DSD: A Schema Language for XML

Nils Klarlund, AT&T Labs Research
Anders Mgller, BRICS, Aarhus University
Michael I. Schwartzbach, BRICS, Aarhus University

Connections between XML and Formal Methods

XML: a notation for labeled trees,
a lot of technologies built on top

Formal Methods: notations and reasoning principles for
complex systems at an abstract level

Our aim: show that proven FM technologies are

applicable to the world of XML
— expressiveness
— simplicity
— efficiency
— elegance

FMSP 2000 2

The 1deas behind XML

« Textual notation for hierarchically structured information
« Built-in internationalization and platform independence

<?xm version="1.0"
encodi ng="1 so-8859-1" >
<article 1id="117">
<aut hor s>
Nils Kl arlund,
</ aut hor s>
<abstract >
XM. (eXtensi bl e Markup Language)
is a linear syntax for ...
</ abstract >

</article>

concrete, textual representation

FMSP 2000

article[id=117]

\

aut hor s abstract
Nils Klarlund, ... XM ...

abstract, tree representation

Central technologies building on top of XML

Schema languages (grammar notations)
e.g. DTD, DSD, XML Schema, ...

Transformation languages
e.g. XSLT, XDuce, ...
Query languages
e.g. XML-QL, Quilt, ...

All could benefit from Formal Methods!

Our DSD proposal: a schema language with a CS foundation.
Each DSD document defines (essentially) a regular tree language.

DSD: Document Structure Description

FMSP 2000

What schemas can do for you

« Formalize your notion of “articles” by making a DSD description

 Check validity of your article XML documents using
a DSD processor

Example:

1. Insert <?dsd URI ="article.dsd”> In the article header

2. Run the DSD processor: dsd article. xn
The result might be:

Error in "article.xml’ line 17: attribute 'font’ has ill egal
value '"ttt’ (checking attribute in "article.dsd |ine 84)

In order to be useful, the schema notation must
— have enough expressive power
— be efficiently implementable
— be easily understandable

FMSP 2000 5

Design goals

DSD must

o allow linear-time processing

 be 100% self-describing

e subsume the expressive power of DTD

e contain a default mechanism for attributes, elements, and text
e support modularization, evolution, and reuse

* Dbe able to express semi-structured data

 handle syntax for attributes and text

e support context dependencies

e support conditional constraints

FMSP 2000

A quick tour of DSD

Processing model: like a deterministic top-down automaton,
but extended with
— default insertion
— a sophisticated transition function with context sensitivity

(A top-down approach complies with the recursive structure of
typical XML languages!)

Each node is associated a state called an “Element Definition ID”,
referring to a description in the DSD of a particular kind of element.

If the top-down traversal succeeds, the document “conforms” to
the DSD.

FMSP 2000 7

An example: a DSD for XML ““business cards”

An application document:

<card type="sinple’>
<nanme>John Doe</ name>
<title>CEQ, Wdget Inc.</title>
<enmuai | >j ohn. doe@u dget . conx/ emai | >
<phone>(202) 456-1414</ phone>

</ card>

A part of a DSD for business-card XML documents:

<DSD | DRef =" car d- el enent " >

<Title>This is a DSD for XM. business cards</Title>

<El enent Def | D="card-el ement” Nane="card”>
<AttributeDecl Nane="type” Optional ="yes”>

<Uni on><String Val ue="si npl e’/ ><String Val ue="conpl ex”/ ></Uni on>

</ Attri but eDecl >
<El enent Nane="nane” ><Stri ngType/ ></ El enent >
<If><Attribute Name="type” Val ue="sinple”/><Then> ... </ Then></If>

</ El enent Def >

</ DSD>

FMSP 2000

Element constraints

The central DSD construct:

<El enent Def I D="El enent | D’ Nane="el enent naneg” >
constrai nt
</ El enent Def >

It associates an element name and a constraint to an
Element Definition ID.

A constraint declares and constrains attributes and content
of the element.

Constraints can be made conditional on attributes and context.

FMSP 2000

Attribute declarations

In a constraint,
e element attributes can be declared hierarchically

 their allowed values can be constrained

FMSP 2000

10

String types

We use standard regular expressions to define valid values for
element attributes and text.

All well-known data types can be described by regular expressions:
— URLs
— email addresses
— ZIP codes
— ISBN numbers

— and they can be processed efficiently using automata techniques.

Other schema notations rely on fixed sets of data types.

FMSP 2000 11

Content expressions

Content of an element: its sequence of child nodes

Obvious choice for specifying valid content: regular expressions
However:
e that would conflict with default insertion

e not obvious how to assign a single Element Definition ID to
each child element

The DSD solution: a notation resembling regular expressions, but
e having a direct operational semantics

e support for both ordered and unordered contents

e each child node is matched exactly once

FMSP 2000 12

Context patterns

In practice, many validity constraints on an element
depend on its context. (Same for Cascading Style-Sheets.)

Element context: the sequence of elements above it in the tree

DSD constraints can
e be conditional on the context
e impose requirements of the context

FMSP 2000

13

Default insertion

Insertion of defaults
e iIs very useful
 must be part of the validation process!

The DSD default mechanism is declarative: each default consists of
— an applicability expression (probing context etc.)
— an XML fragment

Defaults are inserted “upon request” during the top-down traversal.

FMSP 2000 14

ID attributes and Points-to requirements

— going slightly beyond regularity

Special attributes:
ID attributes: their values must be unique in the document
IDRef attributes: their values must be that of some ID attribute
— 1.e., they can be seen as internal definitions and references

Additionally, points-to requirements can be imposed on ID attributes.
This allows semi-structured data to be expressed.

FMSP 2000 15

Redefinitions and evolving DSDs

Modification, extension, and reuse is crucial.

The DSD solution:
 document inclusion (allows reuse)
» selective redefinitions (for modification and extension)

FMSP 2000

16

DSD highlights

o Large class of tree languages, handling almost all syntactic
constraints of boolean or regular nature

e Grammar modifications: abstraction, restriction, extension

« Context dependencies, semi-structured data description, and
defaults

FMSP 2000

17

Related work

« DTD (part of XML 1.0 spec.)
— general agreement that it is much too simple

« RELAX (by Makato Murata)

— elegantly characterizes the set of all regular tree languages
— uses bottom-up approach

« XML Schema (draft specification, by W3C WG)
— much more complex than other proposals

— significantly less expressive: no boolean dependencies, schema
evolution, context sensitivity, declarative default insertion, semi-
structured data, ... (but supports namespaces, inheritance, and
unigqueness)

— has been receiving harsh comments for being convoluted and
incomprehensible

FMSP 2000 18

Conclusion

XML represents an excellent opportunity
to promote formal descriptions.

Future work:
— minor extensions to DSD
— simplify DSD even further, and obtain a cleaner semantics
— apply Formal Methods to other areas of XML

FMSP 2000

19

http://ww. brics. dk/ DSD

is a specification of a class of XML documents together with a default mechanism and
docurnertation. The DSO notation is defined in the DSD 1.0 specification. The DSD
project is being pursued at AT&T Labs Research and at BRICS, University of Aarhius in a
non-propristary fashion.

Sanr EBRICS

DSD provides an alternative to XML OTDs and other XML schema languages. It adds
expressive power, increases readability. and contains support for default attributes and
contents. Furthermore. it guarantees linear tirme processing in the size of the application
documert.

The relationship between DSDs and XML Schema is briefly described in this FAG,

A prototype DSD processor has been implemented. 1T is freely available under the GNL
Public Licence for experimentation and further development.

The DSD 1.0 language has been designed by Mils Klarlund, Anders Maller, and Michael |.
Schywartzbach.

For inquiries. comments, or guestions about DS0, please contact dsd@brics k.

Document Structure Description

Document Structure Des cription (D50) is an XML schema language. A DSD document Available resources:

DSD announcement

DSD 1.0 specification

« Qverview article

« DSD description of DSDs

Download free source code and
Win32 executables Mew:

XSLT style sheet

DSD industrial case

Other examples

DSD presentations

XML tutorial wew:

Future issues

Copynight € 1333-2000 ATET and BRICS. Home page maintained by Anders Maller. Lastupdated: June 21 2000,

FMSP 2000

20

