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Abstract. This thesis is in Theory of Computation. We study quantitative as-

pects of computational problems that arise in settings where the input instance

is subject to changes, i.e., dynamic problems. The results include efficient dy-

namic algorithms and data structures and strong information-theoretic lower

bounds for problems on graphs, strings, and finite functions.

Chapter 1 contains a brief introduction and motivation of dynamic computa-

tions, and illustrates the main computational models used throughout the thesis,

the random access machine and the cell probe model introduced by Fredman.

Chapter 2 paves the road to proving lower bounds for several dynamic prob-

lems. In particular, the chapter identifies a number of key problems which are

hard for dynamic computations, and to which many other dynamic problems

can be reduced. The main contribution of this chapter can be summarised in

two results. The first shows that the signed prefix sum problem, which has

already been heavily exploited for proving lower bounds on dynamic algorithms

and data structures, remains hard even when we provide some amount of non-

determinism to the query algorithms. The second result studies the amount of

extra information that can be provided to the query algorithm without affect-

ing the lower bound. Some applications of these results are contained in this

chapter; in addition, they are heavily developed for the lower bound proofs in

the remainder of the thesis.

Chapter 3 investigates the dynamic complexity of the symmetric Boolean

functions, and provides upper and lower bounds. These results establish links

between parallel complexity (namely, Boolean circuit complexity) and dynamic

complexity. In particular, it is shown that the circuit depth of any symmetric

function and the dynamic prefix problem for the same function depend on the

same combinatorial properties. The connection between these two different

modes and models of computation is shown to be very strong in that the trade-

off between circuit size and circuit depth is similar to the trade-off between

update and query time.

Chapter 4 considers dynamic graph problems. In particular, it presents the

fastest known algorithm for dynamic reachability on planar acyclic digraphs

with one source and one sink (known as planar st-graphs). Previous partial

solutions to this problem were known. In the second part of the chapter, the

techniques for lower bound from chapter 2 are further exploited to yield new

hardness results for a number of graph problems, including reachability prob-

lems in planar graphs and grid graphs, dynamic upward planarity testing and

monotone point location.

Chapter 5 turns to strings, and focuses on the problem of maintaining a

string of parentheses, known as the dynamic membership problem for the Dyck

languages. Parentheses are inserted and removed dynamically, while the algo-

rithm has to check whether the string is properly balanced. It is shown that

this problem can be solved in polylogarithmic time per operation. The lower

bound techniques from the thesis are again used to prove the hardness of this

problem.
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Preface

1 Overview

This overview identifies the main contributions in this thesis, including biblio-

graphic references to material that has been already published and due attribu-

tions to my co-authors.

Chapter 1 presents a brief introduction to the concept of dynamic computa-

tion, including a description of the computational paradigms and models used

in the sequel. The chapter contains no new results.

In Chap. 2 we prove new hardness results for the cell probe model of compu-

tation. These lower bounds provide a Leitmotiv that will recur in all remaining

chapters and serves as a connection between our results. The results were ob-

tained jointly with Theis Rauhe [35] and extend previously published material

with Theis Rauhe and Søren Skyum [36].

The three remaining chapters cover various aspects of dynamic computa-

tion and study different combinatorial objects: finite functions, graphs, and

strings. They all appeal to the lower bound hardness results in Chap. 2 but are

independent of each other and their ordering is arbitrary.

In Chap. 3 we will study the hardness of symmetric functions and compare

it known results in other models. Again, these results are from [35]. The

presentation of Boolean circuit complexity includes a new proof that was found

in collaboration with Gerth Stølting Brodal [12].

Graphs are the object of study in Chap. 4. It includes an efficient dynamic

reachability algorithm for a small class of digraphs from [34] and a couple of

lower bounds for graph problem that stem from [36].

Our third case study is strings, namely strings of properly balanced brackets,

to which we turn in the last chapter. This consists mainly of joint work with

Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, Theis Rauhe, and Søren

Skyum [21]; but the lower bounds are updated [35, 36].

2 Acknowledgements

The computer science department in Århus has provided a stimulating environ-

ment for writing this thesis. I thank Gerth Stølting Brodal, Gudmund Frandsen,

Peter Bro Miltersen, Theis Rauhe, and Søren Skyum for collaborating with me.

The latter two wrote their master’s thesis [60] on the work in Chap. 5 and

have contributed many of the results as well as to the presentation. Many other

Århus people have provided insightful comments, including Lars Allan Arge and

Peter Binderup.
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My advisor Sven Skyum has put up with countless scientific (and personal)

oddities from my side. It is to his credit that even though I always enjoyed total

freedom to pursue my own interests he somehow succeeded in gently nudging

me onto the Right Way.

I spent part of my time at the Hebrew University in Jerusalem, and bene-

fitted endlessly from discussion with people there, including Noam Nisan, Jǐri

Sgall, and Avi Wigderson. My stay had profound influence on my taste in

computer science (and my view of the world, for that matter).

I enjoyed financial support from the Danish SU-system, the Århus Faculty

of Science, the Esprit Alcom–IT project (number 20244), and the Danish Re-

search Academy. I acknowledge the fact that I have completed my studies in a

privileged time and country and sincerely whish that more people would have

the same opportunities.
Some parts of the text add only little to the presentation of the material but did

not seem to deserve the hard sentence of omission. They often point out technical
details that seem important to me but few other people or contain comparisons to
the literature that are of little interest to the general audience. To distinguish these
esoteric passages from the main body of the text, and to further discourage the reader,
they are set in smaller type.

This text was typeset using Donald Knuth’s wonderful TEX system [43],

whose qualities never cease to amaze me. The body font is 10/13 Computer

Modern [42], Knuth’s own adaption of Monotype 8A. Kristoffer Rose was only

a staircase away while I typed this material, and many figures were therefore

done in his XY-pic system. Those graphical and typographical atrocities that

remain in the text are entirely due to my own lack of knowledge and taste in

these matters.

This thesis is written in my third-best language, since probably more people

will enjoy it in poor English than in good Danish or German. Even though

native English speakers are a tolerant bunch I apologise for every faux pas in

this work—like referring to myself in the preface with the colloquial ‘I’ only to

change to the more scientific ‘we’ on the next page.
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CHAPTER 1

Dynamic Computation

Weep not that the world changes—did it keep

a stable, changeless state, ’twere cause indeed to weep.

—William Cullen Bryant, Mutation

A theory has only the alternative of being right or wrong. A model has

a third possibility: it may be right, but irrelevant.

—Jagdish Mehra (ed.) The Physicist’s Conception of Nature, 1973.

1 Introduction

Computation can be seen as the process of transforming input to output, prob-

lem to solution, question to answer. But this does not give the whole picture,

for many computational problems arise in contexts where the input is changing,

a setting that we call dynamic as opposed to static.

Even though the theory of dynamic computation does not yet enjoy the same

respectability as, e.g., parallel computation, the concept of dynamic computa-

tion it has been around for a long time.

One of the major discoveries of efficient algorithms is the dynamic data

structure, where information about changing data is maintained in an efficient

way—to solve a static problem! So even when electronic computers were solely

used to solve static problems, dynamic computation turned out to be a useful

concept; algorithmic problems in dynamic settings were studied almost from the

beginning. For example, the behaviour of trees under random deletions was one

of the first topics of algorithmic analysis.

Dynamic computation per se became an object of study somewhat later.

Bentley [9] was among the first to pose the question of which efficient algorithms

can be used in dynamic settings and changed the focus from individual problems

to classes of problems. In the 80s, dynamic algorithms became an established

subject area. Today, a complexity theory of dynamic computation is slowly

evolving [51].

There are other ways to tell this story: The architecture of electronic com-

puters in the Old Days physically reflected static view of computation: batch

11



12 DYNAMIC COMPUTATION [1.2

driven processes transformed input to output. In contrast, today the user inter-

acts with the computer terminal and many computational tasks are inherently

dynamic.

Two issues motivate the theoretical study of dynamic computation: From

a practical point of view, we want to solve problems faster by finding efficient

algorithms that recompute parts of the solution as the instance is subject to

changes, rather than finding the entire solution from scratch. From a theoretical

point of view, we can hope for more insight into the nature of the problem at

hand and into computation itself.

2 Paradigms

There are a number of paradigms for dynamic computation. We will employ

all of them in this thesis without being very orthodox about mixing them up.

The following list makes no claims to completeness. It is, however, informed

of several notions that can be found in the literature. The reader is referred

to [51, 48, 58, 22] for more background.

Dynamic membership problems. Let L denote a language over the alphabet

A. The dynamic membership problem for L is to answer queries of the form ‘is

x in L?’ for some instance x ∈ A∗ that is subject to changes. The most basic

update operation is

change(i, a): replace xi by a ∈ A.

For example, let x be a string of brackets like ((( )( ))( )) and let L be the

language of properly nested brackets. Then the dynamic membership problem

captures a feature of modern editors that parse the structure of the file while

the user edits it. We will study this problem in Chap. 5.

Recomputation of functions. Let f denote a function in variables x1, . . . , xn.

To compute f is to find the value of f(x1, . . . , xn). To recompute f after xi is

changed to x′i is to find the value of

f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

given f(x1, . . . , xn) and possibly an additional data structure. For a very easy

example, the recomputation problem for the or-function in n variables (which

we will denote orn) would be to maintain an instance x ∈ {0, 1}n under the

following updates:

change(i, a): replace xi by ¬xi,

query: return x1 ∨ · · · ∨ xn

For functions like this, that map to {0, 1}, the dynamic membership problem

for f−1(x) is just the recomputation problem.
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Dynamic algorithms. We may say that an algorithm is dynamic if it repeatedly

solves some algorithmic problem on instances that are closely related. Often,

it is a dynamised variant of some well-studied static problem. For example, a

dynamic graph algorithm for reachability can answer reachability queries about

a graph between updates that insert and delete edges.

This notion coincides with previous notions on decision problems. If the

input graph is given by its incidence matrix then we can view this as a dynamic

membership problem for the language of yes-instances. Upper and lower bounds

for dynamic graph algorithms are studied in Chap. 4.

Abstract data types. The abstract data type view is the most general one and

subsumes the other notions of dynamic computation. All data structures can be

viewed as concrete implementations of a set of abstract operations. For example,

the union–split–find problem on interval is to maintain a set S ∈ {1, . . . , n}
under the following operations:

insert(i): remove i from S,

split(i): insert i into S,

find(i): return the largest j such that j ∈ S and j ≤ i (otherwise return 0).

It is difficult (and rather pointless) to draw a precise line between this view

and the previous, mainly because the line between algorithms and data struc-

tures is not very sharp.

2.1 Other Notions

There are other computational paradigms for considering non-static problems

that are closely related to ours. For example, the database view by Immerman

and Patnaik [58], to which we briefly return later.

Among those views that receive a lot of attention is that of ‘on-line al-

gorithms.’ Superficially, this seems closely related to dynamic computation:

There is an update operation that gradually changes the setting, and knowing

the updates beforehand would reduce the problem to the static version. Also,

computation is potentially infinite in both settings, the resource bounds are put

on the operations per update or query.

But the dynamic and on-line setting differ in many ways. One is operational:

the on-line concept of effective computation, ‘competitiveness,’ is defined rel-

ative to an optimal algorithm. Also, the problem studied in both worlds are

quite different.

Precise characterisations of when a problem is on-line and when it is dynamic

are bound to fail, but here is one: In on-line problems, the input instance is

revealed gradually to the algorithm, while in dynamic problems, it changes

gradually. Alternatively, we can view on-line computation as a special case of

dynamic computation.

This work has nothing to say about on-line computations.
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3 Models

3.1 Random Access Computers

Our model of computation is the random access machine, on which all our

algorithms are supposed to run. The machine’s memory consists of registers

with cell size c; for most of our upper bound we will focus on logarithmic cell

size, c = logn. The reason for this particular choice of cell size is a question of

consensus in the field more than anything else. In this thesis, we will sometimes

consider polylogarithmic cell size as well.

The cost function is unit cost, so any register operation takes constant time.

This model is sometimes called the random access computer.

We will not go into the details of which instruction set is provided with

our RAM, since none of our results use such details. In § 2.1 of Chap. 2 we

somewhat esoterically extend our instruction set with nondeterministic choices

and assignments, but only to prove some strong lower bounds for deterministic

computation.

When we say efficient algorithm for a dynamic problem we mean a RAM al-

gorithm that runs in polylogarithmic time per update. The algorithm is allowed

‘reasonable’ preprocessing before the interaction starts, e.g., within polynomial

time or logarithmic space bounds.

3.2 The Cell Probe Model

Our lower bounds will be proved in the cell probe or decision–assignment-tree

model. A decision–assignment tree is a tree with three types of nodes:

1. assignment nodes are labeled with a register r and a value 1 ≤ v ≤ 2c and

have one child, we will sometimes draw their labels as v/M [r],

2. decision nodes are labeled with a register r and have up to 2c ordered

children, we will sometimes draw their labels as M [r],

3. answer nodes are leaves that are labeled 0 or 1.

A query tree is a decision–assignment tree with answer nodes at the leaves.

A memory is a string of registers that can hold values between 0 and 2c.

The computation of a decision–assignment tree on memory M is defined in the

obvious fashion: Start at the root. From a decision node with label r, proceed

to the child identified by the contents of M ’s register r. From an assignment

node with labels r and v, write v into M ’s register r and proceed to the unique

child. The value returned by a query tree is the label of the answer leaf reached.

To implement an abstract data type with a forest of decision assignment

trees we associate a tree with each operation. We have focused on queries

whose outcome is 0 or 1, but this could easily be extended.

Obviously, the cell probe model is at least as strong as the random access

machine, so lower bounds for the former hold on the latter.
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Fig. 1: A cell probe implementation for recomputing orn. Register Mi stores

xi, register M0 stores x1 + · · · + xn using logn bits. There are n update trees

u1, . . . un and a query tree q.

Time for some simple examples. Here is a forest of n trees that remembers

the current instance in registers M1, . . . ,Mn:
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where we let ui denote the tree for the ith query change(i), which is supposed

to flip the ith bit of the instance.

Here is another, which implements the recomputation problem for the parity

function in n variables:

u1 = · · · = un =

M [1]

0
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Note that this algorithm does not even remember the instance. It uses but a

single register of memory and can do with cell size 1.

Figure 1 shows an implementation for recomputing orn. It uses M [0] to

store a counter of the number of 1s in x. The figure also indicates that it makes

sense to explain our algorithms in English rather than by exhibiting cell probe

implementations.

Roots. The cell probe model was defined by Fredman [24] for constant cell

size, but earlier Minsky and Papert [52, § 12.6] reason (about a static problem)

within a model model that is essentially the same. Its most famous application
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is a paper of Yao [72], to whom the model is often attributed, e.g., by Ajtai [2]

in (yet) another remarkable paper.

3.3 Other Models of Computation

Structured models A lot of work has been done for lower bounds on dynamic

problems in structured models like algebraic models, pointer machines, or com-

parison based algorithms. It is beyond the scope of this thesis to give an compre-

hensive overview of this rich field. The results are often edifying when it comes to

understanding the hardness of problems relative to specific computational con-

cepts and are valuable guides in the search for an efficient algorithm. However,

as impossibility results for modern electronic computers their value dubious in

light of schemes like hashing or recent algorithms that exploit the parallelism

inherent in unit-cost register operations. In contrast, the information-theoretic

lower bounds in the cell probe model speak with brutal finality.

Turing Machines Miltersen et al. use Turing machines to develop a framework

for the study of dynamic computation (which they call incremental computa-

tion) with a structural flavour. The paper also contains results on cell probe

computation and comments on the relationship between these two models. Mil-

tersen [48] uses Turing machines to study space-bounded computation.

First Order Queries Immerman and Patnaik [58] define a concept of dynamic

computation based on database theory. Roughly speaking, a problem is in

the class Dyn-FO+ if updates and queries are first-order computable. Little is

known about the connection between cell probe computation and dynamic first

order queries. One can prove, however, prove the following simulation result.

If we let CPROBE(c, t) denote the class of languages that has dynamic

membership cell probe implementations with cell size c and update and query

time t Then for any c, t ≥ 1 with pc = O(log n) we have

CPROBE(c, p) ⊆ Dyn-FO+.

The inclusion is strict for t ∈ o(log n/ log logn).

Here is why. Let L be a language in CPROBE(c, t). Let T1, . . . , T2n denote the
decision-assignment trees corresponding to the operations change(i, a) for 1 ≤ i ≤ n
and a ∈ {0, 1}. From the constraints on c and t we infer

s = max
i≤2n
|Ti| = nO(1).

We will let M denote the trees’ common memory (for simplicity, we can assume
that M(0) is zero iff the input instance is in L). It is not very hard to see that it is
safe to assume that in any Ti, any memory location is queried at most once and on
any path through the tree, and that there is at most one assignment to that location
(which happens after any potential query).

We we will model the family of decision-assignment trees in a structure over the
signature σ. The universe U is of polynomial size, there are two relations in σ: the
relation cont : [|M |] → [2c] that is intended to reflect the contents of M , and the
relation

instr : [2bt]× [n]× {0, 1} → {‘dec’, ‘ass’} × [|M |] × [2c]× [2ct],



that shall reflect the construction of the decision-assignment trees in that

instr(c, i, a) = (type,m, v, c′)

means that the cth node of the tree for change(i, a) is (depending on type) a decision
node labeled by m whose vth son is node c′ or an assignment of v to m whose sole
descendant is c′. Note that both relations are of polynomial size.

With a polynomial amount of precomputation, we initialise the structure S0 as such
that the instr-relation is set up according to the Ti and the cont-relation is initialised
according to the initial state of the memory (this initialisation is usually for free in
the cell probe model, or may be polytime or logspace bounded).

We turn to the operations. It suffices to show that we can emulate the effect of Ti
on M . To this end, we guess a computation path

c1, . . . , ct

using an existential quantification over nO(1) values. For each j and j+1 we now must
check that the path adheres to the structure of Ti using instr.

Using a temporary relation cont′, we then note all memory updates and finally
copy them into cont′. Note that because of our simplifying assumptions on Ti’s access
to M , there is no need for a step-by-step simulation.

For the separation, [FMS93] shows that the word problem for a non-commutative
group requires time Ω(log n/ log log n) even with logarithmic cell size. On the other
hand, the problem is clearly first-order (see [IP94]).

This result has been independently obtained by Immerman and Miltersen (personal
communication, unpublished).





CHAPTER 2

Hard Dynamic Problems

Yet we will ask;

That, if you fail in our request, the blame

May hang upon your hardness:

—William Shakespeare, Coriolanus

This chapter identifies some key problems that are hard for dynamic computa-

tion. These results will be used to prove lower bounds for the problems consid-

ered in the remaining chapters.

1 Signed Prefix Sum

The signed prefix sum problem is to maintain a string x ∈ {−1, 0,+1}n, initially

x = 0n, under updates that change the letters of x and queries that ask for its

prefix sums:

update(i, a): change xi to a ∈ {−1, 0,+1},

sum(i): return
∑i
j=1 xj .

An efficient data structure for this problem is immediate: Store x1, . . . , xn
at the leaves of a balanced binary tree whose internal nodes store the sum of

their children’s values. Updates and queries can be performed in logarithmic

time.

It is known that the lower bound for this problem is Ω(log n/ log(c logn))

per operation. It applies even to the problem of finding the least significant bit

of the prefix sum, namely the following query:

parity(i): return
∑i
j=1 xj mod 2.

The bound is given in [25].

Optimal implementations. It is not hard to meet the lower bound in the cell

probe model. Consider a balanced tree with n leaves and fan-out c; the height

of this tree is at most logn/ log c. In each internal node we store parity of the

bit sum of each of its its c subtrees; this takes up c bits and hence fits into a

single register. In the cell probe model, any register operation can be performed

in unit time, so we are done.

19



20 HARD DYNAMIC PROBLEMS [2.2

This is a toy example of how to cram information into single registers,

thereby exploiting the parallelism provided by unit-cost register operations. To

make this work for realistic machines like RAMs, is much harder but not con-

ceptually different. Dietz [16] has shown how to implement the above algorithm

on a RAM to get the same, optimal, bounds with with c = logn. Interestingly,

his work was spawned by the lower bound in [25], so here an upper bound on

a realistic model was preceded by the matching lower bound in an unrealistic

model.

Roadmap. The present chapter provides two new lower bounds for signed pre-

fix sum-like problems. Theorem 1 studies the behaviour of query algorithms

with nondeterminism, while the Refinement Lemma studies how much addi-

tional information can be disclosed to the query algorithms. Both results will

come in a ‘balanced version’ that will prove very useful for constructing new

lower bounds. Theorem 1 and the Refinement lemma are conceptually inde-

pendent, but proving the latter requires some more work. So, to maintain a

leisurely pace, we turn to nondeterminism first.

2 Nondeterministic Queries

In this section we give the query programs access to unbounded nondeterminism

and show that the signed prefix sum problem is still hard. This in itself is

not an interesting statement, since nondeterminism is not a realistic model of

computation. Instead, the motivation for this result is its use for proving lower

bounds for dynamic algorithms—in realistic models. We will see this several

times in the remaining chapters. Also, the result allows us to make some points

about the power of the time stamp method that would be less sharp otherwise,

see § 4.2.

2.1 Nondeterminism

Nondeterministic Random Access Machines. We allow the query algorithm to

nondeterministically load a new value into a memory cell. We can view this as

extending the instruction set with nondeterministic assignments of the form

i← S, (1)

where the variable i (which is stored in a single memory cell) receives some new

value from the finite set S. (There is no reason to be formal about how the

set S may be specified, since we will be reasoning within the cell probe model

in a minute, where formal definitions will be given.)

The value computed by a nondeterministic program is 1 if and only if there

is a computation that returns 1. Here is an algorithm for prefix-orn that makes

use of nondeterminism to achieve constant time per operation:

update(i):

M [i]← ¬M [i]

query(i):

j ← {1, 2, . . . , i}
return M [j]
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We stress that like in the example above, nondeterminism is only allowed in

the query operations.

Nondeterministic Decision–Assignment Trees. To model this mode of compu-

tation in the cell probe model we introduce a new type of nodes to decision–

assignment trees: a nondeterministic node is labelled ‘∃’ and has up to 2c suc-

cessors (recall that c is the cell size of the memory). Computation is defined

as follows. A computation path is a path in the tree from root to one of the

leaves whose behaviour at decision and assignment nodes agrees with the previ-

ous definition. The value computed by a nondeterministic decision–assignment

tree q on memory M is 1 if and only if there exists a computation path from the

root to a leaf with label 1. In this definition we are guided by use the dynamic

membership view of dynamic computation.

We have not defined which assignments to memory are performed by a non-

deterministic computation when there is a choice.

Note that our computational resource is still the depth of a nondeterministic

query tree, so the cost incurred by a nondeterministic choice is 1. This is a

departure from our usual philosophy of charging only the number of probes into

memory.

Obviously, nondeterministic decision–assignment trees are at least as strong

as random access machines with unbounded nondeterminism. The cost of a

nondeterministic assignment as in (1) is 2, since the ∃-node and the subsequent

assignment node used to model this instruction each increase the tree depth

by 1.

As an example we present n nondeterministic decision trees corresponding to

the nondeterministic RAM-queries for prefix-orn that we just saw. The update

operations are the same as (1) on p. 15; recall that M1, . . . ,Mn contain the

current instance.

q1 =
M [1]

0
����
�� 1

��
&&
&&

∃
��

0 1

, q2 =
M [1]

0
����
�� 1

��
&&
&&
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����
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��
&&
&&

∃
����
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��.
..

0 1 0 1

, · · · , qn =
M [1]

0
����
�� 1

��
&&
&&
M [2]

0
����
�� 1

��
&&
&&

M [n]

0
����
�� 1

��
&&
&&

∃
{{ww

ww
w

		��
�

##GG
GG

G

· · ·

0 1 0 1 · · · 0 1

.

So prefix-orn has nondeterministic cell probe complexity 2 on cell size logn.

Roots. Nondeterminism in decision trees has been studied by Manber and

Tompa [46]. Nondeterminism in random access machines was introduced by

Monien [53].

The literature does not agree on how to define this notion. Bounded nondeter-
minism uses nondeterministic branching in the form of a programming construct like
goto l1 or l2. Unbounded nondeterminism uses nondeterministic assignments to allow
a register to receive a new value, for example by transferring the contents of an arbi-
trary other register as in ‘M [i]←

⋃
n≥1 M [n]’, or choosing an arbitrary integer ‘guess

M [i] ∈ N .’ Additionally, models differ in their choice of cost function and register size.
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For comparison, our lower bound applies to unbounded nondeterminism where the as-
signment operation M [i]← S loads M [i] with an arbitrary value from S ⊆ {1, . . . , 2c};
the set can be any function on n of the information gathered so far. This subsumes
all the above notions with the same cell size.

2.2 Lower Bound for Prefix Sum

Theorem 1 Consider any nondeterministic implementation for cell size c of the

signed prefix sum problem with update time tu. Then the query time tq must

satisfy

tq = Ω
( logn

log(tuc logn)

)
. (2)

The rest of this section is devoted to a proof of this result, which uses the

time stamp technique of [25]. We will study a sequence of updates u1, u2, . . . ,

followed by a single query qi, and argue that on the average (over choices of

update sequences and query index), this query must read many memory cells.

The proof serves as the base for the more elaborate proofs of the balanced

version of Thm. 1 and the Refinement lemma below.

Model and Notation. To each update we associate a decision–assignment tree.

To each query query(i) we associate a nondeterministic query tree qi, with leaves

labeled 0 and 1 to represent the possible answers. Let qM ∈ {0, 1} denote the

result of evaluating the decision tree q on memory M .

We will sometimes view (q1M, . . . , qnM) as a vector, the query vector, in

{0, 1}n equipped with the Hamming distance

Updates and epochs. We will encode updates by binary strings u ∈ {0, 1}∗ in

a way explained below. Write

d =
⌈ logn

log(tuc logn)

⌉
. (3)

We split each string into into d substrings called epochs, whose length is given

by

e(t) + · · ·+ e(1) =
⌊nt/d
d

⌋
. (4)

Time flows backwards, so epoch 1 is the last substring of u, and in general the

update string is an element in

U = UdUd−1 . . . U1, where Ut = {0, 1}e(t).

The length of the entire update string is

|u| = e(d) + · · ·+ e(1) ≤
⌊n
d

⌋
;

to alleviate notation we assume that n/d is an integer in the following. We will

use abbreviations like U>t for Ud · · ·Ut+1, the updates prior to epoch t, and U≤t
for Ut · · ·U1, the updates in epoch t and and later.
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The value in (4) is chosen so that the epoch length decreases very fast,

namely

|U<t|O(tuc log n) = |Ut|o(1), (5)

where we have used (3).

We now define the updates. In general, the ith entry of update string u

changes a letter in x to ui. So, if ui is 0 then nothing happens, if ui is 1 then

update(·,+1) is performed at some position specified below, while update(·,−1)

is never performed in this update scheme.

The position of the affected letter is defined as follows: Consider the updates

in epoch t and index them as u1 · · ·ue(t) ∈ Ut. Write x as a table of dimension d×
n/d like this: 

x1 xd+1 xn−d+1

x2 xd+2 xn−d+2

...
... · · ·

...

xd x2d xn

 ;

The ith update in epoch t affects the letter in row t and the column given by

(i− 1) ·
⌊n/d
e(t)

⌋
+ 1, (6)

so the distance between two letters affected in the same epoch is least⌊n/d
e(t)

⌋
. (7)

Also, no two epochs change the same letter. Fig. 2 shows a small example.

The next lemma is from [25].

Lemma 1 Consider the query vectors that result from update strings that differ

only in epoch t. For large n, at most |Ut|
9
10 are in the same Hamming ball of

radius 1
16n.

Proof. Choose any such Hamming ball and pick an update string that results

in a query vector in that ball. Let u ∈ Ut denote epoch t of this string.

We will bound the number of v ∈ Ut whose query vectors end up in the same

ball. Let w ∈ Ut record the difference between u and v, i.e., the ith letter of w

is 1 if and only if u and v differ on the ith letter. Now let w′ denote the string

of prefix sum parities of w, i.e.

w′i = w1 + · · ·+ wi mod 2, 1 ≤ i ≤ e(t).

It is easy to see that w′ records the difference between the query vectors

resulting from u and v. Indeed, each 1 in w′ yields an interval of indices where

the vectors differ, and the length of this interval is d times the distance given

by (7). In other words, each 1 in w′ contributes as many points to the Hamming
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.2 Index i 1 2 5 10 15 20 25 30

Epoch affecting i · · · 1 2 3 · · 3 · · 3 · · · · · 3 · 2 3 · · · · · 3 · · 3

Update affecting i

in epoch 3: · · · · · u1 · · u2 · · u3 · · · · · u4 · · u5 · · · · u6 · · u7

in epoch 2: · · · · u8 · · · · · · · · · · · · · · u9 · · · · · · · · · ·
in epoch 1: · · · u10 · · · · · · · · · · · · · · · · · · · · · · · · · ·

Examples of update strings:

u = 0000000 00 0
1 2 3 3 3 3 2 3 3 3

resulting instance x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x1 + · · ·+ xi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

result of query(i) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u = 1111111 11 1
1 2 3 3 3 3 2 3 3 3

resulting instance x 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1

x1 + · · ·+ xi 0 0 0 1 2 3 3 3 4 4 4 5 5 5 5 5 5 6 6 7 8 8 8 8 8 8 9 9 9 10

result of query(i) 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0

u = 0101100 11 1
1 2 3 3 3 3 2 3 3 3

resulting instance x 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

x1 + · · ·+ xi 0 0 0 1 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 5 6 6 6 6 6 6 6 6 6 6

result of query(i) 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Fig. 2: Update scheme used in the proof of Thm 1.
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distance between the resulting query vectors. So if we let |w′|1 denote the

number of 1s in w′, the Hamming distance between two query vectors is at least

|w′|1 · d ·
⌊n/d
e(t)

⌋
≥ 1

2 |w
′|1 ·

n

e(t)
, (8)

where we have used that bac ≥ 1
2a for a ≥ 1.

By the triangle inequality, the maximum Hamming distance between two

query vectors in the same ball is 1
8n. This bounds the number of 1s in w′ to

1
4e(t) for large n. Hence the number of choices for w′ is given by

1
4 e(t)∑
i=0

(
e(t)

i

)
< 2

9
10 e(t).

This also bounds the number choices of v ∈ Ut, since there is a 1–to–1 corre-

spondence between v and w′. 2

Memories and time stamps. Let Mu denote the memory after updates u. We

will imagine that whenever a register is written, it receives a time stamp, i.e., the

name of the current epoch, that overwrites any previous time stamps. Thus the

time stamp of a register is the name of the last epoch in which it was written.

A computation encounters a time stamp if it reads a register with that time

stamp.

For index i and update string u let T (i, u) denote the set of ‘unavoidable’

time stamps, i.e., those encountered on every accepting computation path of qi
on Mu. If there are no accepting computations, the set is empty.

This deserves a more formal definition. Let w denote a witness for a compu-

tation path of qi on Mu, and let for a moment A(i, u) denote the set of witnesses

that lead to accepting computations of qi on Mu. Let for a moment T (i, u, w)

denote the set of time stamps encountered by the computation of qi on Mu that

is witnessed by w. Then

T (i, u) =
⋂

w∈A(i,u)

T (i, u, w), if A(i, u) 6= ∅,

and T (i, u) = ∅ otherwise.

Claim 1 If Mu and Mv differ only on registers with time stamp t, and t is in

neither T (i, u) nor T (i, v), then qiM
u = qiM

v.

Proof. If neither qiM
u or qiM

u accepts then there is nothing to prove. Assume

without loss of generality that qi has an accepting computation on Mu. Since t

is not in T (i, u), there must be an accepting computation that avoids registers

with time stamp t. However, this computation might as well be executed on

Mv, by the premise. Hence qi has an accepting computation on Mv as well.

2
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The time stamp method. The next lemma is the crux of the time stamp

method. It shows for every epoch that for the majority of remaining updates,

the registers written in this epoch are read by many queries. In other words, not

all information about the present epoch can be propagated through updates in

the remaining epochs. The fact that the epoch length decreases exponentially

is of course crucial to this argument.

Lemma 2 Fix any epoch 1 ≤ t ≤ d and past and future updates x ∈ U<t,

y ∈ U>t. For large n, at least half of the update strings u ∈ xUty satisfy∣∣{ 1 ≤ i ≤ n | t ∈ T (i, u) }
∣∣ ≥ 1

16n,

for tq = O(log n).

Proof. Consider the set V ⊆ xUty of updates after which fewer than 1
4n queries

encounter time stamp t, i.e. xuy for u ∈ Ut is in V∣∣{ 1 ≤ i ≤ n | t ∈ T (i, xuy)}
∣∣ < 1

16n.

We will bound the size of V below 1
2 |Ut|.

To this end partition V into equivalence classes such that u and v are in the

same class only if Mu and Mv disagree only on registers with time stamp t.

Let us bound the number of classes. Note that at most n2tqc registers appear

in the entire forest of query trees. The number of updates in the last t−1 epochs

is at most

r = tu ·
(
e(t− 1) + · · ·+ e(1)

)
,

so the number of different memories that can result from this is

r∑
i=0

(
n2tqc

i

)
2ic ≤ |U<t|O(tuc logn), (9)

where we have used the bound on tq. We conclude using (5) that the number

of classes is |Ut|o(1).

It remains to bound the size of each class. Consider two query vectors quMu

and qvMv for u and v in the same equivalence class. Then

|quMu − qvMv| ≤ 1
8n, (10)

because 15
16n entries of each vector depend only on registers with other time

stamps than t. On these registers, the memories are indistinguishable and there-

fore yield the same result by Claim 1.

By (10), all vectors from the same class end up in a Hamming ball of radius
1
16n, so Lemma 1 tells us that there can be only |Ut|

9
10 of them.

We conclude that the size of V is bounded by

|Ut|
9
10 · |Ut|o(1)
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which is less than 1
2 |Ut| for large n. 2

We can now prove Thm. 1.

Proof of Theorem. Assume tq = O(log n) so that the premise of Lemma 2

holds—else there is nothing to prove. The worst-case query time is larger than

the average of |T (i, u)| over choices of i ∈ {1, . . . , n} and u ∈ U , so

|U |ntu ≥
∑
u∈U

n∑
i=1

|T (i, u)| (11)

=
d∑
t=1

∑
u∈U>t

∑
w∈U<t

∑
v∈Ut

n∑
i=1

(
t ∈ T (i, uvw)

)
(12)

Lemma 2 tells us how many v ∈ Ut fail to make the last sum exceed 1
16n, so we

can write

|U |ntu ≥
d∑
t=1

|U>t| · |U<t| · 1
16n ·

1
2 |Ut|,

which yields

|U |tu ≥ 1
32

d∑
t=1

|U>t| · |U≤t| = 1
32d|U |,

from which the bound follows. 2

2.3 Prefix Balancing

Consider an algorithm for signed prefix sum that makes the strong assumption

that at all times during the operations, every prefix sum of the instance is

bounded by logn/ log logn. Then this algorithm can do no better.

Theorem 1 (Balanced version) Consider any nondeterministic implementation

for cell size c of the signed prefix sum problem with update time tu. Then for

any integer function d with

d = O
( logn

log tuc logn

)
,

the query time tq must satisfy

tq = Ω(d),

even if the algorithm requires

i∑
j=1

xj ≤ d (13)

to hold for all 1 ≤ i ≤ n at all times.
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u = 1111111 11 1:
5 10 15 20 25 30

x: 0 0 0 + + + 0 0 − 0 0 + 0 0 0 0 0 − 0 − + 0 0 0 0 0 − 0 0 +

Σix: 0 0 0 1 2 3 3 3 2 2 2 3 3 3 3 3 3 2 2 1 2 2 2 2 2 2 1 1 1 2

qi: 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0

u = 0101100 11 1:
5 10 15 20 25 30

x 0 0 0 + + 0 0 0 + 0 0 0 0 0 0 0 0 − 0 − + 0 0 0 0 0 0 0 0 0

Σix 0 0 0 1 2 2 2 2 3 3 3 3 3 3 3 3 3 2 2 1 2 2 2 2 2 2 2 2 2 2

qi 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Fig. 3: Balanced update scheme used in the proof of Thm. 1; compare this with

page 24. We have written + for +1 and − for −1.

Especially, for maximal d and cell size logn, no algorithm can do better than

O(log n/ log logn) per operation, which is the same bound as in the original

formulation.

Proof. The parameter d plays the role of the value defined in (3). Its definition

was only used in (5), which also holds under the present definition.

We construct a slightly different update scheme than above. As before, the

meaning of an update string is defined epoch-wise. Consider the updates in

epoch u = u1 · · ·ue(t) ∈ Ut. The ith update performs update(j, a), where the

update position j is given as in (6) on p. 23. The new value a is given by

(−1)r, where r = 1 + u1 + · · ·+ ui mod 2, (14)

i.e., such that the nonzero updates in u alternate between −1 and +1, starting

with +1.

It can be checked that the entire proof works ad verbatim with this new

update scheme, simply because +1 = −1 mod 2.

However, with the new scheme, the bound (13) holds at all times. For let xt

denote the string resulting from only the updates in epoch t; this is well-defined

because no two epochs write in the same positions by (6). Then we can write

the instance x as x1 + · · · + xd, where the sum is taken coordinate-wise. But

by construction, every prefix of every xt sums to at most 1, which implies the

bound. 2

Note that the other main result of our paper [36] can be easily obtained by letting
the alternating values in (14) start with either +1 or −1, depending on the outcome
of a fair coin flip at the start of every epoch. By standard probability theory, this
implies that at all times during the updates, the expected absolute value of

∑i
j=1 xj is

Θ(
√
d). But we no longer have an application for this result.

3 Refinement

We leave nondeterminism and turn to another variant of the signed prefix sum.
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3.1 Signed Prefix Sum Refinement

We will study the performance of a query algorithm that receives a value s

that is guaranteed to be close to (but not known to be equal to) the right

sum. For example, the result § 2.3 implies that if s is guaranteed to lie within

log n/ log logn of
∑i
j=1 xi, the problem retains its strong lower bound, even

with nondeterminism. This section goes to show that even if s is known to be

at most 1 off the right value, the query algorithm might as well ignore it.

More precisely, we will investigate the complexity of maintaining a string

x ∈ {−1, 0,+1}n, initially 0n, under the following operations:

update(i, a): change xi to a ∈ {−1, 0,+1},

refine(i, s): return
∑i
j=1 xj mod 2, provided that |s−

∑i
j=1 xj | ≤ 1 (other-

wise the behaviour of the query algorithm is undefined).

We immediately state the result of this section in its balanced form; this will

not make our proof any more complicated.

Refinement Lemma Consider any implementation for cell size c of the signed

prefix sum refinement problem with update time tu. Then for any function d

with

d = O
( logn

log(tuc logn)

)
,

the query time tq must satisfy

tq = Ω(d).

Moreover, this is true even if the algorithm requires

i∑
j=1

xj ≤ d

to hold for all 1 ≤ i ≤ n at all times.

The proof can be seen as an extension of that for Thm. 1 in that many

constructions are the same.

Query trees. To each query refine(i, s) we associate a query tree qsi , with leaves

labeled 0 and 1 to represent the possible answers. Correctness will be given by

the condition that

qsiM =
i∑

j=1

xj mod 2, if
∣∣s− i∑

j=1

xj
∣∣ ≤ 1.

For update string u we will write qui for the query tree qsi corresponding to

the ‘right guess’ s = x1 + · · ·+xi, where x the instance resulting from updates u.

The query vector is (qu1M, . . . , qunM), i.e., the responses yielded by guessing right

every time.
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Updates and epochs. Surprisingly, the update scheme for the proof of the

Refinement lemma is exactly the same as that for Thm. 1, so the update position

is given by (6) and the new value by (14). This also means that all prefixes

balance, as claimed in the second part of the Refinement lemma.

However, the update scheme implies some properties of updates that differ

only in a single epoch that we have not used yet. These are abstracted in the

next claim.

Claim 2 Let u and v ∈ U be update strings that differ only in epoch t and let x

and y denote the resulting instances. Then

∣∣ i∑
j=1

xj −
i∑

j=1

yj
∣∣ ≤ 1,

for all 1 ≤ i ≤ n.

Proof. As before, let xt denote the string resulting from only the updates in

epoch t and write x as x1 + · · ·+xd. If two update strings differ only in epoch t,

the corresponding sums x = x1 + · · · + xd and y = y1 + · · · + yd differ only on

the tth term, the prefix sum of which can be at most 1 by construction. 2

Memories and time stamps. For index i and update string u let T (i, u) denote

the set of time stamps encountered by qui on Mu.

Claim 3 Assume that for update strings u and v that differ only in epoch t, the

resulting memories Mu and Mv differ only on registers with time stamp t. Then

quiM
u = qviM

v

for all 1 ≤ i ≤ n.

Proof. Let x and y denote the instances resulting from u and v, respectively.

Choose 1 ≤ i ≤ n. Let s denote
∑i
j=1 xj . By Claim 2 and without loss of

generality,
∑i
j=1 yj = s+ 1. By correctness,

qsiM
u = qs+1

i Mu.

By assumption, we can replace Mu by Mv without changing the result. 2

We can now prove the Refinement lemma.

Proof of Refinement lemma. The proof of Thm. 1 can be reused ad verbatim

with the new definitions. The only twist is in the proof of Lem. 2: In the present

setting, there are n(2n+ 1) query trees, so the left hand side of (9) should read

r∑
i=0

(
n(2n+ 1)2tqc

i

)
2ib

However, this does not affect the calculation. 2
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4 Applications

4.1 More Lower Bounds

As a warm-up, we now use Thm. 1 and the Refinement lemma to prove a lower

bound for another problem—yet another toy problem, but an edifying one.

And, as we will see later, a very useful one. The balanced prefix sum vanishing

problem is to maintain a string x ∈ {−1, 0,+1}n, initially 0n, under updates

that change the letters of x and queries that ask if a prefix sum of x vanishes:

update(i, a): change xi to a ∈ {−1, 0,+1} provided that |x1 + · · · + xj | ≤
dlogn/ log logne holds for all j in the new instance,

vanish(i): return ‘yes’ if and only if x1 + · · ·+ xi equals 0.

Compared to signed prefix sum, this problem only has to keep track of instances

that stay within a narrow interval and only has to check whether the prefixes

are nonzero.

We show that this problem is just as difficult as signed prefix sum. We will

give two proofs of this result, using both results of this chapter. The result is

entailed by a much more general theorem in the next chapter.

Proposition 1 Every implementation with cell size logn of the balanced prefix

sum vanishing problem that uses polylogarithmic time for the updates must spend

time Ω(log n/ log logn) per query.

We focus on logarithmic cell size for no other reasons than ease of presen-

tation. One can prove a more elaborate bound in terms of cell size and as a

trade-off between update and query time (as in Thm 1) with little extra work.

Proof using Thm. 1. Let d be dlogn/ log logne and consider an instance x ∈
{−1, 0,+1}n to the balanced signed prefix sum problem. Define d + 1 strings

y(t) where

y(t) = (−1)t0d−tx, 0 ≤ t ≤ d.

Let tu = tu(n) denote the update time of our algorithm. Whenever x is changed,

we can update the strings y(t) in time (d+1) ·tu(n+d), which is polylogarithmic

if tu is.

Index the strings y(t) from −d to n so that the indices of their last part agree

with x. We then have

i∑
j=−d

y
(t)
j = −t+

i∑
j=1

xj , 0 ≤ t ≤ d, 1 ≤ i ≤ n. (1)

Here is a nondeterministic query that finds the ith prefix sum of x: Guess s

from {0, . . . , d}, we know by the balancing condition that the sum is in that set.

If indeed
∑i
j=1 xj equals s then by the above equation,

∑i
j=−d y

(s)
j vanishes.

This we can verify with a single vanish query. The bound follows from Thm. 1.

2



Proof using the Refinement lemma. The construction of the strings y(t) is as

above. To answer a query refine(i, s) we check

i∑
j=−d

y
(s−1)
j ,

i∑
j=−d

y
(s)
j , and

i∑
j=−d

y
(s+1)
j .

By (1), exactly one of these sums vanish because s is at most 1 off the correct

sum. The bound follows from the Refinement lemma. 2

The first of these two proofs seems slightly easier, probably because nonde-

terminism is a familiar (if unrealistic) mode of computation. Often, both re-

sults can be applied and the choice is a matter of taste; an exception is Thm. 2

from the next chapter, where we cannot do without precision of the Refinement

lemma.

4.2 On the Power of the Time Stamp Method

One of the messages of this chapter is that the time stamp method does not

seem to be able to distinguish between nondeterministic and deterministic com-

putation. This is certainly true for lower bound proofs that use reductions to

prefix parity, since we have seen that this is a hard problem for nondeterministic

computation. But also in a broader sense, the entire technique hinges on the

hardness of propagating sufficient information to later epochs, and this infor-

mation has to be present even for verifying a nondeterministic guess. Hence

we can say that time stamp lower bounds can never be better than the best

nondeterministic algorithm. We feel that this is valuable intuition about an

important technique.

For example, consider the union–split–find problem on intervals from p. 2.

Here is a nondeterministic algorithm: Maintain the interval boundaries in a

doubly linked list; use a balanced search tree to facilitate this in logarithmic

time. To answer a query, nondeterministically guess the left interval boundary

and use the pointer to verify that the right interval boundary is indeed to the

right of the queried point. This takes constant time. No time stamp lower

bound will be able to beat this bound. In other words, we cannot hope for

nonconstant time stamp lower bounds for the Union–Split–Find problem—or

for related ones like existential range queries.

4.3 Amortised bounds.

The original lower bound for signed prefix sum [25] applies also to amortised

bounds. Theorem 1 and the Refinement lemma are expressed in terms of worst

case complexity. Indeed, the present proof of these result does not translate to

an amortised lower bound in any obvious fashion, even though their proof is

very close to that of [25]. This is mainly because our update sequences very

much depend on their epochs. We conjecture that our results do hold in an

amortised version as well.



CHAPTER 3

Symmetric Functions

And [we] have now arrived at the point of asking why are the majority

bad, which question of necessity brought us back to the examination and

definition of the true philosopher.

—Plato, The Republic

This chapter studies the dynamic complexity of symmetric functions. We have

seen that the complexity of prefix-orn is exponentially easier than prefix parity,

so some symmetric functions are harder than others. We will see which and

why in § 4.

The quest for connections to parallel computation encourages us to compare

our findings with known results in other models; we include a review of these

results with some new proofs in §§ 2 and 3.

1 Symmetric Functions

In this thesis, a Boolean function maps {0, 1}n to {0, 1}. Such a function is

symmetric if it depends only on the number of 1s in the input x = (x1, . . . , xn).

Clearly, the value of a symmetric function is fixed under permutations of the

variables. This holds also in the other direction: If f is the same function as

f ◦ π for all permutation π then f is symmetric.

The symmetric functions include some of the most well-studied functions in

complexity theory, examples follow. (Iverson’s notation (P ) means 1 if prop-

erty P holds and 0 otherwise.)

eqbn(x) = (x1 + · · ·+ xn = b), halfn = eqn/2n ,

parn(x) = (x1 + · · ·+ xn = 0 mod 2),

thbn(x) = (x1 + · · ·+ xn ≥ b), majn = thn/2n ,

andn = thnn, orn = th1
n.

In general, we can describe every symmetric function f in n variables by its

spectrum, a string in {0, 1}n+1 whose ith letter is the value of f on inputs where

exactly i variables are 1.

The boundary b of a spectrum s denotes the smallest value such that sbbc =

· · · = sbn−bc. The boundary of the parity function is 1
2n, and the boundary of

the threshold function thbn is min{b, n− b}.

33
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2 Communication Complexity

Alice and Bob, two co-operating but distant players, each hold a set A,B ⊆
{1, . . . , n} such that |A| 6= |B|. Using as little communication as possible, they

want to find an element that is in one set but not in the other, i.e. in the

symmetric difference A4B = (A−B) ∪ (B −A).

This seems to have nothing but a (coincidental) nominal connection to sym-

metric functions, but the cognoscenti will recognise the problem as the ‘commu-

nication complexity version’ of computation of symmetric functions. This will

be clarified in § 3.3.

How To Find Elements in the Symmetric Difference. We start with two pro-

tocols for finding an element in A4B that are obvious but nonoptimal.

Let us first see how Alice and Bob can find an element in A 4 B using

O(log2 n) bits of communication. The protocol for this is a binary search in

logn rounds. Alice and Bob will maintain two integers l and r (for ‘left’ and

‘right’) such that ∣∣A ∩ {l, . . . , r}∣∣ 6= ∣∣B ∩ {l, . . . , r}∣∣.
This means that a valid answer is known to exist in the current interval {l, . . . , r}.
Initially, l = 1 and s = n. The interval is halved each round, write

m = l +
⌈

1
2 (r − l)

⌉
for the ‘middle’ of l and r. Bob sends

∣∣B ∩ {l, . . . ,m}∣∣ to Alice, who decides in

which half to continue the search and tells Bob.

Under the stronger assumption that the parities of |A| and |B| differ, Alice

and Bob need to send only 2dlogne bits. They will ensure that∣∣A ∩ {l, . . . , r}∣∣ 6= ∣∣B ∩ {l, . . . , r}∣∣ mod 2

during the protocol. Each round, Bob sends the parity of
∣∣B∩{l, . . . ,m}∣∣, from

which Alice can infer (and tell Bob) in which half to continue.

The next result shows how to achieve the asymptotic bound of the latter

protocol under the conditions of the former.

Proposition 2 If |A| and |B| differ then Alice and Bob can find an element in

A4B using 7 · dlogne bits of communication.

Proof. In addition to l and r as above, Alice and Bob maintain a marker

j ∈ {1, . . . , log b}, defined as follows. The marker j indicates a position where

the binary representations of the player’s current sets differ, in other words,∣∣A ∩ {l, . . . , r}∣∣ 6= ∣∣B ∩ {l, . . . , r}∣∣ mod 2j . (1)

Initially, such a marker can be found using at most 2dlogne bits of commu-

nication: Bob sends the binary representation of |B|, starting with the most

significant bit, until Alice tells him to stop.
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The protocol proceeds in logn rounds as follows. First Alice and Bob have

to ensure that one of the following conditions hold:∣∣A ∩ {l, . . . ,m}∣∣
j
6=
∣∣B ∩ {l, . . . ,m}∣∣

j
or (2)∣∣A ∩ {m+ 1, . . . , r}

∣∣
j
6=
∣∣B ∩ {m+ 1, . . . , r}

∣∣
j
, (3)

where we write aj for the jth bit of the binary representation of integer a. To

this end, the players repeat the following until they succeed: Bob sends his

2 bits of information from (2) and (3) to Alice, who checks (and tells Bob using

1 bit) if one of the conditions holds. If not, the players decrement the marker j

and retry. Because of the invariant (1), they eventually arrive at some nonzero

marker j for which either (2) or (3) holds.

Alice can now tell Bob in which interval to continue the search, ending this

round.

The players spend 4 bits in each of the dlogne rounds and an additional

3 bits every time the conditions (2) and (3) fail to hold. But the latter can only

happen dlogne times in the entire protocol, since the marker j is decremented

every time. 2

We mention for completeness that if |A| and |B| are not known to differ then

the problem’s complexity grows to Θ(n).

3 Boolean Circuit Complexity

We now recall results about the parallel complexity of symmetric functions,

namely their Boolean circuit complexity. They show that the complexity of a

symmetric function is depends on the boundary of its spectrum, a connection

that we will rediscover when we return to the dynamic setting in § 4.

3.1 Boolean Circuits

Our definition of Boolean circuits is completely standard: A circuit for a Boolean

function f : {0, 1}n → {0, 1} is an acyclic digraph with exactly 1 node of fan-

out 0 (the output node) and n nodes of fan-in 0 (the input nodes). The input

nodes are labeled with the integers 1, . . . , n and represent the inputs to f , all

internal nodes are labeled ∨, ∧, or ¬. The fan-in of ¬-gates is 1. If the fan-in

of ∨- and ∧-gates is 2, the circuit has bounded fan-in. Computation is defined

in the obvious way.

The depth of a circuit is the length of its longest path. The depth of a

function is the depth of the shallowest circuit that computes it. The size of a

circuit is the number of its nodes.

3.2 Bounded Fan-In Circuits

This section considers the complexity of evaluating symmetric functions with

Boolean circuits of bounded fan-in. The results of this section are well-known.

However, the proofs are new and quite elegant and clearly present the inherent

dependence of the parallel complexity on b.
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We consider circuits of fan-in two over the basis ∨, ∧, and ¬. For a function f

we let d(f) denote the depth of the shallowest circuit that computes it.

The proof uses the communication complexity result of the previous para-

graph.

Proposition 3 If f : {0, 1}n → {0, 1} is symmetric then it has bounded fan-in

Boolean circuit depth Θ(logn).

Our proof uses the well-known equivalence result of Karchmer and Wigder-

son [39]. Let f : {0, 1}n → {0, 1} be a Boolean function. In the Karchmer–

Wigderson game for f Alice receives A ∈ f−1(0), Bob receives B ∈ f−1(1), and

they want to find an index where their input strings differ. Alternatively, if we

view A and B as (the incidence vectors of) subsets of {1, 2, . . . , n}, Alice and

Bob look for an element in A4B. The communication complexity of the game

is the minimal number of bits they have to exchange.

Proof of Prop. 3. Consider the game where Alice receives a set A in f−1(0)

and Bob receives a set B is in f−1(1). Then |A| and |B| differ because f is

symmetric. By Prop. 2 the players can in logarithmic time find an index where

their inputs differ. The result of Karchmer and Wigderson [39] tells us that

exactly the same bound holds for the Boolean circuit depth of f . 2

We note that the construction is far from optimal with respect to the con-

stants involved. See Boppana and Sipser [10] for a survey. Bounds on complexity

of symmetric functions in terms of the boundary of the function’s spectrum exist

for this class of circuit. However, the influence of this parameter is much more

pronounced in the world of Boolean circuits with unbounded fan-in.

3.3 Unbounded Fan-In Circuits

This section surveys the complexity of symmetric functions in Boolean circuits

with unbounded fan-in.

The famous H̊astad lower bound says that the depth d of circuits for the

parity function must satisfy

d = Ω

(
logn

log log s

)
, (1)

where s denotes the circuit’s size. For general symmetric functions the bound

is

d = Ω

(
log b

log log s

)
, (2)

where b denotes the function’s boundary.

This characterises the symmetric functions with constant depth and polyno-

mial size circuits (so-called AC0 functions), since it is known that a symmetric

function f has such circuits if only

b = logO(1) n
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for all symmetric f . The lower bound (2) shows that the depth d becomes

nonconstant for polynomial size s as soon as the boundary b is larger than

polylogarithmic.

3.4 Roots.

The standard proof of Prop. 3 involves a clever addition circuit that computes

the number of 1s in the input with logarithmic depth. This construction was

discovered by several authors independently in the early 60s, among them Wal-

lace [69] and, à la russe, Ofman [55]. Today, complicated constructions have

reduced the constants in the complexity bound far below those of Prop. 3, see

the references in [10].

H̊astad’s bound (1) for the depth of the parity function is from [33] and im-

proves work of Ajtai [1] and Furst, Saxe, and Sipser [26]. Constant depth circuits

for threshold functions with polylogarithmic boundary have been constructed

by Ajtai and Ben-Or [3], Denenberg, Gurevich, and Shelah [15] and Fagin et

al. [20]. These results were generalised to symmetric functions and expressed in

terms of the boundary by Brustmann and Wegener [13] and Moran [54].

4 Cell Probe Complexity

We return to dynamic computation in the cell probe model and will discover

results that imitate those for circuits of unbounded fan-in. The gist is that the

dynamic prefix problem (defined below) of a symmetric function is the same

as the function’s Boolean circuit depth with polynomial size unbounded fan-in

circuits. To our knowledge this is the best formalisation of the widely held

intuition that the complexity of dynamic and parallel computation are related.

Not only do the circuit depth and the dynamic prefix problem depend on the

same combinatorial properties of the symmetric functions (namely the size of

their boundary b), even the quantitative aspects of trade-off results mimic each

other: circuit depth depends on circuit size exactly as query time depends on

word size and update time.

4.1 Threshold functions

We start with the threshold functions. Section 4.2 studies a more general prob-

lem and contains a stronger result, but threshold functions allow us to tell the

best part of the the story without covering it in too many details. We will

compare the hardness of functions like thdlog ne
n , thd

√
ne

n , and majn = thdn/2en .

Let the boundary function b be an integer function such that b(i) ∈ {0, . . . ,
d1

2 ie}. We will study the threshold function thbi given by thbi(x1, . . . , xi) =(
x1 + · · ·+ xi ≥ b(i)

)
. The dynamic prefix problem for thbn is to maintain a bit

string x ∈ {0, 1}n under the following operations:

change(i): change xi to ¬xi,

query(i): return
(
x1 + · · ·+ xi ≥ b(i)

)
.
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Note that the boundary b(i) for the ith query depends on i and not on n.

Consider for example the majority function b(i) = d 1
2 ie: its prefix query returns

(x1 + · · ·+ xi ≥ d 1
2 ie), i.e., ‘is there a majority of 1s in the ith prefix?’.

RAM algorithms. Let us briefly see how fast we can solve this problem on the

random access machine.

Proposition 4 The dynamic threshold prefix problem for thbn can be solved on the

RAM with logarithmic cell-size in time O(log b/ log logn+ log log n) per update,

if b(1), . . . , b(n) can be computed in the preprocessing stage of the algorithm.

Proof (sketch). Let B denote max{b(1), . . . , b(n)} and note B ∈ O(b) The data

structure consists of a search tree for the (indices of the) B leftmost 1s in x and

a priority queue for the others. For a prefix query, the index of the b(i)th 1 of x

is found in the search tree and compared with i. Standard data structures yield

update times of order

O

(
log b

log logn
+ log logn

)
,

where the right term stems from the priority queue over {1, . . . , n}.
A number of recent results discuss the RAM instruction sets under which

this works, which is outside the scope of this thesis. So are details about the

computability of b: If b is a difficult function, the algorithm has to make a table

of b(1), . . . , b(n) in the preprocessing stage of the algorithm. 2

Lower bounds. Assume that there is a subset of the naturals where b is mono-

tone and onto:

there are p(1) < p(2) < · · · < p(i) · · · such that b(p(i)) = i.

We will call such functions nice for lack of a better word. Functions like dlogne,
d√ne and d1

2ne are nice, so is dge for any smooth unbounded convex function

with 0 ≤ g(i) ≤ i.
The lower bound for this problem depends on b in exactly the same way as

for Boolean circuit complexity, compare (2).

Theorem 2 (for threshold functions) Let tu = tu(n) and tq = tu(n) denote the

update and query time of any cell size c implementation of the dynamic prefix

problem for thbn for a nice boundary function b. Then

tq = Ω
( log b

log(tuc log b)

)
.

Proof. The proof is a reduction from signed prefix sum and starts similar to

that of Prop. 1.
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First look at the function halfn given by halfn(x) = (x1 + · · ·+ xn = d 1
2ne).

Let x ∈ {+1, 0,−1}n denote an instance to signed prefix sum. Let d be given

as

d =
⌈ logn

log(tuc logn)

⌉
and construct d+ 1 strings y(t) as

y(t) = (−1)t0d−t, 0 ≤ t ≤ d.

For convenience we index the y(t) using the set {−d, . . . ,−1, 1, . . . n}, so that

y
(t)
i is the same as xi for all 1 ≤ i ≤ n. By construction, we have

y
(t)
−d + · · ·+ y

(t)
i = t+ x1 + · · ·+ xi. (1)

as long as x1 + · · ·+ xi is less than d. To find the ith prefix sum of x we guess

s ∈ {0, . . . , d}. Our guess is the correct prefix sum if and only if y
(−s)
−d +· · ·+y(−s)

i

vanishes.

This means that we can construct a data structure for signed prefix sum as

follows. We maintain the d+1 strings y(t) as bit strings of length 2(n+d) using

the encoding

+1 7→ 11, 0 7→ 01, −1 7→ 00.

We can maintain these strings in time 2(d+1) · tu(2n+2d)+O(1) whenever x is

changed. A prefix sum of y(t) vanishes if and only if there is the same number of

0s and 1s in the corresponding bit string, so the query time is tq(2n+2d)+O(1).

We conclude from Thm. 1 that tq = Ω
(

logn/ log(tuc logn)
)
.

The same bound must hold for the majority function maji = (x1 + · · ·+xi ≥
d 1

2 ie), for we can express halfi(x) as maji(x) ∧maji(x̄), where x̄ = (x̄1, . . . , x̄i)

consists of the negated values of x, which are easily maintained.

Now let b be any nice function and let p(1), . . . , p(n) be such that b(p(i)) = i

holds. Assume we have an algorithm for the prefix problem for thb(n)
n with

the parameters given in the statement of the theorem. We will construct an

algorithm for the prefix problem for majn with instance x ∈ {0, 1}n. Construct

a bit string y as

y = 0 · · · 0x1x10 · · · 0x2x20 · · · 0xnxn,

where the letters of x are put in position p(1)−1, p(1), p(2)−1, p(2), . . . , p(n)−
1, p(n); denote the length of y by m = p(n).

The string y can be maintained in time 2tu(m) for each update of x. For

the query note that 2x1 + · · ·+ 2xi equals y1 + · · ·+ yp(i), so

x1 + . . . xi ≥ d 1
2 ie if and only if y1 + · · ·+ yp(i) ≥ i = b(p(i)),

so the majority function (left hand side) can be expressed in terms of thbi (i)

(right hand side). Hence the query time is tq(m). But from the bound on the

complexity of the majority function we know

tq(m) = Ω

(
logn

log
(
tu(m)c(m) log n

)).
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The stated bound follows by substituting b(m) for n. 2

The RAM algorithm from Prop. 4 shows that the lower bound is tight for

logarithmic cell size and b = Ω(loglog logn n).

4.2 General Symmetric Functions

We are interested in more general statements about other symmetric functions

like equality, parity, or combinations like

thd
√
n log logne

n ∧ parn.

It is not hard to change the last proof to work for equality functions, but this

approach breaks down for spectra that are not very well-behaved. The non-

deterministic algorithm from the last proof essentially guesses the position of

a substring ‘10’ in the spectrum. For threshold and equality functions, it can

make no false guesses since the substring appears only once in the spectrum,

namely at b. But for spectra like ‘1110010000’ the present, this approach is

doomed, the substring appears at positions 3 and 6. Of course, many individual

spectra can be decomposed into easier cases, but we are looking for a general

way to handle these functions.

Let 〈fn〉 = (f1, . . . , fn) be a sequence of symmetric Boolean function where

the ith function fi takes i variables. The dynamic prefix problem for 〈fn〉 is to

maintain a bit string x ∈ {0, 1}n under the following operations:

change(i): change xi to ¬xi,

query(i): return fi(x1, . . . , xi).

Taking fi to be th
b(i)
i we have the same problem as in the last section, taking

fi to be pari we have the prefix parity problem of [25].

Theorem 2 Let b be a nice boundary function. Let 〈fn〉 be a sequence of symmet-

ric functions where fi : {0, 1}i → {0, 1} has boundary b(i). Let tu and tq denote

the update and query time of any cell size c implementation of the dynamic

prefix problem for 〈fn〉. Then

tq = Ω
( log b

log(tuc log b)

)
.

Proof. The proof is a reduction from parity prefix refinement but otherwise

similar to the proof for threshold functions.

First assume that fi’s boundary is in the middle, i.e. b(i) = 1
2 i (for example,

take hi to be half i ∧ pari). Let x ∈ {+1, 0,−1}n denote an instance to prefix

parity refinement and define 2d+ 1 strings in the previous proof.

Hence we can use the data structure for fn to perform refine(i, s) as follows.

Recall that one of {s− 1, s, s+ 1} is the right guess. If s is the right guess we

have x1 + · · ·+ xi = s, so by (1),

y
(−s)
d + · · ·+ y

(−s)
i = 0 (2)
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and

y
(−s+1)
d + · · ·+ y

(−s+1)
i 6= 0. (3)

If s + 1 is the right guess then (2) fails. If s − 1 is the right guess then (3)

fails. So we can distinguish the three cases using only two queries, using the

same encoding {−1, 0,+1} → {0, 1}2 as before. Conclusion by the Refinement

lemma.

The rest of the proof, ‘stretching’ this result to smaller b, is the same as for

threshold functions. 2

Important special cases are mentioned in the next result:

Corollary 1 The complexity of the dynamic prefix problem for parn(x) = (x1 +

· · ·+xn = 0 mod 2), maj(x) = (x1 +· · ·+xn ≥ d 1
2ne), and half(x) = (x1 +· · ·+

xn = d 1
2ne) is Θ(logn/ log logn), for any cell size c with logn ≤ c ≤ logO(1) n.

The upper bound is from [16] and the result for parity is of course just [25],

but for the other functions no lower bound larger than Ω(log logn/ log log logn)

was known.

It is interesting to note that in Boolean circuit complexity the hardness result

for parity immediately implies a hardness result for majority and threshold

functions, because there is an obvious way to build circuits for the former from

circuits for the latter. In contrast, there is no obvious cell probe reduction for

the dynamic version; we have seen that we had to go via a strengthening of the

model (namely, nondeterminism or refinement) to make the reduction work.

Cell probe implementations. To gauge the strength of our lower bound, we

look at cell probe implementations.

Proposition 5 Let 〈f〉 be a sequence of symmetric functions where fi : {0, 1}i →
{0, 1} has boundary b(i). The dynamic prefix problem for 〈f〉 can be solved in

time O(log b/ log logn) for cell size c ≥ log2 n and in time O(log b/ log logn +

log logn) for cell size logn ≤ c ≤ log2 n.

Proof (Sketch). The construction is similar to that from Prop. 4. For the ith

query, look up index i in the search tree. The rank of that index (or its left

neighbour if the index is not in the tree) is min{b(i), x1 + · · ·+ xi}, from which

f(i) can be computed.

For larger cell size c ≥ log2 n, there are priority queues over {1, . . . , n} that

use only constant time per update [11, 67]. (These work also on reasonable

RAMs, so we could parameterise the statement of Prop. 4 with the cell size to

get the same bounds.) 2
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Summary. For nice boundary functions, the cell probe complexity of the prefix

problem for any symmetric function is Θ(log b/ log logn) per operation

1. for any b and cell size c ≥ log2 n, or,

2. for b ∈ Ω(loglog log n n) and cell size c ≥ logn.

If simultaneously b and c are very small, there is a factor log logn between our

bounds. Especially, the complexity of prefix-or for logarithmic cell size remains

unknown. It can be shown that with nondeterministic queries, our bounds is

tight for all c and b. We conjecture that the deterministic complexity is the

same as the nondeterministic complexity, i.e., that the lower bound is optimal.

Especially we conjecture that the complexity of prefix-or is constant.

Range queries. These are useful lower bounds for certain range query prob-

lems.1 The problem is to maintain a d-dimensional set S ⊆ Rd (for our lower

bound, d = 1 is hard enough) under the following operations:

insert(x): Insert a point at coordinate x ∈ Rd into S,

delete(x): Remove the point at x ∈ Rd from S,

report(K): How many points are in K ∩ S, where K is a rectangle in Rd.

The problem has been studied for many other query operations and our under-

standing of its complexity varies with the type of query. For counting (as above),

the Fredman–Saks bound applies even in one dimension. On the other hand,

the problem of existential range queries (return ‘yes’ iff K ∩ S is nonempty) is

among the most interesting problems at the time of writing, see [50] for some

results.

Our lower bounds apply to versions of the problem where the query operation

is a symmetric function, e.g., the majority function, in some disguise. Here is

one:

insert(x, c): insert x ∈ Rd of colour c ∈ {blue, red} into S,

delete(x): remove the point at x if it exists,

blue(K): are there more blue than red points in K ∩ S?

This corresponds to asking questions like ‘among the students aged 20 to 25, are

there more males than females?’. Alternatively, in the monochromatic setting,

we can ask: ‘Are there more students aged 20 to 25 than 23 to 30?’, reflected

in the following query:

more(K1,K2): is |K1 ∩ S| > |K2 ∩ S|?
1This entire material could have been presented as a study of one-dimensional range queries

instead of prefix problems for Boolean function.



Discussion. What about boundary functions that are not nice? In the general

definition, nonuniformity rears its ugly head. We cannot hope to prove clean

statements about the complexity of this problem without any constraints are

put on the sequence, much less hope for matching bounds. This is because

of sequences that alternate between very easy (e.g., constant) functions and

very hard ones (e.g., parity or ‘does the ith Turing machine halt?’) in some

complicated way.

On the other hand, the niceness condition can easily be relaxed. For example,

the function b(i) = 2 · b 1
2 ic, whose first values are 0, 0, 2, 2, 4, 4, 6, 6, . . . , is not

nice (it is not onto) but thbn is easily seen to be hard. However, our aim was

for a simple definition that covers interesting functions, not an encyclopedic

treatment.

Roots. The complexity of the prefix parity problem was characterised by Fred-

man and Saks [25] and Dietz [16]. Progress on prefix majority and equality was

reported by Husfeldt, Rauhe, and Skyum [36], where lower bounds of order

Ω(logn/ log log2 n) and Ω
(√

(logn/ log logn)
)

were found. Results on prefix

problems for finite monoids with relevance to prefix-or are reported by Frand-

sen, Miltersen, and Skyum, [22], and Miltersen [49]. Fast priority queues for

{1, . . . , n} are given by Thorup [67] and Brodal [11]. For a recent survey of

search trees on the RAM, see Anderson [5].





CHAPTER 4

Graphs

Graph problems, including problems on planar structures in computational ge-

ometry and graph drawing, have been the focal point of dynamic algorithms.

Seminal work includes the dynamic convex hull algorithm by Overmars and van

Leeuwen [57], Frekerickson’s algorithm for maintaining a minimum spanning tree

in a plane graph [23], and the dynamic tree data structure of Sleator and Tar-

jan [62]. Recent successes in the field include the technique of sparsification [18]

and the efficient algorithm for dynamic reachability in undirected graphs of

Henzinger and King [32]. Albers, Cattaneo, and Italiano [4] report empirical

results for dynamic graph algorithms. A forthcoming handbook chapter [17]

provides an introduction with focus on undirected graphs, because “designing

efficient fully dynamic data structures for directed graphs has turned out to be

an extremely difficult task.”

Nonetheless, in §1 we present an efficient algorithm for the dynamic reacha-

bility problem for the class of planar digraphs with one source and one sink. In

§2 we use our hardness results from Chap. 2 to provide new lower bounds for a

handful of graph problems with efficient algorithms. Table 1 gives an overview.

In this chapter we consider only logarithmic cell size for no other reasons

than compatibility with the literature.

1 Algorithms

1.1 Planar Source–Sink Graphs

In this section we give an algorithm for the dynamic reachability for planar

source–sink graphs, i.e., directed acyclic graphs that are drawn in the plane

without intersecting edges and have exactly one source and one sink, see Fig-

ure 4.
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Fig. 4: Two planar source–sink graphs
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Problem Lower bound Upper bound

Reachability in

planar source–sink graphs Ω
( logn

log logn

)
[25] O(log n) †

upward planar source–sink graphs Ω
( logn

log logn

)
† O(log n) [65]

grid graphs Ω
( logn

log logn

)
† O(log n) [27, 19]

Upward planarity testing Ω
( logn

log logn

)
† O(log n) [64]

Monotone point location Ω
( logn

log logn

)
† O(log n)[7]

Tab. 1: Overview of graph results with references. Results from this thesis are

marked with †.

Preliminaries A graph is embeddable on a surface if it can be drawn on the

surface such that the edges do not intersect except at their endpoints. A graph

is planar if it is embeddable in the plane and it is upward planar if in that

embedding all edges point upward.

For node v of a digraph we let deg+(v) and deg−(v) denote its out- and

indegree, respectively. A vertex v is a source if deg−(v) = 0, and a sink if

deg+(v) = 0. We are now ready to define the class of graphs studied in this

paper.

A digraph is a source–sink graph if it is acyclic and has exactly one source

and one sink. If it can be embedded so that the source and the sink are on the

same face, the graph is an upward planar source–sink graph.

Figure 4 shows two planar source–sink graphs, the left of which is also upward

planar. The following properties of this class of graphs can be shown:

1. Every vertex is on a simple directed path from the source to the sink.

2. In every embedding, the incoming edges to any vertex appear consecu-

tively around the vertex, and so do the outgoing edges; this determines

the left face left(v) and the right face right(v) of a vertex, see Figure 5.

This implicitly defines an order of the edges appearing around v, say, from

the leftmost outgoing edge to the leftmost incoming edge in the clockwise

direction. We will sometimes refer to this order as the ordering of the

edges around v.

3. The boundary of every face consists of two directed paths with common

origin and terminus vertices, see Figure 5.

4. Every planar source–sink graph can be embedded on the sphere such that

all edges are directed upward (i.e., their projection on some fixed direction
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is positive). For example, we could embed the graph from Figure 4 by

placing the curved arc on the opposite side of the sphere.
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Fig. 5: A vertex and a face in a planar source–sink graph

In the rest of this section, G = (V,E) will denote a planar source–sink graph

with source s and sink t, vertices V and edges E. We let n denote the number

of edges in the graph. For brevity, we will sometimes use the notation u ≺ v if

there is a path from u to v. We will write u ‖ v if neither u ≺ v nor v ≺ u.

Source–sink graphs are often called st-graphs in the literature.

Dynamic Reachability We consider the dynamic reachability problem for pla-

nar source–sink graphs. Namely, we present a data structure that handles the

following operations (for clarity, we have spelt out the embedding-preserving

restrictions on the update operations):

insert(u, v): Insert an edge from vertex u to vertex v if they are on the same

face and the new edge does not induce a directed cycle,

delete(u, v): Delete the edge from vertex u to vertex v provided deg+(u) ≥ 2

and deg−(v) ≥ 2,

query(u, v): return ‘yes’ if and only if there is a path from vertex u to ver-

tex v.

Another good name for this problem is dynamic transitive closure, since the aim

is to maintain the transitive closure relation ≺ of G. To maintain here means

to be able to answer queries about the transitive closure, for it is easy to see

that the relation itself may change a lot with a single update, so there is no

hope of maintaining an explicit representation (e.g., as an incidence matrix) of

the relation in logarithmic time.
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Fig. 6: Updates

We will present an algorithm for this problem that handles updates and

queries in time logarithmic in the number of edges of the graph. The data
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Fig. 7: A graph G with corresponding trees SG and TG.

structure can be initialised in linear time and uses linear space. This is Theo-

rem 3. Together with a lower bound from § 2 this characterises the complexity

of dynamic reachability on this class of graphs within a log logn factor. The

algorithm is pleasantly simple and should be easy to implement efficiently (the

most complicated part is the dynamic tree data structure from [62], which also

contains a discussion of implementation issues). The analysis is less simple and

takes up most of this section, which is the longest in this thesis. For ease of

presentation we will state and prove increasingly general versions of Theorem 3

step by step.

1.2 Reachability in Source–Sink Graphs

Tree decomposition. We employ an idea used in many efficient dynamic graph

algorithms: Decompose the graph into a number of trees such that all the

necessary information can also be derived from the trees.

The tree SG is the subgraph of G constructed by removing all edges that

are not the leftmost incoming edge of any vertex. Similarly, the tree TG is

constructed by removing all edges that are not the leftmost outgoing edge to

any vertex. When the graph is fixed, we will drop the subscripts on S and T .

See Figure 7, which shows S and T for the graph from Figure 4. Observe

the following facts:

1. S and T are indeed trees,

2. S is divergent and rooted at s, while T is convergent and rooted at t (hence

the names),

3. no subpath of T can ever leave another path to the right, and no subpath

of S can ever enter another path from the right.

Let us emphasise the last innocent-looking and obvious item, since we will

use it quite often:

Fact 1 If a subpath of T crosses a subpath of S, it does so from right to left.

We need some notation. For vertex v ∈ V we let Sv denote the unique path

from s to v in S and let Tv denote the unique path from v to t in T . For

u, v ∈ V we let s′ denote the last vertex that is on both Sv and Su. Let t′

denote the first vertex that is on both Tv and Tu. The path pu is the subpath of

the concatenation of Su and Tu from s′ to t′. Symmetrically, pv is the sub-path
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of the concatenation of Sv and Tv from s′ to t′. The figure below depicts this

construction.
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Whenever it seems convenient, we will also refer to the two paths as pL and

pR, such that pL is the path leaving s′ to the left and pR is the other path.

We will boldly confuse the edges of G with their embedding to alleviate

notation. Namely, we introduce the curve γ which is the concatenation of (the

embeddings of) pL and pR. The orientation of γ will be such that it agrees with

the direction of pL and the reversed direction of pR. Recall that a curve is closed

if its endpoints coincide, it is simple if it does not intersect itself except at its

endpoints. Note that γ is closed and not necessarily simple.

The next lemma is the crux of our algorithm. It captures the following fact

about reachability in spherical st-graphs: To get from vertex u to vertex v one

can always choose a path whose first half stays in T and whose last half stays

in S.

Lemma 3 Let ≤S and ≤T denote the predecessor relation in S and T , respec-

tively. Then u ≺ v if and only if

∃w ∈ V : u ≤T w ∧w ≤S v.

Proof. Assume for contradiction that there is a path p from u to v even though

Sv and Tu are vertex-disjoint.
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Note that Su crosses neither Sv (else S would not be a tree) nor Tu (else G

would have a cycle). Similarly, Tv crosses neither Tu nor Sv nor Su (the latter

would form a cycle with p). So we have the situation depicted to the left in the

above figure modulo the symmetrical case where u appears to the right of v.

Without loss of generality, we can split p into three parts pu, p′ and pv, such

that pu is a (possibly empty) sub-path of Tu, pv is a (possibly empty) sub-path

of Sv and p′ (which contains at least one vertex) has no vertices in common

with either Tu or Sv.
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Note that p′ leaves Tu before t′ (else there would be a cycle in G) and does

so to the right by Fact 1. Similarly, p′ enters Sv after s′ and does so from the

right. The right part of the figure above conveys the absurdity of this: Part of

p′ is in the interior of γ, while another part is in the exterior. Hence p′ must

cross γ somewhere, but cannot by construction. 2

Upward Planar Graphs To see some of the present machinery in motion and to

get our hands dirty before we study the full problem, let us derive an algorithm

for upward planar source–sink graphs.

We must handle the existential quantifier of the last lemma without searching

all of V . We will show that the existence of w ‘between u and v’ can be read

off the edges around s′ and t′.

Lemma 4 In a plane st-graph, the reachability information between u and v is

uniquely determined by the appearance of pu and pv around s′ and t′.

Proof. The proof is a case analysis on the behaviour of pu and pv between s′

and t′. We shall see that there are only four cases, depicted below.
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First note that if s′ = u then there is a path from u to v and we are done.

Similarly, the cases s′ = v, t′ = u, and t′ = v are trivial.

Assume first that pu leaves s′ to the right of pv. There are two cases: Either

pu stays to the right of pv (until the two paths finally meet at t′) or it does not.

In the former case (the leftmost example in the figure), there cannot be a path

from v to u by Lemma 3.

In the latter case, pu must cross pv at some point to get to the other side.

It cannot enter it anywhere except between s′ and t′, by acyclicity of G and

construction of t′, hence it enters at some vertex w 6= t′. Since w is on both pu
and pv, one of the following must hold: (i) u ≺ w and v ≺ w, (ii) u ≺ w and

w ≺ v, (iii) w ≺ u and v ≺ w, or (iv) w ≺ u and w ≺ v. The reader should check

that all possibilities but the second contradict Fact 1 or induce an undirected

cycle in S or T . Hence, by transitivity of ≺, we have u ≺ v. Similar arguments

show that once pu has reached the left side of p, it cannot come back; hence it

enters t′ left of pv. This is the third example in the figure above.

We can repeat the analysis for the case where pu leaves s′ left of pv (depicted

by the second and fourth examples), to complete Tab. 2.

Put succinctly, u and v are connected if and only if pu and pv ‘switch sides.’

2

We can re-prove the following theorem of Tamassia and Preparata [65], using

a different characterisation.
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pu leaves s′ right of pv y y n n
pu enters t′ right of pv y n y n

Reachability u ‖ v u ≺ v v ≺ u u ‖ v

Tab. 2: Reachability in the plane case

Theorem 3 (Upward planar case [65]) Dynamic reachability for plane st-graphs

can be solved in time O(log n), where n denotes the number of edges. The data

structure uses linear space and can be initialised in linear time.

Proof. We first describe the data structure. With every vertex v we store

two sequences of the incoming and outgoing edges of v, respectively, ordered

according to the cyclic ordering around v. We can used balanced search trees

for this.

In addition, we maintain the trees S and T using the dynamic tree data

structure of Sleator and Tarjan [62].

After each insertion or deletion we must reorganise our data structures. An

edge can be inserted into or deleted from the edge list around a vertex in time

O(log n); maintaining the two dynamic trees is a standard technique.

To answer a query evert u and v in S to find their nearest common ances-

tor s′, see [62]. Evert u and v in T to find their nearest common ancestor t′.

From the edge lists around s′ and t′ we see which of pu and pv appears rightmost.

By Tab. 2, this yields the reachability information. 2

1.3 Reachability: General Case

The gist of the last section was that

1. if u and v are connected, then pu and pv intersect,

2. if pu and pv intersect, then they ‘switch sides,’ i.e., they appear around s′

in another order than they do around t′.

µ

Fig. 8: The sphere: problems (left) and remedy (right).

The first item still holds in the general case. The second does not. The

first two figures above show why the sphere is much more difficult than the

plane: Paths can wrap around; the reader can easily check that both examples

contradict Tab. 2. The remedy is to keep track of the globe-trotting of γ by
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pR right of pL at t′ y n n y y n n n y y n n
pu right of pv at s′ – – y n y n y n y n y n
Index of t 0 1 0 1+ 1+ 2+ 1+ 0 1+ 1+ 2+ 1+
Orientation of t – � – � 	 � 	 – � 	 � 	
Reachability u ‖ v u ≺ v v ≺ u

Tab. 3: Reachability in the general case. Dashes denote arbitrary or undefined

entries.

maintaining a chain of faces between the poles, as indicated in the third figure;

it is helpful to view this chain of faces as a path µ in the dual of the graph. The

chain is called the meridian and formally introduced in § 1.4. First, we introduce

some additional concepts to be able to formalise what we just sketched.

Index. A region is a maximal topologically connected subset in the complement

of γ. A curve is proper if it intersects γ only at points where γ does not intersect

itself. We define the function Ind that maps points to integers as follows: For x

in a region the index Ind(x) is the minimum number of intersections between γ

and µ over all proper curves µ from s to x. Note that Ind is constant on every

region, vanishes on the region of s, and in the plane case, also on the region of

t.

For Ind(t) > 0, we define the orientation of t as follows: Let x be a point in

a region incident to the region of t such that Ind(x) = Ind(t) − 1. Let µ be a

proper curve from x to t that crosses γ only once. Then the orientation of t is

positive if µ crosses γ from left to right, and negative otherwise.

Perhaps more intuitively, the orientation of t is the direction of the closed

curve that separates the region of t from its neighbouring region with lower

index. If this curve is oriented clockwise, the orientation of t is positive. The

figure below shows some examples where Ind(t) = 2 and the orientation of t is

positive.
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The next lemma, which is the spherical analogue to Lemma 4, states that

the concepts we introduced suffice to characterise the reachability information.

Lemma 5 The reachability information between u and v is uniquely determined

by (i) the index of t, (ii) the orientation of t, and (iii) the appearance of pu and

pv around s′ and t′.

As Tab. 2 did in the upward planar case, Tab. 3 shows the precise connec-

tion. Note that indeed the reachability information is uniquely determined by

the information above the rule. As one would expect, the case analysis is con-

siderably more complicated than for the plane case. Figure 9 shows the possible
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behaviour of pu and pv and can be used as a graphical proof of the lemma. The

reader should check that all cases are consistent with Tab. 3.

Obviously, the sceptical reader should have no reason to believe that the

examples in Figure 9 exhaust all possible cases. Unfortunately, the formal proof

is somewhat tedious and un-intuitive. We confine it to the next section. At first

reading the reader may simply choose to accept the result and continue to § 1.4.

Proof of Lemma 5 We have chosen to split the proof into a series of (easy)

lemmas. We begin with some concepts that give a more fine-grained view of

γ. Assume that pR enters pL at vertices w1, . . . , wk, with wk = t′, and leaves

it at vertices w′1, . . . , w
′
k, with w′1 = s′ (the ordering agrees with the topological

ordering of the vertices). Then for i = 1, . . . , k, the curve γi consists of the

subpath of pL from w′i to wi and the (reversed) subpath of pR from wi to w′i.
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The figure above gives an example. Note that all γi are subcurves of γ. On

the other hand, not all of γ is necessarily part of some γi. The following lemma

follows easily from the construction.

Lemma 6 Let γ1, . . . , γk be a collection of curves as above. Then

1. every γi is a simple closed curve,

2. for i 6= j, the curves γi and γj are disjoint except for the case j = i+ 1,

where they may intersect at wi = w′i+1.

Proof. Clearly, every γi is closed. Moreover, it consists of a part from pR

that cannot intersect itself (else there would be a cycle in G) and does not

intersect pL before wi by construction; likewise, pL does not intersect itself, so

γi is simple. The same argument shows that two curves cannot intersect except

as stated. 2

Let us introduce a shorthand notation that captures the way pL and pR

cross. The entrance sequence E of pR and pL is a string of k letters from {R,L}
defined according to how the two paths cross. There is a letter in the sequence

for every wi, and that letter is an R if pR enters pL from the right at wi, and an

L if it enters from the left. Note that pR enters pL at least once, namely at t′,

so the entrance sequence is nonempty. The entrance sequence for the example

above is RL. Let us show that all letters but possibly the last are the same.

Lemma 7 E ∈ R+ ∪ L+R ∪ R+L ∪ L+.
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(i)
Ind(t) = 0
u ‖ v

(ii)

Ind(t) = 0
u on pr: u ≺ v
v on pr: v ≺ u (iii)

Ind(t) = 1
�

u ‖ v

(iv)

Ind(t) = 1+
	

u on pr: u ≺ v
v on pr: v ≺ u (v)

Ind(t) = 1+
	

u on pr: u ≺ v
v on pr : v ≺ u

(vi)

Ind(t) = 1+
�

u on pr: v ≺ u
v on pr: u ≺ v (vii)

Ind(t) = 2+
�

u on pr: v ≺ u
v on pr: u ≺ v

Fig. 9: Canonical examples of the behaviour of pu and pR on the sphere. The

two topmost cases appear also in the plane, while the five other cases exploit

the possibility to travel around the sphere. In all cases we give the index of t,

and, if the latter is nonzero, the orientation of the region of t. In these cases, the

orientation of γ is depicted by arrows. Fat dots indicate the possible positions

of u and v. Examples (iii) to (vii) each represent an infinite number of cases in

which the paths cross any number of times; in all those cases, the orientation

and the reachability information is the same.
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Proof. Assume without loss of generality that u is on pL. Assume first that LR

is a substring but not a suffix of the sequence, so pR crosses pL first from left

to right (say, at vertex wi) and then from right to left (at vertex wi+1). From

Fact 1 we learn that u ≺ wi and wi+1 ≺ u which contradicts the ordering of

the wi. The case RL is analogous. 2

The next lemma is obvious, now that we have split γ into simple curves. We

leave the proof to the reader.

Lemma 8 Let E denote an entrance sequence of length k. Then the k curves

γ1, . . . , γk satisfy:

1. γ1 separates s from t iff E begins with an L,

2. γi separates s from t for i = 2, . . . , k − 1,

3. γk separates s from t iff LL or RR is a suffix of E or E = L.

Moreover, γi is oriented clockwise iff Ei = L.

Lemma 9 There is only one curve if and only if u ‖ v. Otherwise, u ≺ v if and

only if E1 = R and pu = pR or E1 = L and pv = pR.

Proof. If u and v are connected then γ is non-simple from Lemma 3, so the

first part of the statement holds. Assume E1 = R and pu = pR, so pu crosses

pv from right to left. From Fact 1 we see that u ≺ w1 and w1 ≺ v and are done

by transitivity. The other cases are symmetrical. 2

Proof of Lemma 5. The proof is an easy but slightly tedious case analysis on

the four different types of entrance sequences. The last two lemmas yield the

number of cycles that separate s from t, their orientation and the reachability

information. By inspection, all cases are seen to be consistent with Tab. 3. 2

1.4 Algorithm for Reachability

The Meridian We use the results of the last section to construct an algorithm

that performs well in the amortised sense, i.e., a sequence of m updates and

queries takes time O(m log n).

As mentioned in the last section, one of the main ideas behind our algorithm

is to maintain a chain of faces between the poles, which we will now define.

A meridian (F 0, E0) consists of a sequence of meridian faces F 0 = 〈f1, . . . ,

fm〉 and meridian edges E0 = 〈e1, . . . , em−1〉 such that

1. for i = 1, . . . ,m− 1, edge ei is on the boundaries of fi and fi+1,

2. fi 6= fj for i 6= j (this implies ei 6= ej).
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Moreover, f1 = left(s) and fm = left(t).

It is easy to see that the meridian corresponds to a proper curve µ by viewing

the meridian as a path in the dual G∗ of G and overlaying the embeddings of

G∗ and G in a straightforward way. We only have to observe that a path in G∗

can never contain a point that embeds a vertex from G. Recall the right half of

Figure 8 on page 51 for an example.

How to count wrap-arounds For curves α and β we let φR(α, β) denote the

number of times α crosses β from right to left. Symmetrically, φl(α, β) denotes

the number of times α crosses β from left to right.

Note that φL and φR have the nice property that if we decompose α into

proper curves α1, . . . , αk then we have, e.g.,

φL(α, β) =
k∑
i=1

φL(αi, β). (1)

If α is a closed curve and β is a proper curve (with respect to α) whose endpoints

are on the same region (with respect to α), then β must leave the region bounded

by α as often as it enters it, so

φL(α, β) − φR(α, β) = φL(β, α) − φR(β, α) = 0.

These properties are exploited in the proof of the following lemma.

Lemma 10 The index and the orientation of t are given by the absolute value

and the sign of

φR(µ, pL) + φL(µ, pR)− φL(µ, pL)− φR(µ, pR),

respectively.

Proof. Observe that the meridian connects a point in the region of s, namely

left(s), to a point in the region of t, namely left(t). Let γ1, . . . , γk, with k =

Ind(t), denote the simple closed subcurves of γ that separate s from t. It is an

easy corollary to lemmas 7 and 8 that the curves have the same orientation.

Note that the meridian must cross all k curves at least once, but may take a

detour: It can go back across a previously crossed curve and return later. Thus

the index of t is given by

Ind(t) =
∣∣ k∑
i=1

φR(µ, γi)− φL(µ, γi)
∣∣.

We can split each γi into appropriately indexed subpaths piL and piR of pL and

pR (and remember to reverse the direction of the latter) to derive

Ind(t) =
∣∣ k∑
i=1

φR(µ, piL) + φL(µ, piR)− φL(µ, piL)− φR(µ, piR)
∣∣.
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All other subpaths of pL and pR form a number of closed curves that do not

influence φ(µ, ·), so we can extend the above sum to include all of pL and pR

without changing the result. This proves the first statement.

For the second statement, observe that the orientation of t is positive if and

only if all γi are oriented clockwise. In that case, the value of

k∑
i=1

φR(µ, γi)− φL(µ, γi)

is negative, else it is positive. Indeed, the expression evaluates to either Ind(t)

or − Ind(t), depending on the orientation of t. 2

We are ready to state our result. The algorithm performs well in the amor-

tised sense, i.e. for sequences of updates. The next section considers the worst

case.

Theorem 3 (Amortised version) The dynamic reachability problem for planar

source–sink graphs can be solved in amortised time O(log n), where n denotes

the number of edges. The data structure uses linear space and can be initialised

in linear time.

Proof. We extend our previous data structure.

We still store the sequences of outgoing and incoming edges around every

vertex and the dynamic trees for S and T . Additionally, we maintain the se-

quences of meridian faces F 0 and edges E0 under insertion and deletion of

subsequences, e.g., using balanced trees.

Also, with every edge e that is in either S or T , we store

φR(µ, e) =

{
1, if e = ei for some ei ∈ E0 and right(e) = fi,

0, otherwise,

which tells us if e is crossed by the meridian from right to left. Symmetrically,

we store φL(µ, e), which can be derived analogously. Using (1) above, we can

now in time O(log |E|) calculate the value of φR(µ, p) and φL(µ, p) for every

dynamic path p of S or T ; see [62] for the details and terminology.

With every face, we keep a topologically ordered sequence of the edges on

the two paths that bound the face.

We turn to the operations. For the query operation, we again evert u and

v in S and T to find their order around s′ and t′. Using Lemma 10 and the

data structure above, we find the index and orientation of t. Finally, we refer

to Tab. 3 for the answer.

Consider the case where a new edge e is inserted into face f , splitting it into

f ′ and f ′′. The edge lists around f ′ and f ′′ are easily derived from the edge

lists around f . The meridian is unaffected if f /∈ F 0. Otherwise, one or both

of f ′ and f ′′ may become part of the updated meridian, depending on where

the meridian edges appear around f (we use the edge list around f to decide

which case we are in). For example, if there is a meridian edge on both f ′
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and f ′′, they both become part of the meridian and e becomes a new meridian

edge. In any case, there are only a constant number of updates to the meridian

lists. A straightforward analysis shows that all operations can be performed in

logarithmic time, including the updates to the values of φL and φR stored in S

and T .

Deletions are more involved. Consider the case where deletion of the edge e

between faces f ′ and f ′′ creates a new face f . Creating the edge list around f

is handled as above.

In contrast, the meridian may change drastically. The change occurs when

both f ′ and f ′′ are meridian faces: We cannot just merge them into one, as that

would violate the second condition in the definition of the meridian— put more

graphically, the meridian curve µ would no longer be simple.
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Fig. 10: Deletion of an edge that separates two meridian faces

To remedy this, we must remove everything between f ′ and f ′′ from the

meridian, as shown in Figure 10. Even though the data structure for the merid-

ian face and edge lists can be updated in logarithmic time, the values φL(µ, e)

and φR(µ, e) at every removed meridian edge e also have to be changed, which

takes time O(n log n) in the worst case. However, an easy amortisation ar-

gument (store a credit with each meridian edge) shows that a sequence of m

updates and queries can be executed in time O(m logn). 2

1.5 Worst case time bounds

Sketch of technique We will now remove the amortisation, a task that involves

some rather tedious arguments. We start with a rough sketch: Obviously, the

major problem is that we do not have time to remove the meridian cycles arising

from a delete operation. However, it is not very hard to believe that such

meridian cycles can be shown not to influence the proof of Lemma 10: In a

nutshell, whenever a path crosses a such a meridian cycle, it most re-cross the

same cycle later in the other direction (meridian cycles cannot separate the

source from the sink). Hence we choose to let sleeping dogs lie. We do not

remove the meridian cycles but instead just make sure that they stay cycles as

the graph undergoes further changes.

The minor problem left is that this results in more and more meridian cycles

as we go, so we use ‘global rebuilding’ [56] to construct an unpolluted data

structure in the background.

Now for the details.
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False meridians We introduce some more meridians (Ek, F k) for r > 0. To

distinguish them from the original meridian (E0, F 0), we from now on refer to

the latter as the prime meridian.

A false meridian (F k, Ek) for r > 0 of size l consists of a sequence of faces

F k = 〈fk1 , . . . , fkl 〉 and Ekm = 〈ek1 , . . . , ekl 〉 such that

1. for i = 1, . . . , l − 1, edge eki is on the boundaries of fki and fki+1,

2. edge el is on the boundaries of fkl and fk1 ,

3. fki 6= fkj for i 6= j (this implies eki 6= ekj ).

Thus the difference between a false meridian and the prime meridian is that

the former is cyclic in the sense that the last face is incident to the first. Also,

a false meridian need not contain left(s) nor left(t). The embedding of a false

meridian is a closed proper curve.

Our algorithm will not be able to distinguish false meridians from the prime

one. More precisely, when γ crosses a meridian at some point, the algorithm

cannot locally deduce whether this meridian is the prime meridian or some other.

Let us argue that this does not matter.

Denote by µk the curves that correspond to false meridians. Since these

curves are closed we can use the discussion from § 1.4 to derive

φR(µk, γ)− φL(µk, γ) = 0,

for all µk. Hence we can add the vanishing term∑
k>0

φ(µk, pL) + φL(µk, pR)− φL(µk, pp)− φR(µk, pR),

where the sum is over all false meridians, to expression (10) without changing

the result.

Now that we have seen that the false meridians do not mess up our analysis,

let us see that they even make life simpler. We finally arrive at the general

statement of this section’s result.

Theorem 3 Dynamic reachability for planar source–sink graphs can be solved in

time O(log n). The data structure uses linear space and can be initialised in

linear time.

Proof. We modify the data structure from the amortised case as follows. With

every edge we store the value ∑
k≥0

φR(µk, e), (2)

where the sum is over all meridians including the prime. Likewise, we store∑
φL(µk, e).
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The two balanced trees for each face that maintain the two sequences of

edges around the face are modified so that each internal node computes the

sum of the values stored at its children. This allows us to calculate the value∑
i

∑
k

φR(µk, ei)

for each sequence of faces 〈ei〉 that appear consecutively around the face in time

logarithmic in the length of the sequence. Likewise for φL.

Note that we do not maintain sequences of false meridians (but still maintain

the prime meridian). The false meridians appear in the data structure only

implicitly in the value from (2) stored at each edge. Let us very briefly sketch

how to handle the updates.

We turn to the update operations. Whenever a new edge is inserted into

a face that appears on some (possibly false) meridian, we have to update the

value from (2). The modified balanced search trees with each face allows us to

compute the number of meridians that enter and leave the two new faces. From

these values, we can derive the value stored with the new edge consistently with

some legal rearrangement of the false meridians.

Whenever an edge deletion induces a cycle in the prime meridian, we remove

that cycle from the corresponding list in the data structure as before and make

the removed cycle a new false meridian. Figure 11 gives an example.
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Fig. 11: Edge deletion, worst case

We are almost finished. The only problem is that the number of false meridi-

ans is unbounded and hence the values stored with each edge may at some point

become exponential.

To avoid this, we use the standard trick of global rebuilding (see Chapter

5 of [56]): Construct a new data structure in the background, based on only

the prime meridian. After a linear number of operations, the construction has

finished and we switch to this new structure (which may already have some

false meridians but nevertheless cannot be too large). Now all calculation takes

place using the new data structure and we refresh the old data structure in the

background. This process of switching data structures is repeated ad infinitum.

We leave the details with the reader. 2

Note that it is easy to extend the data structure to cope with a report

operation that outputs a path from u to v if it exists in time O(log n+r), where

r denotes the length of the path. We leave the detail to the reader.
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1.6 Relation to previous results

Two partial solutions to our problem are known: Tamassia and Preparata [65]

consider upward planar source–sink graphs. Tamassia and Tollis [66] extend

the result to planar source–sink graphs but restrict the repertory of update

operations to avoid fundamental problems with edge deletion. The present

algorithm subsumes and extends the results from these papers in that it removes

the restrictions of both. It is only fair to say that for most applications, the

algorithm from [65] probably suffices.
We can give an order-theoretic description of the conceptual difference between

these algorithms. Both [65] and [66] rely on the well-known fact that the transitive
closure of an upward planar source–sink graph can be expressed as the intersection of
two total orders ≤L and ≤R. Symbolically,

u ≺ v if and only if u ≤L v ∧ u ≤R v,

where we write ≺ for the transitive closure. (In other words, upward planar source–
sink graphs are the Hasse diagrams of planar lattices.) The first paper shows that
in the restricted case, ≤L and ≤R are easily maintained as the graph changes. The
second paper shows under which updates the orderings remain maintainable in the
general case. Kelly [41] has shown that for general planar graphs, the number of total
orders needed to express the transitive closure as their intersection is unbounded.

Our approach uses a different characterisation of the transitive closure. We main-
tain two orders (call them ≤S and ≤T for a moment) with the property that

u ≺ v if and only if ∃w ∈ V : u ≤T w ∧ w ≤S v.

It is by no means clear that one can handle the existential quantifier over the vertices
V of the graph in logarithmic time. Indeed, note that our algorithm is unable to
identify such a w, it merely verifies its existence.

Other Classes of Graphs. Italiano et al. [37] present a dynamic reachability

algorithm for series parallel digraphs; apart from these and the class studied in

the present paper, no other class of digraphs is known to the author that allows

fully dynamic reachability algorithms within polylogarithmic time bounds. The

only other nontrivial upper bound is the already cited O(n2/3 log n) for plane

graphs from [63] and recent work of Henzinger and King [31].

Other dynamic problems on planar source–sink graphs are studied in [6]

and [64]. Reference [65] contains pointers to a vast number of applications of

these graphs within visibility representations, graph drawing and embedding,

motion planning, computational geometry, lattice theory, and VLSI design.

2 Lower Bounds

2.1 Reduction to Prefix Parity

It is well-known how to prove lower bounds for dynamic graph algorithms

using a reduction to the prefix parity problem. Let us see an example: an

Ω(log n/ log logn) lower bound for dynamic reachability in directed graphs.

Let x1, . . . , xn ∈ {0, 1} be an instance of the Dynamic Parity Prefix Problem.

Construct the graph G = (V,E) as follows: The vertex set V contains source s

and sink t as well as 2n+ 2 vertices v1, . . . , vn+1 and v′1, . . . , v
′
n+1. Intuitively,
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vi and v′i correspond to variable xi. The edges are constructed from the values

of the variables: If xi is false then E includes the edges (vi, vi+1) and (v′i, v
′
i+1),

else it includes (vi, v
′
i+1) and (v′i, vi+1). The figure below gives an example for

(x1, . . . , x4) = (1, 0, 0, 1).
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It is not hard to see that we can simulate every update operation to the

vector x1, . . . , xn using a constant number of insert and delete operations on G

without violating its topology. For the query operation, observe that

j∑
i=1

xi = 1 mod 2 if and only if v1 ≺ v′j+1, j = 1, . . . , n.

Thus the lower bound on prefix parity implies a lower bound on dynamic reach-

ability.

Note that the construction yields a planar graph: Embed the crossing edges

on the back of the sphere and use the stereographic projection for a planar em-

bedding. Hence the bound holds for the easier problem of dynamic reachability

on planar graphs. It even holds for the class of planar source–sink graphs that

we studied in § 1, proving optimality of Thm. 3 within a factor of log logn.

Discussion Algorithm designers and lower bound hunters face the dichotomy

that many problems have good upper bounds, many problems have good lower

bounds, but fewer have both. Consider the problem from the last section:

dynamic reachability for planar source–sink graphs, with or without the upward

planarity constraint. Prior to the work published in this thesis, the world looked

like this:
Class of graphs Upper bound Lower bound

Upward planar st-graphs O(log n) Ω(log log n/ log log logn)

Planar st-graphs O(n2/3 logn) Ω(logn/ log logn)

So even though a considerable amount of work lies behind these results ([65,

63, 8, 51]), there is an exponential gap between the bounds. (Theorems 3 and 5

reduce both gaps to logarithmic.)

Our aim will be to provide lower bounds for graph problems for which effi-

cient algorithms actually do exist. The simplicity and similarity of the proofs

demonstrates the strength and applicability of the hardness results from Chap. 2.

2.2 Grid Graphs

The vertices of a grid graph of width w and height h are integer points (i, j) in

the plane for 1 ≤ i ≤ w and 1 ≤ j ≤ h. All edges have length 1 and are parallel

to the axes. The dynamic reachability problem for these graphs looks like this:
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flip(x, y): add an edge between x ∈ [w] × [h] and y ∈ [w] × [h] or remove it

if it exists,

reachable(x, y): return ‘yes’ if and only if there is a path from x to y.

Grid graphs are planar, so standard techniques yield an O(log n) time algorithm

for this problem, where n = h · w denotes the problem size. The next result

shows that this is close to optimal:

Theorem 4 Every implementation of dynamic reachability for grid graphs re-

quires time

Ω

(
logn

logn logn

)
per operation.

Proof. Let x ∈ {−1, 0,+1}n be an instance of balanced prefix sum vanishing.

We will construct a grid graph of dimension (2w+ 1)× 2n as follows, where the

width is given by w = dlogn/ log logne.
Consider any grid point with odd coordinates (2i − 1, 2j − 1), drawn as •

below. It will be connected to one of the three odd grid points above it depending

on the value of xj as follows:

xj = +1 :
•
◦ ◦
◦ ◦

, xj = 0 :
•
◦
◦
, xj = −1 :

•
◦◦
◦◦

.

Of course, at the left and right borders of the graph this rule may be violated

because of lack of grid points, the edges in question are simply omitted.

The idea is that the path from (0, 1) mimics the prefix sums of x in that it

passes through (2j, s) if and only if x1 + · · · + xj equals s. This exploits that

the path stays inside the the graph all the time, which is precisely the balancing

constraint on x.

It remains to note that the graph can be maintained efficiently. Any changed

letter in x incurs O(w) edges to be inserted or deleted. So if the update time

of the graph algorithm is polylogarithmic then the graph can be maintained in

polylogarithmic time. The bound follows from Prop: 1. 2

Narrow Grid Graphs. The efficient algorithms for grid graphs work for ‘square’

graphs of equal size and width, while the hard graph constructed in the last

proof has only logarithmic width w = O(log h). So we can say that narrow grid

graphs are pretty much as hard as square ones. However, this is not true for

very narrow graphs: It is known that the reachability problem for grid graphs

of constant width can be solved in time O(log logn) per operation (Miltersen

and Subramanian, unpublished, using [22]).

This leaves open the question of what happens for graphs of sublogarithmic

width. A more subtle statement of the last result gives a lower bound for these

graphs that smoothly connects the two extremes.
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Theorem 4 (For narrow graphs) Every dynamic reachability algorithm for grid

graphs of width w = O(log n/ log logn) takes time Ω(w) per operation.

The proof is more or less the same, a direct reduction from signed prefix

sum, using the balanced version of Thm. 1 to keep the path within the graph’s

width.

We conjecture that the complexity of the reachability problem for narrow

graphs depends linearly on w, as hinted by the lower bound. However, the

known upper bounds for constant width grid graphs depend exponentially on w.

2.3 Upward Planar Graphs

We turn to directed graphs, namely to upward planar graphs, for which the

lower bound presented in § 2.1 does not seem to work.

The same technique that we used for grid graphs above yields strong lower

bounds for this class of graphs. It works even for the source–sink graphs con-

sidered in § 1.

Theorem 5 Every dynamic reachability algorithm for upward planar source–sink

graphs takes time

Ω

(
logn

log c logn

)
per operation.

Proof. From an instance y ∈ {0,±1}n of signed prefix sum we construct a

digraph G = (V,E). The vertex set consists of the source s, the sink t, and

2d+ 3 vertices for each letter yi:

V = { vij | 1 ≤ i ≤ n+ 1,−d− 1 ≤ j ≤ d+ 1 }.

The ith row is connected to its upper neighbour according to the value of yi:{
(vij , v(i+1)j′)

∣∣ 1 ≤ i ≤ n,−d− 1 ≤ j ≤ d+ 1
}
,

where j′ =

{ j + yi, if |j + yi| ≤ d+ 1,

d+ 1, if j + yi = d+ 2,

−d− 1, if j + yi = −d− 2.

(1)

Figure 12(b) gives an example. Note how the path starting in (1, 0) (the middle

vertex in the bottom row) mimics si =
∑i
j=1 xj . Indeed, there is a path from

(1, 0) to (i + 1, u) for 1 ≤ i ≤ n and −d ≤ u ≤ d if and only if si = u. We are

going to use the reachability query to detect this.

First, we finish the construction by adding some more edges that have only

technical significance and make sure that G is an st-graph. At the ends of the

graph, 2m+ 3 edges connect s to the bottom row and 2m+ 1 edges connect the

topmost row to t,

{ (s, v1j), (vj(n+1), t) | −m− 1 ≤ j ≤ m+ 1 }.



4.2] LOWER BOUNDS 65

•
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦

•
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦

•
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦

•
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦

•
◦◦
◦
◦ •

◦◦
◦
◦ •

◦◦
◦
◦ •

◦◦
◦
◦ •

◦◦
◦
◦

•
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦

•
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦ •
◦ ◦
◦
◦

•
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦ •
◦ ◦
◦

• ◦ • ◦ • ◦ • ◦ • ◦ • ◦

•
◦ ◦
◦
◦
•
◦ ◦
◦
◦

•
◦ ◦
◦
◦

•
◦ ◦

•

•
OO
•

OO
•

OO
•

OO
•

OO
•

OO•
OO
•

OO
•

OO
•

OO
•

OO
•

OO• ��
??
• ��

??
• ��

??
• ��

??
• ��

??• ��
??
• ��

??
• ��

??
• ��

??
• ��

??•
??__
•

??__
•

??__
•

??__
•

??__•
OO
•

OO
•

OO
•

OO
•

OO
•

OO• ��
??
• ��

??
• ��

??
• ��

??
• ��

??•
OO
•

OO
•

OO
•

OO
•

OO
•

OO•

�������

BB

•

������

GG

•

������

LL

•

$$$$$$

RR

•

//////

WW

•

:::::::

\\

•
OO•
OO

•
OO

•
OO

•

:::::::

\\ //////

WW $$$$$$

RR
������

LL ������

GG �������

BB

FF
AA

@@

]]

s

t

����

����

7777

����

����

����

7777

����

����

����

7777

����

����

����

7777

����

����

����

7777

����

����

����

7777

����

Fig. 12: Planar graphs corresponding to x = (0, 0,+1,+1,−1, 0,+1, 0). Left:

grid graph. Odd grid points are marked •, even grid points are marked ◦.
Middle: upward planar source–sink graph. Right: monotone planar subdivision.

At the top- and bottommost rows, edges connect s to all vertices that would

otherwise be sources:

{ (s, vi(m+1)) | yi−1 = −1 } ∪ { (s, vi(−m−1)) | yi−1 = 1 }.

Again, this graph can be maintained in polylogarithmic time as x changes. And

as before, there is a path from v10 to v1i if an only if the ith prefix sum of x

vanishes. 2

It is not hard to see that the same bound holds for dynamic upward planarity

testing using essentially the same proof (check for planarity of with a new edge

from v10 to v1i for the query).

2.4 Planar Point Location

We (pretend to) leave dynamic graph algorithms and turn to computational

geometry to see yet another application of our technique.

A classical problem in that field is planar point location: given a subdivision

of the plane, i.e., a partition into polygonal regions induced by the straight-line

embedding of a planar graph, determine the region of query point q ∈ R2.

In the dynamic version, updates consist of insertion and deletion of vertices

or (chains of) edges. An important restriction of the problem, for which our

bound will apply, considers only monotone subdivisions, where the subdivision

consists of polygons that are monotone (so no horizontal line crosses any polygon

more than twice). Preparata and Tamassia [59] give an algorithm that runs in

time O(log2 n) per operation, this was improved to query time O(log n) by

Baumgarten, Jung, and Mehlhorn [7].

The literature does not quite agree on the exact choice of operations, since

the representation of the polygons defines what updates are feasible. Our lower



bound does not depend on these choices, but we have to make one for concrete-

ness:

move(p, q): move polygon corner p to q, provided the subdivision remains

monotone,

query(x): return ‘yes’ if and only if x is in the same polygon as the origin.

Our operations are very weak, since we want to prove a useful lower bound.

Efficient algorithms are known for more powerful operations that return the

name of a queried polygon, and insert and delete (chains of) edges, see [7, 14, 59].

Theorem 6 Every algorithm for dynamic planar point location in monotone sub-

divisions uses Ω(logn/ log log n) steps per operation.

Proof. To prove a lower bound for this problem we construct a monotone

subdivision from the instance x ∈ {0,±1}n that is similar to the upward planar

graph from before. This is easier drawn than explained formally; see Figure fig:

subdivision. There are 2 unbounded polygons at the sides and d + 1 strip-like

ones with common sides and common top and bottom corners at infinity. Each

of the strip-like polygons mimics the path described by x with +1 meaning ‘go

right’ and −1 meaning ‘go left.’

To answer a sum query for the ith prefix, we simply check if the point (0, i)

lies in the left unbounded polygon or not. 2



CHAPTER 5

Strings

The endeavour is . . . to provide a wide variety of brackets. In regular use

we have (in printer’s language) the three sorts: parentheses ( ), braces

{ }, and brackets [ ]; and their normal order is [{(. . . )}]. When necessary

they can be extended to ‘full face’ brackets and parentheses
[ ]

,
( )

. . . .

We then have the extended set of
[(

[{(. . . )}]
)]

.

Two further sorts of bracket can be made available on the keyboard:

‘double’ brackets [[ ]] and ‘angular’ brackets 〈 〉. Double brackets can be

placed outside the bracket sequence as

[[
[(

[{(. . . )}]
)]

]].

—Chaundy et al., The Printing of Mathematics

This author believes that they should be left in whatever order and va-

riety the author has indicated in the manuscript. It is always desirable,

however, to count the pairs because it is not uncommon for an author

to leave out the closure of a parenthesis or a bracket in error.

—Ellen E. Swanson, Mathematics into Type

Our last chapter is about strings, an area that has received far less attention

than dynamic graphs algorithms. This is strange because interactive manipula-

tion of strings—in modern text processors or editors—poses several challenging

and interesting computational problems. While strings are well studied objects

in other areas of combinatorial algorithms, they have been largely ignored by

dynamic algorithms designers.

We will study the language membership problem for the Dyck languages, the

class of strings of properly balanced brackets, and obtain efficient algorithms for

maintaining balance in a string of brackets. Again, we will apply the results of

Chap. 2 to prove strong lower bounds.

1 Dyck Languages

The language of properly balanced brackets contains strings like ( ) and ( )(( ))

but not )). The notion of balancedness also makes sense if we add more types

of brackets: ([ ])( ) balances but [ ) does not.

67
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More formally, let A = {a1, . . . , ak} and Ā = {ā1, . . . , āk} be two disjoint

sets of opening and closing symbols, respectively. For example, the pair A =

{(, [,do, if } and Ā = { ), ], od,fi} captures the nested structure of programming

languages. The one-sided Dyck language Dk over A ∪ Ā is the context-free

language generated by the following grammar:

S → SS | a1Sā1 | · · · | akSāk | ε.

Closely related is the two-sided Dyck language D′k over A ∪ Ā defined by

S → SS | a1Sā1 | ā1Sa1 | · · · | akSāk | ākSak | ε.

This corresponds to two-sided cancellation, so now also )( and ( ][ ) balance,

while [ ) still does not.

The two-sided Dyck language has an algebraic interpretation. If we identify

āi with a−1
i and view concatenation as the product operator then x is in D′k if

and only if it equals the identity in the free group generated by A. For example,

ā1a2ā2a1 ∈ D′2 because a−1
1 a2a

−1
2 a1 reduces to unity.

The Dynamic Membership problem We consider the problem of maintaining

membership in Dk or D′k of a string from (A∪ Ā)n dynamically. More precisely,

we want to maintain a string x ∈ (A∪ Ā)n of even length, initially an1 , with the

following operations for any Dyck language D:

change(i, a): change xi to a ∈ A ∪ Ā,

member : return ‘yes’ if and only if x ∈ Dk.

We can use this set of updates to analyse to word problem for the free group.
Here, the member query returns ‘yes’ if and only if

∏
i xi = 1. In this context,

product or identity may be better names for the query. However, we will refrain
from distinguishing between the word problem for the free group and the membership
problem for two-sided Dyck languages to keep the exposition simple.

Much of the practical motivation for the present work stems from modern

editors, many of which have have editing modes for specific programming lan-

guages where a rudimentary on-line syntax check is performed whenever the

source is changed. We would like to know whether such a check can be per-

formed faster than in the straightforward way. To model this more closely, we

replace the change operation with the following:

insert(i, a): insert symbol a between xi−1 and xi,

delete(i): remove the ith symbol of x.

We can simulate a change update by one insertion and deletion, so this is clearly

harder.

Other queries are interesting, too. From the theorists point of view, the

word problem must be studied under the prefix query:

prefix(i): return ‘yes’ if and only if
∏i
j=1 xj is the identity, (or, equivalently,

if x1 · · ·xi ∈ D,)
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while any useful editor ought to be able to answer queries like

interval(i, j): return ‘yes’ if and only if xi · · ·xj is in D,

match(i): return the index of the bracket matching xi,

mismatch: return the index of the first unmatched bracket.

(The last two operations do not make sense in the two-sided case.)

Readers discouraged by this plethora of operations may rest assured that

most of our results are independent of which operations we choose. We state

explicitly when this is not the case.

Of course, the Dyck languages do not capture all aspects of the far more

complicated grammar of real programming languages. Ultimately, we could

wish for a fast dynamic algorithm for recognition of (a large subclass of) the

deterministic context-free languages, which would allow us to implement on-line

syntax checking in an editor. Hopefully, our results are a step in the right direc-

tion. We do not expect them to be particularly useful in practice as is, however.

Even though they run in polylogarithmic time (and the hidden constants are of

moderate size), one should keep in mind that the original, sequential algorithm

is extremely simple and probably outperforms them in normal applications. Al-

though extremely long files do arise in practice, problems of quite a different

nature—like paging, network access, etc.—would dwarf the execution time of

both a dynamic and a sequential algorithm for bracket matching.

Results Our main upper bound result is that the dynamic membership prob-

lem for all Dyck languages can be solved in polylogarithmic time per operation,

the exact bound is O(log3 n log∗ n). We use a technique for maintaining dynamic

sequences under equality tests by Mehlhorn, Sundar, and Uhrig [47], which also

gives (Las Vegas-style) randomised algorithms that run in slightly better ex-

pected time: O(log3 n). We achieve better bounds for Monte Carlo-style algo-

rithms. Using the fingerprint method of Karp and Rabin [40], where strings

are represented by (non-unique) fingerprints in the form of a matrix product

modulo a small randomly chosen prime, Dk can be done in time O(log2 n) and

D′k in time O(log n). For D1 and D′1 we can use simpler techniques to achieve

better bounds.

See Tab. 4 for an overview. Note that except for the O(1) algorithm for D′1,

all algorithms are also valid (and have the same complexity) when we extend

the operations to insertion and deletion of single characters, interval queries,

and (for the one-sided case) match queries.

A lower bound of Ω(logn/ log logn) holds for Dyck languages with two or

more letters and with the restricted set of operations (change, member). The

same bound holds for one-letter Dyck languages with interval queries. The

proof builds on the hardness results from Chap. 2. The bounds holds for the

membership problem of any Dyck language if we allow insert and delete. Using

a technique from [49, 8], we can show a lower bound for restricted updates for

D1 of Ω(log logn/ log log logn). This separates the complexities of the dynamic

membership problem for D1 and D′1.
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Problem Lower bound Upper bound

With change updates:

D1 Ω
( log logn

log log logn

)
O(log n)

D′1 Θ(1)

Deterministic Mte Carlo

Dk(k > 1)
}

Ω
( logn

log logn

)
O(log3 n log∗ n)

O(log2 n)

D′k(k > 1) O(log n)

With insert/delete updates:

D′1 Θ
( logn

log log n

)
any other Ω

( logn

log logn

)
As with change.

Bit probe model with change updates:

D1 Ω
( logn

log logn

)
O(log n log logn)

D′1 Θ(log log n)

Tab. 4: Results for the membership problem for the Dyck languages.
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The table also lists results for cell size 1 (the bit probe model) from [21], but

we have not included them in this thesis because both upper and lower bounds

are of a different flavour than in the rest of the text.

Related results It is interesting that all Dyck languages seem to be equally

hard in most non-dynamic computational models. Ritchie and Springsteel [61]

showed that the one-sided Dyck languages are in deterministic Logspace, Lipton

and Zalcstein [44] extended this to the two-sided case (see also [30, Exercises 22

and 23]). One can phrase this even stronger in terms of circuit complexity: all

Dyck languages are complete for TC0 under AC0-reductions (this appears to be

folklore).

Dynamic Word and Prefix problems for finite monoids are studied in [22, 49].

The free group of k generators studied in the present paper is infinite.

Turning from context-free to regular languages, it is easy to find logarithmic

time algorithms for the Dynamic Membership problem for the latter class. The

results from [22] give better upper bounds depending on the language’s syntactic

monoid M(L).

Immerman and Patnaik [58] consider dynamic algorithms for the Dyck lan-

guages and construct algorithms with update and query operations in dyn-FO,

but no efficient sequential upper bounds follow from this.

Preliminaries. For letter a and string u, we put

|u|a =
∣∣{ i | ui = a }

∣∣,
the number of occurrences of a in u.

We call a string reduced if it contains no neighbouring pair of matching

brackets. So, for the one-sided case, ([ ]) is not reduced but [ )( is. In the two-

sided case, the latter is not reduced. To formalise this (following Harrison [30]),

we introduce two mappings

µ1, µ2 : (A ∪ Ā)∗ → (A ∪ Ā)∗.

We want µ1(u) and µ2(u) to be the reduced form of u using one- and two-sided

cancellation, respectively. To this end we define for each 1 ≤ i ≤ k and j = 1, 2:

µ1(ε) = µ2(ε) = ε, µ1(uai) = µ1(u)ai,

µ2(uai) =

{
µ2(u)ai, if µ2(u) /∈ (A ∪ Ā)∗āi,

u′, if µ2(u) = u′āi,

µj(uāi) =

{
µj(u)āi, if µj(u) /∈ (A ∪ Ā)∗ai,

u′, if µj(u) = u′ai.

One can show properties like µ1(uaiāiv) = µ1(uv) and µ2(uaiāiv) = µ2(uāiaiv)

= µ2(uv). We formally define u−1 as ūn · · · ū1 with the convention ¯̄a = a and

ε−1 = ε.

Mathematics about brackets can be confusing, so we sometimes frame the

‘formal language brackets’ as ( to distinguish them from brackets that are used

as signs of aggregation.
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Roots. The Dyck languages bear the name of the German mathematician

Walther von Dyck (1856–1934), who studied finitely generated free groups [68].

They appeared in computer science as formal languages in the work of Chomsky

and Schützenberger, who coined their name.

2 Algorithms

All algorithms in this section work on the random access machine with logarith-

mic cell size and unit cost instructions.

2.1 One Type of Brackets

We begin with two easy upper bounds for D1 and D′1, respectively.

Proposition 6 The Dynamic Membership problem for D′1 can be solved in con-

stant time. With the extended set of updates, the complexity raises to Θ(logn/

log logn).

Proof. We focus on change and member. Note first that for all x ∈ { ( , ) }∗ we

have

x ∈ D′1 ⇔ |x| ( = |x| ) .

The only if direction is obvious. The other follows from the fact that a reduced

string over { ( , ) }∗ cannot contain both ( and ) . Hence we only need to count

the number of occurrences of ( and ) in x to answer membership queries.

With change operations, we merely need to store x and increment or decre-

ment a counter accordingly to the update, which can be done in constant time

per update.

The solution can not be used for the extended set of operations, since we

cannot keep track of the indices that fast (a lower bound for list indexing is

given in [25]), and [16] presents an O(log n/ log logn) algorithm. Details are

given in [21]. 2

Proposition 7 The dynamic membership problem for D1 can be solved in time

O(log n) per operation.

Proof. First note that for any x ∈ { ( , ) }∗, the reduced string µ1(x) is of the

form )
r

(
l for integers l, r ≥ 0. We can view l and r as the number of excessive

left and right brackets, respectively.

We maintain a balanced binary tree whose ith leaf represents xi and where

each internal node represents the concatenation of its children’s strings. With

each node we store the tuple (r, l) describing the reduced form of the string it

represents.

For the operations first note that x ∈ D1 if and only if the root contains

the tuple (0, 0), corresponding to µ1(x) = ε. To handle the updates it suffices
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to note that the value of a node can be easily derived from the values of its

children, since

µ1( )
r1 (

l1 )
r2 (

l2) =

{
)
r1 (

l2+l1−r2 , if l1 ≥ r2,
)
r1+r2−l1 (

l2 , otherwise.

We can redo these calculations bluntly at each level and achieve a running time

proportional to the height of the tree.

The data structure is easily generalised to the extended set of operations

using any scheme for balancing dynamic search trees, e.g. red–black trees [29].

2

We will not comment on such extensions any further; the reader can check

that they are also possible for all the algorithms in Sections 3 and 4. The

algorithm in the proof of Proposition 9 calls for the most complicated extensions,

in that we also need to be able to split and merge trees.

2.2 Many Types of Brackets

We move now to the main result, extending the above to larger k. The basic

idea resembles very much the data structure from Proposition 7: we represent

x as a balanced binary tree whose internal nodes correspond to substrings of x.

At each node, we store entire sequences (rather than just a tuple as above) that

are formed from the sequences stored at its children. To this end we first need

a recent surprising construction for dynamically maintaining sequences.

A data structure for string equality Mehlhorn, Sundar, and Uhrig [47] present

a data structure for dynamically maintaining a family of strings under equality

tests. We use a slightly modified set of updates that is better suited to our

problem. More precisely, we want to maintain an initially empty family S of

strings from a finite alphabet Σ under the following operations:

create(σ): create a new (one-letter) string s = σ ∈ Σ and add it to S,

concatenate(s, s′): create a new string s′′ = ss′ and add it to S,

split(s, i): create new strings s′ = s1 · · · si and s′′ = si+1 · · · sn, and add

them to S,

equal(s, s′): return ‘yes’ if and only if s = s′,

lcp(s, s′): return the length of the longest common prefix of s and s′.

The time bounds for these operations are summarised in the following lemma.

Lemma 11 ([47]) Any of the above operations takes time O(log n(logm log∗m+

log n)) on a unit-cost RAM with cell size O(log(n+m)), where m is the number

of operations executed for the string family S so far, and n is the total length of

involved strings in the operation.
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In our setting we do not allow the time complexity and cell size to depend

on m. To get around this problem we use the global rebuilding technique of

Overmars [56] to keep the size of m linear relative to the input size of the

problems we consider.
The time bounds in the lemma are all explicitly stated in [47] except for the lcp

operation. For completeness, we show how to implement this operation within the
claimed time bound.

Let s and s′ be two strings in the string family S for which we want to find
the length of the longest common prefix. We adopt the notation of [47] letting s̄ =
(τ0, τ1, . . . τ2t) and s̄′ = (τ ′0, τ

′
1, . . . τ

′
2t′), with τ0 = s, τ ′0 = s′ and τ2i−1 = elpow(τ2i−2),

τ2i = shrink(τ2i−2), τ ′2i−1 = elpow(τ ′2i−2) and τ2i = shrink(τ2i−2) for all i ≥ 1.
Let N(τi, p) denote the value of the pth node of (tree that represents the) list τi.

The longest common prefix operation may now be implemented as follows:

proc lcp(s, s′)
(1) find i such that N(τi, 1) 6= N(τ ′i , 1)

p← 1
while i > 0 do {I(i, p)}

if i is even
(2) q ← the position of the rightmost node of Ti−1

encoded by N(τi, p− 1)
elseif i is odd

write the blocks at N(τi, p) and N(τ ′i , p)
as σk and ρl, respectively
if σ 6= ρ

(3) q ← the position of the rightmost node of Ti−1

encoded by N(τi, p− 1)
else
m← min{k, l}

(4) q ← the position of the node of Ti−1 encoded by
the mth σ of N(τi, p) = σk

fi
fi

(5) increment q until N(τi−1, q) 6= N(τ ′i−1, q)
p← q
i← i− 1

od
return p− 1

end

It is easy to verify that the invariant I(i, p) defined as

N(τi, p) 6= N(τ ′i , p), but N(τi, q) = N(τ ′i , q) for all q = {1, . . . , p− 1},

holds inside the while-loop. Hence after the loop, p − 1 contains the length of the
longest common prefix of s and s′.

The number of iterations of the while loop is O(log n). The values of the assign-
ments (1), (2), (3) and (4) can be found in time O(log n) (of course, if the search (1)
fails for all i, the two strings are equal). By lemma 4.2 in [47] the number of increments
in line (5) is at most O(1). Thus in total the lcp operation takes time O(log2 n) as
claimed. A similar argument shows that the expected time bound for the randomised
version is O(log2 n) too.

The two-sided case

Theorem 7 (Two-sided) The dynamic membership problem for D′k can be done

in solved O(log3 n log∗ n) per operation.
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Proof. We maintain a balanced binary tree whose ith leaf represents xi and

where each internal node represents the concatenation of its children’s strings.

With the node representing (say) y we store µ2(y) and µ2(y−1).

Let us see how we handle the operations. The query operation is easy since

the root contains µ2(x). For the change operation, we will show how to use

the data structure from Lem. 11 to maintain the two sequences at each node.

First note that the leaves of the tree are easily changed because µ2(xi) = xi and

µ2(x−1
i ) = x̄i.

From the leaf, the change propagates towards the root of the tree. To handle

the changes at an internal node we exploit a useful property of the reduction

function µ2: given u, v ∈ (A ∪ Ā)∗, write

µ2(u) = u′aw and µ2(v) = w−1bv′, with ā 6= b, (1)

for some u′, v′, w ∈ (A ∪ Ā)∗ and a, b ∈ (A ∪ Ā). Then one can show

µ2(uv) = u′abv′. (2)

Consider for concreteness an internal node whose children represent (say)

u and v, respectively. Let w denote the longest common prefix of µ2(u−1)

and µ2(v), which can be found from the information at the children of the

node in time O(log2N log∗N), where N denotes the total length of all se-

quences in the tree. Now split µ2(u) and µ2(v) as in (1) above and construct

µ2(uv) by (2), using a constant number of operations, each of which takes time

O(log n(logm log∗m + logn)) by Lemma 11. Employing the global rebuilding

technique as mentioned in § 2.2 we ensure that m ∈ O(n). We only need to

observe that the above data structure can be rebuilt from scratch using at most

O(n) of the operations from the MSU data structure. We conclude that the

total amount of time for an update is O(log3 n log∗ n). 2

The one-sided case The proof for Dk is similar to that for D′k but marred by

the less nice algebraic properties of µ1.

Theorem 7 (One-sided) The dynamic membership problem for Dk can be solved

in time O(log3 n log∗ n) per operation.

Proof. As before, we maintain a balanced binary tree whose ith leaf represents

xi and where each internal node represents the concatenation of its children’s

strings.

We define yet another cancellation function µ, where every left bracket can-

cels every right bracket, regardless of its type, by

µ(ε) = ε, µ(uai) = µ(u)ai,

µ(uāi) =

{
µ(u)āi, if µ(u) /∈ (A ∪ Ā)∗A,

u′, if µ(u) ∈ u′A.
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For every y we can write µ(y) as yĀyA for some yĀ ∈ Ā∗ and yA ∈ A∗. With

the tree node for y we store a bit that is true if and only if µ1(y) ∈ Ā∗A∗

(equivalently, µ(y) = µ1(y)), as well as the strings yA and yĀ, and their formal

inverses (yA)−1 and (yĀ)−1. The intuition is that if this bit is false then x

cannot balance, since

µ1(y) ∈ Ā∗A∗ if and only if ∃u, v : uyv ∈ Dk, (3)

and then it suffices to store that information only. In the other case, µ1(y)

consists only of yĀ and yA, and these two strings (together with their formal

inverses) are easily maintained, as we shall see below.

We turn to the operations. First note that membership of x in Dk can be

read off the root node, since

x ∈ Dk if and only if µ1(x) ∈ Ā∗A∗ and xA = xĀ = ε.

For the updates it suffices to explain how we can derive the information at a

node from its children using a constant number of string operations. Let u and

v denote the strings represented by the node’s children and assume without loss

of generality |uA| ≥ |vĀ| (the other case is symmetrical). Write uA as uA,1uA,2,

where |uA,2| = |vĀ|. Then yA = uA,1vA and yĀ = uĀ. Moreover,

µ1(y) ∈ Ā∗A∗ if and only if µ1(u), µ1(v) ∈ Ā∗A∗ and uA,2 = (vĀ)−1.

The formal inverses (yA)−1 and (yĀ)−1 are easily maintained. This completes

the proof. 2

The upper bounds from the last two propositions can be improved to ex-

pected time O(log3 n) using the Las Vegas variant of the algorithm described in

§ 2.2, see [47].

2.3 Monte Carlo Algorithms

The two-sided case We begin with D′k, which is quite simple. We use the

well-known fingerprint string matching technique of Karp and Rabin [40].

Proposition 8 The dynamic membership problem for D′k can be solved in time

O(log n) per operation such that the probability of an erroneous answer in any

sequence of n updates is O( 1
n ).

Proof. We start by considering D′2 over the alphabet A = { ( , [ } and Ā =

{ ) , ] }. Define the congruence ∼ by

u ∼ v if and only if µ2(u) = µ2(v).

Then the quotient (A ∪ Ā)∗/ ∼ is a group (the free group over { ( , [ }) with

concatenation as the operator and ε as the identity.
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Following Lipton and Zalcstein [44] (see also [45, Problem 2.3.13]), we rep-

resent (A ∪ Ā)∗/∼ as a group of 2× 2 integer matrices using the group homo-

morphism

h : (A ∪ Ā)∗/∼ → M2(Z),

h( ( ) =
( 1 2

0 1

)
and h( [ ) =

( 1 0

2 1

)
.

In this terminology, x is in D′2 if and only if h(x) is the identity matrix.

This suggests a randomised algorithm in the spirit of [40]: compute h(x)

modulo a randomly chosen prime p and check whether the result is the identity

matrix.

For the dynamic version we need to maintain h(x) mod p under updates to

x, we write n for |x|. For a fixed prime p ≤ n4 we can recompute h(x) mod p

in logarithmic time using a balanced binary tree, where the ith leaf contains

h(xi) and an internal node contains the product (in M2(Zp)) of the value of its

children. Thus the root contains h(x) mod p.

To bound the probability of error we note that all entries in the matrix

h(x) are bounded by 3n, so there can be at most n distinct primes p such that

h(x) ≡ 1 mod p if in fact h(x) 6= 1. Choosing p ≤ n4 randomly and choosing a

new p for every n operations by the global rebuilding technique of Overmars [56]

we guarantee that the probability of an erroneous answer in a sequence of n

consecutive queries is bounded by O( 1
n

).

The above construction can be extended to larger k using the fact that the

free group on k generators is a subgroup of the free group on two generators

g1, g2. Indeed, if for 1 ≤ i ≤ k we put ci = gi1g
i
2 then c1, . . . , ck generate a free

group, see [45, Problem 1.4.12]. 2

The one-sided case The algorithm for Dk is somewhat more difficult. We

will combine the tree-structure we used for the deterministic algorithm for Dk

(Proposition 7) with the Monte Carlo algorithm for D′k from the last propo-

sition. Recall that in the deterministic algorithm, we use the expensive string

operations from § 2.2 to test whether certain internal substrings (namely, uA,2
and (vĀ)−1) constitute a match. But since uA,2 ∈ A∗ and vĀ ∈ Ā∗, this is

true if and only if uA,2vĀ ∈ D′k, so we can use the much faster Monte Carlo

algorithm for D′k instead.

Proposition 9 The dynamic membership problem for Dk can be solved in time

O(log2 n) per operation such that the probability of an erroneous answer in any

sequence of n updates is O( 1
n ).

Proof. As before, we maintain a balanced binary tree whose ith leaf represents

xi and where each internal node represents the concatenation of its children’s

strings.
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For every y we define yA, yĀ, u, v, uA = uA,1uA,2, and vĀ as in the proof

of Proposition 7. In particular, we assume |uA| ≥ |vĀ| (the other case is sym-

metrical). Write w = uA,2vĀ. With the tree node for y (of length m, say) we

maintain the following information:

1. a bit that is true if and only if µ1(y) ∈ Ā∗A∗,

2. three balanced binary search trees whose leaves store the indices (in x) of

yA, yĀ, and w, respectively,

3. the lengths |yA|, |yĀ|, and |w|,

4. a string w# ∈ (A∪ Ā∪{#})m defined as follows: since w is a subsequence

of y, we can write w = yi1 . . . yil for some i1 < · · · < il. Then we define

w# = #i1−1yi1#i2−i1−1yi2#i3−i2−1yi3 · · ·#il−il−1−1yil#
m−il .

One can view this as a padded w of fixed length.

Note that we do not store y itself.

Turning to the operations, we first note that the query is handled as in the

proof of Proposition 7. A tedious case analysis shows that when a single letter

of y is changed then at most two changes are induced in each of yA and yĀ and

at most four changes in w and w#. The corresponding updates at the node

representing y can be done in time O(log n) given knowledge about the updates

at lower levels.

To see whether w ∈ D′k, we apply the technique from the last proposition,

using w# as instance; the extra letter # is handled by letting h map it to the

identity matrix. Hence we can maintain the information at each level of the tree

in time O(log n), from which the stated time bound follows.

To bound the error probability, note that we use O(n) distinct versions of

the data structure from Proposition 8. Using a prime from a larger set (say,

p ≤ n5), we obtain the stated bound. 2

3 Lower Bounds

We return to the results of Chap. 2 to prove lower bounds for our problem.

3.1 Dynamic Membership

For ease of notation we will slightly change the setting. We add a third letter to

our alphabet, a blank that does not affect language membership. Formally we

look at the languageD′ of strings over { ( , ) , } that are in the Dyck languageD

if the blanks are removed. This language is not harder than the Dyck language

because of the encoding

( 7→ ( ( , ) 7→ ) ) , 7→ ( ) ,

but much easier to reason about.

We first consider the interval problem where the query balance(i, j) returns

‘yes’ if and only if xi · · ·xj is properly balanced.
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Lemma 12 Every algorithm for the interval problem of a Dyck language requires

time Ω(log n/ log logn).

Proof. The proof for D′1 follows directly from Prop. 1 with the encoding

+1 7→ ( , −1 7→ ) , 0 7→ .

The proof for the one-sided Dyck language D1 is almost as easy. Encode

+1 7→ ) ) , −1 7→ , 0 7→ ) .

and pad the string to the left with 2n opening brackets1. Call this string y and

index it symmetrically around the middle as y = y−2n, . . . y−1, y1, . . . , y2n. The

ith prefix sum of x vanishes if and only if the number of brackets in y1, . . . , y2i

is exactly i, which we can check with an interval query for y−i · · · y2i. 2

Theorem 8 Every algorithm for dynamic membership for any Dyck language

with two or more types brackets requires time Ω(log n/ log logn).

Proof. We first prove the claim for D′2. We will use the member query for D′2
to solve an instance of the prefix problem from the last proposition.

Let x ∈ { ( , ) , }n be an instance of the dynamic interval problem for D′1.

Construct

y = x1 x2 . . . xn xR

and note that y is in D′2. To answer an interval query about x we merely insert

a matching pair of square brackets in y at the corresponding place:

y′ = x1 . . . xi−1 [ xi . . . xj ] xj+1 . . . xn xR

It is easy to see that y′ ∈ D′2 iff x1 · · ·xi ∈ D′1. After the query y′ is changed

back to y.

In the one-sided case, we have to extend both ends of the instance with

parentheses to

y = (
2n x1 x2 · · · xn xR )

2n,

just to make sure that y is in D2. The rest of the proof is the same. 2

1Apparently, in the mid-60s a handful of cards filled with closing brackets was always to
be found next to Aarhus University’s punched card reader for the IBM 7090 machine of the
Northern Europe University Computing Centre in Lundtofte. These were routinely appended
to users’ Lisp programs to make sure they were properly balanced.
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3.2 One-sided, one-letter membership

The only membership problem not covered by the last to results is D1. (Recall

that the membership problem for D′1 is in constant time by Proposition 6.)

We need a totally different technique for this, and our bound still leaves an

exponential gap, ending this thesis on an unhappy note.

We tentatively conjecture that the complexity of this problem is Ω(log n/

log logn).

Proposition 10 The Dynamic Membership problem for D1 requires

Ω
( log logn

log log logn

)
time per operation with logarithmic cell size.

Proof. Consider the Dyck language D1 over { ( , ) } for concreteness (the proof

is the same for the two-sided case). Assume that we have an implementation

for the Dynamic Interval problem for D1 that handles updates and queries in

time t = t(n). (We transform the result to the membership problem at the end

of the proof.) We will transform this problem to a static problem and show a

lower bound for the latter by a reduction.

Consider the problem of finding a static data structure that is able to answer

the following type of query in time t:

balance(i): return (x1 · · ·xi ∈ D1).

Note that no updates take place, and that the trivial solution (store all the

answers in advance) uses linear space. We will now show that we can use far

less space if x is not too different from ( ( ) )n/2. The data structure is based on

the algorithm for the dynamic problem. Initialise the data structure to ( ( ) )n/2.

Let M0 denote the resulting contents of the machine’s memory. Use the change

operation to transform ( ( ) )n/2 into x; let Mx denote the resulting memory

contents. Note that M0 and Mx differ at no more than rt cells, where r denotes

the number of changes. We store the difference in a perfect hash table, using

O(rt) space. We can hardwire M0 into our algorithm and hence we can simulate

the query operations as if the memory was Mx using only O(rt) space.

We introduce now another static problem, for which a lower bound is known.

The range query problem is to find a scheme to store an arbitrary set S ⊆
{1, . . . , n}, using space O(|S|O(1)), such that the following type of query can be

answered:

parity(i): return the value |S ∩ {1, . . . , i}| mod 2.

Note that by storing S in an ordered list, we achieve a size |S| data structure

that makes all queries answerable in time O(|S|). It is known that for any

scheme with the stated size bound there exists a set S for which there is a lower

bound of

t = Ω
( log logn

log log logn

)
(1)



on the time t needed for a query.

All that is left is to reduce the range query problem to the static Dyck

problem introduced above. Given S ⊆ {1, . . . , n}, construct the string x ∈
{ ( , ) }2n as follows: for each i /∈ S, we let x2i−1x2i = ( ) , and for each i ∈ S,

we let

x2i−1x2i =

{
( ( , if |S ∩ {1, . . . , i− 1}| = 0 mod 2,
) ) , otherwise.

It is easy to see that

|S ∩ {1, . . . , i}| = 0 mod 2 if and only if x1 · · ·x2i ∈ D1.

Hence we can use the data structure for the static Dyck prefix problem to solve

the range query Problem for arbitrary S. The size of this data structure is

O(|S|t), which is polynomial in |S| (recall that we can assume t ∈ O(|S|)), and

therefore the lower bound (1) applies.

We leave it to the reader to transform the proof to the membership problem,

using a similar trick as in the proof of Thm. 8. 2

The compress-and-communicate technique used to prove (1) is due to Mil-

tersen [49] and Xiao [71], combining ideas of Willard [70] and Ajtai [2]. The

result has been improved to that stated in (1) by Beame and Fich [8]. Miltersen

et al. [50] give an accessible presentation of a weaker result.

Other operations With any other set of operations, even D1 is hard. The

bound for insertions and deletions follows from [25], since list ranking is difficult.

The next result shows the bound for change and match.

Proposition 11 The dynamic membership problem with match queries for D1

requires

Ω
( logn

log logn

)
time per operation with logarithmic cell size.

Proof. Let x ∈ {0, 1}n be an instance of the Dynamic Parity Prefix problem.

Define z ∈ { ( , ) }3n by

z = (
2h(xn) (

2h(xn−1) (
2 · · · (

2h(x2) (
2h(x1),

where h(0) = ) and h(1) = ( .

We represent x by the string

y = (
3nz )

3nz−1.

Note that y is always in D1 and hence any match query will be well-defined.

Indeed, we have

match(6n− 3i+ 1) = 6n+ i+ 2 · |x1 · · ·xi|1 for i = 1, . . . , n,

so we can calculate x1 + · · · + xi mod 2 in constant time given the answer to

the match query. 2





Notation

|A| cardinality of the set A

A∆B symmetric difference of the sets A and B, i.e. (A ∪B) \ (B ∩A)

|x|a number of as in the string x

xR the string x reversed

bac floor of a

dae ceiling of a

log a logarithm to the base 2 of a

(a = b) 1 if a = b and 0 otherwise

(a ∈ S) 1 if a ∈ S and 0 otherwise

(P ) 1 if P holds and 0 otherwise

Roots. The notation for floors and ceilings is from the early 60s; according

to [28] it was introduced (together with the handy (P )-notation) by Iverson

[38], who “found that typesetters could handle the symbols by shaving the tops

and bottoms off of ‘[’ and ‘]’.”
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