerves

The branching and merging nerves are dual from each other. We set

!Cat(In+1; C)� := fx 2 !Cat(In+1; C); x(� : : : [0]i : : : �) 1-dimensionalg

where � 2 f�;+g and where the expression � : : : [0]i : : : � denotes the word on

f�; 0g with exactly one zero in the i-th position and for all (i; n) such that
0 � i � n, the face maps @i from !Cat(In+1; C)� to !Cat(In; C)� are the
arrows @�i+1 de�ned by

@
�
i+1(x)(k1 : : : kn+1) = x(k1 : : : [�]i+1 : : : kn+1)

and the degeneracy maps �i from !Cat(In; C)� to !Cat(In+1; C)� are the ar-

rows ��i+1 de�ned by setting

��i (x)(k1 : : : kn) := x(k1 : : :max(ki; ki+1) : : : kn)

�+
i (x)(k1 : : : kn) := x(k1 : : :min(ki; ki+1) : : : kn)

with the order � < 0 < +.

De�nition 4.3 [13] The �-corner simplicial nerve N � is the functor from

!Cat1 to Sets�
op

+ de�ned by N �
n (C) := !Cat(In+1; C)� for n � 0 and with

N �
�1(C) = C0 and endowed with the augmentation map @�1 from N �

0 (C) = C1
to N �

�1(C) = C0 de�ned by @�1 = s0 (resp. @�1 = t0) if � = � (resp. � = +).

In the sequel, \�-corner" means branching and \+-corner" meansmerging.

Set

H
�
n+1(C) := Hn(N

�(C))

for n � �1. These homology theories are called branching and merging homol-
ogy respectively. The abelian group H�

0 (C) (resp. H
+
0 (C)) is the free abelian

group generated by the �nal (resp. initial) states of C.

The evaluation map ev de�ned by ev(x) = x(0n+1) for x 2 !Cat(In+1; C)�

associates to any such x the label of the interior of x. A 2-simplex of the

branching nerve (that is an !-functor from I3 to C) is depicted in Figure 5. The
\2-simplex part" is described by the dark triangle. The simplicial structure of

these two nerves comes from the fact that close to a corner, the intersection

9

89

Gaucher

Fig. 5. model of 2-simplex in the branching nerve

FE

G H

K

LI

J

AB

C D

Fig. 6. A 2-dimensional branching area

of an n-cube by an hyperplane is an (n � 1)-simplex. Considering the maps

��i+1 and �+
i+1 is not new (cf. the operations �i+1 in [6] and �i+1;�

0
i+1 in [2]).

Our notations are adapted to the simplicial structure of De�nition 4.3 noticed
in [13] for the �rst time.

Figure 6 represents a 2-dimensional branching area. It corresponds to the

homology class of the cycle (A) � (F) + (I). One can prove that the cycles
(A;B;C;D) � (E; F;G;H) + (I; J;K; L), (A) � (F;H) + (I; J) correspond

to the same homology class as (A) � (F) + (I). The exact statement can

be found in [11] : it uses the cubical analogue of the globular composition
laws �n of De�nition 3.2 and De�nition 3.3. It means that negative (resp.
positive) corner homology theories describe the branching (resp. merging)

areas of execution paths in a HDA. In other terms, the homology class does

not depend on a cubi�cation of the HDA. Therefore they correct the main

drawback of the homology theories of [14].

4.2 The globular nerve

If C is an !-category and if x 2 !Cat(�n; C[1]), one can set

�i(x)(�0 < : : : < �n+1) = x(�0 < : : : <bi < �k � 1 < : : : < �n+1 � 1)

@i(x)(�
0
0 < : : : < �0n�1) =

10

90

Gaucher

PA VA

PA

VA

(a) Example from distributed database the-
ory : two 1-morphisms are depicted

α β

A

B

u

v

(b) A 3-dimensional
hole

Fig. 7. Examples of cycles

x(�00 < : : : < �0k�1 < �0k + 1 < : : : < �0n�1 + 1)

where �0k; : : : ; �
0
n�1 � i and where bi means that i is removed if it appears and

that bigger �` are replaced by �` � 1.

It can be checked that �i(x) (resp. @i(x)) are !-functors from �n+1 (resp.

�n�1) to C[1] and (!Cat(��; C[1]); @i; �i) is a simplicial set which will be called
the simplicial nerve of C[1].

De�nition 4.4 [12] The globular simplicial nerve N gl is the functor from

!Cat1 to Sets�
op

+ de�ned by N gl
n (C) = !Cat(�n; C[1]) for n � 0 and with

N gl
�1(C) = C0�C0, and endowed with the augmentation map @�1 fromN gl

0 (C) =

C1 to N
gl
�1(C) = C0 � C0 de�ned by @�1x = (s0x; t0x).

The evaluation map ev de�ned for x 2 !Cat(�n; C[1]) by

ev(x) = x((0 : : : n))

associates to any such x the label of the interior of x. Intuitively, elements of

N gl
n (C) are full (n + 1)-globes. Figure 8 depicts a 2-simplex in the globular

nerve. Indeed, if x is an !-functor from �n to C[1] for some n, then the set

map from �n to C given by (�0 : : : �r) 7! s0x((�0 : : : �r)) (resp. (�0 : : : �r) 7!
t0x((�0 : : : �r))) is the constant map because of the globular equations in De�-

nition 3.2. In other terms, the globular nerve contains some information about
the simplexes included in the HDA and which are in vertical position.

Set

H
gl
n+1(C) := Hn(N

gl(C))

for n � �1. This homology theory is called the globular homology. An

11

91

Gaucher

(02)

(012)

(01)

(12)
U

V

W

Fig. 8. Globular 2-simplex

� u // �

v

��

w

GG

(a) C

�1
u1 //�2

u2 // �

v

��

w

GG

(b) Subdivision of u in C

Fig. 9. Example of T1-deformation

example of globular cycle of dimension 1 is
1 �
2 of Figure 7(a) where
1
and
2 are the execution paths drawn from the point of coordinates (0; 0) to
the point of coordinates (5; 5). We call it an oriented 1-dimensional loop. An

example of a globular cycle of dimension 2 is A � B of Figure 7(b) (more
precisely, A means here the !-functor from �1 = I1 to C[1] such that the
interior is labelled by A and idem for B). Looking back to Figure 1(b), we

see that the corresponding �rst globular group does not vanish : this means
in this case that the globular nerve contains information not related to any

achronal cuts of the HDA.

Like for the corner homologies, we can arrive at similar conclusions with

the globular homology. Subdividing p-morphisms with p � 2 (Figure 3(a) can

be seen as the subdivision of a 2-morphism in two parts A and B) in a HDA
leaves the globular homology unchanged.

As for the subdivision of 1-morphisms, one can prove that subdivisions of

indecomposable 1-morphisms leave both corner homology theories unchanged.

This is not the case for the globular homology. Indeed if both corner homolo-

gies of HDAs of Figure 9(a) and Figure 9(b) are equal (to Z), this property fails

for the globular homology : the �rst globular homology group of Figure 9(a)

is equal to Z�2 (the free abelian group generated by v � w, u �0 v � u �0 w)
and the �rst globular homology group of Figure 9(b) is equal to Z�3 (the free

abelian group generated by v � w, u2 �0 v � u2 �0 w, u1 �0 u2 �0 v � u2 �0 w).

12

92

Gaucher

w

u

C

>>~~~~~~~~~~~~~~~~
A

// v

B

OO

XAAA
AAA

\dAAA
AAA

(a) A 2-
globular
simplex eX

t0u //
t0u

��?
??

??
??

t0u
??

?

��?
??

t0u //
t0u

��?
??

??
??

w

??�������
v //

u
��?

??
??

??

t0u���

??���

t0u
??

?

��?
??

B???
???

[c??????

X _ *4

w

??�������

u
��?

??
??

??

t0u��� ���

;C������

t0u //

t0u
//

A��� ���

;C������
t0u

??�������

t0u

KS

t0u���

??���

t0u
//

C

KS

t0u???
???

[c??????

t0u

??�������

(b) The 2-simplex h�(eX)

Fig. 10. Illustration of h�

N gl(C)
h�

yyttttttttt
h+

%%JJJJJJJJJ

N�(C) N+(C)

Fig. 11. The fundamental diagram

4.3 The morphisms from the globular to the corner nerves

Both morphisms of simplicial sets h� from the globular nerve to the corner
nerves arise from the canonical inclusion map from N gl(C) to N �(C). They

can be characterized by the following statement :

Theorem 4.5 [12] Let � 2 f�;+g. There exists one and only one natural

transformation h� from N gl to N � such that ev Æ h� = ev.

Take a globular 2-simplex as in Figure 8. It can be mapped to an !-functor

from I3 to C as in Figure 5 by labelling the faces of I3 with only 0 and � in
their description with the corresponding label of the original �gure and by
labelling all other faces of I3 by �. For example Figure 10(b) represents the

image of the globular 2-simplex of Figure 10(a) by h� (see the convention of

labelling in Figure 3(b) and Figure 3(c)) : notice that t0u = t0v = t0w =

t0A = t0B = t0C = t0X.

In homology , the morphism h� (resp. h+) associates to any n-globe

its corresponding n-dimensional branching (resp. merging) area of execution

paths.

We already explained in [13] the link between the simplicial homology

of the cone of h� (resp. h+) with the n-dimensional deadlocks (resp. the

unreachable n-morphisms) for some classes of HDAs.

Indeed the morphisms h� and h+ associate in homology to any oriented

loop of any dimension its corresponding negative or positive corners. We can

immediately see an application of these maps. Looking back to the Swiss Flag

example of Figure 1(c), it is clear that the cokernel of h�1 does not vanish,

because of the deadlock and the unsafe area. A negative corner which yields a

13

93

Gaucher

2−DEADLOCK

(a) Example of 2-deadlock

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

PA PB VB VA

PA

VA

PB

VB

UNSAFE AREA

UNREACHABLE AREAELEMENT OF COKER(H1)

ELEMENT OF COKER(H1)
+

−

(b) Unsafe area and unreachable area in a concur-
rent machine with semaphores

Fig. 12. Applications in computer science

non trivial element in this cokernel is drawn in Figure 12(b). In the same way,

the cokernel of h+1 in the Swiss Flag example still does not vanish, because

of the unreachable state and the unreachable area. A positive corner which

yields a non zero element of this cokernel is represented in Figure 12(b).

In Figure 12(a), execution paths are supposed to be the continuous maps

from [0; 1] to the complement of the depicted obstacle such that the composite
�x Æ
, �y Æ
 and �z Æ
 are non-decreasing maps from [0; 1] to R, where �x,

�y and �z are the projections on the axes. One sees a non-trivial element of
the cokernel of h�2 which detects the presence of the 2-deadlock.

5 Deforming HDA : some speculations and perspectives

Now we would like to speculate about what should be a \good" invariant

of HDA. An !-category seen as a HDA can be deformed in di�erent ways :
by deforming p-morphisms with p � 2 (T2), by concatening or subdividing 1-

morphisms (T1), i.e. execution paths in the corresponding automaton. Table 1

explains the behavior of the objects introduced in this paper with respect to
these deformations. About the \almost" : the deformation of a p-morphism

u for p � 2 corresponds in the globular nerve to a simplicial deformation of

any simplex x such that the image of x contains u ; the same deformation
corresponds to a simplicial deformation of an n-simplex y of, for example, the

negative corner nerve only if the label u belongs to the negative part of y.
In the branching nerve, the positive part of an !-functor from In+1 to C is a

\dead part".

The non-invariance with respect to T1-deformations is also an obstacle to

�nd appropriate invariants for locally partially ordered topological spaces [10].

Consider for instance the HDA of Figure 9(a). By thickening the 1-morphisms
as in Figure 13, one obtains a HDA such that its �rst globular homology group

is an in�nite sum of copies of Z. To understand this fact, let us come back

14

94

Gaucher

Deformation type T2-invariant T1-invariant

Globular nerve yes no

Corner nerves almost no

Globular homology yes no

Corner homologies yes yes

Table 1

Behavior of the constructions w.r.t. deformations of HDA

TIME

Fig. 13. Thick 1-dimensional oriented globe

to Figures 9. The more subdivisions in u there are , the bigger the rank
of the �rst globular homology group is. At the limit with the real line, one

obtains an in�nite number of globular 1-cycles. It is therefore necessary to
make supplemental identi�cations within the nerves in order to get \good"
invariants. Here is now a fundamental fact :

Claim 5.1 Suppose that C is an object of !Cat1 such that its 1-morphisms

are never invertible (or equivalently if x and y are two 1-morphisms, x �0 y is

1-dimensional if the expression makes sense). For n � 0 and x 2 N gl
n (C), let

S(x) := s0ev(x) and T (x) := t0ev(x). Suppose that for another y 2 N gl
n (C),

T (x) = S(y). Let x � y be the map from �n to C[1] de�ned by

(x � y)((�0 : : : �r)) := x((�0 : : : �r)) �0 y((�0 : : : �r)):

Then :

(i) For n � 0, (N gl
n (C) [C0; S; T; �) is a 1-category by considering elements

of C0 as 0-morphisms. In particular x � y is an !-functor for n � 0. In

this 1-category, 1-morphisms are still never invertible and therefore it can

be seen as a small category by adding 1-dimensional identities.

(ii) With the obvious structure of a small category on (C0 � C0; C0; S; T; �)
de�ned by setting S(u; v) := u, T (u; v) := v and (u; v) � (v; w) := (u; w),
then the globular nerve becomes an augmented simplicial object in the

category of small categories.

Intuitively, for n � 0, the 1-category (N gl
n (C) [C0; S; T; �) represents the

temporal structure of the (n + 1)-dimensional paths. Using the canonical

15

95

Gaucher

inclusion of the globular nerve in both corner nerves, both corner nerves can

be endowed with a structure of augmented simplicial object in the category

of 1-category with source and target maps only partially de�ned.

Let
�!
N be a functor from the category of small categories to any good

category whose simplicial objects have satisfactory properties with respect to

the usual structures in algebraic topology (for example the usual category of

simplicial sets up to homotopy). We have a wide degree of freedom for the

choice of this good category. Indeed Baues's book [4] explains that the main

theorems of algebraic topology (as the Hurewicz theorem or some Whitehead

theorems) can be recovered from the axiomatic theory of co�bration categories.

Suppose that any subdivision of a morphism in two morphisms (as for example

the canonical functor from the HDA of Figure 9(a) to that of Figure 9(b) such

that u 7! u1 �0 u2 and being the identity map elsewhere) induces an homotopy

equivalence by
�!
N . Then the composite functor

�!
N ÆN gl would be T2-invariant

because of N gl and T1-invariant because of
�!
N . So far only corner homologies

are invariant by all possible types of deformations of HDA. Street's simplicial

nerve [26] of 1-categories (our 1-categories have no invertible 1-morphisms

and therefore they can be viewed as small category by adding identity 1-
dimensional elements) and the classifying space of small categories (see for

example [22] for further details) satisfy this property. Unfortunately, the total
homology of the bisimplicial set associated to the !-category of Figure 9(a) is
equal to Z in both cases, and not to Z� Z as required by the fact that one

does not want the 1-morphisms of a given !-category to be contracted in the
same homotopy class.

6 Concluding remarks

Throughout this paper, we have presented a new approach of the topology
of HDA based upon the introduction of three new simplicial nerves and two

natural morphisms of simplicial sets for any HDA. It opens the perspective of
deeply relating the geometry of HDA with homological algebra and other usual

tools developed for algebraic topology. The construction has the following

properties :

(i) Every orthogonal (or anti-diagonal) cut of a HDA behaves like a true

topological space.

(ii) There are four fundamental types of cuts : close to branching or merging

areas of execution paths, in the middle of the globes, and all cuts.

(iii) The three �rst types of cuts give rise to three new simplicial sets, and
two morphisms of simplicial sets ; the last one is the direct limit of the
diagram depicted in Figure 11.

There are two types of deformations of HDA (T1 and T2). As shown in
the above table, most of the functors introduced here are T2-invariant but

not T1-invariant. The T1-invariance could be related to �nding a new nerve

16

96

Gaucher

of small categories (with the source and target maps not necessarily de�ned

everywhere).

Getting three T1-invariant and T2-invariant simplicial nerves would enable

us to de�ne the notion of homotopy equivalent HDAs as follows : the maps

f from a HDA X to a HDA Y and g from Y to X would be reciprocal

homotopy equivalences of HDA if and only ifN gl(f) and N gl(g) (resp . N�(f)

and N�(g), N+(f) and N+(g)) were reciprocal homotopy equivalences of

simplicial sets. Similar constructions for locally partially ordered topological

spaces would enable us to make precise the following idea : up to homotopy of

HDA, the category of locally partially ordered topological spaces, the category

of cubical sets satisfying some Kan conditions, and the category of non-1-

contracting !-categories with some additional technical conditions (for the

three simplicial nerves to be Kan) should be equivalent. A similar equivalence

in the framework of usual algebraic topology is proved in [18] between CW-

complexes and weak !-groupoids modulo weak equivalences.

References

[1] Aitchison, I. R., The geometry of oriented cubes (1986), Macquarie Mathematics

Reports 86-0082.

[2] Al-Agl, F. A. A., \Aspects of multiple categories," Ph.D. thesis, University of

Wales, Department of Pure Mathematics, University College of North Wales,

Bangor, Gwynedd LL57 1UT, U.K. (1989).

[3] Al-Agl, F. A. A., R. Brown and R. Steiner, Multiple categories: the equivalence

of a globular and a cubical approach (2000), arxiv:math.CT/0007009.

[4] Baues, H.-J., \Combinatorial foundation of homology and homotopy," Springer-

Verlag, Berlin, 1999, xvi+362 pp.

[5] Brown, R. and P. J. Higgins, The equivalence of 1-groupoids and crossed

complexes, Cahiers Topologie G�eom. Di��erentielle 22 (1981), pp. 371{386.

[6] Brown, R. and P. J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra 21

(1981), pp. 233{260.

[7] Crans, S., Pasting schemes for the monoidal biclosed structure on !cat (1995),

Utrecht University.

[8] Duskin, J., Simplicial methods and the interpretation of \triple" cohomology,

Mem. Amer. Math. Soc. 3 (1975), pp. v+135.

[9] Fajstrup, L., E. Goubault and M. Rau�en, Detecting deadlocks in concurrent

systems in: CONCUR'98: concurrency theory (Nice), Springer, Berlin, 1998 pp.

332{347.

[10] Fajstrup, L., E. Goubault and M. Rau�en, Algebraic topology and concurrency

(June 1999), preprint R-99-2008, Aalborg University.

17

97

Gaucher

[11] Gaucher, P., Combinatorics of branchings in higher dimensional automata

(1999), arxiv:math.CT/9912059.

[12] Gaucher, P., About the globular homology of higher dimensional automata

(2000), arxiv:math.CT/0002216.

[13] Gaucher, P., Homotopy invariants of higher dimensional categories and

concurrency in computer science, to be published in Math. Structures Comput.

Sci. (2000).

[14] Goubault, E., \The Geometry of Concurrency," Ph.D. thesis, �Ecole Normale

Sup�erieure (1995).

[15] Johnson, M., The combinatorics of n-categorical pasting, J. Pure Appl. Algebra

62 (1989), pp. 211{225.

[16] Kamps, K. H. and T. Porter, \Abstract homotopy and simple homotopy

theory," World Scienti�c Publishing Co. Inc., River Edge, NJ, 1997, x+462

pp.

[17] Kapranov, M. M. and V. A. Voevodsky, Combinatorial-geometric aspects of

polycategory theory: pasting schemes and higher Bruhat orders (list of results),

Cahiers Topologie G�eom. Di��erentielle Cat�egoriques 32 (1991), pp. 11{27,

international Category Theory Meeting (Bangor, 1989 and Cambridge, 1990).

[18] Kapranov, M. M. and V. A. Voevodsky, 1-groupoids and homotopy types,

Cahiers Topologie G�eom. Di��erentielle Cat�egoriques 32 (1991), pp. 29{46,

international Category Theory Meeting (Bangor, 1989 and Cambridge, 1990).

[19] MacLane, S., \Categories for the working mathematician," Springer-Verlag,

New York, 1971, ix+262 pp., Graduate Texts in Mathematics, Vol. 5.

[20] May, J. P., \Simplicial objects in algebraic topology," D. Van Nostrand Co.,

Inc., Princeton, N.J.-Toronto, Ont.-London, 1967, vi+161 pp., van Nostrand

Mathematical Studies, No. 11.

[21] Pratt, V., Modeling concurrency with geometry, in: A. Press, editor, Proc. of

the 18th ACM Symposium on Principles of Programming Languages, 1991.

[22] Quillen, D., Higher algebraic K-theory. I (1973), pp. 85{147. Lecture Notes in

Math., Vol. 341.

[23] Rotman, J. J., \An introduction to algebraic topology," Springer-Verlag, New

York, 1988, xiv+433 pp.

[24] Steiner, R., Tensor products of in�nity-categories (1991), University of Glasgow.

[25] Steiner, R., Pasting in multiple categories, Theory Appl. Categ. 4 (1998),

pp. No. 1, 1{36 (electronic).

[26] Street, R., The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987),

pp. 283{335.

[27] Weibel, C. A., \An introduction to homological algebra," Cambridge University

Press, Cambridge, 1994, xiv+450 pp.

18

98

GETCO'00 to appear

Occurrence Counting Analysis
for the �-calculus

Jérôme Feret

Laboratoire d'Informatique de l'École Normale Supérieure

ENS-LIENS, 45, rue d'Ulm, 75230 PARIS cédex 5, FRANCE

Abstract

We propose an abstract interpretation-based analysis for automatically proving

non-trivial properties of mobile systems of processes. We focus on properties relying

on the number of occurrences of processes during computation sequences, such as

mutual exclusion and non-exhaustion of resources.

We design a non-standard semantics for the �-calculus in order to explicitly trace

the origin of channels and to solve e�ciently problems set by �-conversion and non-

deterministic choices. We abstract this semantics into an approximate one. The use

of a relational domain for counting the occurrences of processes allows us to prove

quickly and e�ciently properties such as mutual exclusion and non-exhaustion of

resources. At last, dynamic partitioning allows us to detect some con�gurations by

which no in�nite computation sequences can pass.

1 Introduction

We are interested in automatically proving non-trivial properties of mobile

systems of processes. We focus on properties relying on a good description

of the multiset of processes that occur inside computation sequences, such as

mutual exclusion and non-exhaustion of resources, for instance.

We propose an abstract interpretation-based analysis for the full �-calculus

[19,18]. Since, the �-calculus is a communication-based formalism, no analysis

can be done without a good approximation of the control-�ow. Following

Venet's methodology [23], we introduce a non-standard semantics to explicitly

capture the origin of channels and to describe non-uniform distributions of

processes. Our semantics considers the full �-calculus and is optimized to

deal e�ciently with non-deterministic choices (no useless thread is created).

We use the abstract interpretation framework [8,6,10] to derive an ap-

proximate semantics to analyze both the interaction between processes and

the number of occurrences of these processes. We propose a well adapted

This is a preliminary version. The �nal version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume39.html

99

FERET

domain to detect quickly mutual exclusion and non-exhaustion of resources.

Our approach relies on the use of a relational domain the height of which is

quadratic on the number of distinct counted processes. This relational do-

main helps in calculating properties of interest in a non-relational domain, by

reduction. Complexity problems are solved by using approximated algorithms

for calculating this reduction. Number of occurrences of processes de�nes a

good criterion for partitioning: we use dynamic partitioning [3] to abstract

precisely the trace semantics of mobile systems, which allows us to detect a

set of con�gurations such that no in�nite computation sequence can pass by

a con�guration in this set. Our methodology may very likely be adapted to

other formalisms, such as the mobile ambients [4] for instance.

In Section 3, we de�ne the standard semantics of the �-calculus. We de�ne

our non-standard semantics in Section 4. We design a generic abstract analysis

in Section 5, and instantiate it in Section 6. We show how to use dynamic

partitioning in Section 7.

2 Related work

Counting occurrences and analyzing the control �ow of a system are deeply

related. We cannot count number of occurrences of processes in a system

without a good knowledge of its control �ow, but counting occurrences helps

in getting a more precise knowledge of the control �ow by detecting mutual

exclusion between processes and by providing a good criterion for partitioning.

Our analysis can directly be combined with our previous analysis [14] to infer

a non-uniform description of the interactions between the processes, but can

also be adapted to many other �ow analyses [2,23].

Only a very few analyses for counting occurrences of processes have been

published. [15] proposes an exponential analysis for counting occurrences of

processes inside ambients. [20] uses context-dependent counts for infering a

more accurate description of the internal structure of processes at the expense

of a higher time complexity (an exponential number of processes are distin-

guished). These analyses encounter the same problem: when a process occurs

several times, they cannot decide whether this process is still occuring one or

several times after being computed, so they have to consider the two possible

cases, which leads to both a loss of precision and an exponential explosion.

The use of both a relational domain for globally abstracting sets of multisets

of processes and an approximated reduction allows us to solve this problem

e�ciently. We obtain a very accurate analysis which is polynomial on the

number of distinguished processes.

3 �-calculus

The �-calculus [18,19] is used for describing mobile systems of processes which

communicate channel names via channels. We consider a lazy synchronous

2

100

FERET

version of the polyadic �-calculus, inspired by the lazy asynchronous version

introduced by Turner [21] and the chemical abstract machine [1] in which

communication primitives are very simple, while ensuring the same expres-

sive power. Let Channel be a countable set of channel names, the standard

semantics of the �-calculus, given in Figure 1, relies on the use of both a re-

duction relation to de�ne results of process computations, and a congruence

relation to reveal redexes.

Example 3.1 We model by a mobile system S an ftp protocol for a server

which cannot establish more than three simultaneous connections:

S := (� port)(Allocate | port![] | port![] |port![])

where
Allocate := �port?[](� in)(� out)(� query)

(in![query]

| in?[response].(out ![response] | port![]))

Each message port![] occurring at top level symbolizes an available connec-

tion. When a customer requests an available connection, three channel names

query, in and out are created. The customer sends its query, represented by

the channel query, via the channel in. The server computes this query and

sends it back via the channel out. A new message port![] is then spawn, which

symbolizes that the connection is released. We shall notice that many compu-

tational aspects are abstracted away, since we present only an approximation

of a realistic server. We �nally propose a short computation for S as follows:

S = (� port)

(Allocate | port![] | port![] | port![])

! (� port)(� in1)(� out1)(� query1)

(Allocate | port![] | port![]

| in1![query1]
| in1?[response].(out1![response] | port![]))

! (� port)(� in1)(� out1)(� query1)
(Allocate | port![] | port![] | port![]

| out1![query1]) 2

As illustrated in the above example, the con�guration of a mobile system

is at any stage congruent with a con�guration of the form (� c)(P1 j ::: j Pn),

where c is a sequence of channel names, and P1, ..., Pn are syntactic copies of

sub-processes which have been substituted during communications. Nerver-

theless, standard semantics allows to trace neither the origin of those processes,

nor the origin of the channels they have declared.

4 Non-standard semantics

A non-standard semantics [23] is a re�ned semantics, which explicitly speci-

�es the link between channels and the instances of processes which have de-

clared them. It identi�es any instance of a process by an unambiguous marker

3

101

FERET

P ::= action.P (Action)

| (P j P) (Parallel composition)

| ; (End of a process)

action ::= c![x1; :::; xn] (Message)

| c?[x1; :::; xn] (Input guard)

| �c?[x1; :::; xn] (Replication guard)

| (� x) (Channel creation)

where c, x1, ..., xn, x 2 Channel , n > 0. Input guard, replication

guard and channel creation are the only name binders, i.e in c?[x1; :::; xn]P ,
�d?[y1; :::; yp]Q and (� x)R, occurrences of x1, ..., xn in P , y1, ..., yp in Q and

x in R are considered bound. Usual rules about scoping, substitution and �-

conversion apply. We denote by FN (P) the set of free names of P , i.e names

which are not under the scope of a binder and by BN (P) the set of bound

names of P .

(a) Syntax

(� x)P � (� y)P [x y] if y 62 FN (P) (�-conversion)

P j Q � Q j P (Commutativity)

P j (Q j R) � (P j Q) j R (Associativity)

P j ; � P (End of a process)

(� x)(� y)P � (� y)(� x)P (Swapping)

((� x)P) j Q � (� x)(P j Q) if x 62 FN (Q) (Extrusion)

where x, y 2 Channel

(b) Congruence relation

c![x1; :::; xn]P j c?[y1; :::; yn]Q!P j
�

Q (communication)

c![x1; :::; xn]P j �c?[y1; :::; yn]Q!P j
�

Q j �c?[y1; :::; yn]Q (res. fetching)

P ! Q
(� x)P ! (� x)Q

P 0
� P P ! Q Q � Q0

P 0
! Q0

P ! P 0

P j Q! P 0
j Q

where c, x, x1, ..., xn, y1, ..., yn 2 Channel

and
�

Q = Q[y1 x1; :::; yn xn]

(c) Reduction relation

Fig. 1. The chemical semantics

4

102

FERET

in order to distinguish each instance of a recursive process from all others.

Then, the origin of channel names is easily traced by identifying each chan-

nel name with the marker of the process which has created it. In [14] we

propose a non-standard semantics which considers the full �-calculus without

non-deterministic choices. We rede�ne it in order to take them into account

e�ciently, without adding further reduction rules nor considering useless syn-

tactic components. This allows for an easier analysis by making abstract

domains smaller while giving a good intuition on the potential evolutions of

the analyzed systems. For that purpose, we restrict the set of computations to

those where non-deterministic choices are made as soon as possible. In such

computations, no further communication nor resource fetching is performed

while there are non-deterministic choices at the top level. This assumption

does not change the subset of reachable standard con�gurations which contain

no non-deterministic choice at top level.

Let Lbl be an in�nite set of labels, we denote byM the set of all binary

trees the leaves of which are not labelled (") and the nodes of which are

labelled with a pair (i; j) where both i and j are in Lbl . The tree, having a

node labelled a, a left sibling t1 and a right sibling t2 is denoted by N(a; t1; t2).
We useM as a set of markers and denote by � the set Lbl � Lbl . � is used

in labelling non-standard transitions. We consider a closed mobile system S

in the �-calculus and assume without any loss of generality that two channel

binders of S are never used on the same channel name. We locate syntactic

components of S by marking each sign ? or ! occurring in S with distinct

labels in Lbl . A non-standard con�guration is a set of thread instances, where

a thread instance is a triplet composed with a syntactic component, a marker

and an environment. The syntactic component is a copy of a sub-process of

S, the marker is calculated at the creation of the thread and the environment

speci�es the semantic value of each free name in the syntactic component.

Thread instances are created at the beginning of the system computation and

during execution. In both cases, several threads are spawned, corresponding

to a set of syntactic components, in accordance to which non-deterministic

choices are made. Applying the function Agent, de�ned as follows, to either

S for initial threads, or to the continuation of running processes, gives the set

of all possibilities for the set of spawned syntactic components.

Agent (;) = ffgg
Agent (x!i[x1; :::; xn]P) = ffx!i[x1; :::; xn]Pgg
Agent (y?i[y1; :::; yn]P) = ffy?i[y1; :::; yn]Pgg

Agent (�y?i[y1; :::; yn]P) = ff�y?i[y1; :::; yn]Pgg
Agent (P j Q) = fA [B j A 2 Agent (P); B 2 Agent (Q)g
Agent (P +Q) = Agent (P) [Agent (Q)
Agent ((� x)P) = Agent (P)

The markers of initial threads are ", while the markers of new threads are

calculated recursively from the marker of the threads whose computation has

5

103

FERET

led to their creation:

� when an execution does not involve fetching a resource, the marker of the

computed thread is just passed to the threads in its continuation;

� when a resource is fetched, the markers of the new threads created from

the continuation of the resource are N((i; j); id�; id!), where (i,id�,E�) is the

fetched resource thread and (j,id!,E!) the message sender thread.

Environments map each free channel name of syntactic components to a pair

(a; b) where a is a bound channel name of S, and b is a marker. Intuitively, a

refers to the binder (� a) which has been used in declaring the channel, and b

is the marker of the thread which has declared it. While threads are running,

environments are calculated in order to mimic the standard semantics.

We denote by C the set of all non-standard con�gurations. Our non-

standard semantics is given in Figure 2. The function C0 gives the set of

possible initial con�gurations, while the relation �!2 de�nes non-standard

computation steps. Each non-standard communication steps are labelled with

a pair (i; j) 2 �, where i is the label of the message receiver and j is the label

of the message sender. There is a bisimulation between standard and non-

standard semantics, provided that we restrict the set of standard computations

to those where all non-deterministic choices are always made before communi-

cations and resource fetching. The proof relies on the fact that non-standard

computations cannot yield con�icts between the markers of the threads.

5 Abstraction

The set of all possible non-standard con�gurations a system may take during

a �nite computation sequence is given by its collecting semantics [7] and can

be expressed as the least �xpoint of the following [-complete endomorphism

F on the complete lattice }(�� � C):

F(X) = f(";C) j C 2 C0(S)g [f(u:�;C) j 9(u;C 0) 2 X; C 0 �
�!2 Cg

We use abstract interpretation [8] to design an abstract domain in which a

decidable description of Coll(S) will be computed. Our abstract domain is

the reduced product of two domains: the �rst one describes the control-�ow

of S; the second one counts occurrences of its processes. Since the �-calculus

is a communication-based formalism, any further analysis requires a good

approximation of the communication topology. Several analyses [2,22,23,14]

have already been proposed. For the sake of simplicity, we use a naive uniform

analysis to abstract the control-�ow of systems, but it could be enriched by

using the non-uniform analysis proposed in [14]. We introduce the set BN (S)2

as the set of all possible interactions between agents of the systemS; intuitively

the pair (x; y) denotes that the channel name x may be bound to a channel

created by the binder (� y). Our �rst abstract domain is then the complete

6

104

FERET

C0(S) = ff(p; ";Ep) j p 2 Cont)g jCont 2 Agent (S)g

where Ep =

(
FN (p) ! BN (S)�M

x 7! (x; ")

(a) Set of initial non-standard con�gurations

If C is a non-standard con�guration,

if there are �; � in C,

with �=(y?i[y1; :::; yn]P; id?; E?) and �=(x!j[x1; :::; xn]Q; id!; E!)
such that E?(y) = E!(x),
if ContP is in Agent(P) and ContQ is in Agent (Q),

then C
(i;j)
�!2C

0

where C 0 = (C n f�; �g) [(f?(ContP)) [(f!(ContQ)),

f? : Ag 7!

0
BBBB@Ag; id?;

8>>>><
>>>>:

z 7! E?(z) if z 2 FN (Ag) \ FN (y?i[y1; :::; yn]P)

yk 7! E!(xk) if yk 2 FN (Ag)

z 7! (z; id?) if

(
z 2 FN (Ag) \ BN (y?i[y1; :::; yn]P)

z 62 fykjk 2 [j1;nj]g

1
CCCCA

and f! : Ag 7!

Ag; id!;

(
z 7! E!(z) if z 2 FN (Ag) \ FN (x!j[x1; :::; xn]Q)

z 7! (z; id!) if z 2 FN (Ag) \ BN (x!j[x1; :::; xn]Q)

!

(b) Non-standard communication

If C is a non-standard con�guration,

if there are �; � in C,

with �=(�y?i[y1; :::; yn]P; id?; E?) and � = (x!j[x1; :::; xn]Q; id!; E!)
such that E?(y) = E!(x),
if ContP is in Agent(P) and ContQ is in Agent (Q),

then C
(i;j)
�!2C

0

where C 0 = (C n f�g) [(f?(ContP)) [(f!(ContQ)),
id� = N((i; j); id?; id!),

f? : Ag 7!

0
BBBB@Ag; id�;

8>>>><
>>>>:

z 7! E?(z) if z 2 FN (Ag) \ FN (y?i[y1; :::; yn]P)

yk 7! E!(xk) if yk 2 FN (Ag)

z 7! (z; id�) if

(
z 2 FN (Ag) \ BN (y?i[y1; :::; yn]P)

z 62 fykjk 2 [j1;nj]g

1
CCCCA

and f! : Ag 7!

Ag; id!;

(
z 7! E!(z) if z 2 FN (Ag) \ FN (x!j[x1; :::; xn]Q)

z 7! (z; id!) if z 2 FN (Ag) \ BN (x!j[x1; :::; xn]Q)

!

(c) Non-standard resource fetching

Fig. 2. Non-standard semantics

7

105

FERET

lattice }(BN (S)2) related to our concrete domain via a Galois connection

(�com,
com) de�ned as follows:

�com(A) =

�
(x; y)

���� 9(u;C) 2 A; 9(P; id1; E) 2 C;9id2 2 M

such that x 2 FN (P) and E(x) = (y; id2)

�

com(A
]) =

�
(u;C)

���� 8(P; id1; E) 2 C; 8x 2 FN (P); 8y 2 BN (S)
[9id2; E(x) = (y; id2)] =) (x; y)2A]

�

The second domain counts both the number of occurrences of processes

and the number of performed transitions inside computations. We denote by

� the set of all sub-processes of S. Let V be the set � + �. We consider

}(NV), the complete lattice of the sets of natural number functions de�ned on

V. }(NV) is related to our concrete domain via a Galois connection (�NV;
NV),
de�ned as follows:

�NV(A) =

8><
>:
8><
>:
V ! N

v 2 � 7! Card(f(P; id;E) 2 C j v = Pg)

� 2 � 7! juj�

(u;C) 2 A

9>=
>;

NV(A
]) =

�
(u;C)

����9f 2 A];8� 2 �; juj� = f(�);
8v 2 �; Card(f(P; id;E) 2 C j v = Pg) = f(v)

�

The complete lattice, (NV ;vNV
;tNV

;?NV
;uNV

;>NV
), left as a parameter of

our abstraction, is related to }(NV) by a Galois connection (�NV
;
NV

) which
satis�es the condition:
NV

(?NV
) = ;. We require three abstract primitives

which satisfy the following soundness hypotheses:

� required : }(�)�NV !NV

NV
(v]) \ ff j f(p) > 1; 8p 2 Ag �
NV

(required(A; v]))

� trans : NV �N
V ! NV

fx 7! f(x) + g(x) j g 2
NV
(v])g �
NV

(trans(v]; f))

� � : NV ! NV

N
V
(v]) �
N

V
(�(v]))

Roughly speaking, � is a reduction, it maps each abstract value to another

one which represents the same set but in which properties are easier to estab-

lish. Particularly, it will be used for proving that an abstract value represents

the empty set. At each abstract computation step, required is used to extract

from the abstract value the representation of con�gurations which simultane-

ously contain all the processes required by the computation step and trans is

used to calculate the representation of the result of the computation step by

taking into account newly spawned and destroyed processes.

We de�ne our abstract domain (C];v;t;?;u;>) as the complete lattice

(}(BN (S)2)�NV), wherev; t; ?; u and > are de�ned pairwise. C] is related

to }(�� � C) by a Galois connection (�;
), where �(A) = �com(A); [�NV
�

�NV](A)) and
(A;B) =
com(A) \ [
NV �
NV
](B). Our abstract semantics is

8

106

FERET

de�ned by a transition relation on our abstract domain C], given in Figure

3. Soundness hypotheses on abstract primitives ensure the soundness of our

abstract transition:

Proposition 5.1 If (u;C) 2
(C]) and C
�
�!2 C, then there exists C

]
such

that C] �
 C

]
and (u:�;C) 2
(C

]
).

As a consequence, the abstract counterpart F] of F, de�ned by

F
](C]) = (�(f(";C) j C 2 C0(S)g)) t C

]
t

�G
fC] j 9� 2 �; C] �

 C]g

�

satis�es the soundness condition F(C) �
(F](�(C))). Using Kleene's theo-

rem, we obtain the soundness of our analysis:

Theorem 5.2 lfp;F �
S
n2N

[
 � F]
n
](?)

Following [6,7], we compute a sound approximation of our abstract seman-

tics by using a widening operator r : C] � C] ! C] which satis�es the

following properties:

� 8C
]
1; C

]
2 2 C

]; C
]
1 t C

]
2 v C

]
1rC

]
2

� (C]
n) 2

�
C]
�N
, the sequence (Cr

n) de�ned as

(
Cr
0 = C

]
0

Cr
n+1 = Cr

n rC
]
n+1

is ultimately stationary.

The abstract iteration of F] is then de�ned as follows:8><
>:
F
r
0 = ?

F
r
n+1 =

(
F
r
n if F](Frn) v Frn
F
r
n rF

](Frn) else

Theorem 5.3 Abstract iteration[10,11] Abstract iteration (Frn) is ulti-

mately stationary and its limit Fr satis�es Coll(S) �
(�(Fr)).

6 Detecting exhaustion of resources and mutual exclu-

sion

We only need to de�ne an abstract domain to approximate set of tuples of

natural numbers, in which abstract primitives can be precisely and e�ciently

implemented. We reject the use of usual numerical domains: we are unlikely to

design a precise primitive required in non-relational domain, without using an

exponential partitioning; we think that the domain of linear inequalities among

9

107

FERET

Let (c]; v]) 2 C], u 2 BN (S), y?i[y1; :::; yn]P and x!j[x1; :::; xn]Q two sub-

processes, Cont? 2 Agent(P), Cont! 2 Agent (Q), such that:

� (y; u) 2 c]

� (x; u) 2 c]

� V
�
= �(required(fy?i[y1; :::; yn]P ;x!j[x1; :::; xn]Qg; v])) 6= ?NV

then (c]; v])
(i;j)
 (c0]; v0]), where

� c0
] = c] [f(yk; t) j k 2 [j1;nj]; t 2 BN (S) and (xk; t) 2 c]g

[f(x; x) j 9p 2 Cont?; x 2 (BN (P) \ FN (p)) n fyk j k 2 [j1;nj]gg
[f(x; x) j 9q 2 Cont!; x 2 BN (Q) \ FN (q)g

� v0
] = trans(V; �)

with

8x 2 �; �(x) =

8><
>:
�1 if x 2 fy?i[y1; :::; yn]P; x!j[x1; :::; xn]Qg n (cont? [cont!)

+1 if x 2 (cont? [cont!) n fy?i[y1; :::; yn]P; x!j[x1; :::; xn]Qg

0 otherwise

8� 2 �; �(�) =

(
+1 if � = (i; j)

0 otherwise

(a) Abstract communication

Let (c]; v]) 2 C], u 2 BN (S), �y?i[y1; :::; yn]P and x!j[x1; :::; xn]Q two sub-

processes, Cont� 2 Agent(P), Cont! 2 Agent (Q), such that:

� (y; u) 2 c]

� (x; u) 2 c]

� V
�
= �(required(f�y?i[y1; :::; yn]P ;x!j[x1; :::; xn]Qg; v])) 6= ?NV

then (c]; v])
(i;j)
 (c0]; v0]), where

� c0
] = c] [f(yk; t) j k 2 [j1;nj]; t 2 BN (S) and (xk; t) 2 c]g

[f(x; x) j 9p 2 Cont�; x 2 (BN (P) \ FN (p)) n fyk j k 2 [j1;nj]gg
[f(x; x) j 9q 2 Cont!; x 2 BN (Q) \ FN (q)g

� v0
] = trans(V; �)

with 8x 2 �; �(x) =

8><
>:
�1 if x 2 fx!j[x1; :::; xn]Qg n cont�

+1 if x 2 (cont� [cont!) n fx!j[x1; :::; xn]Qg

0 otherwise

and 8� 2 �; �(�) =

(
+1 if � = (i; j)

0 otherwise

(b) Abstract resource fetching

Fig. 3. Abstract transition relation

10

108

FERET

a �nite set of variables [12] is too expensive because we deal with too many

variables. We propose the use of a product of two domains. The �rst domain is

based on the use of the interval lattice and is used for expressing properties of

interest. This domain can represent all the information we need to express non-

exhaustion of resources, but it cannot calculate them precisely without being

re�ned. The second domain is based on the use of linear equalities between

variables [17] and is used for expressing more complex properties, such as

mutual exclusion for instance, which allows for more precise calculations in the

�rst domain. The power of our analysis directly follows from an unexpensive

algorithm, straightforwardly adapted from Linear Constraint Programming,

to calculate an approximated reduction between these two domains.

The complete lattice (IV ;vIV ;tIV ;?IV ;uIV ;>IV) is the functional domain

of the natural numbers intervals, where lattice operations are de�ned point-

wise. A family (rn
IV
) of widening operators on IV is de�ned as follows:

[frn
IV
g](x) = f(x)rng(x)

where

(
[ja; bj] rn [jc; dj] = [jminfa; cg;1j[if d > maxfb;ng

I rn J = I [J otherwise

The complete lattice (KV ;vKV ;[KV ;>KV ;\KV ;?KV) of linear equality sys-
tems between the �nite set of variables V is described with its lattice opera-

tions in [17]. This domain uses Gauss reduction in order to normalize systems.

Moreover, since there are no in�nite increasing chain [17], we can choose [KV
as a widening operator. Our numerical domain is then the product IV �KV .

Generic primitives are expressed as follows:

� required(P; (i; s)) = (i0; s) where

(
i0(x) = i(x) \ [j1;+1j[8x 2 P

i0(x) = i(x) 8x 2 � n P

� trans

��
i;

�P
v2V

akvv = bk; 8k 2 [j1;mj]

�
; f

�
= (i0; s0)

where

8<
:
i0(x) = fk + f(x)j8k 2 i(x)g \ [j0;+1j[

s0 =

�P
v2V

akv(v � f(v)) = bk; 8k 2 [j1;mj]

We now present a reduction [9] � between IV and KV . A reduction consists

in taking into account linear constraints in order to narrow the domain of

interval variables. For instance, the system of constraints fx + y = 12; x 2
[j3; 15j]; y 2 [j4; 19j] can be reduced to the system fx+y = 12; x 2 [j3; 8j]; y 2
[j4; 9j]. Linear constraints are likely to be combined, via Gauss reduction, in

order to give new linear constraints which will allow for further reductions.

Therefore, generating the whole set of such combinations is likely to require

an exponential time of execution.

We propose a two-step-polynomial algorithm for solving this problem. The

�rst step aims at narrowing in�nite intervals into �nite ones. It uses Gauss

11

109

FERET

reduction to obtain a positive representation of systems of linear equalities,

that is to say an equivalent system of equations such that if a variable occurs

with a strictly negative coe�cient in an equation, then this variable occurs

with a negative coe�cient in each equation. Positive representations contain

only a few unde�ned forms, which allows to narrow in�nite intervals into

�nite ones, with a worst-case in O(n3). The second step is inspired by [5]: it

consists in obtaining a triangular system of constraints of the form a1:x1 +
:::+an:xn 2 I where I is an interval. This system is then used for propagating

unidirectionnally intervals from non-diagonal to diagonal variables. The result

is a good reduction with a worst-case in O(n4).

We now propose some examples of mobile systems analyzed with our proto-

type. For the sake of brevity, we have selected for each example a subset of sig-

ni�cant constraints captured by our analysis; full results are available in [13].

In these constraints, the number of occurrences of a process c?i[x1; :::; xn]P or

c!i[x1; :::; xn]P is denoted by](i), while](i; j) denotes the number of times a

communication reduction labelled with (i; j) is used.

Example 6.1 Our �rst example is the ftp protocol proposed in Example 3.1:

S := (� port)(Allocate | port!5[] | port!6[] |port!7[])

where
Allocate := �port?0[](� in)(� out)(� query)

(in!1[query]
| in?2[response].(out !3[response] | port!4[]))8>>>>>><

>>>>>>:

](0) = 1;](i) 2 [j0; 3j]; 8i 2 f1; 2; 4g

](3) 2 [j0;1j[

](i) 2 [j0; 1j]; 8i 2 [j5; 6; 7j]

](1) +](4) +](5) +](6) +](7) = 3

](3) = �(2; 1)

Our analysis has proved that only three physical channels are required to

simulate this protocol. 2

Example 6.2 We now propose an example of mutual exclusion:

S :=

0
BB@
(� a)(� b)(� c)(� d)

(�a?0[x](x!1[a] + (c?2[]d!3[]))

|�b?4[x](x!5[b] + (c!6[]))

|a!7[b])

1
CCA

8><
>:
](i) 2 [j0; 1j]; 8i 2 f1; 2; 5; 6; 7g

](3) = 0

](1) +](2) +](5) +](6) +](7) = 1

Our analysis has proved that the sub-process (d!3[]) is unreachable by detecting

12

110

FERET

a mutual exclusion between the sub-processes (c?2[]d!3[]) and (c!6[]). 2

7 Detecting deadlocks

We use both our abstraction of the collecting semantics and dynamic parti-

tioning tools [3] to solve the problem of detecting sets of non-standard con�g-

urations such that no in�nite sequence of computations can pass by them. For

that purpose, we analyze the trace semantics of the mobile system S, which is

de�ned as a transition system (G; A � G�G) where G = Coll(S) is the set of

states and A = f(u;C); �; (u:�;C 0) j (u;C) 2 Coll(S); C
�
�!2 C

0g is the set

of transitions. This is also the least �xpoint of an [-complete endomorphism

F on the complete lattice (T ;@T ;[T ;?T ;\T ;>T) of transition systems on

the alphabet �, the set of states of which is a subset of the set (���C). Lat-
tice operations are the usual set operations, while F((G;A)) is the transition
system (G0; A0) de�ned as follows:

(
G0 = f(";C) j C 2 C0(S)g [f(u:�;C) j 9(u;C 0) 2 G; C 0 �

�!2 Cg

A0 = f((u;C); �; (u:�;C 0)) j (u;C) 2 G; C
�
�!2 C

0g

We abstract the trace semantics to compute a �nite approximation in a

�nite time. We approximate in�nite transition systems by �nitely partitioning

their set of states. An abstract transition system is then de�ned as a transition

system on a �nite set of states, and a function mapping each state to the set

of concrete states it represents. Let P be a �nite subset of the lattice }(NV),
such that ; 62 P,

S
P = N

V and 8a; a0 2 P; a 6= a0 =) a \ a0 = ;. We

introduce our abstract domain T] as the set of all pairs ((G]; A]); f) such that

(G]; A]) is a transition system on the alphabet �, where G] is the quotient of

P by an equivalence relation and f is a function mapping each element of G]

to an abstract element of C]. T] is partially pre-ordered by the relation vT]

where ((P=�1
; A

]
1); f1) vT] ((P=�2

; A
]
2); f2) if and only:

8><
>:
8q]; q0

]
2 P; q] �1 q

0] =) q] �2 q
0]

8q] 2 P; f1([q
]]�1

) v f2([q
]]�2

)

8q]; q0
]
2 P; 8� 2 �; ([q]]�1

; �; [q0]]�1
) 2 A1

] =) ([q]]�2
; �; [q0]]�2

) 2 A2
]

Since there is no canonical choice for the equivalence relation, we are unlikely

to de�ne an abstraction function. So, we use a relaxed version of abstract

interpretation [10], which only relies on the use of a concretization function

13

111

FERET

T which relates the abstract domain to the concrete one, de�ned as follows:

T ((P=�; A
]); f) = (G;A)

where

8>>>>>>><
>>>>>>>:

G =
S
q]2P

[(
(f([q]]�))) \ (
NV(q
]))]

A =

8>>>><
>>>>:
(q; �; q0)

����������
9q]; q0

]
2 P;

8>>>><
>>>>:

q 2 (
(f([q]]�))) \ (
NV(q
]))

q0 2 (
(f([q0]]�))) \ (
NV(q
0]))

([q]]�; �; [q0
]]�) 2 A]

q
�
�!2 q

0

9>>>>=
>>>>;

We give in Figure 4 the de�nition of both an abstract counterpart F] of F

and an accelerator of convergence G] . Intuitively, G] merges the states of the

abstract transition system, as soon as we are unable to prove that no in�nite

derivation can pass by a state they represent. G
] uses a generic primitive

relation, denoted by �nite 2 }(T]�P), such that for all t] = ((P=�; A
]); f) in

T], for all q]0 in P, if (t
]; q

]
0) in �nite then all derivations in transition system

T (t]) passing by a con�guration c0 in
(f([q]0]�))\
NV(q0
]) are �nite. F] and

G
] satisfy the soundness property: for all t] in T]; [F �
T](t]) vT [
T � F] �

G
]](t]). Furthermore, the sequence [F] �G]]n((P; ;);;) is ultimately stationary

and, thanks to Theorem 4.1.1.0.2 in [6], its limit l] satis�es lfp?T F v
T (l]).

Theorem 7.1 Let ((P=�; A); f) = l]. For all q in P, for all C in
(f([q]]�))\
(
NV(q

])), there is no in�nite computation sequence in the system S which
passes by the state C if (l]; q) 2 �nite.

Our last task is to instantiate P and the primitive �nite. A good choice

for P consists in partitioning the set NV in accordance to the values of the

variables of V which have a bounded behavior. For that purpose, we consider

v � V and a family (Mx) in Nv , such that 8f 2 �NV(Coll(S)), f(x) 2 [j0;Mxj].
We take P= N

V
=� where � is de�ned by: g � h if and only if (8x 2 v; g(x) 2

[j0;Mxj] and g(x) = h(x)) or (9x1; x2 2 v; g(x1) > 1 and h(x2) > 1). Both v

and (Mx) are given by the analysis presented in Section 5. The primitive �nite
is given by the following algorithm. Let (t]; f) 2 T] and q

]
0 2 P, we introduce

Available � � de�ned by � 2 Available if and only if there is a derivation in

the transition system t] stemming from q
]
0 and containing a transition labelled

with �. The following soundness proposition is valid:

Proposition 7.2 8� 2 �, if there is a derivation in the transition system

T (t]; f) which stems from a con�guration in
(f([q]0]�))\(
NV(q

]
0)) and which

contains a transition labelled with �, then � 2 Available.

We denote by 7!2 the subset of �!2 which only contains the computation

steps labelled with an elements of Available. Following [16], we try to build a

well-founded set in which we will interpret (C; 7!2) via a morphism. Success in

14

112

FERET

F
]
P ((P=�; A); f) = ((P=�; A

0); f 0) where8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

f 0(x) = f(x)rh(x)

h(x) =
F
8>>>><
>>>>:
(c]; v] uNV

�NV
(u0))

����������

u0 2 x; v] uNV
�NV

(u0) 6= ?NV
;8><

>:
(c]; v]) = �(f(";C) j C 2 C0(S)g)

or 9u 2 P; 9� 2 � such that

f([u]�) u (>com; �NV
(u))

�
 (c]; v])

9>>>>=
>>>>;

A0 = A [

8><
>:([u]�; �; [u0]�)

�������
9(c]; v]) 2 C];

f([u]�) u (>com; �NV
(u))

�
 (c]; v])

v] uNV
�NV

(u0) 6= ?NV

9>=
>;

(a) counterpart function

G
]
P ((P=�; A); f) = ((P=�0; A

0); f 0) where8>><
>>:
a �0 b() a � b or f(((P=�; A); f); a); (((P=�; A); f); b)g \ �nite = ;

f 0([a]�0) =
F

x2[a]
�
0

f([x]�)

A0 = f([a0]�0; �; [a]�0) j ([a0]�; �; [a]�) 2 Ag

(b) quotient function

Fig. 4. Abstract trace semantics

doing this will prove that any derivation in the system
T (t]; f) which passes

by a con�guration in
(f([q]0]�)) \ (
NV(q
]
0)) is �nite.

We introduce the relation y between the subprocesses of S such that

8p; q 2 �, p y q if and only if at least one of the following conditions is

satis�ed:

� p has the particular form x!j[]Q, q 2
S

Agent (Q), and there exists i 2 Lbl
such that (i; j) 2 Available;

� p has the particular form x?i[]P , q 2
S

Agent (P), and there exists j 2 Lbl

such that (i; j) 2 Available;

� p has the particular form x!j[]Q, and there exists a process of the particular

form �y?i[]P such that q 2
S

Agent (P) and (i; j) 2 Available.

We de�ne the relation �nite by: ((t]; f); q]0) 2 �nite() (�;y) is acyclic.
Soundness hypotheses are satis�ed since if (�;y) is acyclic, then (�;y+) is a
well founded order and the multiset extension [16] of y+ gives a well founded

order y+
Mul

on N�. The function � : (C; 7!2) ! (N�;y+
Mul

) de�ned by

�(C)(p) = Card(f(P; id; E) 2 C j P = pg) is then a morphism.

Example 7.3 We propose to analyze the following mobile system:

S := (� push)(� pop)

((�push?1[](pop!2[] j push!3[])) j � pop?4[] j � push?5[] j push!6[])

15

113

FERET

This system describes the behavior of a stack. The height of the stack is

symbolized by the number of processes pop!2[] that occurs at the top level.

Push (resp. pop) operations are symbolized by communication with the re-

source �push?1[] (resp. �pop?4[]). Finally, a communication with the resource

�push?5[] symbolizes that further push operations are no longer allowed.

Occurrence counting analysis gives the following properties:

8>>><
>>>:

�(1) = 1; �(2) 2 [j0;+1j[; �(3) 2 [j0; 1j];

�(4) = 1; �(5) = 1; �(6) 2 [j0; 1j];

�(1; 6) 2 [j0; 1j]; �(5; 3) 2 [j0; 1j]; �(5; 6) 2 [j0; 1j];

�(1; 3) 2 [j0;1j[; �(4; 2) 2 [j0;1j[:

We denote by v � V the set of variables fpush!3[];push!6[]; (1; 6); (5; 3); (5; 6)g
and we take P= N

V
=� where g � h if and only if (8x 2 v; g(x) 2 [j0; 1j] and

g(x) = h(x)) or (9x1; x2 2 v; g(x1) > 1 and h(x2) > 1).

Our deadlock analysis then gives the abstract transition system (t]; f)
where t] is given as follows:

q0/.-,()*+

push(1;3)

��

pop(4;2)

22

push(1;6)

rr q1/.-,()*+��������
disable-push(5;6)

//

q2/.-,()*+��������

disable-push(5;3)

$$J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

pop(4;2)

22

where

q0 =

8<
:f

������
f(push!6[]) + f(push!3[]) = 1
f(push!3[]) = f((1; 6)) 2 [j0; 1j]
f(x) = 0; 8x 2 f(5; 3); (5; 6)g

9=
;

q1 =

�
f

���� f((5; 6)) = 1
f(x) = 0; 8x 2 v n f(5; 6)g

�

q2 =

�
f

���� f((1; 6)) = f((5; 3)) = 1
f(x) = 0; 8x 2 v n f(1; 6); (5; 3)g

�

By applying our primitive relation �nite, we prove that no in�nite com-

putation sequence can pass by a con�guration in
NV(q1) [
NV(q2), which
means that executions of our system are bound to terminate as soon as a

communication (5; 3) or a communication (5; 6) is performed. 2

8 Conclusion

We have designed a powerful framework to prove properties on the potential

behavior of a mobile system. Our analysis allows to detect, in polynomial time

on the number of sub-processes of the mobile system, mutual exclusion and

non-exhaustion of resources. Our analysis has succeeded in analyzing very

quickly a few nested concrete systems, featuring unbounded communication

topologies, with the expected level of accuracy. Deadlock detection is a much

more di�cult problem and our proposed approach is likely to require exponen-

tial time. However it gives interesting results on unbounded systems, which

are out of reach of model checking methods. We are likely to re�ne our initial

partitioning in order to get a quicker analysis.

This framework is likely to be enriched by using [14] in order to detect non-

16

114

FERET

uniform con�dentiality properties between processes, and to allow the analysis

of mobile systems in hostile context. This will lead to a very powerfull modular

analysis for mobile systems. To scale up, for large nested mobile systems, the

analysis must be more approximate to ensure short execution time.

Acknowledgement

We deeply thank anonymous referees for their signi�cant comments on an

early version. We wish also thank Patrick and Radhia Cousot, Arnaud Venet,

Jorge Pinto and Antoine Miné, for their comments and discussions.

References

[1] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96:217�248, 1992.

[2] C. Bodei, P. Degano, F. Nielson, and H.R Nielson. Control �ow analysis for the

�-calculus. In Proceedings of CONCUR'98, Lecture Notes in Computer Science.

Springer-Verlag, 1998.

[3] F. Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of

Functional Programming, 2(4), 1992.

[4] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software

Science and Computational Structures, volume 1378 of Lecture Notes in

Computer Science, pages 140�155. Springer, 1998.

[5] C.K. Chiu and J.H.M. Lee. Interval linear constraint solving using the

preconditioned interval gaus-seidel method. In Proceedings of the Twelfth

International Conference on Logic Programming, Logic Programming, pages 17�

32. The MIT Press, 1995.

[6] P. Cousot. Méthodes itératives de construction et d'approximation de points

�xes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.

PhD thesis, Université Scienti�que et Médicale de Grenoble, 1978.

[7] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick

and N.D. Jones, editors, Program Flow Analysis: Theory and Applications,

chapter 10, pages 303�342. Prentice-Hall, Inc., Englewood Cli�s, 1981.

[8] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for

static analysis of programs by construction or approximation of �xpoints. In

Conference Record of the Fourth ACM Symposium on Principles of Programming

Languages, pages 238�252, Los Angeles, California, U.S.A., 1977.

[9] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.

In Proceedings of the Sixth Conference on Principles of Programming Languages

POPL'79. ACM Press, 1979.

17

115

FERET

[10] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of logic

and computation, 2(4):511�547, August 1992.

[11] P. Cousot and R. Cousot. Comparing the Galois connection and widening-

narrowing approaches to abstract interpretation. In Programming Language

Implementation and Logic Programming, Proceedings of the Fourth International

Symposium, PLILP'92, volume 631 of Lecture Notes in Computer Science, pages

269�295. Springer-Verlag, 1992.

[12] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Proceedings of the Fifth Conference on Principles of

Programming Languages. ACM Press, 1978.

[13] J. Feret. Conception de �-sa : un analyseur statique générique pour le �-calcul.

Mémoire de dea, SPP, september 1999. Electronically available at http://www.

di.ens.fr/~feret/dea/dea.ps.

[14] J. Feret. Con�dentiality analysis for mobiles systems. In Seventh International

Static Analysis Symposium (SAS'00), volume 1824 of LNCS. Springer-Verlag,

2000.

[15] R. R. Hansen, J. G. Jensen, F. Nielson, and H. R. Nielson. Abstract

interpretation of mobile ambients. In Proc. SAS'99, number 1694 in Lecture

Notes in Computer Science, pages 134�148. Springer-Verlag, 1999.

[16] Jean-Pierre Jouannaud. Rewrite proofs and computations. In Helmut

Schwichtenberg, editor, Proof and Computation, volume 139 of Computer and

Systems Sciences, pages 173�218. Springer-Verlag, 1995.

[17] M. Karr. A�ne relationships among variables of a program. Acta Informatica,

pages 133�151, 1976.

[18] R. Milner. The polyadic �-calculus: a tutorial. In Proceedings of the

International Summer School on Logic and Algebra of Speci�cation. Springer

Verlag, 1991.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.

Information and Computation, 100:1�77, 1992.

[20] H. Riis Nielson and F. Nielson. Shape analysis for mobile ambients. In

Proc. POPL'00, pages 142�154. ACM Press, 2000.

[21] D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD

thesis, Edinburgh University, 1995.

[22] A. Venet. Abstract interpretation of the �-calculus. In Proc. of the Fifth

LOMAPS Workshop on Analysis and Veri�cation of High-Level Concurrent

Languages, volume 1192 of Lecture Notes in Computer Science, pages 51�75.

Springer-Verlag, 1996.

[23] A. Venet. Automatic determination of communication topologies in mobile

systems. In Proceedings of the Fifth International Static Analysis Symposium

SAS'98, volume 1503 of Lecture Notes in Computer Science, pages 152�167.

Springer-Verlag, 1998.

18

116

Recent BRICS Notes Series Publications

NS-00-3 Patrick Cousot, Eric Goubault, Jeremy Gunawardena, Mau-
rice Herlihy, Martin Raussen, and Vladimiro Sassone, edi-
tors. Preliminary Proceedings of the Workshop on Geometry
and Topology in Concurrency Theory, GETCO ’00,(State Col-
lege, USA, August 21, 2000), August 2000. vi+116 pp.

NS-00-2 Luca Aceto and Bj̈orn Victor, editors. Preliminary Proceedings
of the 7th International Workshop on Expressiveness in Concur-
rency, EXPRESS ’00,(State College, USA, August 21, 2000),
August 2000. vi+130 pp.

NS-00-1 Bernd G̈artner. Randomization and Abstraction — Useful Tools
for Optimization. February 2000. 106 pp.

NS-99-3 Peter D. Mosses and David A. Watt, editors.Proceedings of the
Second International Workshop on Action Semantics, AS ’99,
(Amsterdam, The Netherlands, March 21, 1999), May 1999.
iv+172 pp.

NS-99-2 Hans Ḧuttel, Josva Kleist, Uwe Nestmann, and Ant́onio
Ravara, editors. Proceedings of the Workshop on Semantics of
Objects As Processes, SOAP ’99,(Lisbon, Portugal, June 15,
1999), May 1999. iv+64 pp.

NS-99-1 Olivier Danvy, editor. ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation,
PEPM ’99, (San Antonio, Texas, USA, January 22–23, 1999),
January 1999.

NS-98-8 Olivier Danvy and Peter Dybjer, editors. Proceedings of
the 1998 APPSEM Workshop on Normalization by Evaluation,
NBE ’98 Proceedings,(Gothenburg, Sweden, May 8–9, 1998),
December 1998.

NS-98-7 John Power.2-Categories. August 1998. 18 pp.

NS-98-6 Carsten Butz, Ulrich Kohlenbach, Søren Riis, and Glynn
Winskel, editors. Abstracts of the Workshop on Proof Theory
and Complexity, PTAC ’98,(Aarhus, Denmark, August 3–7,
1998), July 1998. vi+16 pp.

NS-98-5 Hans Ḧuttel and Uwe Nestmann, editors. Proceedings of the
Workshop on Semantics of Objects as Processes, SOAP ’98,(Aal-
borg, Denmark, July 18, 1998), June 1998. 50 pp.

