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Chapter 1

Overview

The Java String Analyzer, called JSA, is a tool for performing static analysis of
Java programs. Its purpose is to predict the possible values of string expressions
in an attempt to validate the correctness of a program. The analysis is based
on the technique described by Christensen, Møller and Schwartzbach [1]. The
JSA home page at

http://www.brics.dk/JSA/

provides a more detailed reference of the classes than found in this manual,
including Javadoc documentation. This manual describes version 2.1 of JSA. It
is intended both for developers of tools that build on top of JSA and for those
extending JSA with new functionality.

As input, the tool takes the .class files to analyze, which we call the ap-
plication classes. In the application classes, one or more string expressions are
selected as hotspots. For each hotspot, the tool produces a finite-state automa-
ton whose language contains all possible Unicode strings that the hotspot might
evaluate to at runtime. This is a sound approximation: the output automaton
may accept more strings than may actually occur, but not the opposite.
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1.1 Phases

The JSA tool consists of several phases, each transforming the program into a
new form. The phases are separated into two blocks: The front-end and the
back-end. They are all outlined here:

?

?

?

?

?

?

.class files

Jimple

(Chapter 3)

Intermediate (Chapter 2)

(Chapter 5)

Flow graph (Chapter 4)

Grammar

MLFA

Finite-state automaton

Front-end



Back-end


The front-end is the focus of this manual; the back-end is best described in

the research paper [1] and the Javadoc. The first phase which converts .class
files to Jimple code is implemented by the Soot framework. For help with
Soot, see to the Soot survivor’s guide [2]. Automata are represented using the
dk.brics.automaton package [3].
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1.2 Interaction with External Code

The analyzed program may interact with classes not part of the application
classes – we call such classes non-application classes. We consider these three
types of interactions between application and non-application code:

• Application code calls a non-application method.

• Non-application code calls an application method.

• Non-application code assigns to an application field.

All three can be moderated by client-defined resolvers and external visibility,
which provide information about the boundaries between non-application and
application code. Only externally visible methods and fields are assumed to
be usable from non-application code. Calls to non-application methods can be
handled precisely by a resolver, as it may specify possible return values, and
which mutable arguments might be modified externally. Chapter 6 discusses
how to implement resolvers and external visibility strategies.

By default, all public methods and fields are externally visible. In the rare
event that protected methods and fields are used outside the application, another
external visibility must be used.

1.3 Customization

Other languages than Java can be analyzed if one can translate the other lan-
guage to either the intermediate format or the flow graph format. The analysis
can then continue from there on; neither format is connected to the Java lan-
guage or its class library (however new automata operations may be necessary).

To hand-tailor the analysis to one’s own application or framework, resolvers
and an external visibility strategy can be implemented as Java classes and used
with the analysis. One can also choose to stop the analysis after the grammar
has been created and output that, instead of extracting a finite-state automaton
for each hotspot.

1.4 Unsoundness

Despite the goal of analysis soundness, unsoundness may occur if an application
class is subclassed by a non-application class interacting with the application.
This includes application interfaces implemented by non-application classes and
dynamic classes such as those created by java.lang.reflect.Proxy.

The analysis is designed to work with the whole program, in which case such
external subclassing should not occur.
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1.5 Using JSA

There are two ways to analyze an application using JSA:

• Write a program specifying which expressions to use as hotspots and their
expected languages. One can also provide custom resolvers and external
visibility. This is described in Chapter 6

• Use the runtime system. In the program being analyzed one must in-
sert method calls and annotations to mark which expressions are to be
analyzed. This is described in Chapter 7.
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Chapter 2

Intermediate Format
package dk.brics.string.intermediate;

The intermediate format is an abstract program representation, implemented
in the package dk.brics.string.intermediate. A program in this format is
called an intermediate program. It represents the program being analyzed, but
with uninteresting details removed. It has no textual representation, and only
exists as objects in memory.

Unlike Jimple and Java bytecode, the intermediate form is abstract and not
intended for concrete execution.

The central classes are Application, Method, and Statement. These are
arranged in a tree-like fashion: An application contains methods, and a method
contains statements. Statements are arranged in a control flow graph. Creat-
ing a method requires an already existing application object, and creating a
statement requires an existing method object. This allows for strong invariant
enforcement and unique key-indexing.

Below is an example Java method, followed a corresponding intermediate
method.

public String foo(int x) {
StringBuffer b = new StringBuffer("I ate ");
if (x > 0) {

b.append(x);
} else {

b.append("no");
}
b.append(" apples today");
return b.toString();

}

The corresponding intermediate program is a graph:
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?

?

MethodHead(x)

StringInit(s1, ”I ate ”)

StringBufferInit(b, s1)

�
��	

@
@@R

StringInit(s2, ”<int>”)

?

StringBufferAppend(b, s2)

StringInit(s3, ”no”)

?

StringBufferAppend(b, s3)

@
@@R

�
��	

StringInit(s4, ” apples today”)

?

StringBufferAppend(b, s4)

?

StringFromStringBuffer(s5, b)

?

Return(s5)

Above, the symbol ”<int>” denotes the finite-state automaton accepting inte-
ger strings such as ”17” or ”-3”, and the other strings represent an automaton
accepting only that string. Illustrating the program as a control flow graph
consumes a good amount of space, so from now on we will instead write inter-
mediate programs in pseudecode.
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2.1 Intermediate Statements

Below is a complete list of all the statement types in intermediate programs:

ArrayAddAll
ArrayAssignment
ArrayCorrupt
ArrayFromArray
ArrayNew
ArrayStatement
ArrayWriteArray
ArrayWriteElement
AssertAliases
AssertBinaryOp
AssertUnaryOp
BasicBinaryOp
BasicUnaryOp
Call

Catch
ExceptionalReturn
FieldAssignment
FieldReference
Hotspot
MethodHead
Nop
ObjectAssignment
ObjectCorrupt
PrimitiveAssignment
PrimitiveFromArray
PrimitiveInit
Return
StringAssignment

StringBufferAppend
StringBufferAppendChar
StringBufferAssignment
StringBufferBinaryOp
StringBufferCorrupt
StringBufferInit
StringBufferPrepend
StringBufferUnaryOp
StringConcat
StringFromArray
StringFromStringBuffer
StringInit

Most statements have one or two references to the intermediate variables that
they read from and/or write to. StringInit, for example, has one intermedi-
ate variable and a finite-state automaton. It intuitively assigns an arbitrary
string from the automaton’s language to the variable. StringFromArray has
two intermediate variables, from and to, and assigns an arbitrary string from
the string array from to the string variable to. Hotspot takes one intermedi-
ate string variable, and does nothing except mark the presence of a hotspot.
MethodHead is always the first statement of a method, and Call and Return
work as method calls normally do in an imperative programming language. See
the Javadoc for more detailed descriptions of the statements.

2.2 Mutual References

There are several two-way references in the intermediate form. For example,
a statement lists both its predecessors and successors. It is guaranteed that
each successor of a statement S will list S as one of its predecessors. These
properties are unbreakable in that careless use of the API cannot break them.
More examples of guaranteed mutual references are:

• method.getApplication() always returns the application that contains
method.

• statement.getMethod() always returns the method that contains statement.

• method.getCallSites() always returns all Call statements that call
method.

• method.getReturns() always returns all Return statements in method.
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• field.getReferences() always returns all FieldReference statements
referring to field.

If extensions are made to JSA, unbreakable invariants like these are preferred
whenever possible.

2.3 Keys

Each variable, statement, and method is assigned a unique key. Keys are non-
negative integers, dispensed in sequential order starting with number 0. Keys
are unique only within their own family of objects; for example, two statements
cannot have the same key, but a statement and a method might.

Keys are distributed by the Application object. Methods and variables
receive their key when constructed, while a statement first receives it when it
gets added to a method.

The keys provide the perfect means for efficient bitmap and bitset imple-
mentations, though such techniques are not currently implemented. Keys also
provide a consistent way for these classes to implement the Comparable inter-
face, which orders them by their key.

2.4 Variable Types

An intermediate program is statically typed, as each variable has a type denoting
which type of objects it might contain. The intermediate types are named after
the Java-type counterparts but can more generally be thought of as immutable
strings, mutable strings, collections of strings, and characters (the primitive
type).

Object

ooooooooooo

OOOOOOOOOOO

VVVVVVVVVVVVVVVVVVVVV

String StringBuffer Array Primitive

None

PPPPPPPPPPPP

ooooooooooo

gggggggggggggggggggggg

Null

Figure 2.1: Lattice of intermediate variable types.

The type None indicates a type of object we are not interested in, and Null
indicates a variable that can only hold the value null. StringBuffer is used to
model the Java types java.util.StringBuffer and java.util.StringBuilder.
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Array models arrays of any type and dimension and java.util.Collection.
Note that variables of type StringBuffer and Array are references to such
objects, so there may be aliasing between mutable variables. We therefore
sometimes talk about a mutable object, since more than one variable may refer
to it.

When Java assertions are enabled, the constructors for each intermediate
statement will assert that the variables involved are not of incompatible types.
For example, attempting to create a StringBufferAppend statement with an
Array variable will fail.

Primitive types are modeled as strings of length one. Booleans are also
treated as primitive types, where their only possible values are the Unicode
values 0 and 1.

Variable types are currently only used to assist the translation to and from
the intermediate format; thus the precision would be the same if every variable
were assigned the type Object before converting it to a flow graph. However,
they are exceptionally good at validating the correctness of our translation.

2.5 Variables and Fields

There exist two types of variables: local variables and field variables. A lo-
cal variable has scope only within one method, while a field variable can be
accessed from any method. Field variables may only be directly modified by
the statements FieldReference and FieldAssignment. To modify a mutable
field variable, it must be moved to a local variable, and the local variable should
then be modified. For example (here using an imaginary syntax for intermediate
code):

// Wrong! Fields cannot be modified directly.
s = "foo"
field.append(s)

// Correct! Fields may be modified through aliases.
s = "foo"
b = field
b.append(s)

Like with variable types, when assertions are enabled, the statement construc-
tors will enforce this requirement.

2.6 Parameters and Parameter Aliases

Each method has two sets of variables representing its parameters: the param-
eters and the parameter aliases. They are initially identical, but if a parameter
is reassigned, only the alias variant will get a new value. The reason has to do
with the alias analysis discussed in Section 5.5.3.
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2.7 Corruption

A mutable object may become corrupt, after which reading its value yields a
completely arbitrary string. Corrupt objects may spontaneously change value,
and modifications made to a corrupt object have no effect. Corruption exists to
accommodate for the unknown modifications made by non-application classes
and client-defined collection types (see Section 3.5). If a mutable object escapes
into unknown code, it is corrupted unless one of the resolvers says it should not
be (see Chapter 6 about resolvers).

2.8 Exceptional Flow

The statements Catch and ExceptionalReturn exist to handle exceptional con-
trol flow in an intermediate program. Each intermediate method has one excep-
tional return statement. A control flow edge ending in either type of statement
represents exceptional flow, and is therefore called an exceptional edge. There
is also an implicit exceptional edge from an ExceptionalReturn statement to
every Call statement calling its method.

At a statement with an outgoing exceptional edge, an exception may be
thrown after the statement completes – or in case of a Call statement, it may
be thrown during the call. If an exception can be thrown before the statement
has any effect, the exceptional edge is placed at the statement’s predecessors.
When an exception is thrown, control flow may continue at any of the Catch
statements reachable by following exceptional edges, including the implicit ones.

Note that Catch statements represent an exception that was successfully
caught, so they should not have outgoing exceptional edges to accommodate
for uncaught exceptions. If the thrown exception might not be caught by a
particular exception handler, an additional edge should be added from the failing
statement to the ExceptionalReturn or similar enclosing exception handler.

2.9 Assert Statements

The intermediate program supports path sensitivity through assert statements.
Each assertion refers to a target statement, and asserts that some condition

was true after the target statement was last executed. Their condition therefore
refers to some past state of the program. We say that an assertion is valid if
its condition also holds when the assertion itself is reached. Assertions without
that property are called invalid, though they are allowed to exist. The concept
of valid and invalid assertions should not be confused with unsoundness, as the
analysis will simply ignore invalid assertions. The reason invalid assertions exist
is because we do not always know in advance whether an assertion is valid, thus
we allow them to be created and then detected later in the analysis.
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To illustrate, here is a piece of pseudo code pointing out the location where
a valid assertion might be created:

b = x.contains(y);
if (b) {

assert x.contains(y);
}

In the following code, however, that assertion would be invalid:

b = x.contains(y);
x = "foo";
if (b) {

assert x.contains(y); (invalid)

}

In both cases, the assignment to b is the target statement of the assertion,
because we only really know that the condition was true at that time in the
program. The invalid assertion is allowed to exist in the intermediate program,
but it will be detected by the analysis described in Section 5.7. The motivation
for this design is to simplify creation of assertions, described in Section 3.4.
Note that an assertion’s reference to a target statement is only used to detect
its validity - after the validity test the reference is no longer used.

There are three types of assert statements. In addition to its target statement
each assert statement has the parameters described below.

• AssertAlias(Variable a, Variable b, boolean x)
Asserts that a and b are aliases if and only if x is true.

• AssertUnaryOp(Variable a, UnaryOp op)
Asserts something about a, specified by the given unary operation. Ex-
amples of such unary operations are AssertEmpty and AssertHasLength.

• AssertBinaryOp(Variable a, Variable b, BinaryOp op)
Asserts something about a specified by the given binary operation. Exam-
ples of binary operations are AssertEquals, AssertContains and Assert-
ContainedIn. These assertion usually come in pairs, so one can assert
something about b as well.

The last two types are called operation assertions (because they use string op-
erations). String operations operate on finite-state automaton during the final
stages of the analysis. The operation used in an operation assertion should pro-
duce a subset of the input variable’s language, or the assertion might actually
decrease the precision of the analysis.

It is always sound to ignore an assertion or remove it from an intermediate
program.
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2.10 Semantics

We of course never execute an intermediate program, but having some semantics
for it is useful in order to assert correctness of a translation to or from it.

An intermediate program generally does not have sufficient information to
execute deterministically. Examples of nondeterminism are choosing which suc-
cessor statement to execute next, or which string to read from an array. Given
all the necessary nondeterministic choices, we can actually think of an interme-
diate program as being executable. To argue whether an intermediate program
is a correct model for a given program, we use the following somewhat short
and informal semantics:

An intermediate program I models another program P if for every possible
execution of P there exists a set of nondeterministic choices so that I has a cor-
responding execution. Two executions are corresponding if every string hotspot
evaluates to the same string in the two executions, and no assert statements
fail in the intermediate program’s execution. An assertion is said to fail if it is
reached but its condition did not actually hold at the time the target statement
was executed. The correspondence between hotspots in the input program and
the intermediate program is not specified here.
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Chapter 3

Jimple→Intermediate
package dk.brics.string.java;

This phase translates a Jimple program to an intermediate program. The root
of the translation takes place in Jimple2Interface, though many tasks are
delegated to other classes to keep the code structured, as seen in the next
section.

3.1 Translation of Methods Bodies

Figure 3.1 displays how the translation of method bodies are delegated into
successively smaller tasks. All method calls are declared in an interface without
the Impl suffix to make the dependencies very explicit. In the following, we
outline the tasks performed by each of the main classes.

Jimple2Intermediate
↓

MethodTranslatorImpl → AssertionCreatorImpl
↓

StatementTranslatorFacadeImpl
↓

StatementTranslatorImpl
↓

CompositeMethodCallTranslator
→ BuiltInMethodCallTranslator
→ ResolverMethodCallTranslator
→ ApplicationMethodCallTranslator

Figure 3.1: Delegation of tasks in the translation of a method body.

Assertion creation is described in Section 3.4. The other tasks will be de-
scribed below.
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3.1.1 Method Translator

The MethodTranslatorImpl strategy runs a control flow analysis of the Jimple
method, considering both normal and exceptional flow. A Catch statement is
created for each catch block (finally blocks do not exist in bytecode). Each
statement is translated into an isolated control flow graph with unique head and
tail statements. These subgraphs are then connected by heads and tails using
the information from the normal control flow, and exceptional edges are added
to all relevant Catch statements and the ExceptionalReturn statement. The
graph is finally placed after the MethodHead statement to complete the method’s
control flow graph.

Assertions are created after all statements in a method’s body have been
translated to isolated graphs but before they are connected. The method trans-
lator searches for if and switch in the method and requests its Assertion-
Creator instance to create assertions for each such statement it finds. The asser-
tion creator returns an isolated graph with assert statements (possibly empty)
which the method translator must connect with the remaining statements.

This class also performs the nullness analysis described in Section 3.3.

3.1.2 Statement Translator Facade

StatementTranslatorFacadeImpl is a layer between the method translator and
the statement translator. Translating a statement requires a lot of high-level
information, such as which intermediate variable corresponds to a given Jimple
variable. The facade must make all such information easily available to the
statement translator to minimize the amount of code and complexity of that
class. These methods are declared in the IntermediateFactory interface, also
implemented by the facade.

The class also acts as a facade towards the method translator. One Jimple
statement may be translated into several intermediate statements, and this class
arranges them into a subgraph and returns the heads and tails to the method
translator.

3.1.3 Statement Translator

As the name suggests, StatementTranslatorImpl translates a Jimple state-
ment into intermediate statements. The result of such a translation is en-
tirely defined by the side-effects imposed by the method calls it makes to the
IntermediateFactory object it receives as parameter. The motivation for this
design is to simplify this otherwise obese class.

The class implements a huge visitor pattern to handle all Jimple statements
and expressions. Each visitor method for an expression creates zero or more
statements and returns a variable holding the result of the expression. The
visitor methods also receive as argument the Jimple ValueBox containing the
expression, because a hotspot expression must remember which Jimple expres-
sion it originated from.
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3.1.4 Method Call Translator

The method call translator, CompositeMethodCallTranslator, is the only strat-
egy further decomposed into smaller classes. The class BuiltInMethodCall-
Translator handles well-known method calls such as StringBuffer.append
and creates statements modeling them very precisely. ResolverMethodCall-
Translator asks the client’s resolvers to provide a precise modeling of other
methods. Last, ApplicationMethodCallTranslator creates a Call statement
if the called method is in the application being analyzed. The precision of the
entire analysis depends largely on BuiltInMethodCallTranslator.

If more than one translator could translate a given method call, the one
with highest precedence is chosen (see the Javadoc for details). If none of the
translators can provide a precise translation, then StatementTranslatorImpl
will react conservatively by corrupting every variable involved.

3.2 The Wrapper Method

In Jimple2Intermediate, a special intermediate method named <wrapper>
is created. This method calls every externally visible method with corrupt
arguments, and assigns every externally visible field to a corrupt value. Before
this, it also sets every String-type field to the string "null" (explained in
Section 3.3).

3.3 Nullness Analysis

When predicting the value of an expression like ("x" + i), it is useful to know
whether i can be null or not. If i has type Integer, for example, it is not
guaranteed to produce an integer string if it could be null.

This analysis is provided by Soot’s NullnessAnalysis class and is performed
by the method translator. The results of the nullness analysis is passed to the
statement translator facade, which makes the results available to the statement
translator through the IntermediateFactory interface.

The built-in method call translator exploits the information. If
String.valueOf is invoked with an argument that might be null, the con-
trol flow is split in two. One branch produces the "null" string, and the other
models the toString method of the argument.

Soot’s nullness analysis, however, is too imprecise for our needs. It does not
realize that certain methods like StringBuffer.toString() never return null,
which tends to have a heavy impact on precision. To endure this, we never treat
String variables to have the value null, but rather the string-value "null".
This does introduce other imprecisions, but those are less critical.
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3.4 Assertion Creation

The assertion creator uses a reaching definitions analysis provided by Soot to an-
alyze the consequences of a given condition being true. As an example, consider
the branch below:

if b = 0 then goto L

In this case we want to examine under which circumstances b might be 0 (the
same as false). For each statement S that might have defined b, a separate
branch of assertions is created. Suppose now that one of the possible definitions
of b is (written in pseudo Jimple):

b = s1.equals(s2)

At this point, the following two assertions are created, both with the above
statement as the target statement:

AssertBinaryOp(s1, s2, AssertEquals)
AssertBinaryOp(s2, s1, AssertEquals)

Suppose now that the program fragment that was analyzed looked like this:

b = s1.equals(s2)
s1 = "foo"
if b = 0 then goto L

Oops! It would appear that s1 and s2 may not actually be equal after the
branch. The assertions we generated are invalid. This motivates the design
we described back in Section 2.9 - we do not have to worry about our asser-
tions being invalid. They will be removed for us later (see Section 5.7). This
significantly simplifies the job of the assertion creator.

The above example put aside, the algorithm that creates assertions works
by recursive application of these two functions, which return nothing but create
assertions as side-effects:

void assertBoolean(Expr e, boolean expected)
void assertInteger(Expr e, int expected, Relation rel)

assertBoolean creates assertions that will hold when the specified expres-
sion evaluates to the expected boolean parameter.

A Relation denotes one of the six relations: =, 6=, <,≤, >,≥. assertInteger
creates assertions that hold when the expression’s result relates to the expected
integer according to rel. For example, if rel is <, then it asserts that the ex-
pression evaluates to something strictly less than the expected parameter.

Here is how assertBoolean reacts to different types of expressions, written
in pseudo-code:
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• Local variable v:

split control flow here
for each assignment v = y that may have defined v

start new control flow branch
call assertBoolean(y, expected)

join every branch created above

• Binary and expression, a & b:

if expected == true
call assertBoolean(a, true)
call assertBoolean(b, true)

else
split control flow here
start new control flow branch
call assertBoolean(a, false)
start new control flow branch
call assertBoolean(b, false)
join the two branches

• Binary or expression, a | b:

if expected == false
call assertBoolean(a, false)
call assertBoolean(b, false)

else
split control flow here
start new control flow branch
call assertBoolean(a, true)
start new control flow branch
call assertBoolean(b, true)
join the two branches

• Boolean comparison b == x, where x is constant:

call assertBoolean(b, expected == (x == 1))

• Integer comparison, i == x, i ≤ x, etc, where x is constant:

if expected == true
call assertInteger(i, relation, x)

else
call assertInteger(i, negate(relation), x)
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• Method invocation b.M(a0, a1, ...)

if M is String.contains
create AssertBinaryOp(b, a0, new AssertContains())
create AssertBinaryOp(a0, b, new AssertContainedIn())

else if M is String.equals and a0 is a string
...

<long list of similar if statements>

This should hopefully show the general idea of the algorithm. assertInteger
works in a similar fashion. To avoid an infinite recursion loop the recursion
stops if a cycle is detected.

3.5 Collections and Arrays

Various complications must be addressed to correctly model arrays and collec-
tions of strings. Arrays may be covariant, so an array declared as Object[] may
be a string array, and many methods such as clone() and toArray() return
Object[] even though we may know the result is an array of strings. Collections
are even worse, because generic arguments are invisible after compilation. For
example, we cannot distinguish List<String> from List<Integer>. Addition-
ally, clients may define their own collection types that violate the behaviour we
might expect from a collection.

Both types are modeled as Array variables in intermediate code. By default,
we assume an array or collection only contains strings. If an element that might
not be a String is inserted then the entire array or collection gets corrupted.
In this way, even if a collection was declared as List<Object> we can model it
precisely if only strings were inserted in it. Note that inserting a StringBuffer
in an array/collection corrupts both the array/collection and the string buffer.

To defend against client-defined collections we use a list of trusted collections.
Invoking the constructor of an untrusted collection corrupts the collection being
created. The trusted collections are ArrayList, LinkedList, Vector, HashSet,
LinkedHashSet, and TreeSet. Methods like Collections.unmodifiableList
and Arrays.asList are modeled as simple identity methods (returns their ar-
gument), and many methods like Collections.sort are modeled as nop oper-
ations, since we ignore the ordering of elements.

Because newly constructed arrays contain null in every entry, we insert
"null" in the array whenever an array is allocated. Note that not all arrays
have to contain null, such as an array returned by Collection.toArray().
Only those allocated in client code are forced to contain null.
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We also model iterators (java.util.Iterator). The surprisingly simple
way of doing this is to treat them as Array variables that are aliases of the col-
lection they belong to. In fact, iterator() and listIterator() are modeled as
returning the collection they are called on. Then a method like ListIterator.add
is no different from Collection.add, and Iterator.next() only has to return
a random element from the collection. In case concurrent modification does not
throw an exception at runtime, the iterators also reflect changes made to their
collection while iterating. Modeling iterators means the analysis has reasonable
precision in for statements like:

for (String s : list) {
// do something

}

There is room for further improvement in this area. The operations that
remove strings from an array or collection are currently not modeled very well.
Examples of such methods are Collection.clear and Arrays.fill. Extending
the intermediate language with an ArrayClear statement would be the best
way to support this. No assertions are generated for collection methods like
Collection.contains, and collections of characters are not modeled. Maps
are currently not modeled at all.
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Chapter 4

Flow Graph Format
package dk.brics.string.flow;

The flow graph contains various types of nodes connected with directed edges,
where a node represents an expression and an edge represents possible flow of
data. Nodes can have zero or more use points, which are places where it accepts
incoming edges. A concatenation node, for example, has two use points, for the
left- and right-hand side, respectively.

Figure 4.1: Example of a small flow graph. Possible values at the rightmost
node are foobar and foobaz.

More complicated string operations are modeled using UnaryNode and
BinaryNode objects with a StringOperation object. The back-end uses these
objects to model their effect on finite-state automata.

The five types of nodes are:

AssignmentNode
BinaryNode

ConcatenationNode
InitializationNode

UnaryNode

For a description of the flow graph’s semantics we refer to the paper [1].

22



Chapter 5

Intermediate→Flow Graph
package dk.brics.string.intermediate.operations;

The translation from an intermediate program to a flow graph requires the
following analyses of the intermediate program, performed in the order listed:

1. field usage analysis

2. liveness analysis

3. detect invalid alias assertions

4. alias analysis

5. reaching definitions analysis

6. detect invalid operation assertions

5.1 Nop Statement Removal

Nop statements are convenient statements that do nothing when executed. Most
Nop statements are removed before the intermediate program is converted to a
flow graph, but in some circumstances a Nop statement will have to remain. This
occurs when a Nop statement is the target statement of an assertion, and the
Nop has multiple predecessors. If a Nop has only one predecessor, the assertion
referring to it will have its target statement changed to the predecessor before
the Nop is removed. A Nop that is not targeted will always be removed.

5.2 Field Usage Analysis

The field usage analysis analysis determines for each method which fields may
be read from or assigned to as a result of invoking the method. If a method
contains a reference or assignment to the field F , it is marked as using the field
F . If a method M1 contains a call to a method M2 and M2 uses the field F ,
then M1 also uses the field F .
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Note that a mutable field F may still be affected by an invocation to a
method that does not use F if one its arguments is an alias for F . This is not
an issue, however, since the call statement will redefine the value of its mutable
arguments, and as such, the new value of the field will be defined there.

This analysis is only used to improve performance of the alias analysis.

5.3 Liveness Analysis

A variable is live at a program point if its current value might be read at a later
point. The liveness analysis determines for each intermediate statement which
variables are live before and after executing the statement.

Like the field usage analysis, the liveness analysis is only used to improve
performance in the following alias analysis.

5.4 Detecting Invalid Alias Assertions

Recall from Section 2.9 that an invalid assertion is an assert statement whose
condition might not be true when the assert statement itself is reached. Invalid
alias assertions must be detected before the alias analysis, and the alias analysis
is required by the reaching definitions analysis, which in turn is required to
detect invalid operation assertions. For this reason, the two types of assertions
must tested for validity at different times.

An alias assertion between variables a and b is invalid if some assignment
to a or b may reach the assertion, but not its target statement. This analysis
therefore performs a restricted type of reaching definitions analysis to detect
such assertions.

Note that this is quite different from the following reaching definitions anal-
ysis, since side-effects are not considered relevant here. A statement like
b.append(x) can be ignored because it does not change aliasing, while the other
analysis will find it to be a definition of b.

5.5 Alias Analysis

Two variables are called aliases if they refer to the same object. We additionally
use the term useful aliases for variables referring to the same mutable object.

In our analysis, it is important to know which variables might be affected
by a given string operation. Knowing which variables are aliases provides all
the information required for this. Aliasing between immutable objects is of
no interest, however, so we do not analyze their aliasing. Primitives have no
aliasing so they are ignored as well.

The alias analysis is a simple, combined may/must alias analysis that deter-
mines for each program point the aliasing status between each pair of variables.
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Aliasing status is a lattice represented by the AliasStatus enumeration:

MAYBE

qqqqqqqqqq

OOOOOOOOOOO

NOT DEFINITELY

BOTTOM

MMMMMMMMMM

ooooooooooo

The classes relevant for the alias analysis are AliasAnalysis, AliasInfo,
AliasTable and AliasStatus. AliasAnalysis contains an AliasInfo ob-
ject for each statement in the program, and each AliasInfo contains one
AliasTable and a set of corrupt variables. The AliasAnalysis class searches
for a fixed-point using the WorkList class and is responsible for interpreting
each statement as an appropriate operation on the corresponding AliasInfo
object.

Only live variables and used fields (as determined by the preliminary field
usage and liveness analyses) are considered in the alias analysis.

5.5.1 Alias Table

Storing variable-pair-based aliasing information between a set of n variables
corresponds to filling out an n × n matrix. For example, for a set of variables
{a, b, c}, where a and b are aliases, the table storing definite aliasing could look
like this:

a b c
a • •
b • •
c •

Observe now two important properties of any such aliasing table:

• The table is symmetric: If a is an alias for b, then b is also an alias for a.

• The diagonal is trivial: A variable is obviously an alias for itself.

Therefore, we only explicitly store the information required to reconstruct the
entire table (an × marks a cell not stored in memory):

a b c
a × × ×
b • × ×
c ×

An additional optimization takes advantage of variables types. Suppose now
that a has type Object, b has type StringBuffer, and c has type Array. The
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variables b and c can never be aliases, so it suffices to store an even smaller
fraction of the table:

a b c
a × × ×
b • × ×
c × ×

Note that the table is in fact not filled with boolean cells as illustrated.
Instead, each cells holds one of the four values represented by the AliasStatus
enumeration.

5.5.2 Interprocedural Alias Flow

Aliasing information must be carefully propagated across method calls. If a
method is called with two arguments that are aliases, the alias analysis of the
body must this take into account. This aspect of the analysis is entirely han-
dled in AliasAnalysis where it provides special treatment of Call and Return
statements.

At a Call statement to method M , for each pair of arguments, their aliasing
status is transferred to the corresponding pair of parameters in M ’s MethodHead.
The aliasing status between arguments and fields are also transferred.

Likewise, Return statements transfer aliasing status between the return
value, the arguments, and the used fields, as well as the corrupted status of
the arguments (more on this in Section 5.5.3).

Figure 5.1: Interprocedural alias flow.

Figure 5.1 illustrates how interprocedural flow is handled. The dots represent
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the AliasInfo objects between statements. An arrow from A to B indicates
that aliasing information from A is used to update B. Aliasing from before the
call statement is used to update the aliasing before the method head, and alias
information from before the return statement and before the call statement is
required to update the aliasing after the call statement.

The program in Figure 5.1 also demonstrates one of the nasty complica-
tions that arise in interprocedural aliasing. Observe that the x variable will
be corrupt after the method call. When the analysis encounters the Return
statement in Bar, it observes that the second parameter b is corrupt, and will
therefore corrupt every alias of the second argument y at the call-site. However,
y is not live after the call statement! Requesting its aliasing information there
would be meaningless. It is crucial that it requests y’s aliases from before the
call-statement. x is indeed an alias for y before the call-statement (and both
variables are live), so x will become corrupted after the call statement as it
rightfully should.

When assertions are enabled, AliasTable intentionally throws an exception
if requested aliasing status for non-live local variables or non-used field variables.
This assertion is particularly good at detecting incorrect handling of programs
like the one above.

5.5.3 Parameter Aliases

A method call must additionally determine which arguments were corrupted by
the call. For example, consider this example intermediate program, written in
pseudo code:

foo(x) {
x = new StringBuffer;
corrupt x;
return;

}
bar() {

a = new StringBuffer;
call foo(a);
// is ’a’ now corrupt?

}

As the comment suggests, we want to know whether the argument is corrupted
by the method call. In this case, however, the parameter x is reassigned before
it is corrupted, so the original argument was not corrupted.

To handle this correctly, the parameter variables are always considered live,
so at the return statement we can determine which arguments were corrupted.
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5.6 Reaching Definitions

For every statement s and every local variable v being used by s, we want to
know what statements could have assigned v its current value. This information
is necessary to construct the edges in the flow graph. The UsesVisitor and
DefinesVisitor classes provide the set of variables used and defined by a given
statement. Here, the DefinesVisitor uses the results from the alias analysis
to include aliases for modified variables.

The class ReachingDefinitions, which performs the analysis, does not use a
fixed-point search. Each defined variable is being propagated along all successor
paths until not live anymore or until killed by a strong definition.

5.7 Detecting Invalid Operation Assertions

An operation assertion is invalid if for any variable involved it has a reaching
definition that is not also a reaching definition for its target statement. With
the reaching definitions analysis already performed all there is to do is to test
this for every operation assertion.

5.8 Flow Graph Creation

When the reaching definitions are found, the nodes of the flow graph are all
created and then the edges are created last. Each statement produces exactly
one node for each local variable it defines. These nodes are connected with
edges according to the reaching definitions found earlier. Put simply, if there
is a reaching definition from A to B, we create an edge from A’s node to B’s
node.

Field variables are handled differently. Each field has one node, with one use
point. Every statement that defines a field variable puts an edge from its own
node to the field’s node, and every statement that uses a field likewise adds an
edge from the field’s node to its own. This means only weak update is possible
on fields, but the analysis is sound even for multithreaded applications.

Invalid operation assertions produce an assignment node instead of a UnaryNode
or a BinaryNode. Corrupt variables always produce an InitializationNode
with the any string language.

The classes handling this are FlowGraphNodeCreator and FlowGraphEdge-
Creator.

5.8.1 Interprocedural Flow

A method call may modify the values of its mutable arguments, so not only
the method’s return value is interesting. For this reason, a Return statement
defines all its method’s mutable parameters, so a node is created for each one. A
Call statement defines all its mutable arguments (and their aliases), and adds
edges from the Return statement’s nodes to the Call statement’s nodes.
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5.8.2 Exceptional Flow

The statements Catch, ExceptionalReturn, and Call require special attention.
If a method modifies a mutable argument and then throws an exception before it
completes all its modifications, the definitions from the called method’s Return
statement are not valid. For example, consider this pseudo code:

foo(StringBuffer b) {
b.append("X");
<maybe throw an exception here>
b.append("Y");

}
bar() {

b = new StringBuffer;
try {

foo(b);
} catch {

b.append("Z")
}
<hotspot: What is ’b’?>

}

The Return statement in foo will define b as definitely having XY appended,
but it might instead have only X appended if an exception was thrown. Like
the Return statement, the ExceptionalReturn statement defines every mutable
parameter, so a Catch statement can add edges from them. The Catch state-
ment in bar therefore observes that it has a Call statement as predecessor, and
weakly defines b to take the value from foo’s ExceptionalReturn statement.

The Catch statement only defines mutable arguments to Call statements –
modifications made directly in the try block are accounted for by the reaching
definitions analysis, which does not distinguish normal and exceptional edges.
This is why mutable arguments are only weakly defined by Catch; so they do
not kill the definitions made directly in the try block.
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Chapter 6

Running the Analysis
from Java
package dk.brics.string;

The class stitching together all the phases is StringAnalysis in the
dk.brics.string package. To use the class, one must prepare it using its
static methods, and then instantiate it. The constructor will perform the whole
analysis, and the results can then be queried using the resulting instance’s non-
static methods. This design prohibits that multiple applications are analyzed at
once, which is unfortunate, but inevitable due to the way the underlying Soot
framework works. An overview of the static methods are given here:

• void addResolver(Resolver r)
Uses the specified resolver in the upcoming analysis (in addition to those
already added).

• SootClass loadClass(String name)
Loads the class with the specified name as an application class. The
name must be given as a fully qualified classname, and the class must
exist on Soot’s classpath. Soot’s classpath equals Java’s active classpath
by default but can be modified with Soot’s Scene class. Returns Soot’s
representation of the class.

• int addDirectory(String name)
Loads all classes found in the specified directory or jar file as application
classes. If a directory is given, it must refer to root package. The directory
or jar file is added to Soot’s classpath before the classes are loaded. It
returns the number of classes loaded.

• void reset()
Removes all resolvers and application classes, so another application can
be analyzed.

• List<ValueBox> getExps(String sig, int argnum)
Returns a list of expressions occurring as argument to the specified method,
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where argnum specifies which argument to get. This is useful for selecting
hotspots in the application. Refer to the Javadoc for a description of sig’s
syntax.

The constructor takes a collection of expressions to use a hotspots and optional
external visibility strategy. When the analysis is complete, the automaton for
a given hotspot can get acquired using the getAutomaton(ValueBox) method,
where the ValueBox is one of the hotspot expressions.

6.1 Resolvers

Whenever a call to a non-application method is encountered, the analysis uses
its resolvers to determine the effects of the call. A resolver may specify what
is returned by the call and which of its mutable arguments might be modified
by non-application code. Resolvers can also specify the possible values of fields
accessed on non-application classes.

The dk.brics.string.external.Resolver interface declares two methods:
resolveMethod and resolveField. Either method may return null to specify
that the resolver knows nothing about the specified method or field, or it may
return an instance of MethodResolution or FieldResolution if it does know
something. The Javadoc contains the specifics of how to use these classes.

The analysis can use more than one resolver, and they are queried in the
order they were added. The first resolver to give a non-null answer deter-
mines the resolution to use. If no resolver can resolve a particular method call
or field reference (as is often the case), the analysis uses a sound worst-case
approximation.

Clients can implement their own resolvers to increase the precision of the
analysis, but the analysis only remains sound as long as the resolvers used
provide sound answers. It is always sound for a resolver to return null.

6.2 External Visibility

It is possible that non-application code calls an application method or modifies
an application field. The analysis accommodates for this using an external
visibility strategy, which specifies which method and fields are visible to non-
application code.

The dk.brics.string.external.ExternalVisibility interface declares
two methods: isExternallyVisibleMethod and isExternallyVisibleField.
Each returns a boolean denoting whether non-application code can access the
method or field. Unlike resolvers, the analysis requires exactly one external
visibility strategy.

The default external visibility assumes that public methods and fields are
visible and non-public methods and fields are not. Technically, protected and
package-private methods and fields might be accessed from non-application
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code, but it was deemed too unlikely and too critical for precision to let the
default strategy accommodate for that case.

Like resolvers, clients can implement their own external visibility strategy,
but again, the analysis is only sound as long as the external visibility strategy
provides sound answers. It is always sound for an external visibility strategy to
return true. Providing an application-specific external visibility strategy can
drastically increase the precision of the analysis.
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Chapter 7

The Runtime System
package dk.brics.string.runtime;

To analyze a program, one can use JSA as a standalone tool and let the program
itself describe how it should be analyzed. The program being analyzed should
contain type annotations and methods calls to the static methods in the class
dk.brics.string.runtime.Strings. These methods are:

• String cast(String s, String regexp)
At runtime, the string must match specified regular expression, or an
exception is thrown. If it does match, the same string is returned. The
analysis will therefore assume the returned string is in the language of the
regular expression. This can be used to assist the analysis ”by hand” if it
was found too imprecise, or simply as a runtime check.

• boolean check(String s, String regexp)
At runtime, returns whether the string matches the specified regular ex-
pression. This does not affect the precision of the analysis, but the analysis
will issue a warning if it detects that the check is always satisfied or never
satisfied (indicating dead or redundant code).

• String analyze(String s, String regexp)
At runtime, this does nothing except return the given string. It instructs
the analysis to verify that the first argument does indeed always match
the specified regular expression. For every analyze call in the program,
the analysis will report either that it is always satisfied, or an example of
a violating string that might occur. The analysis will use the term ”exact
match” if it concludes that the language of possible strings is exactly the
language specified by the regular expression.

• void bind(String s, String regexp)
Creates an identifier for the specified regular expression, so it can be used
inside other regular expressions enclosed in sharp brackets (<,>). See the
example in Section 7.4.
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Each method taking a regular expression is overloaded and can also take a URL
to a serialized automaton instead.

7.1 Annotations

The type annotation @Type(String regexp) may be used as an extension of
Java’s static type system. The annotated parameter, return type, or field must
only be assigned strings matching the specified regular expression. Only String
types may be annotated - string buffers, arrays, and primitives are not allowed.
Aliasing between variables with different annotated types would complicate the
type system too much. Chars might become annotatable in the future, but for
now they are not.

When reading from an annotated string type, the analysis will always assume
any string in the specified language may occur, even if it could derive a more
precise set of strings.

Hotspots are automatically created to verify that one does not assign non-
matching strings to such an annotated type.

The runtime system will abort with an error message if the following inher-
itance restrictions are not followed. If a method M1 overrides or implements
M2, its return type must be more restrictive than or equal to that of M2 and
its parameter types must be less restrictive or equal. Unannotated return types
and parameters inherit the annotation from their ancestor. If multiple methods
are implemented, the return type becomes their intersection, and the parameter
type becomes their union. It is forbidden to annotate a parameter of M1 if the
corresponding parameter in M2 is not annotated.

Local variables cannot be annotated because such annotations are lost during
compilation. The @Type annotation will therefore not allow itself to target a
local variable.

The regular expression used in @Type may contain identifiers defined by
Strings.bind, and it is strongly recommended to make use of that to reduce
the amount of typing required, and to make refactorings easier. Alternatively,
the annotation @LoadType works like @Type, except its argument is an URL
referring to a serialized automaton defining the type’s language.

If every method and field is fully annotated then the analysis is completely
modular and each method can be analyzed independently of the rest of the
program. If no annotations are used, the analysis becomes a whole program
analysis. Using a moderate amount of annotations puts the analysis somewhere
between the two extremes. A modular analysis generally makes it easier to find
the source of an error or imprecision as the location of the reported problem
will be much closer to the code actually causing the problem.
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7.2 Running The Analyzer

To analyze an application using the runtime system, run the class dk.brics.
string.AnalyzeRuntime. It accepts the following types of arguments, in any
order. Unless otherwise specified, each type of argument may be used more
than once (or not at all):

• -dir=directory or jar
Use all class files found in the specified jar file or directory (and its sub-
directories, recursively) as application classes. The directory must refer
to the root package. The directory or jar file does not have to be on the
classpath.

• classname
Use the class with the specified fully qualified name or filename as an
application class. The class must be on the classpath.

• -resolver=classname
Use the class with the specified fully qualified name or filename as a re-
solver in the analysis. The class must be on the classpath. It must have
a constructor taking no arguments and it must implement the Resolver
interface. Resolvers are described in Chapter 6.

• -externalvisibility=classname or identifier
Use the specified external visibility during the analysis, instead of the
default. The value can either be a classname or filename of a class im-
plementing the ExternalVisibility interface, or one of the predefined
identifiers public or main. public is the default strategy as described
in Chapter 6, and main is a strategy that declares only main methods to
be externally visible (and no fields). At most one external visibility may
be specified. If a class is specified, it must be on the classpath. External
visibility is described in Chapter 6.

Make sure that JSA and all its required jar files (automaton.jar and soot.jar)
are on the classpath when running it.

7.3 Example Ant Target

Here is an example of an ant target that will analyze the application placed in
the bin folder, assuming all the necessary jar files are placed in the lib folder.

<target name="analyze">
<java classname="dk.brics.string.AnalyzeRuntime" fork="true">
<classpath>
<fileset dir="lib">
<include name="**/*.jar"/>

</fileset>
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</classpath>
<arg value="-dir=bin" />

</java>
</target>

7.4 Example Program

For example, given this Java program:

public String bar(int x) {
String s = "I ate " + x + " apples today";
Strings.analyze(s, "I ate [0-9]+ apples today");
return s;

}

The runtime system will report:

Dissatisfied by: "I ate -1 apples today"

The regular expression for canonical signed integer strings, 0|-?[1-9][0-9]*,
can be cumbersome to write over and over again, so one can bind identifiers to
be available in regular expressions. Suppose we rewrite the above program, to
use the bind call:

static {
Strings.bind("int", "0|-?[1-9][0-9]*");

}
public String bar(int x) {

String s = "I ate " + x + " apples today";
Strings.analyze(s, "I ate <int> apples today");
return s;

}

The analysis will now print:

Exact match!

Carefully choose your regular expressions regarding numbers. The expression
we used above will reject integers with leading zeros, even though such strings
may be perfectly legal for your purpose. When working with floats, remember
that NaN and Infinity may occur, and the analysis will always assume that
they can occur.

Alternatively, we could have written the above program like so:
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static {
Strings.bind("int", "0|-?[1-9][0-9]*");

}
@Type("I ate <int> apples today")
public String bar(int x) {

return "I ate " + x + " apples today";
}
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Chapter 8

Test Suite

The test suite is designed to encourage an efficient workflow during develop-
ment. Each top-level class in the testcases.standalone package is treated as
a separate application to be analyzed, which we shall denote a test case.

A test case must contain exactly one call to the StringTest.analyze method.
The first argument becomes a hotspot, the other three arguments are regular
expressions indicating the expected outcome of the test. See the Javadoc for
the complete specification.

The package testcases.tools contains the classes required to run the test
suite. It is designed to be run with the JUnit tool built into Eclipse, pro-
viding a neat GUI and the means to debug individual test-cases. Running
PrecisionTester as a JUnit Test will run the entire test suite. The result of a
test-case is indicated by its color:

• Green (success) means a perfectly sound and precise answer was produced.

• Blue (failure) means the answer was sound, but imprecise. While being
worse than the green outcome, this is generally acceptable.

• Red (error) means the answer was unsound, or an exception was thrown.
This result is unacceptable.

Note that assertions should be enabled while running the test suite. The
PrecisionTester class will print a warning in the console if they are disabled.
By default, Eclipse will not enable them for you.
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8.1 Customizing the Test Suite

Customized analyzers can be implemented using the AutoTester class. To
create a custom tester, a class must implement TestExecutor and be annotated
with @RunWith(AutoTester.class). For example:

@RunWith(AutoTester.class)
public class MyTester implements TestExecutor {

public void close() {}
public void initialize() {}
public boolean shouldTestRun(TestCase test) {

return true;
}
public void executeTest(TestCase test) throws Throwable {

if (test.getMainClassName().length() > 12) {
throw new AssertionError("Long name");

}
}

}

Running the above class as a JUnit test will show a test case for every class in
the testcases.standalone package, and fail those whose name is longer than
12 characters. See the source code in FieldTester for a more useful example.
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ExceptionalReturn, 12, 16, 29
Hotspot, 9
keys, 10
MethodHead, 9
Nop, 23
semantics, 14
statements, 9
StringFromArray, 9
StringInit, 9
variable types, 10

interprocedural, see method call
iterators, 20

java.lang.reflect.Proxy, 5
java.util.Collection, see collections
java.util.Iterator, see iterators
Jimple, 4

maps, 21
method call, 5, 17, 26, 28
MLFA, 4
mutable arguments, 5, 29
mutable variables, 10

non-application class, 5, 17
nullness analysis, 17

parameter, 11
parameter aliasing, 11, 27
path sensitivity, see assertion
phase, 4
primitives, 10
protected, 5
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resolver, 5, 31
runtime system, 33

Soot, 4

trusted collection, 20
type annotations, 34

unsoundness, 5

<wrapper> method, 17
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