The DSD Schema Language

Nils Klarlund
AT&T Labs—Research

klarlund@research.att.com

Anders Mgller & Michael I. Schwartzbach
BRICS, University of Aarhus

{amoeller,mis }@brics.dk

Abstract

XML (Extensible Markup Language), a linear syntax for trees, has gathered
a remarkable amount of interest in industry. The acceptance of XML opens new
venues for the application of formal methods such as specification of abstract syn-
tax tree sets and tree transformations.

A user domain may be specified as a set of trees. For example, XHTML is a
user domain corresponding to a set of XML documents that make sense as hyper-
text. A notation for defining such a set of XML trees is callesthema language
We believe that a useful schema notation must identify most of the syntactic re-
quirements present in the user domains, and yet be sufficiently simple and easy to
understand both by the schema authors and the users. Furthermore, it must allow
efficient parsing and be modular and extensible to support reuse and evolution of
descriptions.

In the present paper, we give a tutorial introduction to the DSD (Document
Structure Description) notation as our bid on how to meet these requirements. The
DSD notation was inspired by industrial needs. We show how DSDs help manage
aspects of complex XML software through a case study about interactive voice
response systems, i.e., automated telephone answering systems, where input is
through the telephone keypad or speech recognition.

The expressiveness of DSDs goes beyond the DTD schema concept that is al-
ready part of XML. We advocate the use of nonterminals in a top-down manner,
coupled with boolean logic and regular expressions to describe how constraints on
tree nodes depend on their context. We also support a general, declarative mech-
anism for inserting default elements and attributes. Also, we include a simple
technique for reusing and evolving DSDs through selective redefinitions. The ex-
pressiveness of DSD is comparable to that of the schema language XML Schema
proposed by W3C, but their syntactic and semantic definition is significantly larger
and more complex. Also, the DSD notation is self-describable: the syntax of le-
gal DSD documents including all static semantic requirements can be expressed
within the DSD language itself.

*This article is a revised version of [23]; in addition, material from [21] has been included.

1 Introduction

XML (Extensible Markup Language) [9] is a syntax derived from SGML for markup
of text. XML is particularly interesting to computer scientists because the markup
notation is really nothing but a way of specifying labeled trees. The tree view and
the convenient SGML syntax of HTML have been important to the development of the
World Wide Web. Thus, it may not be surprising that XML syntax since its introduction
in 1998 has been hyped as a universal solution to the pervasive problem of format
incompatibility.

Such generous promises notwithstanding, at least one fascinating and fundamen-
tal quality sets XML-based notations apart from ad hoc syntax: they encourage tree
transformations—a technique that application programmers usually do not take ad-
vantage of. In fact, it would probably be considered a hassle even to define a set of
parse trees and procedures according to which they are constructed and parsed. XML
circumvents this problem by offering a primary representation based on trees, at the
expense of syntactic succinctness. Of course, trees and mappings between trees are
a main ingredient of computer science. For example, such mappings are essential to
building compilers, where the compilation process is partitioned into several phases,
most of which simply transform one intermediate tree format into another one. XML
has been suggested as an underlying notation for structuring and manipulating infor-
mation in general. As a foundation of this, XML schemas are needed to formalize the
sets of parse trees that constitute the individual languages.

The purpose of the present article is to indicate how XML opens new ways of apply-
ing formal computer science techniques to general, practical problems. Specifically, we
study the formal specification of XML languages, that is, sets of abstract syntax trees,
and default insertion mechanisms for common tree transformations needed by applica-
tion programmers. Both aspects are part of the DSD (Document Structure Description)
notation, which we introduce informally in this article. Before we explain DSDs, let
us mention some fundamental XML technologies that are already standardized (in the
sense of being a W3C Recommendation) or under development:

e Syntax Schemas describe the formal syntax of XML languages. As for other for-
mal languages, a precise syntax description provides an essential basis, both for
the tool builders and the application users. XML has inherited the DTD schema
concept from SGML, but this notation is considered inadequate by many. The
newest schema notation from W3C is called XML Schema [34] and it has re-
cently achieved Recommendation status. However, as explained later, this lan-
guage is in our opinion not satisfactory, and several alternatives have been pro-
posed.

e Transformation Since XML encourages construction of highly specialized lan-
guages, there is a strong need for domain-specific languages that allow general
transformations between XML languages to be defined more easily than possible
with general-purpose programming languages. XSLT [10], the transformation
part of the XSL language, became an official recommendation in 1999 and has
become very popular.

e Style sheetdCSS (Cascading Style Sheets) is an example of a specialized trans-
formation language, designed to make visual rendering for XML (and HTML)
documents, which is a typical kind of transformation. It consists of a simple
tree transformation language and a target language of text properties for layout.
CSS2 [4] is the latest official recommendation.

e Database queryingSince XML documents in a sense generalize the relational
database model to general semi-structured, there is a need for corresponding gen-
eralizations of query languages. A draft specification of the XQuery language [3]
has recently been published. The teschemabriginates from the database com-
munity where it denotes descriptions of the structure of relations.

¢ Linking and addressingXML is designed to operate on the Web, so notations for
defining links between documents and for addressing fragments of documents
are essential. XLink [17] allows generalized links between XML resources to
be defined. It is based on XPointer [16], which in turn uses XPath [12] for ex-
pressing locations in XML documents in a robust manner. XPath is also used in
XML Schema to express uniqueness constraints, in XSLT as a pattern matching
mechanism, and in XQuery to express basic queries.

e NamespacesXML languages are often built on top of other XML languages.
This introduces the demand for a name space mechanism to be able to distin-
guish the various parts of an XML document. XML Namespaces [8] allows
URIs to be associated with XML markup to be able to uniquely determine which
sublanguages the markup belongs to. We mention namespaces here because they
have implications to essentially all other XML technologies, in particular schema
languages.

For a more thorough introduction to these concepts, we referto [27]. Agreeing on well-
designed languages for these fundamental technologies allows generic tools to solve
problems common to many XML application languages. Agreeing on a simple but
powerful schema language has the additional benefit of making it easier to design and
learn new XML languages. In the area of programming languages, the BNF notation is
an example of this phenomenon. Unarguably, the simplicity of that notation has been
a requisite for its widespread use.

In the area of schema languages, numerous proposals, such as DDML [6], DCD [7],
XML-Data [24], XDR [18], SOX [15], TREX [11], Schematron [20], Assertion Gram-
mars [32], and RELAX [30], have already emerged. Recently, W3C has issued their
XML Schema proposal [34] in an attempt to reconcile the efforts. However, it has
been met with intense debate, primarily due to its unprecedented complexity viewed
by many as being unnecessary and harmful [33, 1]. Concurrently, RELAX NG [13] has
been developed as a descendant of RELAX and TREX and is now being standardized
by OASIS. The many proposals, and the outcome of the XML Schema effort, indicate
that it is far from obvious how the right schema language should be designed. In gen-
eral, the XML notation turns out to be so versatile that it is hard to satisfy all design
requirements and capture the various usage patterns, and at the same time keep the
schema notation simple. We give a more thorough comparison between DSD and the
most significant alternatives in Section 7.

Our DSD proposal—which is rigorously defined in [22]—has the ambition of pro-
viding an expressive power comparable to that of XML Schema and RELAX NG,
while at the same time remaining simple to learn and use. We have tried to identify
the most central aspects of XML language syntax and turn these into a clean set of
schema constructs, based on well-known computer science concepts, such as boolean
logic and regular expressions. A DSD defines a grammar for a class of XML docu-
ments, including documentation for that class, and additionally a CSS-like notation for
specifying default parts of documents. As most other schema language proposals, the
DSD language itself uses the XML notation. This opens up for the possibility of being
self-describing, that is, having a DSD description of the DSD language.

We recall that an XML document consists of namsdmentgepresenting tree
nodes. Elements hawatributes representing name/value pairs, arahtent which
is Unicode text calle¢hardata interspersed with subelements. We here ignore com-
ments and DTD information, and we assume that entity references have been expanded.
For example, consider the following XHTML document fragment:

<body class="mystuff'>
Hello there
</body>

This fragment contains an element nanbedy that corresponds to a tree node labeled
body . The node has an attribute nanmgaks and two children corresponding to its
content, that is, the part between the start¢agdy...> and the end tag/body> .

The first child is a text node with valugello , and the other is an element node la-
beledem Theemnode in turn has one child node, which is a text node. The markup
is required to bevell-formed meaning that the begin and end tags are balanced and
nested properly, which allows us to view XML documents as tree structures. A schema
for XHTML would for example state thafass attributes in fact are allowed irody
elements, that chardata is allowed in the content, but also that for indiadgecle-
ments cannot appear within teamtags. A schema language should make it possible to
easily express such constraints.

Besides basing the DSD design on simple concepts that are familiar to computer
scientists, we have a number of more technical goals for the descriptive power of the
DSD notation. These goals are by no means comprehensive, but they reflect most of
the needs we have seen in document processing and database applications:

e DSD should allow context dependent descriptions of content and attributes, since
the context of a node, such as ancestors and attribute values, often governs what
is legal syntax.

e Default attribute values and content should be defined in a declarative manner,
separate from the structural descriptions. Thus we seek a generalization of CSS
so that defaultable properties in the form of attributes and element content can
be defined for arbitrary XML domains. CSS manipulates defaults, but only for
properties in predefined formatting models.

e As most other schema languages, DSD should support node IDs and references
for expressing non-tree-structured data. In addition, it should permit the descrip-
tion of what references may point to.

¢ In order to support development and maintenance of large schemas, DSD should
contains mechanisms for schema evolution and reuse.

e DSD should be self-describable. This property allows schemas themselves to be
viewed as application documents.

e The content model should be flexible enough to allow ordered and unordered
content to be mixed.

e It should be possible to intersperse informal documentation with the formal lan-
guage of schemas. That allows them to serve as complete language descriptions.

e Validity of chardata and attribute values should be defined with an extensible
mechanism so that only a minimal number of primitive types are included in the
core language.

e DSD should complement XSLT in the sense that assumptions made by XSLT
style sheets about the shape of input documents can be made explicit.

e Finally, it is also important to us that a DSD yields a linear-time algorithm for
checking conformance of XML documents.

To honor these ambitions, our design combines several elementary ideas: a uniform
notion of constraintthat captures the legality of attributes, attribute values, and con-
tent; conditional constraintguarded byboolean expression$at capture dependen-
cies between attributes, attribute values, element contexts, and cordatérminals

in the form of element IDs that allow several different versions of an element to coex-
ist; the concept oprojected contenthat allows succinct descriptions of both ordered
and unordered contenegular expressionto describe both attribute values and con-
tent sequences; automatic insertiomlefaultattributes and element content guided by
boolean expressions; a simple notion of redefinition combined with a schema inclusion
mechanism for supporting extension and modularity; poithts-torequirements that
constrain the targets of references.

The only major omission is the concept of namespaces, whose semantics until re-
cently has been the subject of controversy [5]. In the current version of DSD, we do
apply namespaces within the DSD language, but we do not support namespaces in
the application languages. We plan to add proper support for namespaces in a future
version to mend this limitation.

Naturally, there are constraints that within reason can be conceived but are not ex-
pressible in our formalism. Moving to Turing complete formalisms would complicate
the language unnecessarily. As in programming language grammar formalisms, it is
customary to supplement a grammatical check with a few specialized routines written
in a general programming language.

Despite its expressive power, the DSD language is simple enough that it can be
rigorously defined in 15 pages [22] (where the page count excludes examples and in-
troduction). The specification of the Structural Part of XML Schema runs to about 140
pages (counted in the same way). The present paper describes the main ideas of the
DSD notation and relates it to other XML schema language proposals. We also pro-
vide an account of an industrial example that motivated DSD: HTML-like languages

for defining Interactive Voice Response (IVR) systems, which are user interfaces that
work through spoken prompts and telephone pad or speech input.

The main contribution of this work is the attempt to simplify and yet generalize
existing XML schema languages. Also, we believe to have identified some essential
design requirements and show that in particular boolean logic and regular expressions
are useful formalisms in schema languages.

Outline

After an overview of the XML tree model in Section 2, we introduce the DSD concepts
through little examples in Section 3, and we explain the notion of a meta-DSD. In Sec-
tion 4, we present a complete DSD example for information about books. In Section 5,
we describe a prototype implementation of the DSD processor, and in Section 6, we
discuss how an application programmer would benefit from DSDs when learning and
using a domain specific language for IVR applications. In Section 7, we discuss re-
lated work, in particular XML Schema and RELAX NG. We conclude in Section 8
with a summary of our experiences with DSD, followed by plans and ideas for future
development.

2 XML Concepts

The reader is assumed familiar with the most common XML concepts (XML is offi-
cially defined in [9]). However, since there unfortunately is no common agreement on
the terminology, we now give a brief description of the XML data model used in DSD.

A well-formed XML document is represented as a tree. The leaves correspond to
empty elements, chardata, processing instructions, and comments. The internal nodes
correspond to non-empty elements. For that reason, we often confound the terms “el-
ement” and “node”. DTD information is not represented in the tree. Each element is
labeled with a name and a set of attributes, which each consists of a name and a value.
Names, values, and chardata are Unicode strings [14].

Child nodes are ordered. Thententof an element is the sequence of its immediate
child nodes. Theontextof a node is the path of nodes from the root of the tree to the
node itself. Element nodes are ordered accordirgpimument orderan element is
beforean elemenb if the start tag ofa occurs before the start tag bfin the usual
textual representation of the XML tree. We will assume that trees are a normalized by
a process that combines adjacent text nodes by concatenating their text.

Processing instructions with targétd or include , as well as elements and at-
tributes with namespadetp://www.brics.dk/DSD , contain information relevant
to the DSD processing. All other processing instructions and also chardata consisting
of white-space only and comments are ignored.

3 The DSD Language

A DSD defines the syntax of a family of conforming XML documents.aaplication
documents an XML document intended to conform to a given DSD. It is the job of a
DSD processoto determine whether or not an application document is conforming. A
DSD is itself an XML document. This section describes the main aspects of the DSD
language and its meaning. For a complete definition, we refer to [22].

A DSD can be associated to an application document by placing a special process-
ing instruction in the document prolog. This processing instruction has the form

<?dsd URI=" URI"?>

whereURI is the location of the DSD. By inserting this in the application document,
the author states that the document is intended to conform to the designated DSD.

A DSD processor basically performs one top-down traversal of the application doc-
ument tree in order to check conformance. During this traversal, constraints and other
requirements from the DSD asvaluatedrelative to acurrent elemenbf the appli-
cation document. The DSD processor consults the DSD to determine the constraints
that areassignedo each node for later evaluation. Initially, a constraint is assigned to
the root node. Evaluation of a constraint may entail the insertion of default attribute
values and default content in the current element. Also, it may assign constraints to the
subelements of the current element. If no constraints are violated during the entire tree
traversal, the original document conforms to the DSD. The document augmented with
inserted defaults constitutes the result of the DSD processing.

A DSD consists of a number of definitions, each associated with an ID for refer-
ence. In the following, the various kinds of DSD definitions are described. We use a
number of small examples, some inspired by the XHTML language [31] and some that
are fragments of the book example described in Section 4.

3.1 Element constraints

The central definition in DSD is thelement definitionAn element definition specifies

an element name andcanstraint During conformance checking, each element node
in the application document is assigned an ID referring an element definition from the
DSD. In order for the element node to match the element definition, they must have the
same name, and the element node must satisfy the constraint.

The IDs of element definitions are reminiscent of nonterminals in context-free
grammars. Each ID determines the syntactic requirements imposed on the content,
attributes, and context of the elements to which it is assigned. We distinguish between
definition IDs and element names in order to allow several versions of an element to
coexist. Thus, several different element definitions may occur with the same name. To
avoid confusion about the term “ID”, note that element definition IDs are references
into the DSD and that multiple application document elements may be assigned the
same ID.

As an example, consider a DSD describing a simple database containing informa-
tion about books, such as, their titles, authors, ISBN numbers, and so on. Imagine
that both the whole database and each book entry must contidén a element, but

with different structures. Book entry titles may contain only chardata and no markup,
and defaults may be specified for them. Database titles may on the other hand contain
arbitrary content and no attributes, and cannot be given by defaults. These two kinds
oftitte elements can be defined as follows:

<ElementDef ID="book-title" Name="title" Defaultable="yes">
<Content><StringType/></Content>
</ElementDef>

<ElementDef ID="database-title" Name="title">
<ZeroOrMore><Union>
<StringType/><AnyElement/>
</Union></ZeroOrMore>
</ElementDef>

A constraint is defined by a number of constraint expressions, which can contain decla-
rations of attributes and element content, boolean expressions about attributes and con-
text, and conditional subconstraints guarded by boolean expressions. The constraint is
satisfied if the evaluation of each constituent succeeds. These aspects are described in
the following sections.

The example below expresses something that is impossible or cumbersome to for-
malize in other schema proposals, namely the requirement that anchor elements in
XHTML are not nested:

<ElementDef ID="a">
<Constraint><Not><Context>
</Context></Not></Constraint>
<ElementDef>

This element definition contains a single constraint expression, which is a simple
boolean expression querying the element context. Note that the name attribute of the
ElementDef is missing here. That simply means that the name is the same as the ID.
In DTD, the anchor nesting restriction cannot be formalized and merely appears
as a comment. The DTD does excludelements from appearing immediately below
othera elements, but, for instance, it allowa><a>... . Most
other schema languages, including XML Schema, has the same limitation.
Boolean expressions are build from the usual boolean operatods,Or, Not,
Imply , etc., and are used for several purposes: they express dependencies between at-
tributes, and they are used as guards in conditional constraints and default declarations,
as explained later.

3.2 Attribute declarations

During evaluation of a constraint, attributes aeclaredgradually. Only attributes

that have been declared are allowed in an element. Since constraints can be conditional
and attributes are declared inside constraints, this evaluation scheme allows hierarchi-
cal structures of attributes to be defined. Such structures cannot be described by other

schema proposals although they are common. For instance, in an XHidddL el-

ement, thdength attribute may be present only if thgpe attribute is present and

has valugext or password . In most schema language, this kind of constrains are
not expressible. Their solution is to allow all combinations and resort to other means,
typically general programming languages, for expressing the extra requirements. How-
ever, since dependencies are a very common phenomenon in XML languages, this is
clearly not satisfactory. Another typical example can be found in the XML Schema
specification [34], Section 3.2.3défault andfixed may not both be present[...] if
default anduse are both present, use must have the actual vaptienal [...] if

ref is present, then all ofsimpleType> , form andtype must be absent”. Surpris-
ingly, even though the XML Schema language repeatedly uses such dependencies it-
self, they cannot be expressed in XML Schema. In contrast, the conditional constraints
and boolean expressions in DSD capture this notion of dependencies in a straightfor-
ward manner.

An attribute declaratiorconsists of a name and a string type. The name specifies
the name of the attribute, and the string type specifies the set of its allowed values. Un-
less it is declared as optional, an attribute must be present if it is declared. Conversely,
only declared attributes are allowed to be present.

The presence and values of declared attributes can be tested in boolean expressions
and context patterns. For instance, the expression:

<Attribute name="action">
<StringType IDRef="URI"/>
</Attribute>

evaluates tarue if and only if the attribute namesktion satisfies two conditions: it
has been declared and it is present in the current element with a value matching the
string typeURI.

The CSS language can assign properties to the elements in a document, based on
context-sensitive selectors. In generic XML settings where properties appear as el-
ement attributes, such as in SMIL [19], this can lead to semantic ambiguities since
setting and testing of attributes occurs in no pre-defined order. Our notion of gradual
attribute declaration avoids such ambiguities.

3.3 String types

A string typeis a set of strings defined by a regular expression. String types are used
for two purposes: to define valid attribute values and to define valid chardata.

Regular expressions provide a simple, well-known, and expressive formalism for
specification of sets of strings. Many reasonable sets can be defined, and by the cor-
respondence with finite-state automata, an efficient implementation is possible. A rich
set of operators is provided, such &squence , ZeroOrMore , Union , Optional ,
Intersection , andComplement .

The use of regular expressions is more flexible than using a predefined collection
of data types. Special automata representations for large alphabets hold the promise
that the efficient regular expression implementations extend to Urficode

1See e.ghttp://www.brics.dk/automaton/

Most well-known data types, such as URIs, email addresses, and ZIP codes, can be
described by regular expressions. The following example shows the definition of ISBN
numbers:

<StringTypeDef ID="isbn">
<Sequence>
<Repeat Value="9">
<Sequence>
<CharRange Start="0" End="9"/>
<Optional><CharSet Value=" -"/></Optional>
</Sequence>
</Repeat>
<CharSet Value="0123456789X"/>
</Sequence>
</StringTypeDef>

This defines ISBN numbers to consist of 10 digits, optionally separated by single blanks
or dashes, and where the final digit may also be the character 'X’. In a more familiar
notation, this regular expression would be writter{[@][-]1?) {9}[0-9X] .The
benefit of our more voluminous notation is that the syntactic structure of the expression
is immediate from the XML structure.

In comparison, other schema languages typically provide a number of predefined
data types and focus less on flexibility and user defined types. More details are given
in Section 7.

3.4 Content expressions

Recall that the content of an element is a sequence of element nodes and chardata
nodes.Content expressiorare used to specify sets of such sequences. These expres-
sions are a kind of regular expression that occur in element constraints.

Content expressions are built of atomic expressions and content expression opera-
tors. An atomic expression is either an element description or a string type. An element
description is essentially a reference to an element definition. It matches a given ele-
ment node if their names match. The string types specify chardata child nodes. Check-
ing that content sequences satisfy the given constraints has the side-effect that element
definition IDs are assigned to the subelements. Also, as explained in Section 3.6, in-
sertion of default content occurs while checking content expressions. Because of these
side-effects, we need a non-standard interpretation of the regular expression constructs
occurring in content expressions, in order to get a well-defined behavior.

The content expression operators incl@dguence , ZeroOrMore , AnyElement ,

Union andIf . A Sequence is matched with a content expression by a left-to-right
traversal. FoEZeroOrMore , the traversal is eager, that is, in continues as long as there
is a match of the subexpression. Ration , the traversal allows backtracking. Each
option is tried, and the first one that matches is chosen. IfTheonstruct defines a
conditional subexpressions.

As an example, the valid content of a XHTMable element (see [31], App. A.1)
can be described by the following content expression:

10

<Sequence>
<Optional><Element IDRef="caption"/></Optional>
<Union>
<ZeroOrMore><Element IDRef="thead"/></ZeroOrMore>
<ZeroOrMore><Element IDRef="tfoot"/></ZeroOrMore>
</Union>
<Optional><Element IDRef="thead"/></Optional>
<Optional><Element IDRef="tfoot"/></Optional>
<Union>
<OneOrMore><Element IDRef="tbody"/></OneOrMore>
<OneOrMore><Element IDRef="tr"/></OneOrMore>
</Union>
</Sequence>

Ignoring the syntactic overhead of the XML notation, this example could just as eas-
ily be expressed in DTD. But, as explained in the following, DSDs also allow more
complex content requirements to be specified.

A constraint may contain more than one content expression. Each of them then
must match some of the content of the current element, just like each attribute dec-
laration must match an attribute. More precisely, each content expression is matched
against a subsequence of the content that consists of elements mentioned in the con-
tent expression itself. Thus, the actual contemrigectedonto the elements that the
content expression contains. If, for instance, a content expression mentions elements
andB, and the content is a sequence of element C, followed by a chardata node
and an elemen, then this expression is matched against the projected coatent
A. This method makes it easy to combine requirements of bateredandunordered
content. Additionally, unordered content is declared just like attributes.

In the XHTML specification, the content of theead element is described as
“head.misc , combined with a singléitle and an optionabase element in any
order”. In a DTD, this requirement can be formalized only by listing all the possible
combinations in a single regular expression. The XML Schema proposal introduces a
separate operator to express interleavings, however, it cannot be combined arbitrarily
with the other content description operators. With DSD, a simple constraint with three
content expressions does the job:

<Content IDRef="head.misc"/>
<Element IDRef="title"/>
<Optional><Element IDRef="base"/></Optional>

When such a set of content expressions is evaluated, each of them is evaluated on the
projected contentnamely the subsequence of the content that mentions the element
names in the expression. The first expression only looks at the elements that occur in
head.misc (which is defined elsewhere); the second only lookstiat elements

and states that there must be exactly one of these; and the third expression states that
there can be an optionbhse element somewhere in the content. Additionally, each
content node must be matched by exactly one content expression. Thus, generally
speaking, content expressions in a constraint must not overlap with respect to element
names they mention, just as it is an error to declare an attribute more than once. This
simple and intuitive approach is unique to DSD.

11

For another example, consider the combination of the following two content ex-
pressions:

<Sequence>
<Element IDRef="first"/>
<Element IDRef="initial"/>
<Element IDRef="last"/>
</Sequence>
<Optional><Element IDRef="homepage"/></Optional>

Together they require that the content consists of the three elefients, initial
andlast occurring in that order, and that a singlemepage element may optionally
occur anywhere in that sequence. Without multiple content expressions and the notion
of projected content, all possible combinations would have to be be explicitly listed.

As explained in Section 7, the content description mechanisms in other schema
languages are typically also based on variations of regular expressions, in some cases
adding a notion of inheritance. The solution to the problem of expressing combined
ordered and unordered content is however unique to DSD.

3.5 Context patterns

A context patterrcan be used with defaults, constraints and content descriptions to
make them context dependent.

Context patterns are very similar to CSS selectors [4]. A context pattern is a se-
guence of context terms. dontext ternis either an element pattern osameElements
element. Anelement patterspecifies an element name and a set of attributes. Recall
that we define theontextof the current element to be the sequence of nodes that start
at the root of the XML tree and end in the current element.

Before summarizing the meaning of context patterns, we provide an example of a
context pattern that matches thdiseelements immediately withial elements inside
form elements whosmethod attribute has valupost :

<Context>
<Element Name="form">
<Attribute Name="method" Value="post"/>
</Element>
<SomeElements/>
<Element Name="ul"/>
<Element Name="li"/>
</Context>

The matching semantics of contexts is as follows. The context of the current element
is matched by a context pattern if the context can be decomposed into consecutive
fragments such that the sequence of fragments matches the sequence of context terms
in the pattern. An element pattern matches a single element node if the name and
attributes match. ASomeElements matches any context fragment. Implicitly, all
context patterns begin withSomeElements element.

12

To see how useful context-dependent definitions are, let us consider a common
situation: an XML grammar that represents not one but several related XML notations.
For example, a DSD may specify both draft and final markup notations for books. This
is the scenario mentioned in the XML 1.0 specification, where conditional sections of
DTDs may be used to describe variations:

<IENTITY % draft INCLUDE’ >

<IENTITY % final 'IGNORE’ >

<![%draft;[

<IELEMENT book (comments*, title, body, supplements?)>
1>

<I[%final;[

<IELEMENT book (title, body, supplements?)>

1>

Here, two flags (parameter entities), caltedit andfinal , are used to control the
expansion of the two conditional definitionstafok . Typically, these flags would be
declared in the document type declaration of the application document, whereas the
conditional sections would be declared in an external DTD. The declarations in the
application document are processed before the external DTD.

As stated, the first conditional definition is expanded since the first item of the
conditional definition expands tNCLUDE Similarly, the second definition is not ex-
panded since the first item expand$®ORE This mechanism is somewhat unsafe: a
document writer must set two flags at the same time, and their values must be opposite
each other.

With DSDs, the parameterization of the XML grammar can be explained in terms
of the application document itself. For example, if the root element is caliagithen
an attributedraft ~ of this element would govern the definition obaok :

<ElementDef ID="book">
<Sequence>
<|f>
<Context>
<Element Name="DOC">
<Attribute Name="draft" Value="true"/>
</Element><SomeElements/>
</Context>
<Then><ZeroOrmore>
<Element IDRef="comments"/>
</ZeroOrMore></Then>
</If>
<Element IDRef="title"/>
<Element IDRef="body"/>
<Optional><Element IDRef="supplements"/></Optional>
</Sequence>
</ElementDef>

13

Here the logic of the different versions is clearly spelled out at the XML level of the
application document itself. We believe that expressing this logic is not possible with
any of the other schema language proposals, since they do not have equivalent no-
tions of context expressions and conditional constraints. One exception is Schematron,
which employs the powerful language XPath for expressing constraints, as explained
in Section 7.

3.6 Defaultinsertion

It is convenient to application document authors to be able to omit implied attributes
and other document parts. Since schemas describe the document structure, they are a
suitable place to specify default values for such parts. Validating a document then has
the side-effect of inserting the defaults, which is often useful to subsequence document
processing.

In DSD, default attributes and content are defined by an association to a boolean
expression. Such attributes or conterdplicablefor insertion at a given place in the
application document if the boolean expression evaluates to true at that place.

In other schema languages, the most common approach is to specify the defaults
together with the structural descriptions, for instance at the attribute declarations. How-
ever, by specifying the defaults separately in a declarative manner, the default mecha-
nism becomes more flexible because it allows variations of the default values. The IVR
application shown in Section 6 utilizes this property extensively.

The following example defines that themgth of input fields of typetext is by
default 20:

<Default>
<Context>
<Element Name="input">
<Attribute Name="type" Value="text"/>
</Element>
</Context>
<DefaultAttribute Name="length" Value="20"/>
</Default>

Defaults are inserted “upon request” by constraints:

e When an attribute declaration is encountered and the declared attribute is not
present in the current element, an applicable default is inserted, if any exist.

e During evaluation of a content expression, if an element description or a string
type is encountered and the next content node does not match the description,
then an applicable default is inserted, if any exist. Default elements can be in-
serted only if declared as defaultable by the description.

A notion of specificityof defaults, reminiscent of CSS [4], is used to determine a de-
fault when more than one is applicable. Intuitively, the default with the most complex

14

boolean expression is chosen. If two are equally complex, the one latest defined is
chosen.

For convenience, defaults can also be defined in the application document. Every
application document element may contain default definitions, which in a sense extend
the DSD. Such default definitions are recognized usingienamespace. They are
not considered part of the application document by the DSD processor. Their scope is
not the whole application document. Instead, they are considered as applicable only to
the subtree rooted by the element in which they occur.

The following example shows how tHength default previously defined may
be overridden for certaitext typeinput elements, namely those insiflem ele-
ments that have aaction attribute whose value is a string starting with the prefix
http://www.brics.dk/

<DSD:Default>
<Context>
<Element Name="form">
<Attribute Name="action"/>
<Sequence>
<String Value="http://www.brics.dk/"/>
<ZeroOrMore><AnyChar/></ZeroOrMore>
</Sequence>
</Attribute>
</Element>
<SomeElements/>
<Element Name="input">
<Attribute Name="type" Value="text"/>
</Element>
</Context>
<DefaultAttribute Name="length" Value="30"/>
</DSD:Default>

Analogously to CSS, defaults defined in the application document are always consid-
ered more specific than defaults defined in the DSD document. Moreover, when two
application document defaults are applicable and they are not siblings, the one with the
smallest scope, that is, the innermost one, will always be considered more specific than
the other.

Most other schema languages contain a default mechanism. However, some only
support attribute defaults or content defaults that only contain chardata. Only DSD
allows individual elements to be inserted in content sequences, and it is also unique
in separating the default declarations from the structural descriptions. In Section 6,
we will look at examples that involves managing a great number of interdependent
defaults.

3.7 ID attributes and points-to requirements

In attribute declarations, a DSD may declare that application document attributes are
of typelD or IDRef , as also possible with DTDs. An attribute of tyjpeis considered
adefinitionof the value of the attribute. Such a definition must be unique. Similarly, an

15

IDRef attribute is aeferencedo the element containing the attribute defining the given
value, and such an element must exist.

Additionally, a DSD may impose points-torequirement on the element denoted
by a reference. Such a requirement is defined by a boolean expression, which may
probe attribute values and context as we have seen. This unique mechanism allows
a more precise description of semi-structured data. An example is the DSD notation
itself, as shown in Section 3.10.

In the following example, &ook-reference attribute is declared. It must refer
to an element with an attribute of tyjfi@ occurring in abook element:

<AttributeDecl ID="book-reference" IDType="IDRef">
<PointsTo>
<Context><Element Name="book"/></Context>
</PointsTo>
</AttributeDecl>

The ID definitions, IDRef references, and points-to requirements are checked in a
separate phase after the main traversal of the application document.

3.8 Redefinitions and evolving DSDs

Many XML languages are built from existing languages. Also, often a whole family of
related languages is to be defined. DSDs support these software practices by providing
two simple mechanismstocument inclusioandredefinition This allows schemas to
be created from existing schemas through modifications and extensions.

Both DSD documents and application documents can be created as extensions of
other documents using a spediallude processing instruction of the form:

<?include URI=" URI"?>

whereURI denotes the document to be included, that is, inserted in place of the pro-
cessing instruction. A document can only be included once into a given document;
subsequent attempts are ignored.

In DSDs, all definitions can be renewed. One can include a document containing
a definition of a concept and then later redefine the concept. Since the DSD language
is designed to be self-describable, the meta-DSD must be able to express this notion of
redefinition.

To accommodate modifications of DSD definitions, two new attribute tygearswID
andCurrlDRef , are introduced besid® andIDRef . All definitions can be redefined
usingRenewlID. An IDRef attribute refers to théinal definition or redefinition in the
document for thatD . An attribute of typeCurrlDRef refers to thecurrent definition
which is the last definition or redefinition occurring before the reference and that does
not contain it. Assume that in some existing DSBoak element has been defined as
follows:

| <ElementDef ID="book">

16

<Constraint IDRef="book-constraints"/>
</ElementDef>

<ConstraintDef ID="book-constraints">

</ConstraintDef>

Consider a situation where we want to reuse this DSD but would like to extend the
book constraints with a new attribute declaration. This can be done &singwID to
redefinebook-constraint andCurriDRef to refer to the original definition:

<ConstraintDef RenewlD="book-constraints">
<Constraint CurrlDRef="book-constraints"/>
<AttributeDecl Name="new-attribute"/>
</ConstraintDef>

Most schema languages support modularization uisiclgde -like features. Some
also allow redefinitions, but without being able to refer to the old definitions as our
CurrlDRef . More details are given in Section 7.

3.9 Self-documentation

Documentation may be associated to most constructs in a DSD. Documentation is
treated as meta-information, which does not affect the processing. It allows a DSD
to be virtually self-documenting towards application authors. Also, a DSD processor
may use this information when errors are detected to provide the author with useful
help.

The DSD language allows three kinds of documentatioabel , which can be
used to attach a label to the construmtc, which is intended for full documentation
of the construct; an8riefDoc , intended for a brief description. Documentation may
consist of arbitrary XML, but XHTML is recommended. This allows useful visual
effects, such as showing the brief description in a box that pops up when the mouse is
over the construct. Examples of documentation are shown in Section 6.

3.10 The Meta-DSD

The DSD language is self-describable: there is a DSD that completely captures the
requirements for an XML document to be a valid DSD. We provide such a DSD of
less than 500 lines (allowing sometimes several tags on the same line), caleette

DSD. It can be used both as a human readable description of DSD to clarify its syntax,
and by DSD processors to check whether a given XML document is a valid DSD.
The meta-DSD resides attp://www.brics.dk/DSD/dsd.dsd . Thus, all DSD
documents should contain the processing instruction:

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

stating that they are intended to conform to the meta-DSD. As noted in Section 5, the
property of being entirely self-describable is not only esthetically pleasing, it is also

17

practically useful for application development. Furthermore, it supports development
of schemas: the same tool that checks validity of application documents can be used
to check that a given XML document is a valid DSD. Most other schema languages
require separate tools for that, since they are not completely self-describable.

4 The Book Example

We now present a small example of a complete DSD. It describes an XML syntax
for databases of books. Such a description could be arbitrarily detailed. We have
settled for title, ISBN number, authors (with home pages), publisher (with home page),
publication year, and reviews. The main structure of the DSD is as follows:

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

<DSD IDRef="database" DSDVersion="1.0">
<ElementDef ID="database">
<ZeroOrMore>
<Element IDRef="book"/>
</ZeroOrMore>
<Element IDRef="database-title"/>
</ElementDef>

</DSD>

Inthedatabase elementwe use projected contentto allow the uniigee to appear
anywhere in the sequence ladok elements. If we wanted to mandate the position
of thetitle element, then a surroundir8gquence constructor was required. The
remaining definitions are presented below, excludingitke element and thabn
string type that are shown in Section 3. We first show the definititoaf elements:

<ElementDef ID="book">
<AttributeDecl Name="isbn" Optional="yes">
<StringType IDRef="isbn"/>
</AttributeDecl>
<Sequence>
<If><Attribute Name="isbn"/>
<Then>
<Optional><Element IDRef="book-title"/></Optional>
</Then>
<Else>
<Element IDRef="book-title"/>
</Else>
</If>
<OneOrMore><Element IDRef="author"/></OneOrMore>
<Element IDRef="publisher"/>
<Element Name="year">
<StringType IDRef="digits"/>

18

</Element>
<Optional>
<Element Name="review">
<StringType IDRef="url"/>
</Element>
</Optional>
</Sequence>
</ElementDef>

Note that thasbn attribute is optional. If it is not present intmok , then atitle is
mandatory. The definitions aluithor andpublisher are as follows:

<ElementDef ID="author">
<Sequence>
<Element Name="first">
<StringType IDRef="simple"/>
</Element>
<Optional>
<Element Name="initial">
<StringType IDRef="simple"/>
</Element>
</Optional>
<Element Name="last">
<StringType IDRef="simple"/>
</Element>
</Sequence>
<Optional><Element IDRef="homepage"/></Optional>
</ElementDef>

<ElementDef ID="publisher">

<StringType IDRef="simple"/>

<Optional><Element IDRef="homepage"/></Optional>
</ElementDef>

An order is imposed ofirst , initial , andlast , but projected content allows the
optionalhomepage element to appear anywhere. Albmepage elements contains a
URL:

<ElementDef ID="homepage">
<StringType IDRef="url"/>
</ElementDef>

<StringTypeDef ID="url">
<ZeroOrMore><AnyChar/></ZeroOrMore>
</StringTypeDef>

A naive definition ofurl is chosen here. It could be replaced with the full 200 line
official definition, which is indeed a regular language. The remaining string type defi-
nitions are as follows:

19

<StringTypeDef ID="simple">
<OneOrMore>
<Union>
<CharRange Start="a" End="z"/>
<CharRange Start="A" End="Z"/>
<CharSet Value="._- &"/>
</Union>
</OneOrMore>
</StringTypeDef>

<StringTypeDef ID="digits">
<ZeroOrMore>
<CharRange Start="0" End="9"/>
</ZeroOrMore>
</StringTypeDef>

Such string types could be part of a standard library, constructed as a file containing nu-
merousStringTypeDef elements that are accessed throughrttiede mechanism.
The following definition allows untitled books to receive the default titigitled

<Default>
<Context>
<Element Name="book"/>
</Context>
<DefaultContent>
<title>Untitled</title>
</DefaultContent>
</Default>

An example of a conforming application document looks as follows:

<?dsd URI="http://www.brics.dk/DSD/book.dsd"?>

<database>
<title>Classic Computer Science Books</title>
<book isbn="0201485419">
<titte>The Art of Computer Programming</title>
<author>
<first>Donald</first><initial>E</initial>
<last>Knuth</last>
<homepage>
http://www-cs-faculty.stanford.edu/"knuth/
</homepage>
</author>
<publisher>
Addison-Wesley
<homepage>http://www.aw.com</homepage>
</publisher>

20

<year>1998</year>
<review>
http://www.amazon.com/exec/obidos/ASIN/0201485419
</review>
</book>
</database>

5 The DSD 1.0 Tool

A prototype DSD processor has been implemented. It tests conformance of application
documents and inserts defaults. This shows that it is possible to implement a complete
DSD processor in less than 5000 lines of straightforward C code.

Given the URI of an application document containing a DSD-reference processing
instruction, the DSD tool performs the traversal of the application document as de-
scribed in Section 3, and if it succeeds, it then performs the ID/IDRef and points-to
checks described in Section 3.7. Before the application document is processed, the
DSD document, including all application document defaults, is checked to see whether
it conforms to the meta-DSD. This check can be omitted by a command-line option if
the user is certain that the DSD is in fact valid.

If an error occurs, that is, if a document is not conforming to its DSD, then a suit-
able error message is inserted in the document which is then output. If the processing
succeeds without errors, then the defaults are added to the application document. As
an extra feature, the tool can be instructed to add special attributes that detail the el-
ement ID assigned to a node. Such parsing information can be useful in subsequent
processing by other XML tools.

By using a DSD processor as a front-end for other XML tools, these often become
much simpler to construct since the subsequent phases may assume that the input sat-
isfies the syntactic requirements defined by a certain DSD. This is exemplified by the
IVR system described in the next section. The DSD processor itself relies on this tech-
nique. Using the meta-DSD, which is a complete description of the DSD language
itself, the processor checks that a purported DSD document is indeed a DSD. This
bootstrapping technique has reduced the size of the implementation considerably and
made it more robust and readable.

The DSD processor analyzes application documents in linear time: execution time
is proportional to the size of the application document. This assumes that the document
size includes the inserted defaults, and that we view all default definitions, including
those written in the application document, as belonging to the DSD. The constant of
proportionality naturally depends on the complexity of the given DSD. This linear-
time property makes the behavior of the DSD processor more predictable than with
other schema language processors, where such guarantees are typically not required by
the language specification.

21

6 Industrial Case Study: IVR Systems

IVR (Interactive Voice Response) systems range from simple telephony applications
to complicated dialogue systems based on speech recognition. But even the simpler
systems are notoriously difficult to construct since their programming involves com-
plex timing and error issues. To simplify the task, many layers of abstractions are
introduced. At the highest level, an application programmer chooses between ready-
made dialogues, which are parameterized with prompts and timeout durations. In this
section, we will show how XML and the DSD Schema may help an application pro-
grammer to learn and to use a specialized notation with many interdependent param-
eters such as prompts, timeout values, error counts, and error messages. In particular,
we will show how a DSD processor automatically selects defaults for such parameters
according to the programmer’s preferences.

Our case study is based on XPML (Extensible Phone Markup Language), an HTML-
like experimental language developed at AT&T Labs [21]. The XPML notation has
evolved from a simple variation of HTML, dubbed PML, to a rather elaborate pro-
gramming notation for telephone services that rely on text-to-speech, touchtone input,
speech recognition, and call control.

Often, XPML documents resemble conventional marked-up documents, but some-
times they are heavily customized with many default time and prompt settings, making
them more like notations in a programming language. For such markup language appli-
cations, DSDs may play an important role in describing almost all syntactic constraints,
while providing a practical solution to the handling of defaults. Indeed, questions of
how to use PML effectively in practice originally motivated the development of the
DSD language.

The XPML notation as outlined here is somewhat incomplete. It is similar to
VoiceXML, a new dialogue markup language developed by AT&T, IBM, Lucent and
Motorola. Voice XML is not very similar to HTML, but otherwise resembles XPML in
scope and purpose.

6.1 The IVR scenario

Our case study is presented from the application programmer’s point of view. The
scenario calls for the development of a tiny interactive voice application that greets
customers of different nationalities. The programmer will use the domain-specific lan-
guage XPML, whose syntax is defined using DSD. The main idea of XPML is that
simple HTML-like pages describe a finite-state machine, where intra-page hyperlinks
become goto statements and text becomes synthesized spgath; fields corre-
spond to subdialogues for obtaining numbers seddct elements become dialogues

a la “for sales, choose 1; for customer service, choose 2,...".

Each subdialogue construct provides numerous parameters for specifying prompts,
help messages, timeout durations, timeout counts, and messages in various error sit-
uations. As a further complication, there are several interdependencies among these
parameters. For example, some HTML elements are associated with several possi-
ble interaction stylesthat support situations such as: unusually many choices in a
menu, number input restricted to certain ranges, variations in dialogue style (“press

22

any key when you hear the right choice”), etc. The interaction style is specified by an
interaction attribute. Naturally, the kinds of prompt parameters, along with many
other settings, are dependent on the value of this attribute.

6.2 DSDs for syntax explanations

Our application programmer is a novice XPML user, who has seen only a few exam-
ples of XPML code. One role of the DSD is to provide a readable, concise syntactic
summary. The programmer should not have to read the DSD as an XML file; instead,
a BNF-like version in the form of a hyperlinked HTML document may be produced
by an XSLT style sheet transformation. For example, the DSD definition of the ele-
mentXPML, the top element of an XPML document, is shown below (left) through an
XSLT style sheet transformation into HTML. The pretty-printed version is designed to
resemble the concrete syntax of an application document; the original DSD definition
(right) is less appealing:

<ElementDef ID="XPML">
<Sequence>
<BriefDoc>
The head element
may be omitted.

<XPML>ID=XPML:
(<head>
Constrainthead-constraint
</head> [Defaultable],
<body>
Constrainbody-constraint
</body>)
</XPML>

</BriefDoc>
<Element Name="head"
Defaultable="yes">
<Constraint IDRef=
"head-constraint"/>

</Element>

<BriefDoc>
The body element is
mandatory.

</BriefDoc>
<Element Name="body">
<Constraint IDRef=
"body-constraint"/>
</Element>
</Sequence>
</ElementDef>

TheBriefDoc documentation strings of the XML version are translated into HTML
tite attributes—they provide the effect of a pop-up explanation when the mouse
pointer is over the corresponding definition. This particular snippet of a DSD speci-
fies that thexPMLelement consists of Bead element followed by &ody element.

The head is defaultable, which means that it may be omitted if a default for it has
been specified, and its attributes and content are specified by the constraint named
head-constraint . Similarly, thebody element is specified by the constraliotly-

23

constraint . The XSLT style sheet can be found at the DSD Web site; it is rather
complicated, taking up approximately 25 pages.
6.3 DSDs for debugging

We now explore how schemas may help the debugging of XML documents. Assume
that the application programmer’s first attempt at the XPML program is:

<?dsd URI="xpml-att.dsd"?>
<XPML>
<head>
<application name="HELLOWORLD"/>
<maintainer address="klarlund@research.att.com"

loglevel="2"/>
<tittle>The Greeting Application</title>
</head>
<body>
Welcome.

<audio url="/audioclips/greeting.vox"/>

<menu nhame="nationality">
<option dtmf="0">To end</option>
<do>
<comment>go to end point</comment>
</do>
<option> If you speak English. </option>
<do> Hello! How are you? </do>
<option> If you speak Danish. </option>
<do> Goddag! Hvordan g ar det? </do>
</menu>

</body>
</XPML>

The programmer has insertedadsd URI="xpml-att.dsd"?> processing instruc-

tion to indicate that the document must conform to the DSD naxpedtatt.dsd

Using the DSD processor to check the syntax of the document will now produce the
response:

Error in ’'greetings-first-attempt.pm/’

line 10: attribute 'nointerrupt’ has illegal value 'y’
while checking attribute in constraint
"message-attributes”, 'xpml-core.dsd’ line 377

An automated error analysis tool would display this constraint along with the pertinent
auxiliary definitions:

24

ConstraintDef ID= message-attributes
nointerrupt =" YesOrNo"[Optional]

StringTypeDef ID= YesOrNo:
(" yes" | "Yes" | "no" | "N

revealing that the programmer must wrijes" instead of'y" . Naturally, the other
schema notations offer similar capabilities. Most people will probably get acquainted
with schemas only through such error-reporting; thus, it is very important that the
schema notation itself is as simple as possible to make error messages understandable

for non-experts.

6.4 DSDs for myriads of defaults

Once the above error is corrected, the DSD processor accepts the document and inserts
all the default attributes and default elements specified by the DSD for XPML. The

resulting document is:

<?dsd URI="xpml-att.dsd"?>
<XPML>
<head>
<application name="HELLOWORLD"/>
<maintainer address="klarlund@research.att.com"

loglevel="2"/>
<tittle>The Greeting Application</title>
</head>
<body>
Welcome.

<audio url="/audioclips/greeting.vox"/>

<menu asrmode="none" endchars="#" finaltimeout="5000ms"
interaction="basic" interdigittimeout="4000ms"
maxmisselected="3" maxtimeout="2" maxtterrs="3"
name="feelings" timeout="0ms">
<option dtmf="0">To end</option>
<do>
<comment>go to end point</comment>
</do>
<option> If you speak English. </option>
<do> Hello! How are you? </do>
<option> If you speak Danish. </option>
<do> Goddag! Hvordan g ar det? </do>
<help>No help is available.</help>
<initial>

25

<enumerate><option/>Press
<emph><dtmf/></emph>.
</enumerate>
<[initial>
<timeout> You have exceeded the time limit. </timeout>
<toomanyerrors>Sorry, too many errors.</toomanyerrors>
<counttimeout>Sorry, too many timeouts.</counttimeout>
<pause>Pausing. Press pound sign to continue.</pause>
</menu>

</body>
</XPML>

Itis similar to the original document except that all timing and counting parameters that
are relevant according to the schema have beeninserted. Also, various default messages
used in error and help situations, likiaelp>No help is available.</help>

have been inserted. Voice programming, as well as HTML layout, is dependent on

a great number of parameters whose tuning is often essential to obtaining the desired
performance. However, it would be quite a burden if all parameters should explicitly
be stated in each document.

This example shows how DSDs generally allow XML notations to be abstracted
away from rendering details in a way similar to CSS. However, we should note that
DSDs do not subsume CSS: in the domain of visual formatting there are some arith-
metic rules about inheritance of values that cannot be expressed in DSD.

DSD style sheets

DSD defaults defined by both the system and the application programmer may be gath-
ered in files known agxternal parsed entitiesThese are just like XML documents
except that multiple root elements are allowed. They work as style sheets by inclusion
in the application document via theclude processing instruction.

Below, the application programmer has defined a DSD style sheet that overrides the
defaulthelp element for thenenu construct in two ways: for menu without aclass
attribute, the message “We're sorry, can't help you more right now, but please call us at
1-800-greetings” is specified; fomaenu with aclass attribute of valueexplain , the
default content ofelp instructs the customer to press “1” to have the error explained.

<DSD:Default>
<Context>
<Element Name="menu"/>
</Context>
<DefaultContent>
<help>
We're sorry, can't help you more right now,
but please call us at 1-800-greetings

26

</help>
</DefaultContent>
</DSD:Default>

<DSD:Default>
<Context>
<Element Name="menu">
<Attribute Name="class" Value="explain"/>
</Element>
</Context>
<DefaultContent>
<help>
Press 1 for further explanation.
</help>
</DefaultContent>
</DSD:Default>

Thus, parameters can be gathered hierarchically in files to achieve the cascading effect
that enable abstractions, formulated as sets of defaults, to be easily customized.

6.5 DSDs for simplifying XPML processing

With a DSD processor, XML documents mayit@malizedoy default insertion in the
sense that (1) without inserted defaults (assuming all default informationis erased from
the DSD) the document is not conforming and (2) with defaults inserted the document
is conforming and no more defaults would be inserted—if it were to be run again.

Since defaults can only be overridden by application document, the defaults given
with the DSD itself provide a set of assumptions about the shape of the document that
results from running the DSD processor on a valid document. For example, the XPML
interpreter can assumeenu elements are fully filled-in with timing attributes and con-
tent such aselp anderror messages, since an application programmer provided
default can change this information, but not permit it to disappear.

For this reason, the system programmer, who is writing a semantic interpreter for
XPML, may omit a host of error and default situations that would otherwise be typical
of a domain specific language like XPML. In other words, the DSD notation itself, with
its emphasis on parameters and defaults, becomes a domain modeling tool that directly
simplifies the building of software.

6.6 Summary of DSD advantages

We have made a preliminary description of the full XPML language. Our experiments
show that almost all of the syntax and static semantics of XPML can be captured as
DSDs. This exercise has illustrated four practical aspects of DSD schemas:

e DSDs aid the XPML programmer to choose the right syntactic constructs. To
enhance readability of DSDs, we indicate how to present them in a more con-
ventional BNF-like way that closely resembles the concrete syntax of the XPML
notation.

27

e XPML programmers can easily check their documents for most errors using the
DSD processor alone.

e XPML programmers can use the CSS-like default mechanism that comes with
DSDs. Thus, XPML programs can be “styled” in a declarative and modular
fashion.

e DSD descriptions significantly simplify the programming of an interpreter for
XPML.

In contrast, the XML Schema notation proposed by the W3C covers only the first
two points, and only partly so: first, the notation is incapable of capturing much of
the attribute structure of XPML, and second, the notation itself is so complicated that it
may impede its use as an explanatory medium directed towards computer professionals.

7 Related Work

The specification of the basic XML notation includes the schema language DTD (Doc-
ument Type Definition), which is a subset of the DTD mechanism known from SGML.
XML DTD is a grammar notation that allows a content model and a list of attributes

to be declared for each element name. The content model is a restricted form of reg-
ular expressions over element names and chardata nodes: if chardata is allowed, then
only unordered content can be described. Also, content specifications have to satisfy a
determinism property, which is reminiscent of our operational interpretation of content
expressions. Attributes can be declared with another restricted form of regular expres-
sions permitting only enumerations of strings to be specified. The attribute declarations
also allow defaults to be specified. As in DSD, validity checking is performed by a top-
down traversal of the application document. In addition to grammatical descriptions,
DTD also contains the notions ehtity definitionswhich is a kind of macro mecha-
nism, andnotations which provide semantic references to data formats. The typical
use of entity definitions is subsumed by our inclusion mechanism and the various def-
inition constructs. DSD, as well as many other schema languages, does not have an
equivalent of DTD notations, since we regard them as independent of syntactical de-
scriptions.

It is generally agreed that DTD is insufficient for many promises. Some typical ar-
guments are: it does not itself use XML notation; most common data types for chardata
and attribute values cannot be expressed; there is very limited support for modularity
and reuse of descriptions; and content and attribute declarations cannot depend on at-
tributes or element context.

A large number of other schema languages have been proposed since the introduc-
tion of XML and DTD. In the following, we give a brief summary of these, focusing on
what we believe are the most important alternatives: XML Schema and RELAX NG.

A further comparison of various schema language proposals, including DSD, can be
found in [25].

28

7.1 XML Schema

Based on the experience with the DTD, XML-Data, DDML, DCD, and SOX schema
languages, which we mention in Section 7.3, W3C has designed the language XML
Schema. The requirements that this schema language should address according to W3C
are found in [26]. This document briefly outlines usage scenarios such as publishing,
electronic commerce transactions, authoring, databases, and metadata exchange, which
are areas we believe are covered by DSDs. The design principles are summarized as
follows: “The XML Schema language shall be more expressive than XML DTDs;
expressed in XML; self-describing; usable by a wide variety of applications that em-
ploy XML; straightforwardly usable on the Internet; optimized for interoperability;
simple enough to implement with modest design and run time resources; and coordi-
nated with relevant W3C specs.” Additionally, a number of structural requirements
are defined: “The XML Schema language must define mechanisms for constraining
document structure (namespaces, elements, attributes) and content (datatypes, entities,
notations); mechanisms to enable inheritance for element, attribute, and datatype def-
initions; mechanism for URI reference to standard semantic understanding of a con-
struct; mechanism for embedded documentation; mechanism for application-specific
constraints and descriptions; mechanisms for addressing the evolution of schemata;
and mechanisms to enable integration of structural schemas with primitive data types.”
The DSD language, we believe, satisfies the principles and requirements outlined
above, except that we have paid less attention to a precise coordination with other W3C
standards (some of which were under development when DSD was designed). Laying
aside issues such as whether XML Schema or DSD is straightforwardly usable on the
Internet, we present next some significant technical and conceptual differences.

Constraints vs. complex types

The most essential difference between XML Schema or DSD is the way structural
descriptions are specified. In DSD, the central notion iscthestraint which corre-
sponds to theomplex typesn XML Schema. However, the constraints in DSD in-
volve boolean logic and context expressions; neither feature has a counterpartin XML
Schema.

The DSD constraint mechanism allows attribute declarations and content descrip-
tions to depend on attributes in the the current element and of its ancestors. As shown
in Section 3.2, this is a very useful mechanism that we believe many XML language
descriptions can benefit from. In fact, both XHTML and the XML Schema language
itself have validity requirements of this form, but they simply cannot be formalized in
XML Schema.

Content models

The notion of complex types in XML Schema is also related to our content expressions.
In XML Schema, the regular expression operators cannot be combined arbitrarily. For
instance, the operator for describing unordered content can contain only individual
elements. This makes it difficult to express combinations of ordered and unordered

29

content. Also, in XML Schema when describing mixed content, that is, content con-
taining both elements and chardata, no constraints can be given on the chardata. Only
if the content is pure chardata can its values be constrained. In DSD, these limitations
do not exist.

String types vs. simple types

The string types in DSD correspond to thienple typesn XML Schema defined in

[2]. While we resort to regular expressions and user defined libraries of common type
definitions, XML Schema is primarily based on a large number of predefined types
and various derivation mechanisms. But, XML Schema UNIX-style regular expres-
sions are also supported. The derivation operators can admittedly be more appropriate
than standard regular expression operators, but the expressive power of these two ap-
proaches is formally the same. In our opinion, this sublanguage of XML Schema may
be too complex relative to its benefits.

Inclusion and redefinition vs. inheritance and substitution groups

XML Schema and DSD also differ significantly in their approach to amending and
reusing definitions. DSD uses a simple inclusion mechanism combined with selective
redefinitions, while XML Schema contains a more complicated type system inspired by
object-oriented programming languages. This type system contains two mechanisms:
inheritance by extension or restriction along with substitution groups. The inheritance
mechanism allows instance elements of a subtype in places where a supertype is re-
quired, but only if the elements are explicitly typed in the application document us-
ing specialxsitype attributes. Also, types can be defined to be abstract or final,
as known from programming languages. The substitution group mechanism allows
groups of types to be defined in a way that resembles the inheritance mechanism, but
without the hierarchical type structure and explicit types. The DSD proposal does not
rely on object-orientation, since we found that most application domains do not lend
themselves to this paradigm and are better served with a simpler mechanism.

This raises the question of how DSDs may emulate inheritance. The answer is that
a constraint describing the content of an element type may be extended to include more
content according to an attribute describing the subtype. The constraint augmentation
technique is much more flexible than derivation, for example, content may depend on
more than one attribute. However, it does not offer the guarantee that a later definition
will not violate the principle of object-orientation that an object of a subtype can be
used wherever a supertype is expected.

Default insertion

The default mechanism in XML Schema is similar to the one of DTDs, except that
default strings can be inserted in empty elements. In DSD, the defaults are not tied
to the element and attribute declarations, but are instead defined by an association to
a context expression that can query ancestors and attributes. If for a default definition
this expression is true for the current element, the default is applicable. As shown

30

in Section 6.4, this mechanism may be quite useful in practice. Also, with DSDs
default content is not inserted when an element is empty, but when a content expression
requests it. In contrast to XML Schema, this mechanism allows defaults to be inserted
in the middle of a content sequence, and it is not limited to chardata.

Self-describability

In general, a schema language is self-describing if and only if it is possible within that
language to express all requirements for a document to define a valid schema. Such a
self-description is called meta-schema

According to the design requirements, XML Schema was originally intended to
be self-describable, however, the resulting language is not. As previously mentioned,
it is not just a few technicalities that hinder this property: examples as the one in
Section 3.2 can be found throughout the language specification. This precludes XML
Schema from the many practical benefits of having a meta-schema similar to the one
for DSD in Section 3.10. Additionally, it seems unsatisfactory to suggest an XML
language intended to describe all common XML languages that cannot describe itself.
In a sense, its complexity is higher than its expressiveness.

It is important to note that any schema language can be tweaked into being self-
describable according to the above definition: instead of forbidding certain syntactic
constructions, one can allow them all and just give them some obscure but well-defined
semantics. The fact that DSD is self-describable does not imply that all valid DSDs are
meaningful: since schemas capture requirements only about syntax or static semantics,
there may always be semantic inconsistencies in a syntactically valid document. Still,
in our experience the meta-DSD is able to catch most errors that occur while writing
schemas.

Other features

XML Schema contains a few special features not mentioned so far. The notioh of
valuesin XML Schema allows elements to be empty despite of content requirements.
Specifically, such an element must be declared nillable and hgsieng="true"
attribute. This feature can be emulated directly by our general conditional constraints.
XML Schema includes a subset of XPath [12] for expressing uniqueness require-
ments, keys, and references. A uniqueness constraint specifies that a given expression
must be true at most once throughout a certain subset of the document. Keys and refer-
ences are similar generalizations of the ID/IDREF concepts used in DTD and DSD. To
keep the schema language simple, we have chosen not to include such general mecha-
nisms in DSD.

7.2 RELAXNG

As a competitor to W3C’s XML Schema, the RELAX NG language has emerged
through a joining of the RELAX and TREX projects in an effort sponsored by OA-
SIS. These languages all appeared after the DSD 1.0 specification was published.

31

RELAX [30] is based on the automata-theoretic characterization of regular tree
languages formulated in [28]. According to the original RELAX concept, a speci-
fication expresses a nondeterministic bottom-up tree automaton. In order to decide
whether a given document is accepted by the automaton, an efficient algorithm must
work bottom-up in order to carry out a subset construction on the fly. We depart funda-
mentally from RELAX on this point: we chose to make DSDs similar to deterministic,
top-down automata, even though they formally have less expressive power. There are
several reasons for this decision. First, a top-down approach typically matches the hier-
archical structure of the information being represented and thus is more natural to use.
Second, bottom-up parsing prevents online processing, which requires a left-to-right
traversal of the document text. Third, our idea that schemas should be a foundation
for extending CSS to arbitrary XML requires that we use the same approach as CSS,
which is top-down. Fourth, it is not obvious that the added expressive power is really
necessary in practice. With our semantics, defaults are inserted deterministically as a
part of the parsing process. Had we chosen a more general automaton model, default
insertion would become very complex. Indeed, RELAX is suggested as a notation that
is explicitly designed not to support default insertions. RELAX NG has inherited this
lack of a default mechanism. But like the XML schema team, we believe that defaults
must be supported by the schema notation.

Our notion of constraint assignment is superficially similar to the way automata
states are assigned by RELAX to nodes of the XML tree. However, our current seman-
tics is formulated as a parsing process, not in terms of automata theory.

It was announced [29] that the RELAX project, influenced by the DSD notation,
would adopt a top-down approach based on an automata-theoretic semantics. This
has made the RELAX language quite similar to the TREX language [11], which has
motivated the merge of the two projects.

A schema in RELAX NG is described by a top-down grammar, as in DSD. Ele-
ments are described kpatternscorresponding to the notions of constraints in DSD
and complex types in XML Schema. In contrast to XML Schema, RELAX NG con-
tains achoice pattern operator, reminiscent of our booleanoperator. However,
neither the full boolean logic nor the conditional constraints are available, so complex
dependencies may require all combinations of allowed attributes and contents to be
spelled out. Also, RELAX NG does not contain a notion equivalent to our context
expressions, so ancestor dependencies need to be encoded into the top-down grammatr.
This can cause a blow-up of the schema description when describing multiple ancestor
dependencies. For instance, to simultaneously disallow nesting anchor elements and
form elements, the grammar size will essentially increase by a factor of four.

RELAX NG relies on externally defined data types for attribute values and char-
data. Only operators for enumerations and lists are built-in. In current implementa-
tions, the data types from XML Schema are supported, but this is not required by the
specification. As in XML Schema, chardata cannot be constrained if describing mixed
content—in contrast to DSD where this is possible.

We believe that RELAX NG has succeeded in providing a simple and expressive
alternative to XML Schema. However, the lack of support for defaults, ancestor depen-
dencies, and boolean logic may limit its usability.

32

7.3 Other proposals

DDML [6], which also has been called XSchema, was the result of a collaborative
effort on the XML-DEV mailing list. It is a relatively straightforward generalization of
DTD concepts using an XML notation, only adding little expressive power. A related
language called DCD was proposed in [7]. It suggests using COBOL-like pictures
for expressing string datatypes, adds cardinality constraints to the content models, and
is formulated in the RDF framework. XML-Data [24] introduced element keys and
references to generalize the ID/IDREF mechanism from DTD, and also inheritance
of element descriptions for supporting modularization and reuse. Related to that is
SOX [15], which is based more purely on an object-oriented paradigm. The XDR
language [18] was designed as a simplification of XML-Data. None of these languages
offer a unifying notion of context-dependent constraint as that in DSD.

Assertion Grammars [32] is an interesting approach that achieves some of our goals
since it is based implicitly on nonterminals. It contains a powerful notion of tree pat-
terns, which is reminiscent of our context patterns. Recast in our terminology, asser-
tions are redefinitions of nonterminals that conditionally extend their meaning. The
condition reflects the context where the addition is valid. We believe it would be pos-
sible to explain Assertion Grammars fully in terms of DSD concepts. Conceivably,
Assertion Grammar concepts could be integrated with DSDs, where they would stand
for abbreviations of DSD constructs. Assertion Grammars allow only a restricted class
of extensions, and they do not allow as flexible context dependencies as DSDs.

The Schematron proposal [20] is based on idea of adapting the XPath framework
for expressing tree patterns and validity constraints, as an alternative to grammar-
centered formalisms. A Schematron schema consists of a number of declarative rules,
each essentially being defined by two XPath expressionentextspecifying the ap-
plicability of the rule and assertionspecifying a validity requirement. Schematron
language descriptions are open, in the sense that everything that is not explicitly forbid-
den is allowed. Most other schema languages, including DSD, have the opposite view.
Because of the open description model and the high expressiveness of XPath, Schema-
tron is often viewed as a supplement to ordinary schemas, not as a replacement.

As argued in Section 6.4, our form of default insertion is a useful way of assigning
CSS-like properties in the form of element attributes to the application document. We
know of no other work that has suggested a generalization of CSS based on a schema
notation.

Finally, we compare DSDs to XSLT [10], which is a Turing-complete XML trans-
formation language based on a tree-walking model. We have attempted to design DSD
such that its expressive power matches essential aspects of this functional program-
ming language. Specifically, it is very common that XSLT programs visit each node
only once, recurse on children according to XPath tests that concern attributes of the
current node and properties of ancestors, and carry no parameters. Generally speak-
ing, DSDs can mimic the recursion of such XSLT programs. Technically, this can
be proven by constructing a DSD constraint for each hamed or unnamed template.
The functionxsl:apply-templates , the basic recursive construct, can be trans-
lated into a constraint that drives typing of subnodes. The nodes selected are identified
in the DSD through a propagation of types, where non-empty types are used in all

33

non-selected nodes. The details of this correspondence would require very technical
arguments, which are outside the scope of this paper.

In XSLT, the programmer’s assumptions about the existence or absence of attributes
or children is implicit, and XSLT processors do not produce any error messages if such
assumptions are not complied with. With DSD, the assumptions can be formalized and
checked using the boolean logic and context-dependent constraint mechanisms.

8 Conclusion

The DSD language provides a simple but expressive alternative to other XML schema
proposals. It embodies a formal approach to the specification, validation, and default
completion of XML syntax. It addresses issues such as context dependencies, declara-
tive defaults, schema evolution, semi-structured data, complex data types, and efficient
implementation. It has an expressive power that mirrors some essential aspects of
XSLT. Moreover, the DSD language has been implemented and tested in practice. It
is our hope that ideas from DSD may further simplify XML standards that go beyond
just being grammar notations.

More concretely, we believe that in particular the following ideas have proven suc-
cessful: the application of context expressions, boolean logic, and conditional con-
straints to describe dependencies, the flexible content model, the declarative default
mechanism, and the top-down traversal method.

By the many proposals for XML schema languages, it is clear that there is no ideal
solution to the problem of designing the right schema language that fits all purposes.
We believe that the DSD language has succeeded in identifying the most central as-
pects of defining sets of XML document. Still, from the experience with DSD and
other recent schema language proposals we are confident that the DSD language can
be further simplified and yet become even more expressive in practice. Based on this,
we continue the development of the DSD schema language in the future. As a first
goal, DSD needs proper support for namespaces, as mentioned earlier.

Our implementation of a DSD processor is available in an open source package.
Please visit the DSD project home pagehigih://www.brics.dk/DSD/ for more
information. This home page also contains other DSD resources, such as the official
specification of the DSD 1.0 language [22], example DSDs and application documents,
and the XSLT style sheet for DSDs mentioned in Section 6.2.

Acknowledgments

We sincerely appreciate the extraordinarily thorough feedback that we received from
the reviewers. We also thank the participants of the Spring 2000 XML course at the
University of Aarhus for their enthusiasm. DSD users in the XML community have
also provided us with many insightful comments and suggestions.

34

References

[1] Liora Alschuler. XML Schemas: Last word on last call, July 2000.
http://www.xml.com/pub/a/2000/07/05/specs/lastword.html .

[2] Paul V. Biron and Ashok Malhotra, editorsXML Schema Part 2: Datatypes
W3C, May 2001 http://www.w3.org/TR/xmlschema-2/

[3] Scott Boag et al., editorXQuery 1.0: An XML Query Languag®/3C, Decem-
ber 2001 .http://www.w3.0org/TR/xquery/

[4] Bert Bos, Hikon Wium Lie, Chris Lilley, and lan Jacobs, editorsCas-
cading Style Sheets, level 2, CSS2 SpecificationW3C, May 1998.
http://www.w3.0rg/TR/REC-CSS2/

[5] Ronald Bourret. Namespace myths exploded, March 2000.
http://www.xml.com/pub/a/2000/03/08/namespaces/

[6] Ronald Bourret, John Cowan, Ingo Macherius, and Simon St. Laurent, edi-
tors. Document Definition Markup Language (DDML) Specification, Version 1.0
W3C, January 199ttp://www.w3.0rg/TR/NOTE-ddml

[7] Tim Bray, Charles Frankston, and Ashok Malhotra, editddcument Content
Description for XML W3C, July 1998 http://mww.w3.0rg/TR/NOTE-dcd

[8] Tim Bray, Dave Hollander, and Andrew Layman, editodamespaces in XML
W3C, January 199ttp://www.w3.org/TR/REC-xml-names

[9] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler, editBss.
tensible Markup Language (XML) 1.0 (Second Editiohy3C, October 2000.
http://www.w3.0org/TR/REC-xml

[10] James Clark, editorXSL Transformations (XSLT) SpecificatioWw/3C, 1999.
http://www.w3.org/TR/WD-xslt

[11] James Clark. TREX - tree regular expressions for XML, February 2001.
http://www.thaiopensource.com/trex/spec.html .

[12] James Clark and Steve DeRose, editodsIL Path LanguageW3C, November
1999. http://www.w3.0rg/TR/xpath

[13] James Clark and Makoto Murata, editorRELAX NG Specification OASIS,
December 2001http://www.oasis-open.org/committees/relax-ng/ .

[14] The Unicode ConsortiumTlhe Unicode Standard, Version 2.8ddison Wesley,
1996. http://www.unicode.org/

[15] Andrew Davidson et alSchema for Object-Oriented XML 2.%/3C, July 1999.
http://www.w3.0rg/TR/INOTE-SOX/

[16] Steve DeRose, Eve Maler, and Ron Daniel Jr., editoif8lL Pointer Language
W3C, September 200hittp://www.w3.org/TR/xptr

35

[17] Steve DeRose, Eve Maler, and David Orchard, editdidL Linking Language
W3C, June 2001http://www.w3.org/TR/xlink

[18] Charles Frankston and Henry S. Thompson. XML-Data reduced, July 1998.
http://www.Itg.ed.ac.uk/"ht/XMLData-Reduced.htm

[19] Philipp Hoschka, editorSynchronized Multimedia Integration Language (SMIL)
1.0 SpecificationW3C, June 1998attp://www.w3.org/TR/REC-smil

[20] Rick Jelliffe. The Schematron: An XML structure validation language
using patterns in trees, 1999. http://www.ascc.net/xml/resource/
schematron/schematron.html

[21] Nils Klarlund. From the programmer's point of view: XML
for IVR and how DSD schemas may help. Unpublished re-
vision of “XPML: industrial case study”, currently available at
http://www.research.att.com/projects/DSD/industrial-case/
software-symposium-ATT-00-paper/ , September 2000.

[22] Nils Klarlund, Anders Mgller, and Michael I. Schwartzbaddocument Struc-
ture Description 1.0 AT&T & BRICS, October 1999. BRICS NS-00-7,
http://www.brics.dk/DSD/specification.html

[23] Nils Klarlund, Anders Mgller, and Michael I. Schwartzbach. DSD: A schema
language for XML. INACM SIGSOFT Workshop on Formal Methods in Software
Practice (FMSP’00)2000.

[24] Andrew Layman et al., editors. XML-Data W3C, January 1998.
http://www.w3.0rg/TR/1998/NOTE-XML-data/

[25] Dongwon Lee and Wesley W. Chu. Comparative analysis of six XML schema
languagesSIGMOD Record29(3), 2000.

[26] Ashok Malhotra and Murray Maloney, editorsXML Schema Requirements
W3C, February 199%ttp://www.w3.0rg/TR/NOTE-xml-schema-req

[27] Anders Mgller and Michael I. Schwartzbach. The XML revolution, December
2001. BRICS NS-01-&ttp://www.brics.dk/~amoeller/ XML/

[28] Makoto Murata. Hedge automata: a formal model for XML schemata, June 1999.

http://www.xml.gr.jp/relax/hedge nice.html
[29] Makoto Murata. Announcement dnttp://www.xmlhack.com , August
2000.

[30] Makoto Murata. How to RELAX. Technical report, xml.gr, August 2000.
http://www.xml.gr.jp/relax/

[31] Steven Pemberton et al., editol-ITML 1.0: The Extensible HyperText Markup
Language W3C, January 200http://mwww.w3.org/TR/WD-html-in-xml

36

[32] Dave Raggett. Assertion grammars. http://www.w3.org/People/
Raggett/dtdgen/Docs/ , May 1999.

[33] Jonathan Robie. W3C XML Schema questionnaire, July 2000.
http://www.ibiblio.org/xgl/tally.html .

[34] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn, editors. XML Schema Part 1. Structures W3C, May 2001.
http://www.w3.0rg/TR/xmlschema-1/

37

