
DSD: A Schema Language for XML

Nils Klarlund
AT&T Labs–Research

klarlund@research.att.com

Anders Møller
BRICS, University of Aarhus

amoeller@brics.dk

Michael I. Schwartzbach
BRICS, University of Aarhus

mis@brics.dk

ABSTRACT
XML (eXtensible Markup Language) is a linear syntax for trees,
which has gathered a remarkable amount of interest in industry.
The acceptance of XML opens new venues for the application of
formal methods such as specification of abstract syntax tree sets
and tree transformations.

A notation for defining a set of XML trees is called aschema lan-
guage. Such trees correspond to a specific user domain, such as
XHTML, the class of XML documents that make sense as HTML.

A useful schema notation must: identify most of the syntactic re-
quirements that the documents in the user domain follow; allow
efficient parsing; be readable to the user; allow limited tree trans-
formations corresponding to the insertion of defaults; be modular
and extensible to support evolving classes of XML documents.

In the present paper, we introduce the DSD (Document Structure
Description) notation as our bid on how to meet the requirements
above.

The expressiveness of DSDs goes far beyond the DTD concept
that is already build into XML and SGML. In particular, we ad-
vocate the use of nonterminals in a top-down manner, coupled with
boolean logic and regular expressions to describe how constraints
on tree nodes depend on their context. We also support a general,
declarative mechanism for inserting default elements and attributes
that is reminiscent of Cascading Style Sheets (CSS), a way of ma-
nipulating formatting instructions in HTML that is built into all
modern browsers. Finally, we include a simple technique for evolv-
ing DSD documents through selective redefinitions.

The DSD language is completely self-describable, meaning that
the syntax of legal DSD documents together with all static require-
ments are captured in a special DSD document, the meta-DSD of
less than 500 lines.

We relate DSDs to other recent XML schema languages and to lan-
guages for abstract syntax description.

The DSD language is fully implemented and is available in an open
source distribution.

1. INTRODUCTION
XML (eXtensible Markup Language)[5] is a syntax derived from
SGML for markup of text. XML is particularly interesting to com-
puter scientists because the markup notation is really nothing but a
way of specifying labeled trees. The tree view and the convenient
SGML syntax of HTML have been important to the development
of the World Wide Web. Recently, the general XML syntax has
gathered a remarkable amount of interest in industry as a way of
exchanging data such as documents, databases, or computed infor-
mation.

We argue in this document that the acceptance of XML opens new
ways of introducing formal computer science techniques into prac-
tice. Specifically, we study: the formal specification of XML lan-
guages, that is sets of abstract syntax trees, and tree-based default
insertion mechanisms, that is, tree transformations. Both aspects
are part of the DSD (Document Structure Description) notation,
which we introduce informally in this article. Before we explain
DSDs, let us mention some fundamental XML efforts that are al-
ready standardized (in the sense of being a W3C recommendation)
or under development:

• CSS (Cascading Style Sheet)allows XML documents to be
rendered visually (CSS2[1] is the latest official recommen-
dation);

• transformation languagedefines rather general transforma-
tions between XML languages (XSLT[6], which is also called
a style sheet language, became an official recommendation
recently);

• linking defines generalized links between XML resources (X
Link[11] and XPointer[10] are almost completed, whereas
XPath[7], a simple expression language underlying several
of the XML efforts, has just been turned into an official rec-
ommendation);

• schema languageis a current effort similar to ours for de-
scribing the formal syntax of XML applications (XML has
already inherited the DTD concept from SGML, but this no-
tation is considered inadequate by many); and

• query language, which will generalize database queries to
semi-structured data represented by XML documents.

In the area of schema languages, several proposals, such as DDML[2],
DCD[3], SOX[9], Schematron[14], and RELAX[19] have already
emerged. Recently, W3C has issued an official draft proposal for
XML Schema, which has been met with intense debate.

Our DSD proposal is more ambitious than other proposals with the
exception of Schematron, which is based on a pattern matching
paradigm instead of a parsing view, and RELAX, which is more
expressible in some regards. A DSD defines a grammar for a class
of XML documents, documentation for that class, and additionally
a CSS-like notation for specifying default parts of documents. A
DSD is itself an XML document.

We recall that an XML document consists of elements that have
attributes and content; the latter is a sequence of text interspersed
with subelements. For an example, take the HTML markup
<body class=’mystuff’>

Hello there
</body>

This is an element representing a node labeled “body”. The node
has an attribute named “class” and two children corresponding to
its content (the stuff between the start tag<body..> and the end
tag</body> : a text node with value “Hello” and an element node
labeled “em”; the “em” node in turn has one child node, which is a
text node.

We have six major goals for the descriptive power of DSDs. They
should:

• allow context dependent descriptions of content and attributes,
since the context of a node, such as ancestors and attribute
values, often govern what is legal syntax;

• generalize CSS[1] (Cascading Style Sheets) so that readable,
CSS-like rules for default attribute values and default content
can be defined for arbitrary XML domains, not only prede-
fined user formatting models;

• complement XSLT[6] in the sense that the expressive power
of DSDs should be close to that of XSLT, so that assumptions
made by XSLT style sheets can be made explicit in a DSD;

• permit the description of semi-structured data, that is, the de-
scription of what references may point to;

• enable the redefinitions of syntactic classes, so that evolving
XML languages can be expressed in terms of existing DSDs;
and

• be self-describable.

It is also important to us that a DSD yields a linear time algorithm
for checking conformance of XML documents and that DSDs are
based on simple concepts familiar to computer scientists. To honor
these ambitions, our design combines several elementary ideas: a
uniform notion ofconstraintthat captures the legality of attributes,
attribute values, and content; conditional constraints guarded by
boolean expressionsthat capture dependencies between attributes,
attribute values, element contexts, and content;nonterminalsin the
form of element IDs that allow several different versions of an el-
ement to coexist; the concept ofprojected contentthat allows suc-
cinct descriptions of both ordered and unordered content;regular
expressionsto describe both attribute values and content sequences;
automatic insertion ofdefault attributes and elements guided by

boolean expressions; several ID types to allow easy redefinitions;
andpoints-torequirements that constrain the targets of references.

Despite its expressive power, the DSD language is simple enough
that it can be rigorously defined in an 15 page English specifica-
tion (excluding examples and introduction). This present paper de-
scribes the main ideas of the language and relates it to other XML
schema language proposals.

Related work
There are currently two major W3C initiatives aiming at describing
classes of XML documents.

The first initiative is called RDF (Resource Description Frame-
work) Schema Specification. RDF is a generic notation for describ-
ing metadata, such as content ratings, user references, or content
relationships. It is based on well-known concepts: named proper-
ties and entity-relationship diagrams. Thus an RDF description is
a graph expressed in a generic notation. RDF schemas, in turn, de-
clare properties and allowed relationships that constrain the shape
of an RDF description. An RDF schema defines a number of do-
mains, mappings among them, and classes, which may be related
by subclass constraints. Thus, RDF schemas aim at describing data
models, not XML syntax as such.

The second initiative is named XML Schemas. The requirements
that a schema language should address are summarized in the doc-
ument[17]. The DSD language, we believe, satisfies the princi-
ples and requirements outlined, except that we have paid less atten-
tion to a precise coordination with other W3C standards (some of
which are under development). In particular, we have not addressed
the relatively modest issue of integrating primitive datatypes with
our structural descriptions. Neither have we addressed the issue of
namespaces[4].

The XML Schema proposal[22] contains many features that may
directly be compared to the DSD language. Other features, such
as those that deal with name spaces and import mechanisms, are
outside the scope of the current DSD proposal.

• The XML Schema proposal introduces several mechanisms,
inspired by object-oriented programming, for restraining how
schemas are constructed such as final, abstract, and equiva-
lence notions. They contribute to the complexity of the lan-
guage, while impeding self-describability. The current DSD
proposal does not rely on object-orientation, since we found
that many application domains, such as HTML, do not lend
themselves to 00.

• In XML Schema, a number of constraint-like concepts are
introduced: complex types, attribute group definition, and
content type concepts. We propose to unify these, and our
additional notion of a boolean constraint, into one concept.

• The XML Schema proposal introduces three different kinds
of content models element content model, element-only con-
tent, and named model group. We introduce only one kind of
content model, which may be anonymous or identified by an
ID.

Apparently, the current XML Schema proposal does not satisfy two
of the requirements in[17]:

• it is not self-describing, since many syntactic constraints on
schemas are not describable by a schema; and

• it does not address schema evolution, that is, how existing
schemas may be combined or amended to reflect new fea-
tures or restrictions.

We address the first requirement by making the DSD language
strong enough to cover boolean conditions, including context de-
scriptions and the description of where ID references point to. Our
meta-DSD, which describes the class of valid DSDs, covers all syn-
tactic constraints.

We address the second requirement by our use of definitions and
redefinitions of nonterminals as a simple solution to the problem of
extending grammatical categories in schemas as they evolve.

There are other significant differences between DSDs and XML
Schema. First, our notion that attributes must be declared gradually
avoids semantic ambiguities in how CSS is used for inserting de-
fault attribute values for XML languages like SMIL[13]. Second,
our schema language captures that content and attribute declara-
tions often depend on ancestors and other attributes; XML Schema
does not allow attributes value dependencies, which are common
to XML languages (including XML Schema itself). Finally, the
key notions of XML Schema of how to specify the recursive struc-
ture of a document are, in our opinion, too weak and at the same
time much too complicated as far as we gather from the current
draft[22].

There have been several other schema language proposals. DDML[2]
was the result of a collaborative effort on the XML-DEV mailing
list. It is a relatively straightforward generalization of DTD con-
cepts. A similar notion called DCD was proposed in [3]. A dif-
ferent approach was suggested by SOX[9], which is based on an
object-oriented paradigm. These languages do not appear to offer
a unifying notion of constraint, or context-dependent declarations.

A interesting approach[21], called assertion grammars, achieves
some of our goals since it is based implicitly on nonterminals. Re-
cast in our terminology, assertions are redefinitions of nontermi-
nals that conditionally extend their meaning. The condition reflects
the context where the addition is valid. We believe it would be
possible to explain assertion grammars fully in terms of DSD con-
cepts; conceivably, assertion grammar concepts could be integrated
with DSDs, where they would stand for abbreviations of DSD con-
structs. Assertion grammars allow only a restricted class of exten-
sions, and they do not allow as flexible context dependencies as
DSDs.

Another approach closely related to ours is that of RELAX[19],
which is based on the automata-theoretic characterization of regu-
lar tree languages formulated in [18]. In RELAX, a specification
expresses a nondeterministic tree automaton. In order to decide
whether a given document is accepted by the automaton, an effi-
cient algorithm must work bottom-up in order to carry out a subset
construction on the fly. We depart fundamentally from RELAX on
this point: we chose to make DSDs similar to deterministic, top-
down automata—otherwise, it would not be obvious how DSDs
could become a foundation for CSS extended to arbitrary XML.
With our semantics, defaults are inserted deterministically as a part
of the parsing process; had we chosen a more general automaton
model, default insertion would become very complex—seemingly

amounting to the solution of a kind of system of equations. In-
deed, RELAX is suggested as a notation that is explicitly designed
not to support default insertions. We disagree: declarative default
mechanisms are so important that they must be supported by the
semantics of the schema notation.

Our notion of constraint assignment is superficially similar to the
way automata states are assigned by RELAX to nodes of the XML
tree; also, we use the idea of[18] to express the transition relation
by regular expressions over automata states. However, our current
semantics is that of a parsing process, not that of automata theory.
(We may in the future decide on a purer semantics, although we are
committed to a top-down approach.)

We know of no other work that have suggested a generalization of
CSS based on a schema notation; the Simple Tree Transformation
Language outlined in[12] seems similar in ambition but is based on
a more operational, and explicit, semantics.

The DSD notation is similar in some respects to the XSLT transfor-
mation language: both employ a top-down traversal of a tree based
on testing properties, such as attribute values, of a current node and
its ancestors. They differ in that the XSLT expression language is
more powerful (so that more properties can be tested), the output
may look very different from the input (whereas DSDs only insert
element and attribute default), and that there are no unique named
constraints assigned to nodes during parsing. DSD with its more re-
stricted formal apparatus allow features such as CSS-like defaults,
linear parsing, and redefinitions, which are hard to achieve with
XSLT.

Similarly, the Schematron[14] proposal is not based on grammat-
ical structures, but uses patterns expressed in XPath/XSLT to im-
pose collections of individual requirements that could possibly be
used in conjunction with grammar-based schema notations.

2. XML CONCEPTS
The reader is assumed familiar with standard XML concepts, such
as those defined in [5]. The following provides a brief description
of the XML object model used in DSDs.

A well-formed XML document is represented as a tree. The leaf
nodes correspond to empty elements, chardata, processing instruc-
tions, and comments. The internal nodes correspond to non-empty
elements. DTD information is not represented. Each element is
label-led with a name and a set of attributes, each consisting of a
name and a value. Names, values, and chardata are strings.

Child nodes are ordered. Thecontentof an element is the sequence
of its child nodes. Thecontextof a node is the path of nodes from
the root of the tree to the node itself. Element nodes are ordered:
An elementv is beforean elementw if the start tag ofv occurs
before the start tag ofw in the usual textual representation of the
XML tree.

Processing instructions with targetdsd or include , as well as
elements and attributes with namespacehttp://www.brics.dk/
DSD, contain information relevant to the DSD processing. All other
processing instructions and also chardata consisting of white-space
only and comments are ignored.

3. THE DSD LANGUAGE
A DSD defines the syntax of a family of conforming XML doc-
uments. Anapplication documentis an XML document intended
to conform to a given DSD. It is the job of aDSD processorto
determine whether an application document is conforming or not.

A DSD is itself an XML document. This section describes the
main aspects of the DSD language and its meaning. For a complete
definition, we refer to [16].

A DSD is associated to an application document by placing a spe-
cial processing instruction in the document prolog. This processing
instruction has the form

<?dsd URI=" URI"?>
whereURI is the location of the DSD. A DSD processor basically
performs one top-down traversal of the application document in or-
der to check conformance. During this traversal, nodes are assigned
constraintsby the DSD. A constraint specifies a requirement of a
node relative to its context and content that must be fulfilled in or-
der for the document to conform. Initially, a constraint is assigned
to the root node. During the checking of a node, its child nodes are
assigned new constraints, which are checked later in the traversal.
Also, checking a constraint may cause default attributes and child
nodes to be inserted. The termthe current elementis used in the
following to refer to the node in the application document that is
being processed at a given moment during the traversal.

If no constraints have been violated upon termination, then the orig-
inal document conforms to the DSD and the resulting document
with defaults inserted is output.

A DSD consists of a number of definitions, each associated with
an ID allowing reference for reuse and redefinition. In the follow-
ing, the various kinds of definitions are described. We use a num-
ber of small examples, some inspired by the XHTML language[20]
and some that are fragments of the book example described in Sec-
tion 5.

3.1 Element constraints
The central kind of definition is theelement definition. An element
definition defines a pair consisting of an element name and a con-
straint. During the application document processing, the elements
in the application documents are assigned IDs of such element def-
initions. An element can only be assigned the ID of an element
definition of the same name.

The IDs of element definitions are reminiscent of nonterminals in
context-free grammars. Each ID determines the requirements im-
posed on the content, attributes, and context of the element to which
it is assigned. We allow several different element definitions with
the same name; thus, element names are not used as nonterminals.
This distinction allows several versions of an element to coexist.

As an example, consider a DSD describing a simple database con-
taining information about books, such as, their titles, authors, ISBN
numbers, and so on. Imagine that both the whole database and
each book entry should contain atitle element, but with differ-
ent structure. Book entry titles may only contain chardata with-
out markup; also, defaults may be specified for book entry titles.
Database titles may contain arbitrary content and no attributes. These
two kinds oftitle elements can be defined as follows:

<ElementDef ID="book-title" Name="title"
Defaultable="yes">

<Content><StringType/></Content>
</ElementDef>

<ElementDef ID="database-title" Name="title">
<ZeroOrMore>

<Union>
<StringType/><AnyElement/>

</Union>
</ZeroOrMore>

</ElementDef>

A constraint is defined by a constraint expression, which can con-
tain declarations of attributes, declarations of element content, boolean
expressions about attributes and context, and conditional subcon-
straints guarded by boolean expressions. These aspects are de-
scribed in the following sections.

The example below expresses something that is impossible or cum-
bersome to formalize in other schema proposals. The requirement
is that anchor elements in XHTML are not nested:

<ElementDef ID="a">
<Constraint>

<Not>
<Context>

<Element Name="a"/><SomeElements/>
</Context>

</Not>
</Constraint>
. . .

<ElementDef>

3.2 Attribute declarations
During evaluation of a constraint, attributes are declared gradually.
Only attributes that have been declared are allowed in an element.
Since constraints can be conditional and attributes are declared in-
side constraints, this evaluation scheme allows hierarchical struc-
tures of attributes to be defined. Such structures cannot be de-
scribed by other schema proposals although they are common; for
instance, in a XHTMLinput element, thelength attribute may
only be present if thetype attribute is present and has valuetext
or password .

An attribute declaration consists of a name and a string type. The
name specifies the name of the attribute, and the string type speci-
fies the set of its allowed values. It is an error if an attribute being
declared is not present in the current element, unless it is declared
as optional.

The presence and values of declared attributes can be tested in
boolean expressions and context patterns. For instance:

<Attribute name="action">
<StringType IDRef="URI"/>

</Attribute>

evaluates totrue if an attribute namedaction has been declared,
is present in the current element, and its value matches the string
typeURI.

Our notion of gradual attribute declaration is essential to the use
of CSS-like mechanisms in generic XML settings. For example,

the proposed use of CSS in SMIL[13] is not entirely well-defined:
with a CSS-like mechanism both setting and testing attributes in
no pre-defined order the result of default insertion is ambiguous.
(This ambiguity does not appear when CSS is used to set formating
properties that live in a different universe from attributes.)

3.3 String types
A string typeis a set of strings defined by a regular expression.
String types are used for two purposes: to define valid attribute
values and to define valid chardata.

Regular expressions provide a simple, well-known, and expressive
formalism for specification of sets of strings. All reasonable sets
can be defined, and by the correspondence with finite-state au-
tomata, an efficient implementation is possible. A rich set of op-
erators is provided, such asSequence , ZeroOrMore , Union ,
Optional , Intersection , Complement .

The use of regular expressions is more flexible than using a pre-
defined collection of data types. Furthermore, the relations-ship to
finite-state automata guarantees an efficient implementation. Spe-
cial automata representations, such as MONA[15], promises that
this approach extends to Unicode[8].

All well-known data types, such as URIs, e-mail addresses, and
ZIP codes, can be described by regular expressions. The following
example shows the definition of ISBN numbers:

<StringTypeDef ID="isbn">
<Sequence>

<Repeat Value="9">
<Sequence>

<CharSet Value="0123456789"/>
<Optional>

<CharSet Value=" -"/>
</Optional>

</Sequence>
</Repeat>
<CharSet Value="0123456789X"/>

</Sequence>
</StringTypeDef>

3.4 Content expressions
The content of an element, its child nodes, can be viewed as a se-
quence of element nodes and chardata nodes. We ignore other kinds
of nodes and assume that there are no adjacent chardata nodes. (Ad-
jacent ones may be joined by concatenation.)

As a part of an element constraint, a set of valid content sequences
can be specified using a formalism which resembles regular expres-
sions, but is modified to take default insertion into account.

Content expressions are built of atomic expressions and content ex-
pression operators. An atomic expression is either an element de-
scription or a string type. Element descriptions are used to assign
constraints to the child elements, and string types specify char-
data child nodes. There is no backtracking across constraint as-
signments to child elements: once a sequence of children has been
matched, the assignment of constraints to them is fixed, and parsing
continues in a top-down manner.

The operators consist ofSequence , ZeroOrMore , AnyEle-
ment , Union , If , and a few others.

As an example, the valid content of a XHTMLtable element
(see [20], App. A.1) can be described by the following content ex-
pression:

<Sequence>
<Optional>

<Element IDRef="caption"/>
</Optional>
<Union>

<ZeroOrMore>
<Element IDRef="thead"/>

</ZeroOrMore>
<ZeroOrMore>

<Element IDRef="tfoot"/>
</ZeroOrMore>

</Union>
<Optional>

<Element IDRef="thead"/>
</Optional>
<Optional>

<Element IDRef="tfoot"/>
</Optional>
<Union>

<OneOrMore>
<Element IDRef="tbody"/>

</OneOrMore>
<OneOrMore>

<Element IDRef="tr"/>
</OneOrMore>

</Union>
</Sequence>

Modulo the syntactic overhead of the XML notation, this example
could just as easily be expressed in DTD. But, as explained in the
following, DSDs also allow more complex content requirements to
be specified.

A constraint may contain a collection of content expressions. Each
of them must match some of the content of the current element, just
like each attribute declaration must match an attribute. More pre-
cisely, each content expression is matched against a subsequence
of the content that consists of elements mentioned in the content
expression itself. Thus, the actual content isprojectedonto the el-
ements that the content expression is about. If, for instance, the
content expression mentions elementsA andB, and the content is
a sequence of elementsA, B, C, a chardata node, and an element
A, then this expression is matched against the projected contentA,
B, A (and the match fails). This method makes it easy to specify
requirements of bothorderedandunorderedcontent. Additionally,
unordered content is declared just like attributes.

In the XHTML specification, the content of thehead element is
described as “head.misc , combined with a singletitle and an
optionalbase element in any order”. In a DTD, this requirement
can be formalized only by listing all the possible combinations in a
single regular expression. The XML schema proposal introduces a
separate operator to express interleavings. In a DSD, three content
expressions in a constraint does the job:

<Content IDRef="head.misc"/>
<Element IDRef="title"/>
<Optional><Element IDRef="base"/></Optional>

When checking a set of content expressions, each of them are thus
checked in turn on their own subsequence of the content. As an fi-
nal requirement, each content node must be matched by exactly one

content expression. Thus, generally speaking, content expressions
in a constraint must not overlap, just as it is an error to declare an
attribute more than once.

3.5 Context patterns
A context pattern can be used to make defaults, constraints and
content descriptions context dependent.

Context patterns are defined in essence like CSS selectors[1]. A
context pattern is a sequence of context terms; a context term is
either anelement patternor aSomeElements element. The con-
text of the current element is a sequence of nodes, starting at the
root of the XML tree, and ending in the current element. The con-
text of the current element matches a context pattern if the con-
text can be decomposed into consecutive fragments, such that the
sequence of context terms match the sequence of fragments. An
element pattern specifies an element name and a set of attributes,
and is matched by a single element node if the name and attributes
match. ASomeElements is matched by any context fragment.
Implicitly, all context patterns begin with aSomeElements ele-
ment.

The following example is a context pattern that matches thoseli
elements that are immediately withinul elements insideform el-
ements whosemethod attribute has valuepost :

<Context>
<Element Name="form">

<Attribute Name="method" Value="post"/>
</Element>
<SomeElements/>
<Element Name="ul"/>
<Element Name="li"/>

</Context>

To see how useful context-dependent definitions are, let us consider
a common situation: an XML grammar that represents not one but
several related XML notations. For example, a DSD may specify
both draft and final markup notations for books. This is the sce-
nario mentioned in the XML 1.0 specification, where conditional
sections of DTDs may be used to describe variations:

<!ENTITY % draft ’INCLUDE’ >
<!ENTITY % final ’IGNORE’ >
<![%draft;[
<!ELEMENT book (comments*, title, body,

supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>

Here, two flags (macros or parameter entities), calleddraft and
final are used to control the expansion of the two conditional
definitions ofbook . Typically, these flags would be declared in the
document type declaration of the application document, whereas
the conditional sections would be declared in an external DTD. The
declarations in the application document are processed before the
external DTD.

As stated, the first conditional definition is expanded since the first
item of the conditional definition expands toINCLUDE. Similarly,
the second definition is not expanded since the first item expands

to IGNORE. In our opinion, this mechanism is cumbersome and
unsafe. A document writer must set two flags at the same time, and
they must not both beINCLUDEor IGNORE.

With DSDs, the parameterization of the XML grammar can be ex-
plained in terms of the application document itself. For example,
if the root element is calledDOC, then an attributedraft of this
element would govern the definition of abook :

<ElementDef ID="book">
<Sequence>

<If>
<Context>

<Element Name="DOC">
<Attribute Name="draft"

Value="true"/>
</Element><SomeElements/>

</Context>
<Then><ZeroOrmore>

<Element IDRef="comments"/>
</ZeroOrMore></Then>

</If>
<Element IDRef="title"/>
<Element IDRef="body"/>
<Optional>

<Element IDRef="supplements"/>
</Optional>

</Sequence>
</ElementDef>

Here the logic of the different versions is clearly spelled out at
the XML level of the application document itself. We believe that
this simple mechanism is not possible with any other of the XML
schema proposals.

3.6 Default insertion
Default attributes and content are defined by an association to a
boolean expression. Such attributes or content isapplicable for
insertion at a given place in the application document if the boolean
expression evaluates to true at that place.

The following example defines that thelength of input fields
of typetext is by default 20:

<Default>
<Context>

<Element Name="input">
<Attribute Name="type" Value="text"/>

</Element>
</Context>
<DefaultAttribute Name="length" Value="20"/>

</Default>

Defaults are inserted “upon request” by constraints:

• When an attribute declaration is encountered and the declared
attribute is not present in the current element, an applicable
default is inserted, if a such exists.

• During evaluation of a content expression, if an element de-
scription or a string type is encountered and the next content
node does not match the description, then an applicable de-
fault is inserted, if a such exists. Default elements can only
be inserted if declared as defaultable by the description.

A notion of specificityof defaults, based on CSS[1], is used to de-
termine a default when more than one is applicable. Intuitively, the
default with the most complex boolean expression is chosen; if two
are equally complex, the one latest defined is chosen.

For convenience, defaults can also be defined in the application
document. Every application document element may contain de-
fault definitions, which in a sense extend the DSD. Such default
definitions are recognized using theDSDnamespace. They are not
considered part of the application document by the DSD processor.
Their scope are not the whole application document; they are con-
sidered as applicable default definitions only in the subtree rooted
by the element in which they occur.

The following example shows how thelength default previously
defined may be overridden for certaintext typeinput elements,
namely those insideform elements that have anaction attribute
whose value is a string starting withhttp://www.brics.dk/ :

<DSD:Default>
<Context>

<Element Name="form">
<Attribute Name="action"/>

<Sequence>
<String Value="http://www.brics.dk/"/>
<ZeroOrMore><AnyChar/></ZeroOrMore>

</Sequence>
</Attribute>

</Element>
<SomeElements/>
<Element Name="input">

<Attribute Name="type" Value="text"/>
</Element>

</Context>
<DefaultAttribute Name="length" Value="30"/>

</DSD:Default>

Defaults defined in the application document are always considered
more specific than defaults defined in the DSD document. Further-
more, when two application document defaults are applicable and
they are not siblings, the one with the smallest scope, that is, the
inner-most, will always be considered more specific than the other.

Our notion of default mechanism goes much beyond other schema
proposals. We do believe that CSS is so useful and well-established
that a generic version should be adopted along with a schema lan-
guage.

3.7 ID attributes and points-to requirements
In attribute declarations, a DSD may declare that application doc-
ument attributes are of type ID or IDRef, as is also possible with
DTDs. An attribute of type ID is considered adefinition of the
value of the attribute. Such a definition must be unique. Similarly,
an IDRef attribute is areferenceto the element containing the at-
tribute defining the given value, and such an element must exist.

Additionally, a DSD may impose apoints-torequirement on the
element denoted by a reference. Such a requirement is defined by
a boolean expression, which may probe attribute values and con-
text as we have seen. This mechanism allows description of semi-
structured data.

In the following example, abook-reference attribute is de-
clared. It must refer to an element with an attribute of type ID

occurring in abook element:

<AttributeDecl ID="book-reference"
IDType="IDRef">

<PointsTo>
<Context><Element Name="book"/></Context>

</PointsTo>
</AttributeDecl>

Points-to requirements are checked in a separate phase after the
main traversal of the XML tree.

As explained in Section 4, the DSD language is self-describable.
The meta-DSD relies on the ID mechanism to enforce proper use
of definitions.

3.8 Redefinitions and evolving DSDs
It is often the case that a whole class of related XML schemas is to
be defined. Also, often one wants to create an XML schema from
an existing schema by making modifications and extensions. DSDs
support these software practices by providing two simple mecha-
nisms:document inclusionandredefinition.

Both DSD documents and application documents can be created as
extensions of other documents using a specialinclude process-
ing instruction of the form

<?include URI=" URI"?>

whereURI denotes the document to be included, that is, inserted
in place of the processing instruction. A document can only be
included once into a given document; subsequent attempts are ig-
nored.

In DSDs, all definitions can be renewed. One can include a doc-
ument containing a definition of a concept and then later rede-
fine the concept. Since the DSD language is designed to be self-
describable, the meta-DSD must be able to express this notion of
redefinition.

In order to allow modification and extension of existing application
document definitions, two new attribute types,RenewIDandCur-
rIDRef, are introduced beside ID and IDRef. All definitions can
be redefined using RenewID; an IDRef attribute refers to thelast
occurring definition or redefinition in the document. An attribute
of type CurrIDRef refers to thecurrent definition, which is the last
definition or redefinition occurring before which does not contain
the element with the CurrIDRef attribute. Assume that in some
existing DSD, abook element has been defined as follows:

<ElementDef ID="book">
<Constraint IDRef="book-constraints"/>

</ElementDef>

<ConstraintDef ID="book-constraints">
. . .

</ConstraintDef>

Consider a situation where we want to reuse this DSD but would
like to extend thebook constraints with a new attribute declaration.
This can be done using RenewID to redefinebook-constraint
and CurrIDRef to refer to the original definition:

<ConstraintDef RenewID="book-constraints">
<Constraint CurrIDRef="book-constraints"/>
<AttributeDecl Name="new-attribute"/>

</ConstraintDef>

3.9 Self-documentation
Documentation may be associated to most constructs in a DSD.
This is treated as meta-information, which does not affect the pro-
cessing. It allows a DSD to be virtually self-documenting towards
application authors. Also, a DSD processor may use this informa-
tion when errors are detected to provide the author with useful help.

The DSD language allows three kinds of documentation:Label ,
which can be used to attach a label to the construct;Doc, which is
intended for full documentation of the construct; andBriefDoc ,
intended for a brief description, which could be translated in a title
attribute of HTML (the effect is that a box with the brief documen-
tation pops up when the mouse is over the construct). Documen-
tation may consist of arbitrary XML, but a XHTML-like subset is
recommended.

4. THE META-DSD
The DSD language is self-describable: there is a DSD that com-
pletely captures the requirements for an XML document to be a
valid DSD. We provide such a DSD of less than 500 lines, called
themeta-DSD. It can be used both as a human readable description
of DSD to clarify unclear issues, and by DSD processors to check
whether a given XML document is a valid DSD. The meta-DSD
resides athttp://www.brics.dk/DSD/dsd.dsd ; thus, all
DSD documents should contain the processing instruction:

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

stating that they are intended to conform to the meta-DSD.

5. THE BOOK EXAMPLE
We now present a small example of a complete DSD. It describes
an XML syntax for databases of books. Such a description could
be arbitrarily detailed; we have settled for title, ISBN number, au-
thors (with homepages), publisher (with homepage), publication
year, and reviews. The main structure of the DSD is as follows:

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

<DSD IDRef="database" DSDVersion="1.0">
<ElementDef ID="database">

<ZeroOrMore>
<Element IDRef="book"/>

</ZeroOrMore>
<Element IDRef="database-title"/>

</ElementDef>
...

</DSD>

In the database element we use projected content to allow the
title to appear anywhere. The remaining definitions are pre-
sented below, excluding thetitle element and theisbn string
type that are shown in Section 3.

<ElementDef ID="book">
<AttributeDecl Name="isbn" Optional="yes">

<StringType IDRef="isbn"/>
</AttributeDecl>
<Sequence>

<If><Attribute Name="isbn"/>
<Then>

<Optional>
<Element IDRef="book-title"/>

</Optional>
</Then>
<Else>

<Element IDRef="book-title"/>
</Else>

</If>
<OneOrMore>

<Element IDRef="author"/>
</OneOrMore>
<Element IDRef="publisher"/>
<Element Name="year">

<StringType IDRef="digits"/>
</Element>
<Optional>

<Element Name="review">
<StringType IDRef="url"/>

</Element>
</Optional>

</Sequence>
</ElementDef>

The isbn attribute is optional; if it is not present in abook , then
a title is mandatory.

<ElementDef ID="author">
<Sequence>

<Element Name="first">
<StringType IDRef="simple"/>

</Element>
<Optional>

<Element Name="initial">
<StringType IDRef="simple"/>

</Element>
</Optional>
<Element Name="last">

<StringType IDRef="simple"/>
</Element>

</Sequence>
<Optional>

<Element IDRef="homepage"/>
</Optional>

</ElementDef>

<ElementDef ID="publisher">
<StringType IDRef="simple"/>
<Optional>

<Element IDRef="homepage"/>
</Optional>

</ElementDef>

An order is imposed onfirst , initial , and last , but pro-
jected content allows the optionalhomepage element to appear
anywhere.

<ElementDef ID="homepage">
<StringType IDRef="url"/>

</ElementDef>

<StringTypeDef ID="url">
<ZeroOrMore><AnyChar/></ZeroOrMore>

</StringTypeDef>

A naive definition ofurl is chosen here. It could be replaced
with the full 200 line official definition, which is indeed a regular
language.

<StringTypeDef ID="simple">
<OneOrMore>

<Union>
<CharRange Start="a" End="z"/>
<CharRange Start="A" End="Z"/>
<CharSet Value=". - &"/>

</Union>
</OneOrMore>

</StringTypeDef>

<StringTypeDef ID="digits">
<ZeroOrMore>

<CharRange Start="0" End="9"/>
</ZeroOrMore>

</StringTypeDef>

Such string types should be part of a standard library.

<Default>
<Context>

<Element Name="book"/>
</Context>
<DefaultContent>

<title>Untitled</title>
</DefaultContent>

</Default>

This definition allows untitled books to receive the default titleUn-
titled . An example of a conforming application document looks
as follows:

<?dsd URI="http://www.brics.dk/DSD/book.dsd"?>

<database>
<title>

Classic Computer Science Books
</title>
<book isbn="0201485419">

<title>
The Art of Computer Programming

</title>
<author>

<first>Donald</first>
<initial>E</initial>
<last>Knuth</last>
<homepage>

http://www-cs-faculty.stanford.edu/
˜knuth/

</homepage>
</author>
<publisher>

Addison-Wesley
<homepage>http://www.aw.com</homepage>

</publisher>
<year>1998</year>

<review>
http://www.amazon.com/exec/obidos/ASIN/

0201485419
</review>

</book>
</database>

6. THE XPML EXAMPLE
At AT&T Labs, we have used DSDs to describe XPML, an HTML-
like experimental language that has been developed for program-
ming IVR (Interactive Voice Response) systems. The XPML no-
tation has evolved from being a simple version of HTML, dubbed
PML, to becoming a rich programming environment for telephone
services that rely on text-to-speech, touchtone input, speech recog-
nition, and call control.

Often, XPML documents resemble conventional marked-up docu-
ments; but sometimes they are heavily customized with many de-
fault time and prompt settings, making them more like notations
in a programming language. DSDs play an important role, since
they can describe almost all syntactic constraints of the language.
(Indeed, the needs of PML originally motivated the development of
the DSD language.)

The XPML core: big picture
XPML has a simple core, similar to HTML; for example,state
ments compriseselect , a and menu elements andinline
content, whereinline is text oraudio or span elements. This
part of the syntax is describable by DTDs as well. The DSD re-
flects the fact that the syntax really is more complicated:form
statements may occur only when not nested inside anotherform
statement, andinput statements may occur only inside aform
statement. These context dependencies are easily expressed using
a combination of boolean logic and regular expressions.

The XPML core: attribute dependencies
The type attribute of theinput statement determine what other
attributes are possible and what the allowed content is. For exam-
ple, when thetype attribute istext , asize attribute is allowed.

Platform specific markup
Variations in hardware or device choices influence language con-
structs, such as attributes and their value ranges. These constraints
are modeled in separate DSDs that amend the description of the
core XPML language. For example, thexpml-att DSD describes
metric attributes for controlling how information about user ses-
sions are reported back to the server.

Additional abstractions
At the other end of the abstraction spectrum is the need for nu-
merous variations on basic constructs, such as the select element.
Each variation is a generic interaction style characterized by how
the user is prompted and how error situations are handled. Each in-
teraction style is itself further parameterized by various messages,
timeout parameters, and so on. These variations would be hard de-
scribe using other formal techniques such as object-oriented types;
they are simply too heterogeneous. Nevertheless, they look rather
much alike on the surface. As an example, themenuelement is al-
ready described in the core DSD as containing elements according
a regular expression

<ElementDef ID="menu">
<OneOrMore>

<Sequence>
<Element IDRef="menu-option"/>
<Optional>

<Element IDRef="menu-do"/>
</Optional>

</Sequence>
</OneOrMore>
<Constraint IDRef="menu-constraint"/>
<Constraint IDRef="menu-dtmf-constraint"/>

</ElementDef>

The content expression denotes any non-empty sequence ofop-
tion elements, where eachoption element allows an optional
do element immediately following it. Also, a constraintmenu-
constraint is introduced to be a place holder for attributes com-
mon to both speech and touchtone (DTMF) input as the DSD evolves;
similarly, menu-dtmf-constraint is introduced as a place
holder for touchtone specific constraints.

In a separate DSD that describe the interaction style abstraction,
theinteraction attribute that selects an interaction style, either
basic or optional , is introduced, along with the extra elements
counttimeout andpause that are allowed:

<ConstraintDef RenewID="menu-constraint">
<Constraint CurrIDRef="menu-constraint"/>
<AttributeDecl Name="interaction"

Optional="yes">
<StringType IDRef="Menu-interaction-name"/>

</AttributeDecl>
<If>

<Or>
<Attribute Name="interaction"

Value="basic"/>
<Attribute Name="interaction"

Value="optional"/>
</Or>
<Then>

<Element Name="counttimeout"
Defaultable="yes">

<Constraint IDRef=
"message-attributes"/>

<Content IDRef=
"menu-message-content"/>

</Element>
<Element Name="pause" Defaultable="yes">

<Constraint IDRef=
"message-attributes"/>

<Content IDRef="menu-message-content"/>
</Element>

</Then>
</If>

</ConstraintDef>

Platform dependent defaults
The number of defaults for XPML is very large; there are many
patterns in the assignments, and the CSS-like default mechanism
is particularly suited for capturing the defaults in as systematic a
way as possible. For example, we can express that bothselect
andmenu elements share certain default values for some of their
attributes:

<Default>
<Or>

<Context><Element Name="select"/></Context>
<Context><Element Name="menu"/></Context>
<Context><Element Name="input"/></Context>

</Or>
<DefaultAttribute Name="maxtterrs"

Value="3"/>
<DefaultAttribute Name="maxmisselected"

Value="3"/>
<DefaultAttribute Name="maxtimeout"

Value="2"/>
<DefaultAttribute Name="endchars"

Value="#"/>
<DefaultAttribute Name="interdigittimeout"

Value="4000ms"/>
<DefaultAttribute Name="finaltimeout"

Value="5000ms"/>
<DefaultAttribute Name="timeout"

Value="0ms"/>
</Default>

We have made a preliminary description of the full XPML lan-
guage. Our experiments show that almost all of the syntax and
static semantics of XPML can be captured as DSDs.

7. THE DSD 1.0 TOOL
A prototype DSD processor has been implemented and is freely
available. This prototype shows that it is possible to implement a
complete DSD processor in less than 5000 lines of simple C code.
The processor tests conformance of application documents and in-
serts defaults.

By using a DSD processor as a front-end for other XML tools, these
often become much simpler to construct. The DSD processor itself
relies on this technique. Using the meta-DSD it can be checked
that a given DSD document is indeed a valid DSD. Then, when
using this DSD to check the actual application documents, the pro-
cessor simply assumes that the DSD is valid. This bootstrapping
technique has reduced the size of the implementation and made it
more readable.

The DSD language is designed such that a linear-time processing is
possible. The prototype fulfills this property; execution time is pro-
portional to the size of the application document (where DSD de-
faults are viewed as belonging to an extended DSD). The constant
of proportionality depends on the complexity of the given DSD. As
an example, a self-application of the meta-DSD takes less than half
a second.

Functionality
The DSD tool is given the URI of an application document contain-
ing a DSD-reference processing instruction. It performs the traver-
sal of the application document as described in Section 3, and if
it succeeds, it then performs the points-to check described in Sec-
tion 3.7.

Before the application document is processed, the DSD document
(including all application document defaults) is checked to see whether
it conforms to the meta-DSD. This check can be omitted by a command-
line option if the user is certain that the DSD is in fact valid.

If an error occurs, that is, if a document is not conforming to its
DSD, then a suitable error message is inserted in the document
which is then output. If the processing succeeds without errors,
then the defaults are added to the application document. As an ex-
tra feature, the tool can be instructed to add special attributes that
detail the element ID assigned to a node. Such parsing information
can be useful in subsequent processing by other XML tools.

Availability
The DSD processor is available in an open source distribution.
Please visit the DSD project home page at:http://www.brics.
dk/DSD/ for more information. This home page also contains
other DSD resources, such as the official specification of the DSD
1.0 language, example DSDs and application documents, an XSL
style-sheet[6] allowing a pleasing visual rendering of DSD docu-
ments, and more.

8. CONCLUSION
The DSD language provides a simple but very expressive alterna-
tive to other XML schema proposals. It embodies a formal ap-
proach to the specification, validation, and default completion of
XML syntax. It addresses issues such as context dependencies,
CSS-like defaults, schema evolution, semi-structured data, com-
plex data types, and efficient implementation. It has an expressive
power similar to XSLT in the sense that XSLT recursion (even with
modes) and testing based on boolean expressions probing element
and attribute content is expressible as DSDs. Moreover, the DSD
language has been implemented and tested in practice (and the im-
plementation is freely available).

9. REFERENCES
[1] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs,

editors.Cascading Style Sheets, level 2, CSS2 Specification.
W3C, 1998.
URL: http://www.w3.org/TR/REC-CSS2/ .

[2] Ronald Bourret, John Cowan, Ingo Macherius, and Simon St.
Laurent, editors.Document Definition Markup Language
(DDML) Specification, Version 1.0. W3C, 1999.
URL: http://www.w3.org/TR/NOTE-ddml .

[3] Tim Bray, Charles Frankston, and Ashok Malhotra, editors.
Document Content Description for XML. W3C, 1998.
URL: http://www.w3.org/TR/NOTE-dcd .

[4] Tim Bray, Dave Hollander, and Andrew Layman, editors.
Namespaces in XML. W3C, 1999.
URL: http://www.w3.org/TR/REC-xml-names .

[5] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, editors.
Extensible Markup Language (XML) 1.0. W3C, 1998.
URL: http://www.w3.org/TR/REC-xml .

[6] James Clark.XSL Transformations (XSLT) Specification.
1999. URL: http://www.w3.org/TR/WD-xslt .

[7] James Clark and Steve DeRose, editors.XML Path
Language. W3C, 1999.
URL: http://www.w3.org/TR/xpath .

[8] The Unicode Consortium.The Unicode Standard, Version
2.0. Addison Wesley, 1996.
URL: http://www.unicode.org/ .

[9] A. Davidson et al.Schema for Object-Oriented XML 2.0.
W3C, 1999.
URL: http://www.w3.org/TR/NOTE-SOX/ .

[10] Steve DeRose, Ron Daniel Jr., and Eve Maler, editors.XML
Pointer Language. W3C, 1999.
URL: http://www.w3.org/TR/xptr .

[11] Steve DeRose, Eve Maler, David Orchard, and Ben Trafford,
editors.XML Linking Language. W3C, 2000.
URL: http://www.w3.org/TR/xlink .

[12] Daniel Glazman. Simple tree transformation sheets 3.
Technical Report NOTE-STTS3-19981111, W3C, 1998.
http://www.w3.org/TR/NOTE-STTS3.

[13] Philipp Hoschka et al.Synchronized Multimedia Integration
Language (SMIL) 1.0 Specification. W3C, 1998.
URL: http://www.w3.org/TR/REC-smil .

[14] Jeff Jelliffe, editor.The Schematron: An XML Structure
Validation Language using Patterns in Trees. 1999.
URL: http://www.ascc.net/xml/resource
schematron/schematron.html .

[15] Nils Klarlund and Anders Møller.MONA Version 1.3 User
Manual. BRICS, 1998.
URL: http://www.brics.dk/mona .

[16] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
Document Structure Description 1.0. AT&T & BRICS,
October 1999. URL:http://www.brics.dk/DSD/
specification.html .

[17] Ashok Malhotra and Murray Maloney.XML Schema
Requirements. W3C, 1999.
URL: http://www.w3.org/TR/NOTE-xml-
schema-req .

[18] Makoto Murata. Hedge automata: a formal model for xml
schemata, 1999.http://www.xml.gr.jp/relax/
hedge nice.html .

[19] Makoto Murata. How to relax. Technical report, xml.gr,
2000.http://www.xml.gr.jp/relax/ .

[20] Steven Pemberton et al.XHTML 1.0: The Extensible
HyperText Markup Language. W3C, 1999.
URL: http://www.w3.org/TR/WD-html-in-xml .

[21] Dave Raggett. Assertion grammars. Draft,
URL: http://www.w3.org/
People/Raggett/dtdgen/Docs/ , 1999.

[22] Henry S. Thompson et al.XML Schema Part 1: Structures.
2000.
URL: http://www.w3.org/TR/xmlschema-1/ .

