
DSD: A Schema Language for XMLDSD: A Schema Language for XML

Nils Klarlund, AT&T Labs Research
Anders Møller, BRICS, Aarhus University

Michael I. Schwartzbach, BRICS, Aarhus University

FMSP 2000 2

Connections between XML and Formal Methods

XML: a notation for labeled trees,
a lot of technologies built on top

Formal Methods: notations and reasoning principles for
complex systems at an abstract level

Our aim: show that proven FM technologies are
applicable to the world of XML

– expressiveness
– simplicity
– efficiency
– elegance

FMSP 2000 3

The ideas behind XML

• Textual notation for hierarchically structured information
• Built-in internationalization and platform independence

<?xml version=”1.0”
encoding=”iso-8859-1”>

<article id=”117”>
<authors>
Nils Klarlund, ...

</authors>
<abstract>
XML (eXtensible Markup Language)
is a linear syntax for ...

</abstract>
...

</article>

concrete, textual representation

article[id=117]

authors abstract

Nils Klarlund, ... XML ...

...

abstract, tree representation

FMSP 2000 4

Central technologies building on top of XML

• Schema languages (grammar notations)
e.g. DTD, DSD, XML Schema, ...

• Transformation languages
e.g. XSLT, XDuce, ...

• Query languages
e.g. XML-QL, Quilt, ...

• ...

All could benefit from Formal Methods!

Our DSD proposal: a schema language with a CS foundation.
Each DSD document defines (essentially) a regular tree language.

DSD: Document Structure Description

FMSP 2000 5

What schemas can do for you

• Formalize your notion of “articles” by making a DSD description
• Check validity of your article XML documents using

a DSD processor

Example:
1. Insert <?dsd URI=”article.dsd”> in the article header
2. Run the DSD processor: dsd article.xml

The result might be:
Error in ’article.xml’ line 17: attribute ’font’ has illegal
value ’ttt’ (checking attribute in ’article.dsd’ line 84)

In order to be useful, the schema notation must
– have enough expressive power
– be efficiently implementable
– be easily understandable

FMSP 2000 6

Design goals

DSD must
• allow linear-time processing
• be 100% self-describing
• subsume the expressive power of DTD
• contain a default mechanism for attributes, elements, and text
• support modularization, evolution, and reuse
• be able to express semi-structured data
• handle syntax for attributes and text
• support context dependencies
• support conditional constraints

FMSP 2000 7

A quick tour of DSD

Processing model: like a deterministic top-down automaton,
but extended with

– default insertion
– a sophisticated transition function with context sensitivity

(A top-down approach complies with the recursive structure of
typical XML languages!)

Each node is associated a state called an “Element Definition ID”,
referring to a description in the DSD of a particular kind of element.

If the top-down traversal succeeds, the document “conforms” to
the DSD.

FMSP 2000 8

An example: a DSD for XML “business cards”

<card type=”simple”>
<name>John Doe</name>
<title>CEO, Widget Inc.</title>
<email>john.doe@widget.com</email>
<phone>(202) 456-1414</phone>

</card>

An application document:

<DSD IDRef=”card-element”>
<Title>This is a DSD for XML business cards</Title>
<ElementDef ID=”card-element” Name=”card”>
<AttributeDecl Name=”type” Optional=”yes”>

<Union><String Value=”simple”/><String Value=”complex”/></Union>
</AttributeDecl>
<Element Name=”name”><StringType/></Element>
<If><Attribute Name=”type” Value=”simple”/><Then> ... </Then></If>
...

</ElementDef>
...

</DSD>

A part of a DSD for business-card XML documents:

FMSP 2000 9

Element constraints

The central DSD construct:

<ElementDef ID=”Element ID” Name=”element name”>

constraint

</ElementDef>

It associates an element name and a constraint to an
Element Definition ID.

A constraint declares and constrains attributes and content
of the element.

Constraints can be made conditional on attributes and context.

FMSP 2000 10

Attribute declarations

In a constraint,

• element attributes can be declared hierarchically

• their allowed values can be constrained

FMSP 2000 11

String types

We use standard regular expressions to define valid values for
element attributes and text.

All well-known data types can be described by regular expressions:
– URLs
– email addresses
– ZIP codes
– ISBN numbers
– ...

– and they can be processed efficiently using automata techniques.

Other schema notations rely on fixed sets of data types.

FMSP 2000 12

Content expressions

Content of an element: its sequence of child nodes

Obvious choice for specifying valid content: regular expressions
However:
• that would conflict with default insertion
• not obvious how to assign a single Element Definition ID to

each child element

The DSD solution: a notation resembling regular expressions, but
• having a direct operational semantics
• support for both ordered and unordered contents
• each child node is matched exactly once

FMSP 2000 13

Context patterns

In practice, many validity constraints on an element
depend on its context. (Same for Cascading Style-Sheets.)

Element context: the sequence of elements above it in the tree

DSD constraints can
• be conditional on the context
• impose requirements of the context

FMSP 2000 14

Default insertion

Insertion of defaults
• is very useful
• must be part of the validation process!

The DSD default mechanism is declarative; each default consists of
– an applicability expression (probing context etc.)
– an XML fragment

Defaults are inserted “upon request” during the top-down traversal.

FMSP 2000 15

ID attributes and Points-to requirements

– going slightly beyond regularity

Special attributes:
ID attributes: their values must be unique in the document
IDRef attributes: their values must be that of some ID attribute

– i.e., they can be seen as internal definitions and references

Additionally, points-to requirements can be imposed on ID attributes.
This allows semi-structured data to be expressed.

FMSP 2000 16

Redefinitions and evolving DSDs

Modification, extension, and reuse is crucial.

The DSD solution:
• document inclusion (allows reuse)
• selective redefinitions (for modification and extension)

FMSP 2000 17

DSD highlights

• Large class of tree languages, handling almost all syntactic
constraints of boolean or regular nature

• Grammar modifications: abstraction, restriction, extension

• Context dependencies, semi-structured data description, and
defaults

FMSP 2000 18

Related work

• DTD (part of XML 1.0 spec.)
– general agreement that it is much too simple

• RELAX (by Makato Murata)
– elegantly characterizes the set of all regular tree languages
– uses bottom-up approach

• XML Schema (draft specification, by W3C WG)
– much more complex than other proposals
– significantly less expressive: no boolean dependencies, schema

evolution, context sensitivity, declarative default insertion, semi-
structured data, ... (but supports namespaces, inheritance, and
uniqueness)

– has been receiving harsh comments for being convoluted and
incomprehensible

FMSP 2000 19

Conclusion

XML represents an excellent opportunity
to promote formal descriptions.

Future work:
– minor extensions to DSD
– simplify DSD even further, and obtain a cleaner semantics
– apply Formal Methods to other areas of XML

FMSP 2000 20

http://www.brics.dk/DSDhttp://www.brics.dk/DSD

