
B
R

IC
S

D
S

-01-6
B

.G
robauer:

Topics
in

S
em

antics-based
P

rogram
M

anipulation

BRICS
Basic Research in Computer Science

Topics in
Semantics-based Program Manipulation

Bernd Grobauer

BRICS Dissertation Series DS-01-6

ISSN 1396-7002 August 2001

Copyright c© 2001, Bernd Grobauer.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/01/6/

Topics in
Semantics-based Program Manipulation

Bernd Grobauer

Ph.D. Dissertation

BRICS

BRICS Ph.D. School
Department of Computer Science

University of Aarhus
Denmark

July 2001 Supervisor: Olivier Danvy

Topics in
Semantics-based Program Manipulation

A dissertation
presented to the Faculty of Science

of the University of Aarhus
in partial fulfillment of the requirements for the

Ph.D. degree

by
Bernd Grobauer

31 July 2001

Abstract

Programming is at least as much about manipulating existing code as it is
about writing new code. Existing code is modified, for example to make ineffi-
cient code run faster, or to accommodate for new features when reusing code;
existing code is analyzed, for example to verify certain program properties, or to
use the analysis information for code modifications. Semantics-based program
manipulation addresses methods for program modifications and program ana-
lyses that are formally defined and therefore can be verified with respect to the
programming-language semantics. This dissertation comprises four articles in
the field of semantics-based techniques for program manipulation: three articles
are about partial evaluation, a method for program specialization; the fourth
article treats an approach to automatic cost analysis.

Partial evaluation optimizes programs by specializing them with respect to
parts of their input that are already known: Computations that depend only on
known input are carried out during partial evaluation, whereas computations
that depend on unknown input give rise to residual code. For example, partially
evaluating an interpreter with respect to a program written in the interpreted
language yields code that carries out the computations described by that pro-
gram; partial evaluation is used to remove interpretive overhead. In effect, the
partial evaluator serves as a compiler from the interpreted language into the
implementation language of the interpreter. Compilation by partial evaluation
is known as the first Futamura projection. The second and third Futamura
projection describe the use of partial evaluation for compiler generation and
compiler-generator generation, respectively; both require the partial evaluator
that is employed to be self applicable.

The first article in this dissertation describes how the second Futamura pro-
jection can be achieved for type-directed partial evaluation (TDPE), a relatively
recent approach to partial evaluation: We derive an ML implementation of the
second Futamura projection for TDPE. Due to the differences between ‘tradi-
tional’, syntax-directed partial evaluation and TDPE, this derivation involves
several conceptual and technical steps. These include a suitable formulation of
the second Futamura projection and techniques for making TDPE amenable to
self-application.

In the second article, compilation by partial evaluation plays a central role for
giving a unified approach to goal-directed evaluation, a programming-language
paradigm that is built on the notions of backtracking and of generating succes-
sive results. Formulating the semantics of a small goal-directed language as a
monadic semantics—a generic approach to structuring denotational semantics—
allows us to relate various possible semantics to each other both conceptually
and formally. We thus are able to explain goal-directed evaluation using an in-
tuitive list-based semantics, while using a continuation semantics for semantics-
based compilation through partial evaluation. The resulting code is comparable
to that produced by an optimized compiler described in the literature.

The third article revisits one of the success stories of partial evaluation, the

iii

generation of efficient string matchers from intuitive but inefficient implementa-
tions. The basic idea is that specializing a naive string matcher with respect to
a pattern string should result in a matcher that searches a text for this pattern
with running time independent of the pattern and linear in the length of the
text. In order to succeed with basic partial-evaluation techniques, the naive
matcher has to be modified in a non-trivial way, carrying out so-called binding-
time improvements. We present a step-by-step derivation of a binding-time im-
proved matcher consisting of one problem-dependent step followed by standard
binding-time improvements. We also consider several variants of matchers that
specialize well, amongst them the first such matcher presented in the literature,
and we demonstrate how variants can be derived from each other systematically.

The fourth article is concerned with program analysis rather than program
transformation. A challenging goal for program analysis is to extract informa-
tion about time or space complexity from a program. In complexity analysis,
one often establishes cost recurrences as an intermediate step, and this step
requires an abstraction from data to data size. We use information contained
in dependent types to achieve such an abstraction: Dependent ML (DML), a
conservative extension of ML, provides dependent types that can be used to
associate data with size information, thus describing a possible abstraction. We
automatically extract cost recurrences from first-order DML programs, guiding
the abstraction from data to data size with information contained in DML type
derivations.

Acknowledgments

I wish to thank Peter Dybjer and Neil Jones for serving on my Ph.D. com-
mittee.

I am grateful to my Ph.D. supervisor Olivier Danvy for his dedication in
supervising his students—the German term for “Ph.D. supervisor” is “Dok-
torvater”, which applies to Olivier very much in the literal sense. During my
Ph.D. studies, I could be sure of Olivier supporting me all the way. His support
was not only scientific but also personal, guiding me and helping me with all
aspects of doing a Ph.D. and some besides. He further put much energy and en-
thusiasm into creating a very special atmosphere in his research group, turning
the “Outpost” in the Officersbygning into an ideal place for study and work.

I wish to thank Zhe Yang for sharing his zest for research and life with me:
On the same day, we might explore semantics and swing, categories and cappuc-
cino, or monads and music. I am indebted to Zhe for giving me encouragement,
advice and help whenever needed. In Zhe I found both a great colleague and a
true friend.

I thank Julia Lawall for a rewarding collaboration and for her continued
interest into my work: She listened patiently to my sometimes half-baked ideas
and read through many manuscripts in various stages of completion, always
providing me with substantial comments and encouragement.

For their interest and encouragement I also thank Tobias Nipkow and Gilles
Barthe. To Tobias I am further grateful for letting me spend a semester as
a research student in his group at Technische Universität München—a both
scientifically and personally rewarding visit.

It was a privilege to work and study at BRICS and DAIMI, where I found
everybody equally approachable, ready to work together, ready to help. I am
grateful to everyone contributing to this environment, and would like to espe-
cially thank a few persons: Mogens Nielsen for his encouragement and guidance,
and for chairing my Ph.D. committee; Janne Christensen and Karen Møller for
giving assistance and a smile whenever needed; Thomas Hune for taking good
care of me during the first semester; Paola Quaglia for providing wisdom and
optimism; Daniel Damian for many shared hours of working and idling in the
O-building; Andrzej Filinski for listening with patience, commenting with sub-
stance, and proof-reading with the eyes of an eagle.

Without the love and constant support of my family, I would not have been
in a position to start doing a Ph.D., much less to actually complete it. I thank
my parents and my sister Bärbel for being a wonderful family.

Finally, I especially thank my girlfriend Alina whose encouragement and
support carried me towards completing this thesis.

v

Contents

1 Introduction and Overview 1
1.1 Partial Evaluation . 2

1.1.1 Basic concepts . 2
1.1.2 Partial Evaluation in Practice 6
1.1.3 Contributions . 8

1.2 Automatic cost analysis . 10
1.2.1 Basic concepts of cost analysis 11
1.2.2 Approaches to automated cost analysis 11
1.2.3 Our contribution . 13

1.3 Outline of the dissertation . 14

2 The Second Futamura Projection for Type-Directed Partial
Evaluation 21
2.1 Introduction . 22

2.1.1 Background . 22
2.1.2 Our work . 25

2.2 TDPE in a nutshell . 26
2.2.1 Pure TDPE in ML . 26
2.2.2 TDPE in ML: implementation and extensions 30
2.2.3 A general account of TDPE 34

2.3 Formulating self-application . 39
2.3.1 An intuitive account of self-application 39
2.3.2 A derivation of self-application 41

2.4 The implementation . 44
2.4.1 Residualizing instantiation of the combinators 45
2.4.2 An example: Church numerals 47
2.4.3 The GE-instantiation . 49
2.4.4 Type specification for self-application 49
2.4.5 Monomorphizing control operators 51

2.5 Generating a compiler for Tiny 57
2.6 Benchmarks . 58

2.6.1 Experiments and results 58
2.6.2 Analysis of the result . 59

2.7 Conclusions and issues . 61

vii

Appendix 2.A Notation and symbols 62
Appendix 2.B Compiler generation for Tiny 63

2.B.1 A binding-time-separated interpreter for Tiny 63
2.B.2 Generating a compiler for Tiny 65
2.B.3 “Full parameterization” 65
2.B.4 The GE-instantiation . 66

3 A Unifying Approach
to Goal-Directed Evaluation 77
3.1 Introduction . 77
3.2 Semantics of a Subset of Icon . 79

3.2.1 A subset of the Icon programming language 79
3.2.2 Monads and semantics . 79
3.2.3 A monad of sequences . 80
3.2.4 A monadic semantics . 80
3.2.5 A spectrum of semantics 82
3.2.6 Correctness . 84
3.2.7 Conclusion . 86

3.3 Semantics-Directed Compilation 86
3.3.1 Type-directed partial evaluation 87
3.3.2 Generating C programs 90
3.3.3 Generating byte code . 94
3.3.4 Conclusion . 95

3.4 Conclusions and Issues . 95

4 Partial Evaluation of Pattern Matching in Strings, revisited 99
4.1 Introduction . 99
4.2 Partial evaluation . 101
4.3 Straightforward implementation of a string matcher 102
4.4 Pattern matching with positive information 102

4.4.1 Implementation . 103
4.4.2 Complexity of the specialized code 108

4.5 Pattern matching with both positive and negative information . 110
4.5.1 Implementation . 110
4.5.2 Complexity of the specialized code 112

4.6 Variants . 113
4.6.1 Linguistic variants . 113
4.6.2 Overlapping parameters 114
4.6.3 Towards Consel and Danvy’s implementation 114

4.7 Related work . 118
4.8 Conclusion . 119
Appendix 4.A An overview of Scheme 120
Appendix 4.B Correctness (positive information) 122
Appendix 4.C Correctness (positive and negative information) 124
Appendix 4.D Complexity (positive and negative information) 128

4.D.1 Size . 128

4.D.2 Execution time . 130

5 Cost Recurrences for DML Programs 135
5.1 Introduction . 135
5.2 Background: Dependent ML . 138

5.2.1 A programmer’s view of DML 138
5.2.2 A formal specification of DML 141

5.3 Extracting cost recurrences . 144
5.3.1 The intuition behind extracting cost recurrences 144
5.3.2 Example: Flattening a list of lists 147
5.3.3 Example: Searching a balanced tree 148
5.3.4 Example: Merge sort . 149

5.4 Formal development . 152
5.4.1 A first-order fragment of DML 152
5.4.2 Measuring cost of computation 153
5.4.3 A language of recurrence equations 155
5.4.4 The extraction algorithm 159
5.4.5 Checking whether the bound is a recurrence 163
5.4.6 Correctness . 163

5.5 Related work . 163
5.6 Conclusion . 165
Appendix 5.A DML . 166

5.A.1 DML typing rules . 166
5.A.2 DML semantics . 169

Appendix 5.B Formal development 172
5.B.1 A modified semantics a first-order fragment of DML . . . 172
5.B.2 The monadic translation 174
5.B.3 Extraction of recurrence equations—preliminaries 176
5.B.4 Extraction of recurrence equations—correctness 178

Chapter 1

Introduction and Overview

Only few programs are written completely from scratch. To a large extent,
programming means manipulating existing code, both for carrying out modifi-
cations to the code and for analyzing the behavior of the code.

Code maintenance, for example, requires the modification of existing code:
The premises under which some code was written may change, often entailing
code modifications. Such changes, to take a few examples, become necessary
because of the upgrade to a new platform, the introduction of new standards
(consider, e.g., the plethora of standards concerning hypertext markup lan-
guages, or the introduction of the euro), or simply the turn of a new century.
The latest turn of century caused the so-called Y2K problem, forcing large-scale
code modifications at a considerable cost: estimates range from US$ 1 to US$
8.50 per line of code.

Code reuse means the use of existing code within new programs. Reusability
of code can be improved by appropriate program design, e.g., as a composition
of modules that are as generic as possible and have a well-defined interface; it
may pay to go even a step further and form code libraries, which can be reused
with particular ease. Also adapting code not written with an eye to future reuse,
however, may be cheaper than writing a new program from scratch.

Making a virtue out of necessity, some programming methodologies suggest
systematic code modification as a way to overcome a trade-off between clarity
and efficiency in programming: A program that implements a straightforward
solution to a problem is often rather inefficient, whereas efficient programs tend
to be quite cryptic. Systematic code manipulation can be used to start de-
velopment with a clear but inefficient implementation, which then is gradually
rewritten into an efficient one.

Program manipulation is also used to analyze code, for example to find out
whether a given program has certain properties. Especially with the widespread
use of the Internet, more and more code from non-trustworthy sources run, re-
quiring guarantees about the behavior of the code. A well-known example is
the byte code verifier of the Java Virtual Machine, which checks whether pro-
grams are well-behaved regarding, e.g., memory access. Other analyses gather

1

2 Introduction and Overview

information useful for the programmer, e.g., for debugging purposes or as a ba-
sis for program modifications: Program analysis can answer questions such as
“Which objects can a given pointer refer to?” and “Is this piece of code actually
reachable during execution?”

Program modifications and program analyses should be correct, i.e., modi-
fying a given program should not introduce bugs and program analysis should
yield correct results. A proof of correctness, however, requires a formal defi-
nition. Semantics-based program manipulation addresses formally defined pro-
gram transformations and program analyses that can be verified with respect
to the programming-language semantics.

This dissertation treats topics in semantics-based program manipulation,
contributing to the fields of partial evaluation, a transformation for program
specialization, and of automated cost analysis. In the remainder of this chap-
ter, we first provide some background on partial evaluation and automated cost
analysis, and we describe our contributions. We then give an overview of the
articles that constitute the remaining chapters of this thesis. All articles pre-
sented here have been peer-reviewed in conference proceedings and/or scientific
journals.

1.1 Partial Evaluation

There is much to be said about partial evaluation—here we only sketch some
basics, explaining the what and giving only a vague idea about the how. We
then describe how partial evaluation is used in practice, also describing several
applications that show how a wide range of useful program modifications can
be carried out using partial evaluation. Finally, we describe our contributions
to the field of partial evaluation and put them into context.

A complete account of both the concepts of partial evaluation and many of
its techniques can be found in Jones, Gomard and Sestoft’s textbook [32]. A
concise survey can also be found in Consel and Danvy’s tutorial notes [13].

1.1.1 Basic concepts

Partial evaluation is a technique for program optimization. It works by special-
izing programs with respect to parts of their input, the so-called static input.
This process effectively stages computation: Computations which depend only
on the static input are carried out during partial evaluation. At the same time,
residual code is produced for computations dependent on dynamic input, i.e.,
input which is unknown at partial-evaluation time. Partial evaluation is carried
out automatically by so-called partial evaluators.

A Simple Example of Partial Evaluation

The standard example of partial evaluation is specializing the power function,
where power (x, y) calculates xy . Here is an implementation of power in an

1.1 Partial Evaluation 3

ML-like language:

fun power (x, 0) = 1
| power (x, n) = x ∗ (power (x, n − 1))

The function power takes two arguments. Specializing it with respect to the
second parameter, e.g., to the value 3, could lead to a residual program of the
form

fun power-d-3 x = x ∗ x ∗ x ∗ 1

Because the recursion is controlled by the static parameter, partial evaluation
unfolds it four times, yielding a residual program without any recursive calls. In
this case, partial evaluation seems to pay off: a considerable amount of calcu-
lation could be precomputed. However, consider now the result of specializing
with respect to the first argument, again to the value 3:

fun power-3-d 0 = 1
| power-3-d n = 3 ∗ (power-3-d (n − 1))

Without knowledge about the second argument to power, there is hardly any
computation that can be carried out—inlining the value of the first argument
is about all that can be done. Clearly, partial evaluation cannot be used indis-
criminately: The cost of partial evaluation has to be weighted against the gains
of specialization.

Correctness of Partial Evaluation

Intuitively it is quite clear what correctness of partial evaluation means: special-
izing a program to a part of the input and then executing the residual program
over some remaining input should yield the same result as executing the original
program over the complete input, provided that both cases terminate.

A formal definition of this correctness requirement can be given with respect
to a programming-language semantics: We write [[prog]] for the denotation of a
program(text) prog. For partial evaluation we consider programs whose input
can be divided into two parts, namely a static part s and a dynamic part d.
Hence running prog on the total input is written as [[prog]] 〈s, d〉. Let progs

denote the specialization of prog to the static input s. Then the correctness
requirement for specialization can be expressed as

[[progs]] d = [[prog]] 〈s, d〉 (∗)

Say that the program pe performs partial evaluation, i.e., [[pe]] 〈prog, s〉 =
progs. Combining this with (∗) yields the so-called mix equation

[[[[pe]] 〈prog, s〉]] d = [[prog]] 〈s, d〉 (∗∗)

as requirement for the correctness of pe.

4 Introduction and Overview

Notice that for an ML program prog, we can form a trivial specialization
progs by instantiating prog with the static input and abstracting over the dy-
namic parameters (providing, in fact a proof of Kleene’s Sm

n theorem [34]):

fn x ⇒ prog (s, x)

The real challenge of partial evaluation is to find non-trivial specializations, for
which the parts of the computation that depend only on the static input have
been carried out.

The Futamura Projections

The mix equation (∗∗) gives an equational specification of the behavior of a
partial evaluator. Using this specification, applications of partial evaluation can
be explored. For example, reasoning with the mix equation and an equational
specifications of interpreters, compilers, and compiler generators, yields the so-
called Futamura projections, first observed by Futamura [22, 23]. The Futamura
projections describe how a partial evaluator can be used to compile, to generate
compilers, and to generate compiler generators.

An interpreter for a programming language L can be understood as a func-
tion taking two arguments: a source program to be interpreted and some input
for this program. Let [[·]]L denote a semantic function assigning meanings to
programs written in L. A defining equation for an interpreter interpreter is then

[[interpreter]] 〈source, input〉 = [[source]]L input

Using a partial evaluator to specialize the interpreter to some source input, we
can thus conclude (using the mix equation (∗∗)) that

[[[[pe]] 〈interpreter, source〉]] input = [[source]]L input

Consider now what a compiler does: When compiling some source to a target,
the following equation should hold:

[[target]] input = [[source]]L input

By equational reasoning and extensionality follows the first Futamura projection:

[[pe]] 〈interpreter, source〉 = target

Recall that the equational treatment of partial evaluation is only half the story,
since it only captures the extensional behavior of the resulting residual program.
However since the control flow of an interpreter usually depends on the program
to be interpreted, one can expect that all computations dealing with destruc-
ting the source program are carried out during partial evaluation. Thus we
indeed can regard [[pe]] 〈interpreter, source〉 as a compiled program—the partial
evaluator acts as a compiler.

1.1 Partial Evaluation 5

Using a similar line of reasoning, one arrives at the second Futamura projec-
tion

[[pe]] 〈pe, interpreter〉 = compiler,

i.e., specializing a partial evaluator with respect to an interpreter for some
language L yields a compiler for L—the partial evaluator acts as a compiler-
generator. The third Futamura projection shows that partial evaluation can act
as a compiler-generator generator:

[[pe]] 〈pe, pe〉 = compiler-generator

The Futamura projections can be generalized to arbitrary programs using
the concept of a generating extension: A program p′ is a generating extension
of the program p, if running p′ on static input s yields a specialization of p with
respect to the s (under the assumption that p′ terminates on s). Obviously,
a compiler acts as the generating extension of an interpreter. The generalized
Futamura projections read:

[[pe]] 〈program, static input〉 = specialized program
[[pe]] 〈pe, program〉 = generating extension
[[pe]] 〈pe, pe〉 = generating-extension–generator

The quest for self applicability

Both the second and the third Futamura projection require an application of
a partial evaluator to itself. The Futamura projections thus became a driv-
ing force for the development of self-applicable partial evaluators. Only in
1985—fourteen years after the Futamura projections had been formulated—the
very first effective self-applicable partial evaluator, Mix [33], was implemented
by Jones’s group at DIKU in Copenhagen. Subsequently, a number of self-
applicable partial evaluators have been implemented, e.g., Similix [10]; whether
a given partial evaluator is self applicable has become a standard question when
classifying partial-evaluation systems.

Online and offline partial evaluation

The enabling technique used by Jones et al. in implementing a self-applicable
partial evaluator was the development of offline partial evaluation.

The first partial evaluators to be written were online. Online partial evalu-
ation works by interpreting a program text over the static and dynamic input
in a non-standard way: the partial evaluator always keeps track of which val-
ues are static and which are dynamic. A computation that only depends on
static values is carried out while for all other computations code is generated
(residualizing the involved static values into syntax).

Online partial evaluation offers the most finely grained distinction between
static and dynamic values that is possible. This however comes at a cost. Since
for any function taking n arguments, 2n cases have to be considered (any ar-
gument may be static or dynamic), online partial evaluators are rather large,

6 Introduction and Overview

consisting of numerous case distinctions, and slow. Further, self application
for online partial evaluators is bound to fail in practice: The decision whether
to carry out a computation or to generate residual code generally depends on
the static input, which is not available during self-application. The specialized
partial evaluator thus still bears this overhead of decision-making.

Jones et al. decided to take the decision of whether to carry out computation
or to generate code offline. They staged partial evaluation into (1) a so-called
binding-time analysis and (2) the specialization of a program annotated with
binding-time information. Binding-time analysis yields a conservative approxi-
mation about which values are static and which are dynamic. This information
is then used during specialization. Compared with online partial evaluation,
some possibilities for precomputation may be lost, but the partial evaluator
becomes smaller and faster, and self application can be achieved efficiently.

1.1.2 Partial Evaluation in Practice

Partial evaluation optimizes programs by carrying out static computations, i.e.,
precomputing program parts that depend only on static input. Whether the
optimization is worthwhile depends on (1) how much static computation is
detected by the partial evaluator, and (2) how often this static computation
is repeated when executing the original program. Repetition may be due to
repeated execution of the complete program with the same static input, or
loops/recursion within the program. Loops/recursion, however, can also lead
to problems in the form of unreasonably large results of partial evaluation or in
the form of non-termination of the partial-evaluation process.

Pitfalls

Code explosion, i.e., unreasonably large results of specialization, can occur, for
example, when partial evaluation unrolls loops or unfolds recursive calls too
eagerly. For example, when specializing the power function to a small exponent,
unfolding the recursion is desirable; that is not necessarily the case for a large
exponent, as illustrated by Debray [20]. Non-termination of partial evaluation
may occur if the control flow of the program to be specialized is partly dynamic:
When encountering a conditional with a dynamic test, the partial evaluator
might specialize all branches of the conditional, speculatively, and in doing so
may loop.

The danger of code explosion and non-termination can be minimized or even
avoided with more sophisticated partial-evaluation systems; as an alternative,
one can modify programs according to the capabilities of the partial evaluator
in question.

Binding-time improvements

Not only code explosion and non-termination can be avoided by modifying a
program according to the capabilities of the partial evaluator to be used: Also

1.1 Partial Evaluation 7

how much static computation is detected by a partial evaluator can be influenced
significantly by the way a program is written. Meaning-preserving program
modifications that make program more suitable to partial evaluation, essentially
by increasing the amount of static computation that is detected, are called
binding-time improvements.

What kinds of binding-time improvements are necessary depends on the
partial evaluator that is used, leading to a certain trade-off: A simple partial-
evaluation system requires the user to carry out more binding-time improve-
ments. For a simple partial evaluator, such binding-time improvements can be
carried out in a systematic way, because the behavior of the partial evaluator
is sufficiently predictable. A sophisticated partial-evalution system, in contrast,
handles more programs automatically, but is more unstable in the sense that its
behavior is less predictable.

Applications

At the beginning of this section we gave conditions under which partial evalua-
tion is likely to be worthwhile. These may seem somewhat limited at first—in
which situations are parts of the input known in advance? Also the fact that
the user may have to modify programs so as to make them amenable to partial
evaluation could raise doubts about the applicability of partial evaluation. Yet,
as we shall see in the following, there are many successful applications of partial
evaluation.

In extreme cases, even specializing a program with respect to no input
may yield an improvement. For example, programs in which a large num-
ber of macros have been used may contain precomputable parts introduced by
macro expansion. Also programs that are the result of combining a number
of modules—such as programs written from reusable components—may benefit
from specialization.

Repeated static computation occurs, for example, in C programs when read-
ing or writing a large amount of data line by line, using formatting functions
such as printf and scanf. These functions are passed a control string which
determines their behavior; for a high number of repetitions, specializing them
with respect to the control string is worthwhile. A similar situation arises with
a number of Unix utilities such as grep or awk that scan a file line by line.

The Unix utilities grep and awk in fact interpret small programming lan-
guages; also printf and scanf can be seen as interpreters of the control string.
Specializing interpreters so as to achieve the effect of compilation or for compiler
generation—recall the Futamura projections from Section 1.1.1—is one of the
prime applications of partial evaluation. Because programs often contain loops
or recursion and furthermore are usually executed several times, specializing an
interpreter with respect to a program is likely to be worthwhile. Furthermore,
experience shows that interpreters are well-suited for partial evaluation. The
main interest lies not so much on interpreters for full-scale programming lan-
guages such as C or ML, for which already exist highly optimized compilers,
but on small domain-specific languages (DSLs). For example, partial evaluation

8 Introduction and Overview

has been successfully used for rapid prototyping of domain specific languages,
giving rise to a design methodology for DSLs that uses partial evaluation in a
crucial way [14].

Often, a denotational semantics of a programming language can be imple-
mented straightforwardly as an interpreter. Through the first and second Fu-
tamura projection, partial evaluation thus offers the possibility to extract a
compiler directly from the language definition—we speak of semantics-directed
compilation [30]. An immediate benefit of semantics-directed compilation is
that correctness of the compilation process with respect to the semantics is
guaranteed.

Other situations in which static computation is carried out repeatedly be-
cause of loops/recursion within a program can often be found in scientific com-
puting. For example, the Fast Fourier Transformation (FFT), which converts a
function defined in terms of time to a function defined in terms of frequency, has
been shown to be well-suited for partial evaluation [36]. The input to the FFT
includes a one-dimensional array of complex numbers and the size of the array.
In applications, the FFT algorithm is often repeatedly applied to arrays of the
same size. Further, the FFT carries out a fair amount of computation that only
depends on the array size. Hence, a considerable speedup can be achieved by
specializing the FFT with respect to the array size. Similar situations where
partial evaluation is worthwhile have been found for example in applications
from numerical computing [8, 9, 24], ray tracing [2], and media processing [21].

1.1.3 Contributions

In the following, we list the contributions of this dissertation to the field of
partial evaluation.

The second Futamura projection for type-directed partial evaluation

Whether a given partial evaluator is self applicable is, as mentioned in Sec-
tion 1.1.1, a standard questions when classifying partial-evaluation systems.
We answer this question for type-directed partial evaluation [17, 18] (TDPE), a
relatively recent partial evaluation technique.

TDPE can be seen as the combination of two concepts. The first concept
could be called partial evaluation by normalization: The basic observation is
that an appropriate notion of normalization corresponds to partial evaluation.
The second concept is called normalization by evaluation (NbE): The normal
form of a term t is extracted from the meaning of t by first evaluating t and then
applying an extraction function to the result. Traditional normalizers instead
work by symbolic computation on a representation of t. NbE yields a very
efficient normalization function, and is thus of interest to any area of computer
science in which normalization plays a role. NbE has for example been examined
in the context of proof theory [7, 6]. The proceedings of the first APPSEM
workshop on NbE [19] provide an overview of various other treatments.

1.1 Partial Evaluation 9

TDPE instantiates the first concept with NbE as normalization function.
There exist several fundamental differences between TDPE and ‘traditional’ par-
tial evaluators, which—like traditional normalizers—work by symbolic compu-
tation on a code representation. Even though a limited form of self-application
for TDPE already had been achieved in the original article [17], it was not
clear whether self-application in general—in particular the second Futamura
projection—could be performed in the setting of TDPE. This dissertation an-
swers the question in the affirmative. We show how TDPE can be made
amenable to self-application, present a formulation of the second Futamura pro-
jection suitable for TDPE, and derive an ML implementation of the second
Futamura projection for TDPE. We further demonstrate our technique with
several examples, including compiler generation for Tiny, a prototypical imper-
ative language.

Semantics-directed compilation for goal-directed evaluation

We present the first application of semantics-directed compilation to a program-
ming-language paradigm called goal-directed evaluation (GDE): We start with
an intuitive semantics of GDE and end with efficient code comparable to that
produced by optimized compilers.

Goal-directed languages such as Icon and Snobol combine expressions that
can yield multiple results through backtracking. An expression can yield several
results, which are generated one by one. If an expression fails to produce a re-
sult, control is passed to a previous expression, prompting it for another result.
In case of success, the original expression is retried. The presence of backtrack-
ing complicates both language semantics and implementation for goal-directed
languages.

In the literature, semantics and implementation of goal-directed languages
have only been treated separately; we link semantics and implementation via
semantics-directed compilation using partial evaluation. We further (1) relate an
intuitive semantics of a goal-directed language conceptually and formally with
a more complicated semantics that is well-suited for code-generation via partial
evaluation, and (2) extract templates from the specialized interpreters that are
similar to those found in an optimizing compiler described in the literature. All
in all, we describe a unified approach to goal-directed evaluation with partial
evaluation as one of the central techniques.

Partial evaluation of pattern matching in strings, revisited

After a non-trivial binding-time improvement, a naive, essentially quadratic
string matcher can be specialized into a linear one à la Knuth, Morris and Pratt
by standard partial evaluation. Several examples of string matchers that spe-
cialize well have been published. We revisit the problem, extracting an approach
that is applicable to pattern matching problems in general, and relating various
published solutions with program transformation.

A string matcher that searches for occurrences of a pattern string in a data

10 Introduction and Overview

string can be seen as an interpreter of the pattern string—consequently, par-
tial evaluation might be applied successfully. However, a straightforward im-
plementation of a string matcher does not specialize well under basic partial
evaluation: Too little static computation is detected. Successful application of
partial evaluation requires either a non-trivial binding-time improvement of the
naive matcher, or a partial-evaluation system with capabilities that go beyond
standard partial evaluation.

Since Consel and Danvy [12] presented the first string matcher that special-
izes well under partial evaluation, many more applications of partial evaluation
to string matching and, more generally, pattern matching have been published.
Because in each case the (non-trivial!) binding-time improvement is performed
in a single step, it is neither obvious that the modification preserves semantics,
nor clear how such binding-time improvements can be achieved in a systematic
way. We present a step-by-step modification such that only the first step is prob-
lem specific, whereas the remaining steps are variations of standard binding-time
improvements; we hope that this division illuminates how the approach can be
applied to other pattern-matching problems and implementations. We further
explore a number of different string matchers that specialize well under stan-
dard partial evaluation, amongst them several published versions, and relate
them with program transformations. All in all, we provide a comprehensive
account of the application of partial evaluation to string matching.

1.2 Automatic cost analysis

Cost analysis, i.e., the prediction of the amount of resources such as space or
running time used by an algorithm or program, originated in the field of algo-
rithmics. Knuth’s first volume of The Art of Computer Programming [35], which
can be seen as the starting point of modern algorithmics, presented algorithm
design with a strong focus on the analysis of running time. In fact, algorithm
design and analysis are inseparable:

• Algorithmic design requires analysis, since resource requirements are an
indispensable yardstick for the quality of an algorithm.

• Analysis often is based on correctness arguments for an algorithm, which
in turn are integral part of the algorithm design.

The dependency of cost analysis on correctness arguments—in the most basic
case a termination argument—shows that full automation of cost analysis for
general algorithms or programs cannot be achieved. Even if the analysis de-
pends only to a small extent on correctness arguments, a formidable amount
of mathematics may be necessary to derive cost bounds: The analysis of the
running time of recursive programs, for example, involves solving recurrence
equations [1], for which a wealth of mathematical methods [5, 35, 40, 46] has
been developed. Attempts to automate cost analysis therefore must compromise
between the degree of automation, the class of algorithms or programs to be

1.2 Automatic cost analysis 11

considered, and the nature of the bounds to be determined. In the following,
after reviewing a few basic concepts of cost analysis, we look at various research
directions in the field of automatic cost analysis, examining for each which kind
of compromise has been made. We then describe our contribution and put it
into context. We shall mainly focus on time bounds rather than bounds for
space or other resources.

1.2.1 Basic concepts of cost analysis

Successful analysis usually yields a cost approximation in terms of input size,
expressed for example as a function. It is common practice to abstract from an
actual function of cost in terms of input size to the function’s rate of growth,
yielding an asymptotic analysis, first advocated by Aho, Hopcroft and Ullman [1]
as a means to compare relative performance.

The analysis of an algorithm is subject to how cost is modeled and what
kind of approximation should be achieved. Cost models often are derived from
machine models (e.g., the random-access machine or the pointer machine) by
understanding the algorithm as a program running on such a machine and mea-
suring cost accordingly. Other cost models are of a more abstract nature, e.g.,
counting the number of comparisons for sorting algorithms, or the number of
recursive calls for functional programs.

Having decided on a cost model, the analysis is further determined by which
kind of approximation is chosen:

• Worst-case analysis yields an upper bound of the running time of an
algorithm for any input of a given size.

• Average-case analysis yields the expected running time based on a proba-
bilistic model of the distribution of input. The rationale is that worst-case
situations may occur very seldomly, so worst-case analysis is frequently too
pessimistic when compared to running times observed in practice.

• Amortized analysis yields bounds on sequences of operations rather than
on individual operations. Especially for data structures such as sets or
queues, information about the time taken by a sequence of information
may be the most appropriate. At the same time, flexibility is gained for
the design of such data structures: instead of striving for a low worst-case
bound for every individual operation, costs can be redistributed between
operations; often amortized solutions are simpler and faster than worst-
case solutions.

1.2.2 Approaches to automated cost analysis

In the following we look at various approaches to automated cost analysis, high-
lighting which compromise between the degree of automation, the class of al-
gorithms or programs to be considered and the nature of the bounds to be
determined has been made.

12 Introduction and Overview

Implicit computational complexity

Implicit computational complexity examines how to give language-based rather
than machine-based characterizations of complexity classes. Basically, for a
given complexity class such as the polytime functions a language is defined such
that all programs written in the language are in this class.

The field of implicit computational complexity started with the first machine-
independent characterization of a complexity class: Cobham [11] showed that a
certain class of function definitions characterized exactly the class of functions
computable in polynomial time. However, it is undecidable to test whether
a given function definition is legal. Further work in implicit computational
complexity (for example [4, 39, 27]—Hofmann’s survey [28] provides a detailed
overview) managed to give more tangible characterizations and extended the
language with, e.g., higher-order functions and inductive data types.

Even with language extensions as mentioned above, the recursion-theoretic
formalisms used in work on implicit computational complexity are rather far
from programming languages used in practice. Jones [31] developed an analysis
for a standard first-order language that allows the automatic detection of poly-
time programs; the class of programs recognized by the analysis has been shown
to be of practical value in that it admits many natural formulations of efficient
algorithms. The analysis is an extension of work on termination analysis [38].

Resource-bound certification

Asymptotic bounds, as established through implicit computational complexity,
do not provide enough information for the kind of safety guarantee necessary in
real-time environments or when running code from untrusted sources. Resource-
bound certification aims to provide more precise bounds, compromising either
on the level of automation or on the class of programs to be considered.

Hughes and Pareto [29] present a functional language—a first-order variant
of ML with constructs for explicit storage management—with a type system
such that well-typed programs run within stated space bounds. Necula and
Lee [45] show that the framework of proof-carrying code [44] can be used to
express and check runtime bounds. Within the framework of typed assembly
language [43], Crary and Weirich [16] develop a type system capable of specifying
and certifying both space and time bounds.

All mentioned systems check rather than infer bounds, i.e., the authors com-
promised mainly on the level of automation. Reistad and Gifford [47], in con-
trast, consider a restricted language, namely functional programs without gen-
eral recursion: Programs are written using combinators such as map and fold.
The effects associated with function types are cost expressions that may depend
on the size of input arguments; type inference calculates such cost expressions
for every function type in the program, thus establishing time bounds. These
bounds for used for guiding the parallelization of programs rather than as safety
certificates.

1.2 Automatic cost analysis 13

Extraction of cost functions

Another possible compromise, allowing the inference of cost bounds for a gen-
eral language, is to lower the requirements regarding the nature of the inferred
bounds: a cost function pc is a program that calculates a worst-case bound for a
program p as a function of the size of input to p. A cost function may not even
terminate for every input—using it as a certificate, therefore, is rather point-
less. Cost functions instead can be used to make estimates about the resource
consumption of a program. Such estimates are useful, for example, within auto-
matic program transformation systems (e.g., the CACHET system [41]): They
can give an indication of whether a transformation actually produced a better
(more efficient, less space consuming, etc.) program. Transforming and ap-
proximating the cost function itself may yield a closed form, i.e., a formulation
without recursion (or loops), so that the bound can be read off easily. This
latter step, however, is equivalent to solving recurrence equations, so there is an
inherent limit to its automation.

Le Métayer’s ACE system [37] for a subset of FP [3] is based on program
transformation: Drawing from a library of over 1000 rules, many of them tailored
to recognize patterns of recursion, it aims to transform the program into a
recursion-free cost bound1 and a measure function, i.e., a function mapping
input to input size.

Rosendahl [48] presents a system based on abstract interpretation [15] and
program transformation that infers cost functions for first-order recursive equa-
tions. Rather than attempting to find a measure function in a completely auto-
matic way, the method requires some user interaction in finding an appropriate
size measure for data. As in the ACE system, program transformation is used,
but only for simplifying an already established cost function rather than deriv-
ing such a function in the first place. Liu and Gómez [42] propose a method
based on Rosendahl’s work in which they use advanced program-transformation
techniques to make the cost function more accurate and more efficient.

1.2.3 Our contribution

For our work, we chose the following compromise between the class of programs,
the degree of automation, and the nature of the bounds:

Class of programs We consider first-order functional programs with induc-
tive data types.

Degree of automation We require the user to define a size measure on input
data.

Nature of bounds We extract recurrence equations—our method does not
make any attempt to solve or simplify them.

1The ACE system reports failure if it does not succeed to eliminate recursion for the cost
bound. Reporting instead the latest result of the transformation, however, often would yield
a usable cost function.

14 Introduction and Overview

Our key technical observation is that cost recurrences can be systematically
extracted from type derivations in Dependent ML [49](DML). DML is a con-
servative extension of ML with a limited form of dependent types. The design
philosophy of DML is to use type-checking for the verification of non-trivial cor-
rectness properties of ML programs—every valid ML program is a valid DML
program, because DML extends ML conservatively. For example, DML types
can express that consing an element to a list of length n yields a list of length
n + 1, or that a program for inserting an element into a balanced tree indeed
returns a balanced tree. In effect, data is associated with size (and shape)
information—a size measure is encoded. The measure describes an abstraction
from data to data size, which can be used to extract a recurrence equation from
a program.

The method is used as follows:

• Finding an appropriate size measure is left to the user; the high expres-
siveness of DML types allows the user to tailor size measures to each
situation.

• Once a size-measure has been defined and encoded with DML types, ex-
tracting a recurrence from a program is a tedious but systematic process
that can be automated.

• In general, solving recurrences automatically is not possible, and thus we
leave it to the user. Unlike systems that extract cost functions [37, 48],
we choose not to carry out any approximations while extracting a recur-
rence. This approach may lead to recurrences that contain logical formu-
las; in contrast to cost functions, such recurrences are not immediately
executable, but often specify a much more accurate bound.

All in all, our approach to automated cost analysis attempts a clean sep-
aration between what can be successfully automated and what is better left
to the user or specialized tools; both a back-end for approximating recurrence
equations naively into cost functions and for solving recurrence equations with
further user interaction could be used.

1.3 Outline of the dissertation

Chapters 2 to 5 of this dissertation contain articles published in conference
proceedings and/or scientific journals. In two cases, the dissertation contains
an extended version of the original article.

• Chapter 2: Bernd Grobauer and Zhe Yang. The second Futamura pro-
jection for type-directed partial evaluation. Higher-Order and Symbolic
Computation, 14(2/3), 2001. A preliminary version appeared in Julia L.
Lawall, editor, Proceedings of the ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation, SIGPLAN No-
tices, Vol. 34, No 11, pages 22–32, Boston, Massachusetts, November 2000.
ACM Press.

1.3 Outline of the dissertation 15

• Chapter 3: Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A uni-
fied approach to goal-directed evaluation. In New Generation Comput-
ing, 20(1), 2001. A preliminary version appeared in Talid Waha, editor,
Proceedings of the 2001 International Workshop on Semantics, Applica-
tions, and Implementation of Program Generation (SAIG), number 2196
in Lecture Notes in Computer Science, Florence, Italy, September 2001.
Springer-Verlag.

• Chapter 4: Bernd Grobauer and Julia Lawall. Partial evaluation of pat-
tern matching in strings, revisited. Accepted for publication in the Nordic
Journal of Computing. The version included in this dissertation has been
extended with several appendices.

• Chapter 5: Bernd Grobauer. Cost recurrences for DML programs. In
Xavier Leroy, editor, Proceedings of the 2001 ACM SIGPLAN Interna-
tional Conference on Functional Programming, Florence, Italy, September
2001. ACM Press.

The version included in this dissertation has been extended significantly.

Bibliography

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[2] Peter Holst Andersen. Partial evaluation applied to ray tracing. In
W. Mackens and S. M. Rump, editors, Software Engineering in Scientific
Computing, pages 78–85. Vieweg, 1996.

[3] J. W. Backus. Can programming be liberated from the Von Neumann
style? A functional style and its algebra of programs. Communications of
the ACM, 21(8):613–641, August 1978.

[4] Stephen Bellantoni and Cook Stephen. New recursion-theoretic character-
ization of the polytime functions. Computational Complexity, (2):97–110,
1992.

[5] Jon L. Bentley, Dorothea Haken, and James B. Saxe. A general method for
solving divide-and-conquer recurrences. SIGACT News, 13(3):36–44, 1980.

[6] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization
by evaluation. In Bernhard Möller and J.V. Tucker, editors, Prospects for
hardware foundations (NADA), number 1546 in Lecture Notes in Computer
Science, pages 117–137. Springer-Verlag, 1998.

[7] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ-calculus. In Albert R. Meyer, editor, Proceedings
of the 6th Annual IEEE Symposium on Logic in Computer Science, pages
203–213, Amsterdam, The Netherlands, July 1991. IEEE Computer Society
Press.

[8] Andrew A. Berlin. Partial evaluation applied to numerical computation.
In Mitchell Wand, editor, Proceedings of the 1990 ACM Conference on
Lisp and Functional Programming, pages 139–150, Nice, France, June 1990.
ACM Press.

[9] Andrew A. Berlin and Rajeev J. Surati. Partial evaluation for scientific
computing: The Supercomputer Toolkit experience. In Peter Sestoft and
Harald Søndergaard, editors, Proceedings of the ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipulation,

16

BIBLIOGRAPHY 17

Technical Report 94/9, University of Melbourne, Australia, pages 133–141,
Orlando, Florida, June 1994.

[10] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science of
Computer Programming, 16:151–195, 1991.

[11] Alan Cobham. The intrinsic computational difficulty of functions. In
Yehoshua Bar-Hillel, editor, Proceedings of the International Conference
on Logic, Methodology, and Philosophy of Science, pages 24–30. North Hol-
land, 1964.

[12] Charles Consel and Olivier Danvy. Partial evaluation of pattern matching
in strings. Information Processing Letters, 30(2):79–86, January 1989.

[13] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In
Graham [25], pages 493–501.

[14] Charles Consel and Renaud Marlet. Architecturing software using a
methodology for language development. In Catuscia Palamidessi, Hugh
Glaser, and Karl Meinke, editors, Tenth International Symposium on Pro-
gramming Language Implementation and Logic Programming (PLILP’98);
held jointly with the 6th International Conference, ALP’98, number 1490 in
Lecture Notes in Computer Science, pages 170–194, Pisa, Italy, September
1998. Springer-Verlag.

[15] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Ravi Sethi, editor, Proceedings of the Fourth Annual ACM
Symposium on Principles of Programming Languages, pages 238–252. ACM
Press, January 1977.

[16] Karl Crary and Stephanie Weirich. Resource bound certification. In
Thomas Reps, editor, Proceedings of the Twenty-Seventh Annual ACM
Symposium on Principles of Programming Languages, pages 184–198,
Boston Massachusetts, January 2000. ACM Press.

[17] Olivier Danvy. Type-Directed Partial Evaluation. In Guy L. Steele Jr., ed-
itor, Proceedings of the Twenty-Third Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 242–257, St. Petersburg Beach,
Florida, January 1996. ACM Press.

[18] Olivier Danvy. Type-directed partial evaluation. In Hatcliff et al. [26],
pages 367–411.

[19] Olivier Danvy and Peter Dybjer, editors. Proceedings of the 1998 APPSEM
Workshop on Normalization by Evaluation, NBE ’98, (Gothenburg, Swe-
den, May 8–9, 1998), number NS-98-8 in Note Series, DAIMI, Department
of Computer Science, University of Aarhus, May 1998. BRICS.

18 BIBLIOGRAPHY

[20] Saumya Debray. Resource-bounded partial evaluation. In Charles Consel,
editor, Proceedings of the ACM SIGPLAN Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation, pages 179–192, Amster-
dam, The Netherlands, June 1997. ACM Press.

[21] Scott Draves. Implementing bit-addressing with specialization. In Mads
Tofte, editor, Proceedings of the 1997 ACM SIGPLAN International Con-
ference on Functional Programming, pages 239–250, Amsterdam, The
Netherlands, June 1997. ACM Press.

[22] Yoshihito Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Higher-Order and Symbolic Computation,
12(4):381–391, 1999. Reprinted from Systems · Computers · Controls 2(5),
1971.

[23] Yoshihito Futamura. Partial evaluation of computation process, revisited.
Higher-Order and Symbolic Computation, 12(4):377–380, 1999.

[24] Robert Glück, Ryo Nakashige, and Robert Zöchling. Binding-time analy-
sis applied to mathematical algorithms. In J. Doležal and J. Fidler, edi-
tors, System Modelling and Optimization, pages 137–146. Chapman & Hall,
1995.

[25] Susan L. Graham, editor. Proceedings of the Twentieth Annual ACM Sym-
posium on Principles of Programming Languages, Charleston, South Car-
olina, January 1993. ACM Press.

[26] John Hatcliff, Torben Æ. Mogensen, and Peter Thiemann, editors. Partial
Evaluation – Practice and Theory; Proceedings of the 1998 DIKU Summer
School, number 1706 in Lecture Notes in Computer Science, Copenhagen,
Denmark, July 1998. Springer-Verlag.

[27] Martin Hofmann. Linear types and non size-increasing polynomial time
computation. In Giuseppe Longo, editor, Proceedings of the 14th An-
nual Symposium on Logic in Computer Science (LICS’99), pages 464–473,
Trento, Italy, 1999. IEEE Computer Society Press.

[28] Martin Hofmann. Programming languages capturing complexity classes.
SIGACT News, 31(1):31–42, March 2000.

[29] John Hughes and Lars Pareto. Recursion and dynamic datastructures in
bounded space: Towards embedded ML programming. In Peter Lee, ed-
itor, Proceedings of the 1999 ACM SIGPLAN International Conference
on Functional Programming, pages 70–81, Paris, France, September 1999.
ACM Press.

[30] Neil D. Jones, editor. Semantics-Directed Compiler Generation, number 94
in Lecture Notes in Computer Science, Aarhus, Denmark, 1980. Springer-
Verlag.

BIBLIOGRAPHY 19

[31] Neil D. Jones. Program analysis for implicit computational complexity.
In Olivier Danvy and Andrzej Filinski, editors, Programs as Data Objects,
Second Symposium, PADO 2001, number 2053 in Lecture Notes in Com-
puter Science, page 1, Aarhus, Denmark, May 2001. Springer-Verlag. Joint
invited talk of PADO 2001 and ICC 2001.

[32] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall, 1993.

[33] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. Mix: A self-
applicable partial evaluator for experiments in compiler generation. Lisp
and Symbolic Computation, 2(1):9–50, February 1989. DIKU Report 91/12.

[34] Stephen C. Kleene. Introduction to Metamathematics. D. van Nostrand,
Princeton, New Jersey, 1952.

[35] Donald E. Knuth. Fundamental Algorithms,volume 1 of The Art of Com-
puter Programming. Addison-Wesley, 1968.

[36] Julia L. Lawall. Faster fourier transforms via automatic program special-
ization. In Hatcliff et al. [26], pages 338–355.

[37] Daniel Le Métayer. ACE: An automatic complexity evaluator. ACM Trans-
actions on Programming Languages and Systems, 10(2):248–266, April
1988.

[38] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change
principle for program termination. In Hanne Riis Nielson, editor, Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Principles of
Programming Languages, pages 81–92, London, United Kingdom, January
2001. ACM Press.

[39] Daniel Leivant. Stratified functional programs and computational complex-
ity. In Graham [25], pages 325–333.

[40] Chung L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill,
1968.

[41] Yanhong Annie Liu. Efficiency by incrementalization: an introduction.
Higher-Order and Symbolic Computation (HOSC), 13(4):289–313, Decem-
ber 2000.

[42] Yanhong Annie Liu and Gustavo Gómez. Automatic accurate time-bound
analysis for high-level languages. In Frank Mueller and Azer Bestavros,
editors, Proceedings of the ACM SIGPLAN 1998 Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES), number 1474 in
LNCS, pages 31–40, Montréal, Canada, June 1998. Springer-Verlag.

[43] Greg Morrisett, Karl Crary, and Neal Glew. From System F to typed
assembly language. ACM Transactions Programming Languages and Sys-
tems, 21(3):528–569, May 1999.

20 BIBLIOGRAPHY

[44] Georg Necula. Proof-carrying code. In Neil D. Jones, editor, Proceedings of
the Twenty-Fourth Annual ACM Symposium on Principles of Programming
Languages, pages 106–119, Paris, France, January 1997. ACM Press.

[45] Georg Necula and Peter Lee. Safe, untrusted agents using proof-carrying
code. In Giovanni Vigna, editor, Special Issue on Mobile Agent Security,
number 1419 in Lecture Notes in Computer Science, pages 61–91. Springer-
Verlag, October 1997.

[46] Paul W. Purdom, Jr and Cynthia A. Brown. The Analysis of Algorithms.
Holt, Rinehart, and Winston, 1985.

[47] Brian Reistad and David K. Gifford. Static dependent costs for estimat-
ing program execution time. In Carolyn L. Talcott, editor, Proceedings
of the 1994 ACM Conference on Lisp and Functional Programming, LISP
Pointers, Vol. VII, No. 3, Orlando, Florida, June 94. ACM Press.

[48] Mads Rosendahl. Automatic complexity analysis. In Joseph E. Stoy, editor,
Proceedings of the Conference on Functional Programming Languages and
Computer Architecture ’89, pages 144–156, London, September 1989. ACM
Press.

[49] Hongwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Alex Aiken, editor, Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Programming Languages, pages 214–227, San
Antonio, Texas, January 1999. ACM Press.

Chapter 2

The Second Futamura
Projection for
Type-Directed Partial
Evaluation

Abstract

A generating extension of a program specializes the program with
respect to part of the input. Applying a partial evaluator to the
program trivially yields a generating extension, but specializing the
partial evaluator with respect to the program often yields a more
efficient one. This specialization can be carried out by the partial
evaluator itself; in this case, the process is known as the second
Futamura projection.

We derive an ML implementation of the second Futamura projection
for Type-Directed Partial Evaluation (TDPE). Due to the differences
between ‘traditional’, syntax-directed partial evaluation and TDPE,
this derivation involves several conceptual and technical steps. These
include a suitable formulation of the second Futamura projection and
techniques for making TDPE amenable to self-application. In the
context of the second Futamura projection, we also compare and
relate TDPE with conventional offline partial evaluation.

We demonstrate our technique with several examples, including com-
piler generation for Tiny, a prototypical imperative language.

21

22 The Second Futamura Projection for TDPE

2.1 Introduction

2.1.1 Background

General notions Given a general program p : σS ×σD → σR and a fixed static
input s : σS , partial evaluation (a.k.a. program specialization) yields a special-
ized program ps : σD → σR. When this specialized program ps is applied to an
arbitrary dynamic input d : σD, it produces the same result as the original pro-
gram applied to the complete input (s , d), i.e., [[ps]]d = [[p]](s, d) (Here, [[·]] maps
a piece of program text to its denotation. In this article, metavariables in slanted
serif font, such as p, s , and d stand for program terms. Meanwhile, variables
in italic font, such as x and y, are normal variables in the subject program).
Often, some computation in program p can be carried out independently of the
dynamic input d , and hence the specialized program ps is more efficient than
the general program p. In general, specialization is carried out by performing
the computation in the source program p that depends only on the static input
s, and generating program code for the remaining computation (called residual
code). A partial evaluator PE is a program that performs partial evaluation
automatically, i.e., if PE terminates on p and s then

[[PE]](p, s) = ps

Often extra annotations are attached to p and s so as to pass additional infor-
mation to the partial evaluator.

A program p′ is a generating extension of the program p, if running p′ on
s yields a specialization of p with respect to the static input s (under the as-
sumption that p′ terminates on s). Because the program λs.PE (p, s) computes
a specialized program ps for any input s, it is a trivial generating extension of
program p. To produce a more efficient generating extension, we can specialize
PE with respect to p, viewing PE itself as a program and p as part of its input.
In the case when the partial evaluator PE itself is written in its input language,
i.e., if PE is self-applicable, this specialization can be achieved by PE itself.
That is, we can generate an efficient generating extension of p as

[[PE]](PE , p).

Self-application The above formulation was first given in 1971 by Futamura
[17] in the context of compiler generation—the generating extension of an in-
terpreter is a compiler—and is called the second Futamura projection. Turning
it into practice, however, proved to be much more difficult than what its seem-
ing simplicity suggests; it was not until 1985 that Jones’s group implemented
Mix [23], the very first effective self-applicable partial evaluator. They identified
the reason for previous failures: The decision whether to carry out computation
or to generate residual code generally depends on the static input s, which is
not available during self-application; so the specialized partial evaluator still
bears this overhead of decision-making. They solved the problem by taking

2.1 Introduction 23

the decision offline, i.e., the source program p is pre-annotated with binding-
time annotations that solely determine the decisions of the partial evaluator.
In the simplest form, a binding time is either static, which indicates computa-
tion carried out at partial evaluation time (hence called static computation), or
dynamic, which indicates code-generation for the specialized program.

Subsequently, a number of self-applicable partial evaluators have been im-
plemented, e.g., Similix [3], but most of them are for untyped languages. For
typed languages, the so-called type specialization problem arises [21]: Gener-
ating extensions produced using self application often retain a universal data
type and the associated tagging/untagging operations as a source of overhead.
The universal data type is necessary for representing static values in the partial
evaluator, just as it is necesssary for representing values in a standard evaluator.
This is unsurprising, because a partial evaluator acts as a standard evaluator
when all input is static.

Partly because of this, in the 1990’s, the practice shifted towards hand-
written generating-extension generators [2, 20]; this is also known as the cogen
approach. Conceptually, a generating-extension generator is a staged partial
evaluator, just as a compiler is a staged interpreter. Ideally, producing a gener-
ating extension through self-application of the partial evaluation saves the extra
effort in staging a partial evaluator, since it reuses both the technique and the
correctness argument of the partial evaluator. In practice, however, it is often
hard to make a partial evaluator (or a partial-evaluation technique, as in the
case of this paper) self-applicable in the first place. In terms of the correctness
argument, if the changes to the partial evaluator in making it self-applicable
are minor and are easily proved to be meaning-preserving, then the correctness
of a generating extension produced by self-application still follows immediately
from that of the partial evaluator.

As we shall see in this article, the problem caused by using a universal
data type can be avoided to a large extent, if we can avoid introducing an
implicit interpreter in the first place. The second Futamura projection thus still
remains a viable alternative to the hand-written approach, as well as a source
of interesting problems and a benchmark for partial evaluators.

Type-directed partial evaluation In a suitable setting, partial evaluation
can be carried out by normalization. Consider, for example, the pure simply
typed λ-calculus, in which computation means β-reduction. Given two λ-terms
p: τ1 → τ2 and s : τ1, bringing the application ps into β-normal form specializes p
with respect to s . For example, normalizing the application of the K -combinator
K = λx.λ y.x to itself yields λ y.λ x.λ y′.x.

Type-directed partial evaluation (TDPE), due to Danvy [5], realizes the
above idea using a technique that turned out to be Berger and Schwichtenberg’s
Normalization by Evaluation (NbE) [1, 8]. Roughly speaking, NbE works by
extracting the normal form of a term from its meaning, where the extraction
function is coded in the object language.

24 The Second Futamura Projection for TDPE

Example 2.1 Let PL be a higher-order functional language in which we can de-
fine a type Exp of term representations. Consider the combinator K = λx.λy.x—
the term KK is of type Exp→ Exp→ Exp→ Exp. We want to extract a β-normal
form from its meaning.

Since Exp → Exp→ Exp→ Exp is the type of a function that takes three ar-
guments, one can infer that a β-normal form of KK must be of the form
λ v1.λ v2.λ v3.t (we underline term representations to distinguish them from
terms), for some term t : Exp. Intuitively, the only natural way to generate
the term t from the meaning of term KK is to apply it to the term representa-
tions v1, v2 and v3. The result of this application is v2. Thus, we can extract
the normal form of KK as λ v1.λ v2.λ v3.v2.

TDPE is different from a traditional, syntax-directed offline partial evalua-
tor [22] in several respects:

Binding-Time Annotation In traditional partial evaluation, all subexpres-
sions require binding-time annotations. It is unrealistic for the user to
annotate the program fully by hand. Fortunately, these annotations are
usually computed by an automatic binding-time analyzer, while the user
only needs to provide binding-time annotations on input arguments. On
the other hand, since the user does not have direct control over the binding-
time annotations, he often needs to know how the binding-time analyzer
works and to tune the program in order to ensure termination and a good
specialization result.

In contrast, TDPE eliminates the need to annotate expression forms that
correspond to function, product and sum type constructions. One only
needs to give a binding-time classification for the base types appearing in
the types of constants. Consequently, it is possible, and often practical,
to annotate the program by hand.

Role of Types The extraction function is parameterized over the type of the
term to be normalized, which makes TDPE “type-directed”.

Efficiency A traditional partial evaluator works by symbolic computation on
the source programs; it contains an evaluator to perform the static eval-
uation and code generation. TDPE reuses the underlying evaluator (in-
terpreter or compiler) to perform these operations; when run on a highly
optimized evaluation mechanism, TDPE acquires the efficiency for free—a
feature shared with the cogen approach.

Flexibility Traditional partial evaluators need to handle all constructs used in
a subject program, evaluating the static constructs and generating code
for the dynamic ones. In contrast, TDPE uses the underlying evaluator
for the static part. Therefore, all language constructs can be used in the
static part of a subject program. However, we shall see that this flexibility
is lost when self-applying TDPE.

2.1 Introduction 25

These differences have contributed to the successful application of TDPE in
various contexts, e.g., to perform semantics-based compilation [12]. An intro-
ductory account, as well as a survey of various treatments concerning NbE, can
be found in Danvy’s lecture notes [7].

2.1.2 Our work

The problem A natural question is whether one can perform self-application,
in particular the second Futamura projection, in the setting of TDPE. It is
difficult to see how this can be achieved, due to the drastic differences between
TDPE and traditional partial evaluation.

• TDPE extracts the normal form of a term according to a type that can be
assigned to the term. This type is supplied in some form of encoding as an
argument to TDPE. We can use self-application to specialize TDPE with
respect to a particular type; the result helps one to visualize a particular
instance of TDPE. This form of self-application was carried out by Danvy
in his original article on TDPE [5]. However, it does not correspond to
the second Futamura projection, because no further specialization with
respect to a particular subject program is carried out.

• The aforementioned form of self-application [5] was carried out in the un-
typed language Scheme. Whether self-application can be achieved in a
language with Hindley-Milner type system such as ML [25] is not immedi-
ately clear: Whereas TDPE can be implemented in Scheme as a function
that takes a type encoding as its first argument, this strategy is impos-
sible in ML, because such a function would require a dependent type.
Indeed, the ML implementation of TDPE uses the technique of type en-
codings [32]: For every type, a particular TDPE program is constructed.
As a consquence, the TDPE algorithm to be specialized is not fixed.

• Following the second Futamura projection literally, one should specialize
the source program of the partial evaluator. In TDPE, the static compu-
tations are carried out directly by the underlying evaluator, which thus
becomes an integral part of the TDPE algorithm. The source code of this
underlying evaluator might be written in an arbitrary language or even be
unavailable. In this case, writing this evaluator from scratch by hand is an
extensive task. It further defeats the main point of using TDPE: to reuse
the underlying evaluator and to avoid unnecessary interpretive overhead.

TDPE also poses some technical problems for self-application. For example,
TDPE treats monomorphically typed programs, but the standard call-by-value
TDPE algorithm uses the polymorphically typed control operators shift and
reset to perform let-insertion in a polymorphically typed evaluation context.

Our contribution This article addresses all the above issues. We show how
to effectively carry out self-application for TDPE in a language with Hindley-

26 The Second Futamura Projection for TDPE

Milner type system. To generate efficient generating extensions, such as com-
pilers, we reformulate the second Futamura projection in a way that is suitable
for TDPE.

More technically, for the typed setting, we show how to use TDPE on the
combinators that constitute the TDPE algorithm and consequently on the type-
indexed TDPE itself, and how to slightly rewrite the TDPE algorithm, so that
we only use the control operators at the unit and boolean types. As a full-fledged
example, we derive a compiler for the Tiny language.

Since TDPE is both the tool and the subject program involved in self-
application, we provide a somewhat detailed introduction to the principle and
the implementation of TDPE in Section 2.2. Section 2.3 provides an abstract
account of our approach to self-application for TDPE, and Section 2.4 details
the development in the context of ML. Section 2.5 describes the derivation of
the Tiny compiler. Based on our experiments, we give some benchmarks in
Section 2.6. Section 2.7 concludes. The appendix provides an index of nota-
tion (Appendix 2.A) and gives further technical details in the generation of a
Tiny compiler (Appendix 2.B). The complete source code of the development
presented in this article is available online [18].

2.2 TDPE in a nutshell

In order to give some intuition, we first outline TDPE for an effect-free fragment
of ML without recursion. Then we sketch the extensions and pragmatic issues
of TDPE in a larger subset of ML, which is the setting we will work with in the
later sections. Finally, to facilitate a precise formulation of self-application, we
outline Filinski’s formalization of TDPE.

2.2.1 Pure TDPE in ML

In this section, we illustrate TDPE for an effect-free fragment of ML with-
out recursion, which we call Pure TDPE. For this fragment, the call-by-name
and call-by-value semantics agree, which allows us to directly use Berger and
Schwichtenberg’s NbE for call-by-name λ-calculus as the core algorithm (recall
that ML is a call-by-value functional language).

NbE works by extracting the normal form of a λ-term from its meaning, by
regarding the term as a higher-order code-manipulation function. The extrac-
tion functions are type-indexed coercion functions coded in the object language.
To carry out partial evaluation based on NbE, TDPE thus needs to prepare a
code-manipulation version of the subject λ-term. Such a λ-term, in general,
could contain constant functions that cannot be statically evaluated; these con-
stants have to be replaced with code-manipulation functions.

Pure simply-typed λ-terms We first consider TDPE only for pure simply-
typed λ-terms. We use the type Exp in Figure 2.1 on the facing page to represent
code (as it is used in Example 2.1 on page 23). In the following we will write v

2.2 TDPE in a nutshell 27

for VAR v, λ v.t for LAM (v, t) and s @ t for APP (s, t); following the convention
of the λ-calculus, we use @ as a left-associative infix operator.

datatype Exp = VAR of string

| LAM of string * Exp

| APP of Exp * Exp

Figure 2.1: A data type for representing terms

Let us for now only consider ML functions that correspond to pure λ-terms
with type τ of the form τ ::= • | τ1 → τ2, where ‘•’ denotes a base type.
ML polymorphism allows us to instantiate ‘•’ with Exp when coding such a λ-
term in ML. So every λ-term of type τ gives rise to an ML value of type τ
= τ [• := Exp]; that is, a value representing either code (when τ = Exp), or a
code-manipulation function (at higher types).

Figure 2.2 shows the TDPE algorithm: For every type τ , we define induc-
tively a pair of functions ↓τ : τ → Exp (reification) and ↑τ : Exp → τ (reflec-
tion). Reification is the function that extracts a normal form from the value
of a code-manipulation function, using reflection as an auxiliary function. We
explain reification and reflection through the following examples.

↓• e = e
↓τ1→τ2 f = λx.↓τ2 (f(↑τ1 x)) (x is fresh)

↑• e = e
↑τ1→τ2 e = λx.↑τ2 (e @(↓τ1 x))

Figure 2.2: Reification and reflection

Example 2.2 We revisit the normalization of KK (Example 2.1 on page 23).
For the type • → •→ •→ • the equations given in Figure 2.2 define reification
as

↓•→•→•→• e = λx.λ y.λ z.exyz.

For every argument of base type ‘•’, a lambda-abstraction with a fresh variable
name is created. Given a function of type Exp→ Exp→ Exp→ Exp (i.e., a code-
manipulation function), a code representation of the body is then generated by
applying this function to the code representations of the three bound variables.
Evaluating ↓•→•→•→• (KK) yields λx.λ y.λ z.y.

What happens if we want to extract the normal form of t : τ1 → τ2 where
τ1 is not a base type? The meaning of t cannot be directly applied to the code
representing a variable, since the types do not match: τ1 6= Exp. This is where

28 The Second Futamura Projection for TDPE

the reflection function ↑τ : Exp→ τ comes in; it converts a code representation
into a code-generation function:

Example 2.3 Consider τ1 = •→ •→ •→ •:

↑•→•→•→• e = λx.λ y.λ z.e @ x@ y @ z

For any term representation e, ↑•→•→•→• e is a function that takes three term
representations and constructs a representation of the application of e to these
term representations. It is used, e.g., when reifying the term λx.λy.xyyy with
↓(•→•→•→•)→•→•.

Adding constants So far we have seen that we can normalize a pure simply-
typed λ-term by (1) coding it in ML, interpreting all the base types as type
Exp, so that its value is a code-manipulation function, and (2) applying reifica-
tion at the appropriate type. Treating terms with constants follows the same
steps, but the situation is slightly more complicated. Consider, for example,
the ML expression λ z.mult 3.14 z of type real→ real, where mult is a curried
version of multiplication over reals. This function cannot be used as a code-
manipulation function. The solution is to use a non-standard, code-generation
version multr : Exp → Exp→ Exp of mult. We also lift the constant 3.14 into
Exp using a lifting-function liftreal : real → Exp. (This operation requires a
straightforward extension of the data type Exp with an additional constructor
LIT REAL.) Reflection can then be used to construct a code-generation version
multr of mult:

Example 2.4 A code-generation version multr : Exp→Exp→ Exp of mult: real→
real→ real is given by

multr = ↑•→•→•“mult” = λx.λ y.“mult”@x@ y,

where“mult” (= VAR“mult”) is the code representation of a constant with name
mult. Now applying the reification function ↓•→• to the term

λ z.(multr (liftreal 3.14) z)

evaluates to λx.“mult”@3.14@x.

Partial evaluation
In the framework of TDPE, the partial evaluation of a (curried) program

p : σS → σD → σR with respect to a static input s : σS is carried out by nor-
malizing the application ps . We could use a code-generation version for all the
constants in this term; reifying the meaning will carry out all the β-reductions,
but leave all the constants in the residual program—no static computation in-
volving constants is carried out. However, this is not good enough: One would
expect that the application ps enables also computation involving constants,
not only β-reductions. Partial evaluation, of course, should also carry out such

2.2 TDPE in a nutshell 29

computation. This is achieved by instantiating the constants in question to
themselves.

In general, to perform TDPE for a term, one needs to decide for each con-
stant occurrence, whether to use the original constant or a code-generation
instantiation of it; appropriate lifting functions have to be inserted where neces-
sary. The result must type-check, and its partial application to the static input
must represent a code-manipulation function (i.e., its type is built up from only
the base type Exp), so that we can apply the reification function.

This process of classification corresponds to a binding-time annotation phase,
as will be made precise in the framework of a two-level language (Section 2.2.3).
Basically, a source term is turned into a well-formed two-level term by marking
constants as static or dynamic, inserting lifting functions where needed. In
general, one tries to reduce the number of occurrences of dynamic constants in
term t, so that more static computation involving constants is carried out during
partial evaluation. Because only constant occurrences have to be annotated,
this can, in practice, be done by hand. Given an annotated term tann, we
call the corresponding code-manipulation function its residualizing instantiation
tann . It arises from tann by instantiating each dynamic constant c with its code-
generation version cr, each static constant with itself, and each lifting function
with the appropriate coercion function into Exp. If t is of type σ, then its normal
form can be calculated by reifying tann at type σ (remember that reification
only distinguishes a type’s form—all base types are treated equally as ‘•’):

NF (t) = [[↓σ tann]];

Partial evaluation of a program p : σS × σD → σR with respect to a static
input s : σS thus proceeds as follows:

• binding-time annotate p and s as pann and sann, respectively1 such that
the term λx. pann (sann , x) has type σD → σR (recall that τ arises from
τ by instantiating each base type with Exp).

• carry out partial evaluation by reifying the above term at type σD → σR:

ps = [[↓σD→σR λx . pann (sann , x)]]

Example 2.5 Consider the function

height = λ (a : real).λ (z : real).mult (sin a) z.

Suppose we want to specialize height to a static input a : real. It is easy to see
that the computation of sin can be carried out statically, but the computation
of mult cannot—mult is a dynamic constant. This analysis results in a two-
level term heightann, in which sin is marked as static, mult as dynamic, and a

1That the static input also needs to be binding-time annotated may at first seem strange.
This is natural, however, because TDPE also accepts higher-order values as static input. For
a static input of base type, the binding-time annotation is trivial.

30 The Second Futamura Projection for TDPE

lifting function has been inserted to make the static result of applying sin to a
dynamic. The residualizing instantiation of heightann instantiates sin with the
standard sine function, the lifting function with a coercion function from real

into Exp, and mult with a code-generation version as introduced in Example 2.4
on page 28:

heightann = λ (a : real).λ (z : Exp).multr (liftreal(sin a)) z

Now (heightann
π
6) has type Exp → Exp, i.e., it is a code-manipulation func-

tion. Thus, we can specialize height with respect to π
6 by evaluating ↓•→•

(heightann
π
6), which yields λx.“mult”@0.5@ x

Notice that instantiation in a binding-time annotated term tann of every
constant with itself and of every lifting function with the identity function yields
a term t̃ann that has the same denotation as the original term t; we call t̃ann the
evaluating instantiation of tann.

2.2.2 TDPE in ML: implementation and extensions

Implementation Type-indexed functions such as reification and reflection
can be implemented in ML employing a technique first used by Filinski and
Yang [6, 32]; see also Rhiger’s derivation [28]. A combinator is defined for
every type constructor T (• and → in the case of Pure NbE in Section 2.2).
This combinator takes a pair of reification and reflection functions for every
argument τi to the (n-ary) type constructor T , and computes the reification-
reflection pair for the constructed type T (τ1, . . . , τn). Reification and reflection
functions for a certain type τ can then be created by combining the combinators
according to the structure of τ and projecting out either the reification or the
reflection function.

As Figure 2.3 on the facing page shows, we specify these combinators in
a signature called NBE. Their implementation as the functor makePureNbE—
parameterized over two structures of respective signatures EXP (term represen-
tation) and GENSYM (name generation for variables)—is given in Figure 2.4 on
page 32. The implementation is a direct transcription from the formulation in
Section 2.2.1.

Example 2.6 We implement an NBE-structure PureNbE by applying the functor
makePureNbE (Figure 2.4 on page 32); this provides us with combinators --> and
a’ and functions reify and reflect. Normalization of KK (see Example 2.1 on
page 23 and Example 2.2 on page 27) is carried out as follows:

local open PureNbE; infixr 5 --> in
val K = (fn x => fn y => x)
val KK_norm = reify (a’ --> a’ --> a’ --> a’) (K K)

end

After evaluation, the variable KK norm is bound to a term representation of the
normal form of KK .

2.2 TDPE in a nutshell 31

signature NBE = (* normalization by evaluation *)
sig

type Exp

type ’a rr (* (↓τ , ↑τ) : τ rr *)

val a’ : Exp rr (* τ = • *)
val --> : ’a rr * ’b rr -> (’a -> ’b) rr (* τ = τ1 → τ2 *)
...

val reify: ’a rr -> ’a -> Exp (* ↓τ *)
val reflect: ’a rr -> Exp -> ’a (* ↑τ *)

end

signature EXP = (* term representation *)
sig

type Exp

type Var

val VAR: Var -> Exp

val LAM: Var * Exp -> Exp

val APP: Exp * Exp -> Exp
...

end

signature GENSYM = (* name generation *)
sig

type Var

val new: unit -> Var (* make a new name *)
val init: unit -> unit (* reset name counter *)

end;

Figure 2.3: NbE in ML, signatures

Encoding two-level terms through functors
As mentioned earlier, the input to TDPE needs to be binding-time anno-

tated, i.e., the input is a two-level term. The ML module system makes it
possible to encode a two-level term p in a convenient way: Define p inside
a functor p pe(structure D: DYNAMIC) = ... which parameterizes over all dy-
namic types, dynamic constants and lifting functions. By instantiating D with
an appropriate structure, one can create either the evaluating instantiation p̃ or
the residualizing instantiation p .

Example 2.7 In Example 2.5 on page 29 we sketched how the function height

can be partially evaluated with respect to its first argument. Figure 2.5 on
page 33 shows how to provide both evaluating and residualizing instantiation
in ML using functors. The two-level term heightann is encoded as a functor

32 The Second Futamura Projection for TDPE

functor makePureNbE(structure G: GENSYM

structure E: EXP

sharing type E.Var = G.Var): NBE =

struct

type Exp = E.Exp

datatype ’a rr = RR of (’a -> Exp) * (Exp -> ’a)

(* (↓τ , ↑τ) : τ rr *)

infixr 5 -->

val a’ = RR(fn e => e, fn e => e) (* τ = • *)
fun RR (reif1, refl1) --> RR(reif2, refl2) (* τ = τ1 → τ2 *)
= RR (fn f =>

let val x = G.new ()

in E.LAM (x, reif2 (f (refl1 (E.VAR x))))

end,

fn e =>

fn v => refl2 (E.APP (e, reif1 v)))

fun reify (RR (reif, refl)) v (* ↓τ *)
= (G.init (); reif v)

fun reflect (RR (reif, refl)) e (* ↑τ *)
= refl e

end

Figure 2.4: Pure NbE in ML, implementation

height pe(structure D:DYNAMIC) that is parameterized over the dynamic type
Real, the dynamic constant mult, and the lifting function lift real in heightann.

Extensions We will use a much extended version of TDPE, referred to as Full
TDPE in this article. Full TDPE not only treats the function type constructor,
but also tuples and sums. Furthermore, a complication that we have disregarded
so far is that ML is a call-by-value language with computational effects. In
such languages, the β-rule is not sound because it might discard or duplicate
computations with effects.

Extending TDPE to tuples is straightforward: reifying a tuple is done by pro-
ducing the code of a tuple constructor and applying it to the reified components
of the tuple; reflection at a tuple type means producing code for a projection on
every component, reflecting these code pieces at the corresponding component
type and tupling the results.

Sum types and call-by-value languages can be handled by manipulating the
code-generation context in the reflection function. This has been achieved by
using the control operators shift and reset [9, 14]. Section 2.4.5 describes in more
detail the treatment of sum types and call-by-value languages in TDPE.

Figure 2.6 on page 34 displays the signature CTRL of control operators and

2.2 TDPE in a nutshell 33

signature DYNAMIC = (* Signature of dynamic types and constants *)
sig

type Real

val mult: Real -> Real -> Real

val lift_real: real -> Real

end

(* The functor encodes a two-level term *)
functor height_pe(structure D: DYNAMIC) =

struct

fun height a z = D.mult (D.lift_real (sin a)) z

end

structure EDynamic: DYNAMIC = (* Defining ·̃ *)
struct

type Real = real

fun mult x y = x * y

fun lift_real r = r

end

structure RDynamic: DYNAMIC = (* Defining · *)
struct

local

open EExp PureNbE

infixr 5 -->

in

type Real = Exp

val mult = reflect (a’ --> a’ --> a’) (VAR "mult")

fun lift_real r = LIT_REAL r

end

end

structure Eheight = height_pe (structure D = EDynamic);

(* ˜heightann *)
structure Rheight = height_pe (structure D = RDynamic);

(* heightann *)

Figure 2.5: Instantiation via functors

34 The Second Futamura Projection for TDPE

signature CTRL = (* control operators *)
sig

type Exp

val shift: ((’a -> Exp) -> Exp) -> ’a

val reset: (unit -> Exp) -> Exp

end;

functor makeFullNbE(structure G: GENSYM

structure E: EXP

structure C: CTRL

sharing ...): NBE = ...

Signatures GENSYM, EXP, and NBE are defined in Figure 2.3 on page 31.

Figure 2.6: Full NbE in ML.

the skeleton of a functor makeFullNbE, which implements Full TDPE—an im-
plementation can be found in Danvy’s lecture notes [7]. The relevance of Full
TDPE in this article is that (1) it is the partial evaluator that one would use
for specializing realistic programs; and (2) in particular, it handles all features
used in its own implementation, including side effects and control effects. Hence
in principle self-application should be possible.

2.2.3 A general account of TDPE

The introduction to TDPE given in Section 2.2.1 is concerned with providing
intuition rather than formal detail; in the following, we describe Filinski’s for-
malization of TDPE [16], which gives a precise definition to the concepts that
were introduced only informally before. This formal account is rather techni-
cal and may be skipped on first reading: When developing self-application for
TDPE in Section 2.3, we shall start with an intuitive account that can be un-
derstood without having read the following material. Nevertheless, the details
of the development turn out to be rather intricate, so an informal account alone
is not satisfactory. In Section 2.3.2 we draw upon the formal account of TDPE
presented here, and derive a formulation of self-application from it.

Preliminaries First we fix some standard notions. A simple functional lan-
guage is given by a pair (Σ, I) of a signature Σ and an interpretation I of this
signature. More specifically, the syntax of valid terms and types in this language
is determined by Σ, which consists of base type names, and constants with types
constructed from the base type names. (The types are possibly polymorphic;
however, in our technical development, we will only work with monomorphic
instances.) A set of typing rules generates, from the signature Σ, typing judg-
ments of the form Γ `Σ t : σ, which reads “t is a well-formed term of type σ
under typing context Γ”.

2.2 TDPE in a nutshell 35

The denotational semantics of types and terms is determined by an interpre-
tation. An interpretation I of signature Σ assigns domains to base type names,
elements of appropriate domains to literals and constants, and, in the setting
of call-by-value languages with effects, also monads to various effects. The in-
terpretation I extends canonically to the meaning [[σ]]I of every type σ and the
meaning [[t]]I of every term t : σ in the language; we write [[t]]I for closed terms
t, which denote elements in the domain [[σ]]I .

The syntactic counterpart of the notion of an interpretation is that of an
instantiation, which compositionally maps syntactic phrases in a language L to
syntactic phrases in (usually) another language L′. The following definition of
instantiations uses the notion of substitution. For a substitution Φ, we write
t{Φ} and σ{Φ} to denote the application of Φ to term t and type σ, respectively.

Definition 2.8 (Instantiation) Let L and L′ be two languages with signatures
Σ and Σ′, respectively. An instantiation Φ of Σ-phrases (terms and types) into
language L′ is a substitution that maps the base types in Σ to Σ′-types, and
maps constants c : σ to closed Σ′-terms of type σ{Φ}.

We also refer to the term t{Φ} as the instantiation of the term t under Φ,
and the type σ{Φ} as the instantiation of the type σ under Φ.

It should be obvious that an interpretation of a language L′ and an instan-
tiation of a language L in language L′ together determine an interpretation of
L.

Two-level language Filinski formalized TDPE using a notion of two-level
languages (or, binding-time-separated languages). The signature Σ2 of such
a language is the disjoint union of a static signature Σs (static base types bs

and static constants cs, written with superscript s), a dynamic signature Σd

(dynamic base types bd and dynamic constants cd, written with superscript d),
and lifting functions $b for base types. For simplicity, we assume all static base
types bs are persistent (a.k.a. liftable), i.e., each of them has a corresponding
dynamic base type bd, and is equipped with a lifting function $b : bs → bd.
The intuition is that a value of a persistent base type always has a unique
external representation as a constant, which can appear in the generated code;
we call such a constant a literal. The meaning [[e]]I

2

of a term e is determined
by a static interpretation Is of signature Σs, and a dynamic interpretation Id

of signature Σd and the lifting functions; we also write [[e]]I
s,Id

for [[e]]I
2

. A
two-level language is different from a one-level language in that the meaning of
terms is parameterized over the dynamic interpretation Id. More precisely, it is
specified by a pair (Σ2, Is) of its signature Σ2 and a fixed static interpretation
Is.

A two-level language PL2 = (Σ2, Is) is usually associated with a one-level
language PL = (ΣPL, IPL):

1. The dynamic signature Σd of PL2 duplicates ΣPL (except for literals,
which can be lifted from static literals) with all constructs superscripted
by d.

36 The Second Futamura Projection for TDPE

2. The static signature Σs of PL2 comprises all the base types in PL and
all the constants in PL that have no computational effects except possible
divergence. All these constructs are superscripted by s in Σs.

3. The static interpretation Is is the restriction of interpretation IPL to Σs.

For clarity, we let metavariable t range over one-level terms, e over two-level
terms, σ over one-level types, and τ over two-level types.

We can induce an evaluating dynamic interpretation Id
ev from IPL by taking

[[bd]]I
d
ev = [[b]]I

PL

, [[cd]]I
d
ev = [[c]]I

PL

, and [[$b]]I
d
ev = (λx.x) ∈ [[b]]I

PL → [[b]]I
PL

. A
closely related notion is the evaluating instantiation of Σ2-phrases in ΣPL:

Definition 2.9 (Evaluating Instantiation) The evaluating instantiation of
a Σ2-term `Σ2 e : τ in PL is `ΣPL ẽ : τ̃ , given by ẽ = e{Φ∼} and τ̃ = τ{Φ∼},
where instantiation Φ∼ is a substitution of Σ2-constructs (constants and base
types) into ΣPL-phrases (terms and types): Φ∼(bs) = Φ∼(bd) = b, Φ∼(cs) =
Φ∼(cd) = c, Φ∼($b) = λx.x.

We have that for all Σ2-types τ and Σ2-terms e, [[τ̃]]I
PL

= [[τ]]I
s,Id

ev and
[[ẽ]]I

PL

= [[e]]I
s,Id

ev .

Static normalization Static normalization works on Σ2-terms of fully dy-
namic type, i.e., having a type constructed solely from dynamic base types. A
term is in static normal form if it is free of β-redexes and free of static constants,
except literals that appear as arguments to lifting functions; in other words, the
term cannot be further simplified without knowing the interpretations of the
dynamic constants. Terms e in static normal form are, in fact, in one-to-one
correspondence with terms ẽ in ΣPL. They can thus be represented using a
one-level term representation such as the one provided by Exp.

A static normalization function NF for PL2 is a computable partial function
on well-typed Σ2-terms such that if e′ = NF (e) then e ′ is a Σ2-term in static
normal form, and e and e′ are not distinguished by any dynamic interpretation
Id of Σd, i.e., ∀Id.[[e]]I

s,Id

= [[e ′]]I
s, Id

; in other words, term e′ and term e have
the same (parameterized) meaning. Notice that NF is usually partial, since
terms for which the static computation diverges have no normal form.

Normalization by evaluation In this framework, NbE can be described as
a technique to reduce the static normalization function NF for a two-level lan-
guage PL2 to evaluation in the ordinary language PL. For this to be possible, we
assume that language PL is equipped with a base type Exp for the representation
of its own terms (and thus of static normal forms in PL2), and constants that
support name generation and code construction (for example, a lifting function
liftb : b → Exp for every base type b).

Filinski has shown that in the described setting, NbE can be performed
with two type-indexed functions ↓τ : τ → Exp (reification) and ↑τ : Exp → τ
(reflection)—here the operation · on two-level types corresponds to the one
introduced in Section 2.2.1 for ML types; a formal definition is given below

2.2 TDPE in a nutshell 37

in Definition 2.10. The function ↓τ extracts the static normal form of a term
`Σ2 e :τ from a special residualizing instantiation of the term in PL, `ΣPL e : τ ,
and the function ↑τ is used in both the definition of reification function and the
construction of the residualizing instantiation e .

Definition 2.10 (Residualizing Instantiation) The residualizing instantia-
tion of a Σ2-term `Σ2 e : τ in PL is `ΣPL e : τ , given by e = e{Φ } and
τ = τ{Φ }, where instantiation Φ is a substitution of Σ2-constructs into
ΣPL-phrases: for base types b, Φ (bs) = b, Φ (bd) = Exp, for constants c,
Φ (cs) = c, Φ (cd : τ) =↑τ “c”, and for lifting functions over a base type b,
Φ ($b) = liftb.

In words, the residualizing instantiation τ of a fully dynamic type τ substi-
tutes the type Exp for all occurrences of dynamic base types in τ . Since type τ is
fully dynamic, type τ is constructed from type Exp, and thus represents a code
value or a code manipulation function (see Section 2.2.1). The residualizing in-
stantiation e of a term e substitutes all the occurrences of dynamic constants
and lifting functions with the corresponding code-generation versions.2

The function NF in NbE is defined by Equation (2.1) in Figure 2.7 on the
next page: It computes the static normal form of term e by evaluating the ΣPL-
term `ΣPL ↓τ e :Exp using an evaluator for language PL. In Filinski’s semantic
framework for TDPE, a correctness theorem of NbE has the following form,
though the exact definition of function NF varies depending on the setting.

Theorem 2.11 (Filinski [16]) The function NF defined in Equation (2.1) in
Figure 2.7 on the following page is a static normalization function. That is, for
all well-typed Σ2-terms e, if e ′ = NF (e), then term e′ is in static normal form,
and ∀Id.[[e]]I

s,Id

= [[e ′]]I
s,Id

.

Just as self-application reduces the technique of producing an efficient gener-
ating extension to the technique of partial evaluation, our results on the correct-
ness of self-application reduce to Theorem 2.11. The details of how Theorem 2.11
is proved are out of the scope of this article.

Partial evaluation Given a Σ2-term `Σ2 p :τS × τD → τR, and its static input
`Σ2 s :τS , where both type τD and type τR are fully dynamic, specialization can
be achieved by applying NbE (Equation (2.1) on the next page) to statically
normalize the trivial specialization λx.p(s, x):

NF (λx.p(s , x)) = [[↓τD→τR λx.p(s, x)]]I
PL

= [[↓τD→τR λx . p (s , x)]]I
PL (2.2)

In the practice of partial evaluation, one usually is not given two-level terms
to start with. Instead, we want to specialize ordinary programs. This can be

2Compare with Example 2.5 on page 29, where heightann is

λ (a : reals).λ (z : reald).multd ($real(sins a)) z.

38 The Second Futamura Projection for TDPE

Normalization by Evaluation
For term `Σ2 e : τ , we use

NF (e) = [[↓τ e]]I
PL

(2.1)

to compute its static normal form, where
1. Term `ΣPL e : τ is the residualizing instantiation of term e, and
2. Term `ΣPL ↓τ : τ → Exp is the reification function for type τ .

Binding-time annotation The task is, given `ΣPL t : σ and binding-time
constraints in the form of a two-level type τ whose erasure is σ, to find
`Σ2 tann : τ that satisfies the constraints and the following equations:

[[τ]]I
s,Id

ev = [[σ]]I
PL

[[tann]]I
s,Id

ev = [[t]]I
PL

Figure 2.7: A formal recipe for NbE

reduced to the specialization of two-level terms through a binding-time annota-
tion step. For TDPE, the task of binding-time annotating a ΣPL-term t with
respect to some knowledge about the binding-time information of the input is,
in general, to find a two-level term tann such that (1) the evaluating instantiation
[[tann]]I

s,Id
ev of term tann agrees with the meaning [[t]]I

PL

of term t, and (2) term
tann is compatible with the input’s binding-time information in the following
sense: Forming the application of tann to the static input results in a term of
fully dynamic type. Consequently, the resulting term can be normalized with
the static normalization function NF .

Consider again the standard form of partial evaluation. We are given a ΣPL-
term `ΣPL p :σS × σD → σR and the binding-time information of its static input
s of type σS , but not the static input s itself. The binding-time information can
be specified as a Σ2-type τS such that τ̃S = σS ; for the more familiar first-order
case, type σS is some base type b, and type τS is simply bs. We need to find a
two-level term `Σ2 pann : τS × τD → τR, such that (1) types τD and τR are the
fully dynamic versions of types σD and σR, and (2) [[pann]]

Is,Id
ev = [[p]]I

PL

.
For a given static input s : σS , we want to normalize term t ≡ λx.p(s, x).

Given a properly annotated sann : τS (“properly” in the sense that [[sann]]I
s,Id

ev =
[[s]]I

PL

), we can form the two-level term `Σ2 tann ≡ λx.pann(sann, x) : τD → τR.
By compositionality of the meaning functions, [[tann]]I

s,Id
ev = [[t]]I

PL

. If the term
e = NF (tann) is the result of the NbE algorithm, we see that its one-level
representation ẽ, which we regard as the result of the specialization, has the
same meaning as the term t:

[[ẽ]]I
PL

= [[e]]I
s,Id

ev = [[tann]]I
s, Id

ev = [[t]]I
PL

2.3 Formulating self-application 39

This verifies the correctness of the specialization.

Our setting In this article, the language PL we will work with is essentially
ML, with a base type Exp for encoding term representations, the constructors as-
sociated with Exp, constants for name generations (GENSYM.init and GENSYM.new),
and control operators. All of these can be introduced into ML as user-defined
data types and functions; in practice, we do not distinguish between PL and
ML. The associated two-level language PL2 is constructed from the language PL
mechanically. As shown in Section 2.2.2 (Example 2.7 on page 31), a two-level
term can be encoded in ML by using a functor to parameterize over all dynamic
types and constants in the term. Instantiating the functor with a structure that
defines either the original constants or their code-generation versions yields the
evaluating instantiation or the residualizing instantiation, respectively.

2.3 Formulating self-application

In this section, we present two forms of self-application for TDPE. One uses
self-application to generate more efficient reification and reflection functions
for a type τ ; following Danvy [5], we refer to this form of self-application as
visualization. The other adapts the second Futamura projection to the setting
of TDPE. We first give an intuitive account of how self-application can be
achieved, and then derive a precise formulation of self-application, based on the
formal account of TDPE presented in Section 2.2.3.

2.3.1 An intuitive account of self-application

We start by presenting the intuition behind the two forms of self application,
drawing upon the informal account of TDPE in Section 2.2.1.

Visualization
For a specific type τ , the reification function ↓τ contains one β-redex for each

recursive call following the type structure. For example, the direct unfolding of
↓•→•→•→•, according to its definition (Figure 2.2 on page 27), is

λ f0.λ x.(λ f1.λ y.(λ f2.λ z.(λ e.e)(f2((λ e.e)z)))(f1((λ e.e)y)))(f0((λ e.e)x))

rather than the normalized form presented in Example 2.2 on page 27. Nor-
malization of such a function can be achieved by self-applying TDPE so as to
specialize the reification function with respect to a particular type. Danvy has
carried out this form of self application in the untyped language Scheme [5]; in
the following, we reconstruct it in our setting.

Recall from Section 2.2 that finding the normal form of a term t : σ is
achieved by reifying the residualizing instantiation of a binding-time annotated
version of t:

NF (t) = [[↓σ tann]].

40 The Second Futamura Projection for TDPE

It thus suffices to find an appropriate binding-time annotated version of the term
↓τ . A straightforward analysis of the implementation of NbE (see Figure 2.3
on page 31 and Figure 2.4 on page 32), shows that all the base types (Exp, Var,
etc.) and constants (APP, Gensym.init, etc.3) are needed in the code generation
phase; hence they all should be classified as dynamic. Therefore, to normalize
↓τ : τ → Exp, we use a trivial binding-time annotation, notated as 〈 · 〉, in
which every constant is marked as dynamic:

NF (〈 ↓τ 〉) = [[↓τ→• 〈 ↓τ 〉]], (2.3)

In order to understand the term 〈 ↓τ 〉 , we analyze the composite effect of
the residualizing instantiation and trivial binding-time annotation: for a term
e, the term 〈 e 〉 is formed from e by substituting all constants with their code-
generation counterparts. We write ⇓τ for 〈 ↓τ 〉 and ⇑τ for 〈 ↑τ 〉 for notational
conciseness.

Term ↓τ and term ⇓τ are respectively the evaluating instantiation and resid-

ualizing instantiation of the same (two-level) term 〈 ↓τ 〉: that is, 〈̃ ↓τ 〉 =↓τ ,
and 〈 ↓τ 〉 =⇓τ ; term ↑τ and term ⇑τ have an analogous relationship. We will
exploit this fact in Section 2.4.1 to apply the functor-based approach to the reifi-
cation/reflection combinators themselves, thus providing an implementation of
⇓τ and ⇑τ in ML.

Adapted second Futamura projection
As we have argued in the introduction, in the setting of TDPE, following

the second Futamura projection literally is not a reasonable choice for deriving
efficient generating extensions. The evaluator for the language in which we use
TDPE might not even be written in this language. Furthermore, making an
evaluator explicit in the partial evaluator to be specialized introduces an extra
layer of interpretation, which defeats the advantages of TDPE. We thus consider
instead the general idea behind the second Futamura projection:

Using partial evaluation to perform the static computations in a ‘triv-
ial’ generating extension (usually) yields a more efficient generating
extension.

Following the informal recipe for performing TDPE given in Section 2.2, the
‘trivial generating extension’ p† of a program p : σS × σD → σR is

λs.TDPE (p, s) : σS → Exp = λ s.↓σD→σR λd. pann (s, d)

Since the trivial generating extension is itself a term, we can normalize it using
TDPE: We reify at type σS → • the residualizing instantiation of the (suitably
binding-time annotated) trivial generating extension. We can use the trivial

binding-time annotation, i.e., to reify 〈 λs.TDPE (p, s) 〉 —in Section 2.3.2 we
shall explain in detail why this choice is actually not too conservative. Because

3These constants appear, e.g., in the underlined portion of the expanded term ↓•→•→•→•.

2.3 Formulating self-application 41

〈 · 〉 is a substitution, it distributes over term constructors, and we can move
it inside the terms:

〈 λs.TDPE (p, s) 〉 = λs. ⇓σD→σR (λd. 〈 pann 〉 (s, d)).

For concreteness, the reader might find it helpful to consider the example of
the height function (Example 2.5 on page 29): pann corresponds to heightann ,

so 〈 pann 〉 is formed by substituting all the constants in heightann with their
code-generation versions. Such constants include sin, liftreal, and the code-
constructing constants appearing in term multr (Example 2.4 on page 28).

In practice, however, we do not need to first build the residualizing ver-
sion by hand and then apply the TDPE formulation. Instead, we show that
we can characterize 〈 e 〉 in terms of the original two-level term e itself, thus
enabling a functor-based approach: We write e for 〈 e 〉 and call it the GE-
instantiation of term e, where “GE” stands for generating extension. A precise
definition of the GE-instantiation is derived formally in Section 2.3.2 (Defini-
tion 2.17 on page 44). Basically, e instantiates all static constants and lifting
functions in e with their code-generation version and all dynamic constants with
versions that generate “code-generation” code. In other words, static constants
and lifting functions give rise to code that is executed when applying the gener-
ating extension, whereas dynamic constants give rise to code that has to appear
in the result of applying the generating extension.

All in all, the generating extension p‡ of a program p : σS × σD → σR can
be calculated as

p‡ = [[↓σS→• (λs . ⇓σD→σR (λd . pann (s , d)))]]. (2.4)

2.3.2 A derivation of self-application

In Section 2.3.1 we gave an intuitive account of how self-application can be
achieved for TDPE. Using the formalization of TDPE presented in Section 2.2.3
we now derive both forms of self-application; correctness thus follows from the
correctness of TDPE.

Visualization
We formally derive visualization (Section 2.3.1), using the “recipe” outlined

in Figure 2.7 on page 38. First, we need a formal definition of the trivial
binding-time annotation 〈 · 〉 in terms of the two-level language:

Definition 2.12 (Trivial Binding-Time Annotation) The trivial binding-
time annotation of a ΣPL-term `ΣPL t :σ is a PL2-term `Σ2 〈 t 〉 :〈 σ 〉, given by
〈 t 〉 = t{Φ〈 〉} and 〈 σ 〉 = σ{Φ〈 〉}, where the instantiation Φ〈 〉 is a substitution
of ΣPL-constructs into Σ2-phrases: Φ〈 〉(b) = bd, Φ〈 〉(` : b) = $b`

s (` is a
literal), Φ〈 〉(c) = cd (c is not a literal).

42 The Second Futamura Projection for TDPE

Lemma 2.13 (Properties of 〈 · 〉) For a ΣPL-term `ΣPL t : σ, the following
properties hold:

1. [[〈 t 〉]]Is,Id
ev = [[t]]I

PL

, making 〈 t 〉 a binding-time annotation of t;

2. 〈̃ t 〉 = t;

3. 〈 σ 〉 is always a fully dynamic type;

4. If a Σ2-type τ is fully dynamic, then 〈 τ 〉 = τ .

A simple derivation using properties (3) and (4) in Lemma 2.13, together
with the fact that 〈 · 〉 and · distribute over all type and term constructors,
yields the formulation of self-application given in Equation (2.3) on page 40:

NF (〈 ↓τ 〉) = [[↓τ→• (⇓τ)]]I
PL

.

The following corollary follows immediately from Theorem 2.11 on page 37
and property (1) of Lemma 2.13.

Corollary 2.14 If eτ = NF (〈 ↓τ 〉), then its one-level representation ẽτ is free
of β-redexes and is semantically equivalent to ↓τ :

[[ẽτ]]I
PL

= [[eτ]]I
s,Id

ev = [[〈 ↓τ 〉]]I
s,Id

ev = [[↓τ]]I
PL

The self-application carried out by Danvy in the setting of Scheme [5] is
quite similar; his treatment explicitly λ-abstracts over the constants occurring
in ↓τ , which, by the TDPE algorithm, would be reflected according to their
types. This reflection also appears in our formulation: For any constant c : σ

appearing in ↓τ , we have 〈 c 〉 = cd =↑〈σ 〉 “c”. Consequently, our result
coincides with Danvy’s.

Adapted second Futamura projection
We repeat the development from Section 2.3.1 in a formal way. We begin

by rederiving the trivial generating extension, this time from Equation (2.2)
on page 37: In order to specialize a two-level term `Σ2 p : τS × τD → τR

with respect to a static input `Σ2 s : τS , we execute the ΣPL-program `ΣPL

↓τD→τR λd. p (s , d) : Exp. By λ-abstracting over the residualizing instantiation
s of the static input s , we can trivially obtain a generating extension p†, which
we will refer to as the trivial generating extension.

`ΣPL p† ≡ λs. ↓τD→τR (λd.(p (s, d))) : τS → Exp.

Corollary 2.15 (Trivial Generating Extension) The term p† is a generat-
ing extension of program p.

2.3 Formulating self-application 43

Since the term p† is itself a ΣPL-term, we can follow the recipe in Figure 2.7 on
page 38 to specialize it into a more efficient generating extension. We first need
to binding-time annotate the term p†. For the subterm ↓τD→τR , the analysis
in Section 2.3.1 shows that we should take the trivial binding-time annotation.
For the subterm p , the following analysis shows that it is not too conservative
to take the trivial binding-time annotation as well. Since · = Φ is an instan-
tiation, i.e., a substitution on dynamic constants and lifting functions, every
constant c′ in p must appear as a subterm of the image of a constant or a
lifting function under the substitution Φ . If c′ appears inside Φ (cd) =↑τ “c”
(where c′ could be a code-constructor such as LAM, APP appearing in term ↑τ)
, or Φ ($b) = liftb, then c′ is needed in the code generation phase, and hence
it should be classified as dynamic. If c′ appears inside Φ (cs) = c, then c′ = c
is an original constant, classified as static assuming the input s is given. Such
a constant could rarely be classified as static in p†, since the input s is not
statically available at this stage.

Taking the trivial binding time annotation of the trivial generating extension
p†, we then proceed with Equation (2.1) on page 38 to generate a more efficient
generating extension.

p‡=NF (〈 λs. ↓τD→τR (λd.(p (s, d))) 〉)

=[[↓〈 τS→• 〉 〈 λs. ↓τD→τR (λd.(p (s, d))) 〉]]I
PL

=[[↓τS→• (λs . 〈 ↓τD→τR 〉 (λd .(〈 p 〉 (s , d))))]]I
PL

Expressing 〈 p 〉 as p , and 〈 ↓τD→τR 〉 as ⇓τD→τR , we have

p‡ = [[↓τS→• (λs . ⇓τD→τR (λd . p (s , d)))]]I
PL

,

as originally given in Equation (2.4) on page 41.
The generation of p‡ always terminates, even though, in general, the nor-

malization function NF may diverge. Recall that the trivial binding-time anno-
tation used in the preceding computation of p‡ marks all constants, including
all fixed-point operators, as dynamic. Divergence can only happen when the
two-level program contains static fixed-point operators.

Correctness of the second Futamura projection follows from Corollary 2.15
on the facing page and Theorem 2.11 on page 37.

Corollary 2.16 (Efficient Generating Extension) Program p̃‡ (that is, the
one-level form of the static normal form p‡) is a generating extension of p which
is free of β-redexes.

Proof: By Theorem 2.11 on page 37 and the property of trivial binding-time
analysis, we have p‡ is in static normal form, and [[p̃‡]]I

PL

= [[p†]]I
PL

. That the
program p̃‡ is a generating extension of p follows from Corollary 2.15 on page 42.

44 The Second Futamura Projection for TDPE

2

Now let us examine how the term p is formed. Note that p = 〈 p 〉 =
((p{Φ }){Φ〈 〉}){Φ } = p{Φ ◦Φ〈 〉◦Φ }; thus · corresponds to the composi-
tion of three instantiations, Φ = Φ ◦Φ〈 〉 ◦Φ , which is also an instantiation.
We call Φ the generating-extension instantiation (GE-instantiation); a simple
calculation gives its definition.

Definition 2.17 (GE-instantiation) The GE-instantiation of a Σ2-term `Σ2

e : τ in PL is `ΣPL e : τ given by e = e{Φ } and τ = τ{Φ }, where
instantiation Φ is a substitution of Σ2-constructs into ΣPL-phrases:

Φ (bs)=Φ (bd) = Exp

Φ (cs : τ)= 〈 c : τ 〉 =↑〈 τ 〉“c”

Φ (cd : τ)= ↑τ“c” =⇑τ 〈 VAR 〉 (liftstring“c”)

Φ ($b)= ↑•→•“liftb”

Note that at some places, we intentionally keep the · form unexpanded, since
we can just use the functor-based approach to obtain the residualizing instan-
tiation. Indeed, the GE-instantiation boils down to “taking the residualizing
instantiation of the residualizing instantiation”. In Section 2.4.3, we show how
to extend the instantiation-through-functor approach to cover GE-instantiation
as well.

It is instructive to compare the formulation of the second Futamura projec-
tion with the formulation of TDPE (Equation (2.2) on page 37). The crucial
common feature is that the subject program p is only instantiated, i.e., only the
constants are substituted in the program; this feature makes them amenable
to a functor-based treatment and frees them from an explicit interpreter. For
TDPE, however, static constants are instantiated with their standard instantia-
tion, which makes it possible to use built-in constructs (such as case expressions)
in the “static parts” of a program. This is not the case for the second Futa-
mura projection, which causes some inconvenience when applying the second
Futamura projection, as we shall see in Section 2.5.

2.4 The implementation

In this section we treat various issues arising when implementing the abstract
formulation of Section 2.3 in ML. We start with the implementation of the
key components for self application, namely the functions ⇓ and ⇑, and the
GE-instantiation. We then turn to two technical issues. First, we show how
to specify the input, especially the types, for the self-application. Second, we
show how to modify the full TDPE algorithm, which uses polymorphically typed
control operators, such that it is amenable to the TDPE algorithm itself, i.e.,
amenable to self-application.

2.4 The implementation 45

2.4.1 Residualizing instantiation of the combinators

In Section 2.3.1 we remarked that the terms ↓τ and ⇓τ are respectively the
evaluating instantiation and the residualizing instantiation of the same two-level
term 〈 ↓τ 〉. We can again use the ML module system to conveniently implement
both instantiations. Recall that we formulated reification and reflection as type-
indexed functions, and we implemented them not as a monolithic program, but
as a group of combinators, one for each type constructor. These combinators
can be plugged together following the structure of a type τ to construct a type
encoding as a reification-reflection pair (↓τ , ↑τ). To binding-time annotate (↓τ

, ↑τ) as (〈 ↓τ 〉, 〈 ↑τ 〉), it suffices to parameterize all the combinators over the
constants they use: As already mentioned, because 〈 · 〉 is a substitution, it
distributes over all constructs in a term, marking all the types and constants
as dynamic. The combinators, when instantiated with either an evaluating or
a residualizing instantiation, can be combined according to a type τ to yield
either (↓τ , ↑τ) or (⇓τ ,⇑τ).

structure EExp (* Evaluating Inst. ·̃ on EXP *)
= struct

type Var = string

datatype Exp =

VAR of string (* v *)
| LAM of string * Exp (* λx.e *)
| APP of Exp * Exp (* e1 @ e2 *)
| PAIR of Exp * Exp (* (e1,e2) *)
| PFST of Exp (* fst *)
| PSND of Exp (* snd *)
| LIT_REAL of real (* $real *)

end

structure EGensym (* Evaluating Inst. ·̃ on GENSYM *)
= struct

type Var = string

local val n = ref 0

in fun new () = (n := !n + 1; (* make a new name *)
"x" ^ Int.toString (!n))

fun init () = n := 0 (* reset name counter *)
end

end;

(* Evaluating Instantiation *)
structure EFullNbE = makeFullNbE (structure G = EGensym

structure E = EExp

structure C = ECtrl): NBE

Figure 2.8: Evaluating Instantiation of NbE

46 The Second Futamura Projection for TDPE

structure RExp: EXP = struct

type Exp = EExp.Exp

type Var = EExp.Exp

(* VAR v = VAR@ v *)
fun VAR v = EExp.APP (EExp.VAR "VAR", v)

(* LAM (v, e) = LAM@ (v,e) *)
fun LAM (v, e) = EExp.APP (EExp.VAR "LAM",

EExp.PAIR (v, e))

(* APP (s, t) = APP@ (s,t) *)
fun APP (s, t) = EExp.APP (EExp.VAR "APP",

EExp.PAIR (s, t))
...

end

...

(* Residualizing Instantiations *)
structure RFullNbE = makeFullNbE (structure G = RGensym

structure E = RExp

structure C = RCtrl): NBE

structure RPureNbE = makePureNbE (structure G = RGensym

structure E = RExp): NBE

Figure 2.9: Residualizing Instantiation of NbE

We can directly use the functors makePureNbE (Figure 2.4 on page 32) and
makeFullNbE (Figure 2.6 on page 34) to produce the instantiations, because these
functors are parameterized over the primitives used in the NbE module. Hence,
rather than hardwiring code-generation primitives, this factorization reuses the
implementation for producing both the evaluating instantiation and the residu-
alizing instantiation. An evaluating instantiation EFullNbE of NbE is produced
by applying the functor makeFullNbE to the standard evaluating structures EExp,
EGensym and ECtrl of the signatures EXP, GENSYM and CTRL, respectively (Fig-
ure 2.8 on the previous page—we show the implementations of structures EExp

and EGensym; for structure ECtrl, we use Filinski’s implementation [14]). Resid-
ualizing instantiations RFullNbE of Full NbE and RPureNbE of Pure NbE result
from applying the functors makePureNbE and makePureNbE, respectively, to appro-
priate residualizing structures RGensym, RExp, and RCtrl (Figure 2.9).

For example, in the structure RExp, the type Exp and the type Var are both
instantiated with EExp.Exp since they are dynamic base types, and all the code-
constructing functions are implemented as functions that generate ‘code that
constructs code’; here, to assist understanding, we have unfolded the definition
of reflection (see also Example 2.3 on page 28).

2.4 The implementation 47

local open EFullNbE

infixr 5 -->

val Ereify_aaaa_a

= reify ((a’-->a’-->a’-->a’) --> a’) (* ↓(• → • → • → •) → • *)
open RPureNbE

infixr 5 -->

val Rreify_aaaa = reify (a’-->a’-->a’-->a’) (* ⇓• → • → • → • *)
in val nf = Ereify_aaaa_a (Rreify_aaaa) end

The (pretty-printed) result nf is:

λx1. let r2 = init() r3 = new() r4 = new() r5 = new()
in

λ r3.λ r4.λ r5.x1 r3 r4 r5

end

Figure 2.10: Visualizing ↓•→•→•→•

With the residualizing instantiation of reification and reflection at our dis-
posal, we now can perform visualization by following Equation (2.3) on page 40.

Example 2.18 We show the visualization of ↓•→•→•→• (cf. Example 2.2 on
page 27) for Pure NbE. Following Equation (2.3) on page 40, we have to com-
pute ↓(•→•→•→•)→• (⇓•→•→•→•). This is done in Figure 2.10; it is not dif-
ficult to see that the result matches the execution of the term reify (a’ -->

a’ --> a’ --> a’) (see Figure 2.4 on page 32). Visualization of the reflection
function is carried out similarly.

2.4.2 An example: Church numerals

We first demonstrate the second Futamura projection with the example of the
addition function for Church numerals. The definitions for the Church numeral
0ch, successor sch, and the addition function +ch in Figure 2.11 on the next
page are all standard; as the types indicate, they are given as the residualiz-
ing instantiation. One can see that partially evaluating the addition function
+ch with respect to the Church numeral nch = sn

ch(0ch) should produce a term
λn2.λf.λx.fn(n2fx); by definition, this is also the functionality of a generating
extension of function +ch.

The term +ch contains no dynamic constants, hence +ch = +ch = +ch.
Following Equation (2.4) on page 41, we can compute an efficient generating
extension +ch

‡, as shown in Figure 2.11 on the next page.

48 The Second Futamura Projection for TDPE

type ’a num = (’a -> ’a) -> (’a -> ’a) (* Type num *)
val c0 : EExp.Exp num

= fn f => fn x => x (* 0ch : num *)
fun cS (n: EExp.Exp num)

= fn f => fn x => f (n f x) (* sch : num → num *)
fun cAdd (m: EExp.Exp num, n: EExp.Exp num)

= fn f => fn x =>

m f (n f x) (* +ch : (num × num) → num *)

local open EFullNbE

infixr 5 -->

val Ereify_n_exp

= reify (((a’ --> a’) --> (a’ --> a’)) --> a’)

(* ↓ num →• *)
open RPureNbE

infixr 5 -->

val Rreify_n_n

= reify (((a’-->a’) --> (a’-->a’)) -->

((a’-->a’) --> (a’-->a’))) (* ⇓ num→num *)
in val ge_add

= Ereify_n_exp (fn m => (Rreify_n_n (fn n =>

cAdd (m, n)))) (* +ch
‡ *)

end;

The (pretty-printed) result +ch
‡ is:

λx1. let r2 = init() r3 = new() r4 = new() r5 = new() r7 = new()
in

λ r3.λ r4.λ r5.(x1(λx6.(r4 @ x6)))
(((r3 @ (λ r7.(r4 @ r7)))@ r5)))

end

For example, applying +ch
‡ to (cS (cS (c0))) generates

λx1.λx2.λx3.x2(x2(x1(λx4.x2 x4)x3)).

Figure 2.11: Church numerals

2.4 The implementation 49

2.4.3 The GE-instantiation

We generalize the technique of encoding a two-level term p in ML presented at
the end of Section 2.2.2: We code p inside a functor

p ge(structure S:STATIC structure D:DYNAMIC) = ...

that parameterizes over both static and dynamic constants. With suitable in-
stantiations of the structures S and D, one can thus create not only the evalu-
ation instantiation p̃ and the residualizing instantiation p , but also the GE-
instantiation p . The instantiation table displayed in Table 2.1 summarizes
how to write the components of the three kinds of instantiation functors for S

and D. The table follows easily from the formal definitions of ·̃ , · and ·
via Φ∼ (Definition 2.9 on page 36), Φ (Definition 2.10 on page 37) and Φ
(Definition 2.17 on page 44), respectively.

·̃ · ·
bs b b Exp

S
cs : τ c c ↑〈 τ 〉“c”

bd b Exp Exp

D cd : τ c ↑τ“c” ⇑τ 〈 VAR 〉 (liftstring“c”)

$b λx.x liftb ↑•→•“liftb”

Table 2.1: Instantiation table

Note, in particular, that ·̃ and · have the same instantiation for the static
signature; hence we can reuse Φ∼ for Φ .

Example 2.19 We revisit the function height, which appeared in Example 2.5
on page 29 and Example 2.7 on page 31. In Figure 2.12 on the following page we
define the functor height ge along with signatures STATIC and DYNAMIC. Structure
GEStatic and structure GEDynamic provide the GE-instantiation for the signature
Σ2. The instantiation of height ge with these structures gives heightann . Ap-
plying the second Futamura projection as given in Equation (2.4) on page 41
yields

λx1. let r2 = init()
r3 = new()

in
λ r3.“mult”@ (lift real(sin x1))@ r3

end

2.4.4 Type specification for self-application

The technique developed so far is already sufficient to carry out visualization
or the second Futamura projection, at least in an effect-free setting. Still, it re-
quires the user to manually instantiate self-application Equation (2.3) on page 40

50 The Second Futamura Projection for TDPE

signature STATIC = (* Σs *)
sig

type SReal (* reals *)
val sin: SReal -> SReal (* sins *)

end

signature DYNAMIC = (* Σd *)
sig

type SReal (* reals *)
type DReal (* reald *)
val mult: DReal -> DReal -> DReal (* multd *)
val lift_real: SReal -> DReal (* $real *)

end

functor height_ge(structure S: STATIC (* heightann *)
structure D: DYNAMIC

sharing type D.SReal = S.SReal) =

struct

fun height a z = D.mult (D.lift_real (S.sin a)) z

end

structure GEStatic: STATIC = (* Φ on Σs *)
struct

local open EExp EFullNbE; infixr 5 --> in

type SReal = Exp

val sin = reflect (a’ --> a’) (VAR "sin")

end

end

structure GEDynamic: DYNAMIC = (* Φ on Σd *)
struct

local open RExp RFullNbE; infixr 5 --> in

type DReal = Exp

val mult = reflect (a’ --> a’ --> a’)

(VAR (EExp.STR "mult"))

fun lift_real r = LIT_REAL r

end

end

(* heightann *)
structure ge_height = height_ge(structure S = GEStatic

structure D = GEDynamic)

Figure 2.12: Instantiation via functors

2.4 The implementation 51

and Equation (2.4) on page 41, as we have done for all the preceding examples.
In particular, as Example 2.18 on page 47 demonstrates, one needs to use two
different sets of combinators for essentially the same type (• → • → • → • in
this case), one for the residualizing instantiation of NbE, and the other for the
evaluating instantiation. It would be preferable to package the abstract formu-
lation of Equation (2.3) on page 40 and Equation (2.4) on page 41 as program
modules themselves, instead of leaving them as templates for the user.

Types are part of the input in both forms of self-application. The user of the
module should specify a type τ in a way that is independent of the instantiations;
it is the task of the self-application module to choose whether and where to use
the residualization instantiation (⇓τ ,⇑τ) or the evaluation instantiation (↓τ , ↑τ).
Since different instantiations have different types, the type argument, even in
the form of an encoding of the corresponding extraction functions, cannot be
abstracted over at the function level. Recall that the type-indexed functions are
formed by plugging together combinators. Specifying a type, therefore, amounts
to writing down how combinators should be plugged together, leaving the actual
definition of the combinators (i.e., an NBE-structure) abstract.

To make the above idea more precise, let us consider the example of visu-
alizing the reification functions. The specification of a type τ should consist of
not only the type τ itself, but also a functor that maps a NBE-structure NbE to
the appropriate instantiation of the pair (〈 ↓τ 〉, 〈 ↑τ 〉), which is of type τ NbE.rr .
This suggests that the type specification should have the following dependent
type: ∑

τ : ∗.
∏

NbE : NBE.(τ NbE.rr),

where
∑

is the dependent sum formation, and
∏

is the dependent product
formation.

We can then turn this type into a higher-order signature VIS INPUT in Stan-
dard ML of New Jersey, and in turn write a higher-order functor vis reify

that performs visualization of the reification function (Figure 2.13 on the next
page). The example visualization in Figure 2.10 on page 47 can be now carried
out using the type specification given in Figure 2.14 on the next page.

2.4.5 Monomorphizing control operators

So far we have shown how to self-apply Pure TDPE. When self-applying Full
TDPE, one complication arises: The implementation of Full TDPE uses control
operators polymorphically in the definition of reflection, but to determine the
residualizing instantiation of a constant, a fixed monomorphic type has to be
determined. This section shows how to rewrite the algorithm for full TDPE
such that all control operators occur monomorphically.

Let-insertion via control operators
Full TDPE treats call-by-value languages with computational effects. In this

setting, let-insertion [3, 19] is a standard partial-evaluation technique to prevent
duplicating or discarding computations that have side-effects: All computation
that might have effects is bound to a variable and sequenced using the (monadic)

52 The Second Futamura Projection for TDPE

signature VIS_INPUT = (* Signature for a type specification *)
sig

type ’a vis_type (* Type τ , parameterized at the base type *)
functor inp(NbE: NBE) : (* parameterized type coding *)
sig

val T_enc: (NbE.Exp vis_type) NbE.rr

end

end

functor vis_reify (P: VIS_INPUT) =

struct

local

structure eVIS (* Evaluating instantiation *)
= P.inp(EFullNbE)

structure rVIS (* Residualizing instantiation *)
= P.inp(RPureNbE)

open EFullNbE

infixr 5 -->

in

val vis = reify (eVIS.T_enc --> a’) (* ↓τ → • (⇓τ) *)
(RPureNbE.reify rVIS.T_enc)

end

end

Figure 2.13: Specifying types as functors

structure a2a : VIS_INPUT = (* A type specification *)
struct

type ’a vis_type = ’a->’a->’a->’a (* τ = • → • → • → • *)
functor inp(NbE: NBE) = (* NbE *)

struct

local open NbE infixr 5 --> in

val T_enc = a’ --> a’ --> a’ --> a’ (* τ NbE.rr *)
end

end

end

structure vis_a2a = vis_reify(a2a); (* Visualization *)

Figure 2.14: Type specification for visualizing ↓•→•

2.4 The implementation 53

let construct. When the TDPE algorithm identifies the need to insert a let-
construct, however, it usually is not at a point where a let-construct can be
inserted, i.e., a code-generating expression.

Danvy [4] solves this problem using the control operators shift and reset [9],
a technique that originated in continuation-based partial evaluation [24]: In-
tuitively speaking, the operator shift abstracts the current evaluation context
up to the closest delimiter reset and passes the abstracted context to its argu-
ment, which can then invoke this delimited evaluation context just like a normal
function. Formally, the semantics of shift and reset is expressed in terms of the
CPS transformation (Figure 2.15; see Danvy and Filinski [9] and Filinski [14]
for more details, and Danvy and Yang [13] for an operational account).

[[shift E]]
CPS

= λκ.[[E]]
CPS

(λ f.f(λ v.λ κ′.κ′(κ v))(λx.x))
[[reset〈E 〉]]

CPS
= λκ.κ([[E]]

CPS
(λx.x))

Term 〈E〉, “the thunk of E”, is shorthand for λ().E. The use of a thunk
here delays the computation of E and avoids the need to implement reset as
a macro.

Figure 2.15: The CPS semantics of shift/reset

With the help of these control operators, Danvy’s treatment [4] follows the
following strategy for let-insertion: (1) use reset to ‘mark the boundaries’ for
code generation, i.e., to surround every expression that has type Exp and could
potentially be a point where let-bindings need to be inserted;4 (2) when let-
insertion is needed, use shift to ‘grab the context up to the marked boundary’
and bind it to a variable k (thus k is a code-constructing context); (3) apply k
to the intended return value to form the body expression of the let-construct,
and then wrap it with the let-construct. The new definitions for the reification
and reflection functions as given by Danvy are shown in Figure 2.16 on the
next page; there are two function type constructors: a function type without
effects τ1 → τ2, which does not require let-insertion, and a function type with
possible latent effects τ1

!→ τ2, which does require let-insertion. We extend the
type Exp of code representations with a constructor LET of string * Exp * Exp

and write let x = t1 in t2 end for LET (x,t1,t2); we implement a new TDPE
combinator -!> in ML for the new type constructor !→ .

Monomorphizing control operators In the definition of reflection ↑
τ1

!→τ2
for

function types with latent effects, the return type (here τ2) of the shift-expression
depends on the type of the reflection. Hence it is not immediately amenable to
be treated by TDPE itself, because during self-application, shift is regarded
as a dynamic constant, whose type is needed to determine its residualizing

4An effect-typing system can provide a precise characterization of where reset has to be
used. Roughly speaking, an operator reset encloses the escaping control effect introduced by
an inner shift. See Filinski’s work [15] for more details.

54 The Second Futamura Projection for TDPE

↓• e = e
↓τ1→τ2 f = λx.reset〈↓τ2 (f(↑τ1 x))〉 (x is fresh)
↓τ1

!→τ2 f = λx.reset〈↓τ2 (f(↑τ1 x))〉 (x is fresh)

↑• e = e
↑τ1→τ2 e = λx.↑τ2 (e @(↓τ1 x))
↑

τ1
!→τ2

e = λx.shift (λk.let x′ = e @ ↓τ1 x in reset〈k(↑τ2 x′)〉 end)
(x′ is fresh)

Figure 2.16: TDPE with let-insertion

instantiation.
However, observe that the argument to the context k is fixed to be ↑τ2 x′; this

prompts us to move this term into the context surrounding the shift-expression,
and to apply k to a simple unit value (). Following this transformation, no
information needs to be carried around, except for the transfer of the control
flow.

↑new

τ1
!→τ2

e = λx.(λ (). ↑τ2 x′)(shift (λk.let x′ = e @ ↓τ1 x in reset〈k()〉 end))

(x′ is fresh)

Now the aforementioned problem is solved, since the return type of shift is
fixed to unit—the new definition is monomorphic.

To show that this change is semantics-preserving, we compare the CPS se-
mantics of the original definition and the new definition.

Proposition 2.20 The terms [[↑new

τ1
!→τ2

]]
CPS

and [[↑
τ1

!→τ2
]]
CPS

are βvηv-convert-
ible.

Here βv and ηv are respectively the β and η rules in Moggi’s computational
lambda calculus λc [26], i.e., the restricted forms of the usual β rule, (λx.e′)e ∼
e′[x := e], and of the usual η rule, λx.ex ∼ e, where the expression e must be
a value. These rules are sound for call-by-value languages with computational
effects.

Proof: First of all, we abstract out the same computations in the two terms:

B ≡ λ f.let x′ = e @ ↓τ1 x in f() end
R ≡ ↑τ2 x′

C [] ≡ λ e.λ x.let x′ = new() in [] end

2.4 The implementation 55

Then
↑

τ1
!→τ2

=βvηvC [shift (λk.B(λ ().reset〈k(R)〉))]
↑new

τ1
!→τ2

=βvηvC [(λ ().R)(shift (λk.B(λ ().reset〈k()〉)))]

Because the CPS transformation is compositional and preserves βvηv equiva-
lence, it suffices to prove that the CPS transformations of the two terms en-
closed by C [·] are βvηv-equivalent, for all terms B and R. It is a tedious but
straightforward check. 2

Recently, Sumii [30] pointed out that the reset in the above definition can be
removed. The continuation k, being captured by shift, resets the continuation
automatically when applied to an argument, which makes the reset in the above
redundant, since the argument of k is a value. In contrast, the original definition
still requires the reset, since the expression ↑τ2 x′ might have latent escaping
control effect, as in the case where τ2 is of form τ !→ τ ′. This simplification
improves the performance of TDPE and the generating extension generated by
self-application.

↑new′

τ1
!→τ2

e = λx.(λ (). ↑τ2 x′)(shift (λk.let x′ = e @ ↓τ1 x in k() end))

(x′ is fresh)

Proposition 2.21 The terms [[↑new

τ1
!→τ2

]]
CPS

and [[↑new′

τ1
!→τ2

]]
CPS

are βvηv-convert-
ible.

Proof: We proceed as in the proof of Proposition 2.20. In particular, using
B, R, and C [] introduced there, we have that

↑new′

τ1
!→τ2

=βvηv C [(λ ().R)(shift (λk.B(λ ().k())))].

2

Example 2.22 The monomorphic definitions ↑new

τ1
!→τ2

and ↑new′

τ1
!→τ2

of reflection
for function types with latent effects are amenable to TDPE itself. Figure 2.17
on the following page shows the result of visualizing the reification function at
the type (• !→•) !→ •. Note that both shift and reset have effects themselves;
consequently TDPE has inserted let-constructs for the result of visualization.
For comparison, we also show the visualization of (• → •) → • of Pure NbE,
which is much more compact.

The main difference here is the control operators used in Full TDPE, which
remain in the result of self-application; later in Section 2.6, we will see how this
difference affects the speedup achieved by the second Futamura projection.

Sum types Full TDPE also treats sum types using control operators; this
treatment is also due to Danvy [5]. Briefly, the operator shift is used in the

56 The Second Futamura Projection for TDPE

Visualization of ↓(• !→•) !→• results in:

λx1.let r2 = init()
r3 = new()
r11 = reset〈let r10 = x1(λx5.insertLet(r3 @ x5)) in r10 end〉

in λ r3.r11

end

where insertLet(E) abbreviates the expression

let x′ = new()
= shift(λk.let r = k() in (let x′ = E in r end) end)

in x′

end

In contrast, visualization of ↓(•→•)→• of Pure NbE results in:

λx1.let r2 = init()
r3 = new()

in λ r3.x1(λx4.r3 @ x4)
end

Figure 2.17: Visualizing TDPE with let-insertion

definition of reflection function for sum types, ↑τ1+τ2 . As the type suggests, the
return type of this function should be a value of type τ1 + τ2 , i.e., a value
either of the form inl (v1 : τ1) or inr (v2 : τ2) (for some appropriate v1 or v2);
on the other hand, both values are needed to have the complete information.
Danvy’s solution is to “return twice” to the context by capturing the delimited
context and applying it separately to inl (↑τ1 e1) and inr (↑τ2 e2); the results
are combined using a case-construct which introduces the bindings for e1 and
e2. Danvy’s definition of ↑τ1+τ2 is given below:

↑τ1+τ2 e = shift(λk. case e of inl(x1) ⇒ reset〈k(inl (↑τ1 x1))〉
| inr(x2) ⇒ reset〈k(inr (↑τ2 x2))〉)

(x1, x2 are fresh)

where Exp has been extended with constructors for a case distinction and injec-
tion functions in the obvious way. Again, the return type of the shift-expression
in the above definition is not fixed; an alternative definition is needed to allow
self-application.

Following the same analysis as before, we observe that the arguments to
k must be one of the two possibilities, inl (↑τ1 e1) and inr (↑τ2 e2), so the
information to be passed through the continuation is just the binary choice
between the left branch and the right branch. We can thus move these two fixed
arguments into the context and replace them with the booleans true and false

2.5 Generating a compiler for Tiny 57

as the argument to continuation k (again, Sumii’s remark on the redundancy of
reset in the program after change applies, and we have dropped the unnecessary
occurrences of reset):

↑new
τ1+τ2

e = if shift(λk. case e of inl(x1) ⇒ k true
| inr(x2) ⇒ k false)

then inl (↑τ1 x1) else inr (↑τ2 x2)
(x1, x2 are fresh)

The use of shift is instantiated with the fixed boolean type. Again, we check
that this change does not modify the semantics.

Proposition 2.23 [[↑new
τ1+τ2

]]
CPS

and [[↑τ1+τ2]]
CPS

are βvηv-convertible.

Using ↑new
τ1+τ2

and ↑new′

τ1
!→τ2

instead of the original definitions provides us with
an algorithm for Full TDPE that is amenable to self-application. In the following
section, we use self-application of Full TDPE for compiler generation.

2.5 Generating a compiler for Tiny

It is well known that partial evaluation allows compilation by specializing an
interpreter with respect to a source program. TDPE has been used for this
purpose in several instances [4, 5, 11, 12]. Having implemented the second
Futamura projection, we can instead generate a compiler as the generating
extension of an interpreter.

One of the languages for which compilation with TDPE has been studied is
Tiny [4, 27], a prototypical imperative language. As outlined in Section 2.2.2,
a functor tiny pe(D:DYNAMIC) is used to carry out type-directed partial evalua-
tion in a convenient way. This functor provides an interpreter meaning that is
parameterized over all dynamic constructs. Appendix 2.B.1 gives an overview
of Tiny and type-directed partial evaluation of a Tiny interpreter. Compiling
Tiny programs by partially evaluating the interpreter meaning corresponds to
running the trivial generating extension meaning†.

Following the development in Section 2.4.3, we proceed in three steps to
generate a Tiny compiler:

1. Rewrite tiny pe into a functor tiny ge(S: STATIC D: DYNAMIC) in which
meaning is also parameterized over all static constants and base types.

2. Give instantiations of S and D as indicated by the instantiation table in
Table 2.1 on page 49, thereby creating the GE-instantiation meaning .

3. Perform the second Futamura projection; this yields the efficient generat-
ing extension meaning‡, i.e., a Tiny compiler.

Appendix 2.B.2 describes these steps in more detail.

58 The Second Futamura Projection for TDPE

Tiny was the first substantial example we treated; nevertheless we were done
within a day—none of the three steps described above is conceptually difficult.
They can be seen as a methodology for performing the second Futamura pro-
jection in TDPE on a binding-time-separated program.

Although conceptually simple, the first of the three aforementioned steps is
somewhat tedious:

• Every construct that is not handled automatically by TDPE has to be
parameterized over. This is not a problem for user-defined constants,
but is a problem for ML-constructs like recursion and case-distinctions
over recursive data types. Both have to be rewritten, using fixed-point
operators and elimination functions, respectively.

• For every occurrence of a constant in the program, its monotype has to be
determined; constants used at more than one monotype give rise to several
instances. This is a consequence of performing type-directed partial evalu-
ation; for the second Futamura projection, every constant is instantiated
with a code-generation function, the form of which depends on the exact
type of the constant in question.

Because the Tiny interpreter we started with was already binding-time sepa-
rated, we did not have to perform the binding-time analysis needed when start-
ing from scratch. Our experience with TDPE, however, shows that performing
such a binding-time analysis is relatively easy, because

• TDPE restricts the number of constructs that have to be considered, since
functions, products and sums do not require binding-time annotations, and

• TDPE uses the ML type system: Type checking checks the consistency of
the binding-time annotations.

2.6 Benchmarks

2.6.1 Experiments and results

In Section 2.3 we claimed that the specialized generating extension p‡ of a
program p produced by the second Futamura projection for TDPE is, in gen-
eral, more efficient than the trivial generating extension p†. In order to assess
how much more efficient p‡ is than p†, we performed benchmarks for +ch (Sec-
tion 2.4.2) and the Tiny interpreter (Section 2.5).

The benchmarks were performed on a 250 MHz Silicon Graphics O2 worksta-
tion using Standard ML of New Jersey version 110.0.3. We display the results
in Table 2.2 on the facing page. In each row of the table, we compare the time
it takes to specialize the subject program p with respect to the static input s
using two different generating extensions: (1) the trivial generating extension p†

(i.e., directly running TDPE on program p), and (2) the specialized generating
extension p‡ (i.e., running the result of the second Futamura projection). We
calculate the speedup as the ratio of their running times.

2.6 Benchmarks 59

program static inp. specialization specialization Speedup
p s time with p† (s) time with p‡ (s) (ratio)

meaning factorial 261.2 194.9 1.34
meaningorig factorial 169.5 99.2 1.71

+ch 80ch 58.45 19.95 2.93

Table 2.2: Benchmarks: time of specializations (1,000,000 repeated executions)

The first row compares the compilers derived from the interpreter meaning

(see Section 2.5 and Appendix 2.B); the result shows a speedup of 1.34 for
compiling the factorial function. One might wonder, however, whether there is
any real gain in using the second Futamura projection: The changes that are
necessary to provide the GE-instantiation of meaning (replace built-in pattern-
matching and recursive function definition of ML with user-defined fixed-point
operators and case operators, respectively—see Section 2.5) slow down both
direct compilation with TDPE and compilation using the specialized generating
extension. In fact, as the table’s second row shows, direct compilation with the
‘original’ interpreter meaningorig, i.e., an instantiation of tiny pe rather than
tiny ge (cf. Sections 2.2.2 and 2.4.3), runs even faster than the specialized
generating extension meaning‡.

We can do better by replacing the user-defined fixed point operators and
case operators in the result program meaning‡ with the built-in constructs.5 This
yields a program that can be understood as the specialized generating extension
of the program meaningorig, and we thus call it meaningorig

‡. The second row of
Table 2.2 shows that running meaningorig

‡ gives a speedup of 1.71 over running
the original program meaningorig. The speedup over the direct compilation using
the original interpreter here is, in practice, more relevant than the speedup of
the benchmark shown in the first row.

The benchmark in the third row compares the generating extensions of an
effect-free function, the addition function +ch for Church numerals. Because the
function is free of computational effects (we assume that its argument function
is also effect-free), we can specialize Pure TDPE instead of Full TDPE in the
second Futamura projection. The speedup of running the specialized generating
extension over direct partial evaluation is consistently around 3 (shown with
Church numeral 80ch).

2.6.2 Analysis of the result

Overall, the speedup of the second Futamura projection with TDPE is dis-
appointing compared to the typical order-of-magnitude speedup achievable in

5Removing the user-defined fixed point operator and case operators can be carried out
automatically by (1) incorporating TDPE with patterns as generated bindings, and (2) sys-
tematically changing the residualizing instantiations for the fixed point and case operators
used. Danvy and Rhiger [11] achieved a similar effect in TDPE for Scheme, using Scheme
macros.

60 The Second Futamura Projection for TDPE

traditional partial evaluation [22]. This, on the other hand, reflects the high
efficiency of TDPE, which carries out static computations by evaluation rather
than symbolic manipulation. Turning symbolic manipulation (i.e., interpreta-
tion) into evaluation is one of the main goals one hopes to achieve by specializing
a syntax-directed partial evaluator. Since TDPE does not have much interpre-
tive overhead in the first place, the speedup is bound to be lower.

Logically, the next question to ask—for a better understanding of how and
when the second Futamura projection could effectively speedup the TDPE
process—is what cost of TDPE can or cannot be removed by using the self-
application. The higher-order nature of the TDPE algorithm blurs the bound-
aries between the various components that contribute to the running time of
the specialization; we can only roughly divide the cost involved in performing
TDPE as follows:

1. Cost due to computation in the extraction function ↓τ , namely function
invocations of reification and reflection for subtypes of τ , name and code
generation and, in the case of Full TDPE, the use of control operators
shift and reset.

2. Cost due to computation in the residualizing instantiation ps of input
program and static input, namely, apart from static computation, the
invocation of reflection by code-generation versions of dynamic constants
(see Section 2.2.1).

3. Cost due to reducing extra redexes formed by the interaction of ↓τ and
ps in ↓τ ps .

Of the costs due to computation in the extraction function, only the one
caused by function invocations can be eliminated, which amounts to function
inlining. All other computations have to be performed at specialization time.
Similarly, for the cost associated with the residualizing instantiation, inlining
can be performed for the code-generation versions of dynamic constants and
their calls to the reflection function. Finally, the extra redexes formed by the
interaction of the extraction function and the residualizing instantiation can be
partly reduced by the specialization.

In Full TDPE, the somewhat time-consuming control operators dominate the
cost of extraction algorithm; the low speedup of specializing Full TDPE (the
first two benchmarks) as opposed to that of specializing Pure TDPE (the third
benchmark), we think, are mainly due to the fact that these control operators
cannot be eliminated. Furthermore, in the case of the Church addition function,
the program is a higher-order pure λ-term, which usually “mixes well” with the
extraction function, in the sense that many extra redexes are formed by their
interaction.

Do certain implementation-related factors, such as the global optimizations
of the ML compiler we used and the fact that we are working in a typed setting,
give positive contribution to the speedup? In our opinion, the help is minimal,
if not negative. First, the specialization carried out by the self-application with

2.7 Conclusions and issues 61

respect to a trivial BTA (Section 2.3.1) has an effect similar to a good global
inliner. Therefore, the global optimization of the ML compiler, especially the
inlining optimization, should only reduce the potential speedup of the specializa-
tion. Second, working in a typed setting does complicates the type specification
and the parameterization (Section 2.4.4), but it does not incur extra cost at run-
time when using TDPE. Indeed, the instantiation through ML functors happens
at compile time. Furthermore, the need to parameterize over built-in constructs
such as fixed point operators and pattern matching is present also in an untyped
setting.

2.7 Conclusions and issues

We have adapted the underlying concept of the second Futamura projection to
TDPE and derived an ML implementation for it. By treating several examples,
among them the generation of a compiler from an interpreter, we have examined
the practical issues involved in using our implementation for deriving generating
extensions of programs.

To hand-write a cogen and to formally prove its correctness at the same time,
one possibility is to start with a partial evaluator and rewrite it into the desired
generating extension in several steps, such as the use of higher-order abstract
syntax and deforestation in Thiemann’s work [31]. Correctness follows from
showing the correctness of the partial evaluator and the correctness of each
of these steps. In contrast, for generating extensions produced with the sec-
ond Futamura projection, the implementation is produced automatically, and
correctness follows immediately from the correctness of the partial evaluator.
Often, however, this conceptual simplicity is compromised by (1) the complica-
tions in using self-application, and (2) the need to make the partial evaluator
self-applicable and prove the necessary changes to be meaning preserving. In
the case of TDPE, the implementation effort for writing the GE-instantiation
of the object program is similar in level to that of the hand-written cogen ap-
proach, but the only change to the TDPE algorithm itself is the transformation
described and proven correct in Section 2.4.5.

The third Futamura projection states that specializing a partial evaluator
with respect to itself yields an efficient generating-extension generator. The
type-indexed nature of TDPE makes it challenging to implement the third Fu-
tamura projection directly in ML. If it can be done, our experience with the
second Futamura projection suggests that only an insignificant speedup would
be obtained.

At the current stage, our contribution seems to be more significant at a
conceptual level, since the speedup achieved by using the generated generating
extensions is rather modest. However we observed that a higher speedup can
be achieved for more complicated type structures, especially in a setting with
no or few uses of computational effects; this suggests that our approach to the
second Futamura projection using TDPE might find more practical applications
in, e.g., the field of type theory and theorem proving.

62 The Second Futamura Projection for TDPE

The technical inconveniences mentioned in Section 2.5 are clearly an ob-
stacle for using the second Futamura projection for TDPE (and, to a lesser
extent, for using TDPE itself). A possible solution is to implement a translator
from the two-level language into ML, thus handling the mentioned technicali-
ties automatically. Of course, such an approach would sacrifice the flexibility
of TDPE of allowing the use of all language constructs in the static part of
the subject program. Even so, TDPE would still retain a distinct flavor when
compared to traditional partial evaluation techniques: Only those constructs
not handled automatically by TDPE, i.e., constants, need to be binding-time
annotated; other constructs, such as function application and function abstrac-
tion, always follow their standard typing rules from typed lambda calculi. This
simplifies the binding-time analysis considerably and often makes binding-time
improvements, e.g, eta-expansion, unnecessary, which was one of the original
motivations of TDPE [5, 10].

Acknowledgments

At an early stage both Olivier Danvy and Morten Rhiger [29] independently
implemented a similar version of the second Futamura projection, thus providing
further stimulation for our work. Andrzej Filinski’s formal treatment of TDPE
proved to be invaluable for understanding the second Futamura projection for
TDPE. Eijiro Sumii pointed out how the monomorphizing transformations can
be improved (see Section 2.4.5).

We are grateful to Daniel Damian, Olivier Danvy, Andrzej Filinski, Lasse
R. Nielsen, Morten Rhiger, our anonymous referees from HOSC and PEPM’00,
and our editor Julia Lawall for their numerous constructive comments.

2.A Notation and symbols

Font Conventions

p, s, d , . . . terms (one-level or two-level) 22
x, y, z, . . . variable names 22
x, @ , let,. . . constructors for code representation (of

type Exp)
26

Language

Σ signature 34
I interpretation 34
(Σ, I) language specification 34
t : σ or Γ `Σ t : σ typing judgment 34
[[·]], [[·]]I meaning function 22,35
t[x := t ′] substitution of t ′ for x in t
Φ instantiation 35

2.B Compiler generation for Tiny 63

t{Φ} application of Φ to t 35

Two-level language

Σ2 = Σs,Σd two-level signature with static part Σs and
dynamic part Σd

35

cs, bs, . . . static constants and base-types (part of Σs) 35
cd, bd, . . . dynamic constants and base-types (part of Σd) 35
$b lifting function on base-type b (part of Σd) 35
Is interpretation of static signature Σs 35
Id interpretation of dynamic signature Σd 35
PL2 = (Σ2, Is) two-level language (fixing only the

interpretation of Σs)
35

PL = (ΣPL, IPL) one-level language associated with PL2 35
NF (e) static normal-form of two-level term e 36
tann binding-time annotated term (a two-level term) 38
〈 · 〉 trivial binding-time annotation (defined

by Φ〈 〉)
40,41

·̃ evaluating instantiation (defined by Φ∼) 36
· residualizing instantiation (defined by Φ) 37
· GE-instantiation (defined by Φ) 44

PE-specific notation

PE code of a partial evaluator 22
ps result of specializing program p to input s 22
p† trivial generating extension of program p 40
p‡ efficient generating extension of program p 41

TDPE-specific notation

↓τ reification function at type τ 27
↑τ reflection function at type τ 27
• abbreviation for any base type 27

⇓τ abbreviation for 〈 ↓τ 〉 40

⇑τ abbreviation for 〈 ↑τ 〉 40

ML function symbols

init initializes the name generator 45
new generates a new name 45
shift, reset control operators 53

2.B Compiler generation for Tiny

2.B.1 A binding-time-separated interpreter for Tiny

Paulson’s Tiny language [27] is a prototypical imperative language—the BNF
of its syntax is given in Figure 2.18 on the following page. Figure 2.19 displays

64 The Second Futamura Projection for TDPE

the factorial function coded in Tiny.

program ::= block declaration in command end

declaration ::= identifier∗

command ::= skip
| command ; command
| identifier := expression
| if expression then command else command
| while expression do command end

expression ::= literal
| identifier
| (expression primop expression)

identifier ::= a string

literal ::= an integer

primop ::= + | - | * | < | =

Figure 2.18: BNF of Tiny programs

block res val aux in
aux := 1;

while (0 < val) do
aux := (aux * val);

val := (val - 1)

end;
res := aux

end

Figure 2.19: Factorial function in Tiny

Experiments in type-directed partial evaluation of a Tiny interpreter with
respect to a Tiny program [4, 5] used an ML implementation of a Tiny inter-
preter (Figure 2.20 on page 68): For every syntactic category a meaning function
is defined—see Figure 2.21 on page 69 for the ML data type representing Tiny
syntax. The meaning of a Tiny program is a function from store to store; the
interpreter takes a Tiny program together with a initial store and, provided it
terminates on the given program, returns a final store. Compilation by partially
evaluating the interpreter with respect to a program thus results in the ML code
of the store-to-store function denoted by the program.

2.B Compiler generation for Tiny 65

Performing a binding-time analysis on the interpreter (under the assump-
tions that the input program is static and the input store is dynamic) classifies
all the constants in the bodies of the meaning functions as dynamic; literals have
to be lifted. As described at the end of Section 2.2.3, the interpreter is imple-
mented within a functor that abstracts over all dynamic constants (for example
cond, fix and update in mc). This allows one to easily switch between the eval-
uating instantiation ˜meaning and the residualizing instantiation meaning . For
the evaluating instantiation we simply instantiate the functor with the actual
constructs, for example

fun cond (b, kt, kf, s) = if b <> 0 then kt s else kf s

fun fix f x = f (fix f) x

For the residualizing instantiation meaning we instantiate the dynamic con-
stants with code-generation functions; as pointed out in Example 2.3 on page 28
and made precise in Definition 2.10 on page 37, reflection can be used to write
code-generation functions:

fun cond e = reflect (rrT4 (a’, a’ -!> a’, a’ -!> a’, a’)

-!> a’)

(VAR "cond") e

fun fix f x = reflect (((a’ -!> a’) --> (a’ -!> a’)) -->

(a’ -!> a’))

(VAR "fix") f x

2.B.2 Generating a compiler for Tiny

As mentioned in Section 2.5, we derive a compiler for Tiny in three steps:

1. rewrite tiny pe into a functor tiny ge(S:STATIC D:DYNAMIC) such that the
interpreter meaning is also parameterized over all static constants and base
types

2. give instantiations of S and D as indicated by the instantiation table in
Table 2.1 on page 49, thereby creating the GE-instantiation meaning

3. use the GE-instantiation meaning to perform the second Futamura pro-
jection

The following two sections describe the first two steps in more detail. Once
we have a GE-instantiation, the third step is easily carried out with the help of
an interface similar to the one for visualization described in Section 2.4.4.

2.B.3 “Full parameterization”

Following Section 2.4.3 we re-implement the interpreter inside a functor to pa-
rameterize over both static and dynamic base types and constants. Note, how-
ever, that the original implementation of Figure 2.20 on page 68 makes use of

66 The Second Futamura Projection for TDPE

recursive definitions and case distinctions; both constructs cannot be param-
eterized over directly. Hence we have to express recursive definitions with a
fixed point operator and case distinctions with appropriate elimination func-
tions. Consider for example case distinction over Expression; Figure 2.22 on
page 69 shows the type of the corresponding elimination function.

The resulting implementation is sketched in Figure 2.23 on page 70. The
recursive definition is handled by a top-level fixed point operator, and all the
case distinctions have been replaced with a call to the corresponding elimination
function.

Now that we are able to parameterize over every construct, we enclose the
implementation in a functor as shown in Figure 2.24 on page 71. The functor
takes two structures; their respective signatures STATIC and DYNAMIC declare
names for all base types and constants that are used statically and dynamically,
respectively. A base type (for example int) may occur both statically (ints)
and dynamically (intd)—in this case two distinct names (for example Int s and
Int d) have to be used.

As mentioned in Section 2.5, the monotype of every instance of a constant
appearing in the interpreter has to be determined. It is these monotypes that
must be declared in the signatures STATIC and DYNAMIC. Figure 2.25 on page 71
shows a portion of signature STATIC: The polymorphic type of caseExpression
(Figure 2.22 on page 69) gives rise to a type abbreviation case Exp type, which
can be used to specify the types of the different instances of caseExpression.
Note that if a static polymorphic constant is instantiated with a type that
contains dynamic base types—like Int d in the case of caseExpression—then
these dynamic base types have to be included in the signature STATIC of static
constructs.6 For base types that occur both in signatures STATIC and DYNAMIC,
sharing constraints have to be declared in the interface of functor tiny ge (Fig-
ure 2.24 on page 71).

Finding the monotypes for the various instantiations of constants in the
interpreter can be facilitated by using the type-inference mechanism of ML: We
transcribe the output of ML type inference into a type specification by hand.
This transcription is straightforward, because the type specifications of TDPE
and the output of ML type inference are very much alike.

2.B.4 The GE-instantiation

After parameterizing the interpreter as described above, we are in a position
to either run the interpreter by using its evaluating instantiation (see Defini-
tion 2.9 on page 36), perform type-directed partial evaluation by employing the
residualizing instantiation (Definition 2.10 on page 37), or carry out the second
Futamura projection with the GE-instantiation (Definition 2.17 on page 44).

6Note that static base types appear also in the signature of dynamic constructs, because
we make the lifting functions part of the latter. However there is a conceptual difference: in
a two-level language, it is natural that the dynamic signature has dependencies on the static
signature, whereas the static signature should not depend on the dynamic signature.

2.B Compiler generation for Tiny 67

Section 2.4.3 shows how the static and dynamic constructs have to be instanti-
ated in each case. For the GE-instantiation, all base types become Exp; static
and dynamic constants are instantiated with code-generation functions. The
latter are constructed using the evaluating and the residualizing instantiation
of reflection, respectively. Because the signatures STATIC and DYNAMIC hold the
precise type at which each constant is used, it is purely mechanical to write
down the structures needed for the GE-instantiation.

68 The Second Futamura Projection for TDPE

fun meaning p store =

let fun mp (PROGRAM (vs, c)) s (* program *)
= md vs 0 (fn env => mc c env s)

and md [] offset k (* declaration *)
= k (fn i => ~1)

| md (v :: vs) offset k

= (md vs (offset + 1)

(fn env => k (fn i => if v = i

then offset

else env i)))

and mc (SKIP) env s (* command *)
= s

| mc (SEQUENCE(c1, c2)) env s

= mc c2 env (mc c1 env s)

| mc (ASSIGN(i, e)) env s

= update (lift_int (env i), me e env s, s)

| mc (CONDITIONAL(e, c_then, c_else)) env s

= cond (me e env s,

mc c_then env,

mc c_else env,

s)

| mc (WHILE(e, c)) env s

= fix (fn w => fn s

=> cond (me e env s,

fn s => w (mc c env s),

fn s => s,

s)) s

and me (LITERAL l) env s (* expression *)
= lift_int l

| me (IDENTIFIER i) env s

= fetch (lift_int (env i), s)

| me (PRIMOP2(rator, e1, e2)) env s

= mo2 rator (me e1 env s) (me e2 env s)

and mo2 b v1 v2 (* primop *)
=

case b of

Bop_PLUS => add (v1, v2)

| Bop_MINUS => sub (v1, v2)

| Bop_TIMES => mul (v1, v2)

| Bop_LESS => lt (v1, v2)

| Bop_EQUAL => eqi (v1, v2)

in

mp p store

end

Figure 2.20: An interpreter for Tiny

2.B Compiler generation for Tiny 69

type Identifier = string

datatype

Program = (* program and declaration *)
PROGRAM of Identifier list * Command

and

Command = (* command *)
SKIP (* skip *)

| SEQUENCE of Command * Command (* ; *)
| ASSIGN of Identifier * Expression (* := *)
| CONDITIONAL of Expression * Command * Command (* if *)
| WHILE of Expression * Command (* while *)

and

Expression = (* expression *)
LITERAL of int (* literal *)

| IDENTIFIER of Identifier (* identifier *)
| PRIMOP2 of Bop * Expression * Expression (* primop *)

and

Bop = (* primop *)
Bop_PLUS (* + *)

| Bop_MINUS (* - *)
| Bop_TIMES (* * *)
| Bop_LESS (* < *)
| Bop_EQUAL (* = *)

Figure 2.21: Datatype for representing Tiny programs

val case_Expression

: Expression -> ((Int_s -> ’a) *

(Identifier -> ’a) *

(Bop * Expression * Expression -> ’a)

) -> ’a

Figure 2.22: An elimination function for expressions

70 The Second Futamura Projection for TDPE

fun meaning p store =

let val (mp, _, _, _, _) =

fix5

(fn (mp, md, mc, me, mo2) =>

let fun mp’ prog (* program *)
= ...

and md’ idList (* declaration *)
= ...

and mc’ c (* command *)
= (case_Command c

((* mc (SKIP) env s *)
fn _ => fn env => fn s

=> s,

(* mc (SEQUENCE(c1, c2)) env s *)
fn (c1, c2) => fn env => fn s

=> mc c2 env (mc c1 env s),

(* mc (ASSIGN(i, e)) env s *)
fn (i, e) => fn env => fn s

=> update (lift_int (env i), me e env s, s),

(* mc (CONDITIONAL(e,c_then,c_else)) env s *)
fn (e, c_then, c_else) => fn env => fn s

=> cond (me e env s,

mc c_then env,

mc c_else env,

s),

(* mc (WHILE (e, c)) env s *)
fn (e, c) => fn env => fn s

=> fix (fn w

=> fn s

=> cond (me e env s,

fn s => w (mc c env s),

fn s => s,

s)) s

))

and me’ e (* expression *)
= (case_Expression e (...))

and mo2’ bop (* primop *)
= (case_Bop bop (...))

in

(mp’, md’, mc’, me’, mo2’)

end)

in

mp p store

end

Figure 2.23: A fully parameterizable implementation

2.B Compiler generation for Tiny 71

functor tiny_ge (structure S : STATIC

structure D : DYNAMIC

sharing type S.Int_s = D.Int_s
...)=

struct

local open S D

in

fun meaning p store

= ...

end

end

Figure 2.24: Parameterizing over both static and dynamic constructs

...

type ’a case_Exp_type (* Type abbreviation *)
= Expression -> ((Int_s -> ’a) *

(Identifier -> ’a) *

(Bop * Expression * Expression -> ’a)

) -> ’a

type case_Exp_res_type (* Result type *)
= (Identifier -> Int_s) -> sto -> Int_d

...

(* Declaration of elimination function for expressions *)
val case_Expression: case_Exp_res_type case_Exp_type

...

Figure 2.25: Excerpts from signature STATIC

Bibliography

[1] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ-calculus. In Albert R. Meyer, editor, Proceedings
of the 6th Annual IEEE Symposium on Logic in Computer Science, pages
203–213, Amsterdam, The Netherlands, July 1991. IEEE Computer Society
Press.

[2] Lars Birkedal and Morten Welinder. Hand-writing program generator gen-
erators. In Manuel Hermenegildo and Jaan Penjam, editors, Sixth Inter-
national Symposium on Programming Language Implementation and Logic
Programming, number 844 in Lecture Notes in Computer Science, pages
198–214, Madrid, Spain, September 1994. Springer-Verlag.

[3] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science of
Computer Programming, 16:151–195, 1991.

[4] Olivier Danvy. Pragmatic aspects of type-directed partial evaluation. In
Olivier Danvy, Robert Glück, and Peter Thiemann, editors, Partial Eval-
uation, Proceedings, number 1110 in Lecture Notes in Computer Science,
pages 73–94. Springer-Verlag, 1996.

[5] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr., ed-
itor, Proceedings of the Twenty-Third Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 242–257, St. Petersburg Beach,
Florida, January 1996. ACM Press.

[6] Olivier Danvy. A simple solution to type specialization. In Kim G. Larsen,
Sven Skyum, and Glynn Winskel, editors, Proceedings of ICALP ’98, num-
ber 1443 in Lecture Notes in Computer Science, pages 908–917, Aalborg,
Denmark, 1998. Springer-Verlag.

[7] Olivier Danvy. Type-directed partial evaluation. In Partial Evaluation –
Practice and Theory; Proceedings of the 1998 DIKU Summer School, num-
ber 1706 in Lecture Notes in Computer Science, pages 367–411, Copen-
hagen, Denmark, July 1998. Springer-Verlag. xtended version available as
BRICS technical report LN-98-3.

72

BIBLIOGRAPHY 73

[8] Olivier Danvy and Peter Dybjer, editors. Proceedings of the 1998 APPSEM
Workshop on Normalization by Evaluation, NBE ’98, (Gothenburg, Swe-
den, May 8–9, 1998), number NS-98-8 in Note Series, Department of Com-
puter Science, University of Aarhus, May 1998. BRICS.

[9] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[10] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion does
The Trick. ACM Transactions on Programming Languages and Systems,
8(6):730–751, 1996.

[11] Olivier Danvy and Morten Rhiger. Compiling actions by partial evalua-
tion, revisited. Technical Report BRICS-RS-98-13, BRICS, Department of
Computer Science, University of Aarhus, June 1998.

[12] Olivier Danvy and René Vestergaard. Semantics-based compiling: A case
study in type-directed partial evaluation. In Herbert Kuchen and Doaitse
Swierstra, editors, Eighth International Symposium on Programming Lan-
guage Implementation and Logic Programming, number 1140 in Lecture
Notes in Computer Science, pages 182–197, Aachen, Germany, Septem-
ber 1996. Springer-Verlag. Extended version available as BRICS technical
report RS-96-13.

[13] Olivier Danvy and Zhe Yang. An operational investigation of the CPS
hierarchy. In S. Doaitse Swierstra, editor, Proceedings of the Eighth Euro-
pean Symposium on Programming, number 1576 in Lecture Notes in Com-
puter Science, pages 224–242, Amsterdam, The Netherlands, March 1999.
Springer-Verlag.

[14] Andrzej Filinski. Representing monads. In Hans-J. Boehm, editor, Pro-
ceedings of the Twenty-First Annual ACM Symposium on Principles of
Programming Languages, pages 446–457, Portland, Oregon, January 1994.
ACM Press.

[15] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles
of Programming Languages, pages 175–188, San Antonio, Texas, January
1999. ACM Press.

[16] Andrzej Filinski. A semantic account of type-directed partial evalua-
tion. In Gopalan Nadathur, editor, International Conference on Princi-
ples and Practice of Declarative Programming, number 1702 in Lecture
Notes in Computer Science, pages 378–395, Paris, France, September 1999.
Springer-Verlag.

[17] Yoshihito Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Higher-Order and Symbolic Computation,

74 BIBLIOGRAPHY

12(4):363–397, 1999. Reprinted from Systems · Computers · Controls 2(5),
1971.

[18] Bernd Grobauer and Zhe Yang. Source code for the second Futamura
projection for type-directed partial evaluation in ML, 2000. Available from
http://www.brics.dk/~tdpe/second_FP/sources.tgz.

[19] John Hatcliff and Olivier Danvy. A computational formalization for partial
evaluation. Mathematical Structures in Computer Science, 7:507–541, 1997.
Extended version available as BRICS technical report RS-96-34.

[20] Carsten K. Holst and John Launchbury. Handwriting cogen to avoid prob-
lems with static typing. In Draft Proceedings, 4th Annual Glasgow Work-
shop on Functional Programming, Skye, Scotland, pages 210–218. Glasgow
University, 1991.

[21] Neil D. Jones. Challenging problems in partial evaluation and mixed com-
putation. In Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors,
Partial Evaluation and Mixed Computation, pages 1–14. North-Holland,
1988.

[22] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International Series in
Computer Science. Prentice-Hall International, 1993.

[23] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation. Lisp
and Symbolic Computation, 2(1):9–50, 1989.

[24] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation.
In Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Conference on
Lisp and Functional Programming, LISP Pointers, Vol. VII, No. 3, pages
227–238, Orlando, Florida, June 1994. ACM Press.

[25] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[26] Eugenio Moggi. Computational lambda-calculus and monads. In Rohit
Parikh, editor, Proceedings of the Fourth Annual IEEE Symposium on Logic
in Computer Science, pages 14–23, Pacific Grove, California, June 1989.
IEEE Computer Society Press.

[27] Lawrence C. Paulson. Compiler generation from denotational semantics.
In Bernard Lorho, editor, Methods and Tools for Compiler Construction,
pages 219–250. Cambridge University Press, 1984.

[28] Morten Rhiger. Deriving a statically typed type-directed partial evaluator.
In Olivier Danvy, editor, ACM SIGPLAN Workshop on Partial Evalua-
tion and Semantics-Based Program Manipulation (PEPM’99), Proceedings,
BRICS technical report BRICS-NS-99-1, pages 25–29, Department of Com-
puter Science, University of Aarhus, 1999. BRICS.

BIBLIOGRAPHY 75

[29] Morten Rhiger. Run-time code generation for type-directed partial evalua-
tion. Progress report, BRICS PhD School, University of Aarhus. Available
at http://www.brics.dk/~mrhiger, 1999.

[30] Eijiro Sumii, 2000. Email exchange, February 2000.

[31] Peter Thiemann. Combinators for program generation. Journal of Func-
tional Programming, 9(5):483–525, 1999.

[32] Zhe Yang. Encoding types in ML-like languages. In Paul Hudak and Chris-
tian Queinnec, editors, Proceedings of the 1998 ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 289–300, Baltimore,
Maryland, September 1998. ACM Press. Extended version available as
BRICS technical report RS-98-9.

76 BIBLIOGRAPHY

Chapter 3

A Unifying Approach
to Goal-Directed Evaluation

Abstract

Goal-directed evaluation, as embodied in Icon and Snobol, is built
on the notions of backtracking and of generating successive results,
and therefore it has always been something of a challenge to spec-
ify and implement. In this article, we address this challenge using
computational monads and partial evaluation.

We consider a subset of Icon and we specify it with a monadic se-
mantics and a list monad. We then consider a spectrum of monads
that also fit the bill, and we relate them to each other. For example,
we derive a continuation monad as a Church encoding of the list
monad. The resulting semantics coincides with Gudeman’s contin-
uation semantics of Icon.

We then compile Icon programs by specializing their interpreter (i.e.,
by using the first Futamura projection), using type-directed partial
evaluation. Through various back ends, including a run-time code
generator, we generate ML code, C code, and OCaml byte code.
Binding-time analysis and partial evaluation of the continuation-
based interpreter automatically give rise to C programs that coincide
with the result of Proebsting’s optimized compiler.

3.1 Introduction

Goal-directed languages combine expressions that can yield multiple results
through backtracking. Results are generated one at a time: an expression can
either succeed and generate a result, or fail. If an expression fails, control is
passed to a previous expression to generate the next result, if any. If so, control

77

78 A Unifying Approach to Goal-Directed Evaluation

is passed back to the original expression in order to try whether it can succeed
this time. Goal-directed programming specifies the order in which subexpres-
sions are retried, thus providing the programmer with a succint and powerful
control-flow mechanism. A well-known goal-directed language is Icon [11].

Backtracking as a language feature complicates both semantics and imple-
mentation. Gudeman [13] gives a continuation semantics of a goal-directed
language; continuations have also been used in implementations of languages
with control structures similar to those of goal-directed evaluation, such as Pro-
log [3, 15, 30]. Proebsting and Townsend, the implementors of an Icon compiler
in Java, observe that continuations can be compiled into efficient code [1, 14],
but nevertheless dismiss them because “[they] are notoriously difficult to under-
stand, and few target languages directly support them” [23, p.38]. Instead, their
compiler is based on a translation scheme proposed by Proebsting [22], which
is based on the four-port model used for describing control flow in Prolog [2].
Icon expressions are translated to a flow-chart language with conditional, direct
and indirect jumps using templates; a subsequent optimization which, amongst
other things, reorders code and performs branch chaining, is necessary to pro-
duce compact code. The reference implemention of Icon [12] compiles Icon into
byte code; this byte code is then executed by an interpreter that controls the
control flow by keeping a stack of expression frames.

In this article, we present a unified approach to goal-directed evaluation:

1. We consider a spectrum of semantics for a small goal-directed language.
We relate them to each other by deriving semantics such as Gudeman’s [13]
as instantiations of one generic semantics based on computational mon-
ads [21]. This unified approach enables us to show the equivalence of
different semantics simply and systematically. Furthermore, we are able
to show strong conceptual links between different semantics: Continuation
semantics can be derived from semantics based on lists or on streams of
results by Church-encoding the lists or the streams, respectively.

2. We link semantics and implementation through semantics-directed compi-
lation using partial evaluation [5, 17]. In particular, binding-time analysis
guides us to extract templates from the specialized interpreters. These
templates are similar to Proebsting’s, and through partial evaluation, they
give rise to similar flow-chart programs, demonstrating that templates are
not just a good idea—they are intrinsic to the semantics of Icon and can
be provably derived.

The rest of the paper is structured as follows: In Section 3.2 we first describe
syntax and monadic semantics of a small subset of Icon; we then instantiate the
semantics with various monads, relate the resulting semantics to each other,
and present an equivalence proof for two of them. In Section 3.3 we describe
semantics-directed compilation for a goal-directed language. Section 3.4 con-
cludes.

3.2 Semantics of a Subset of Icon 79

3.2 Semantics of a Subset of Icon

An intuitive explanation of goal-directed evaluation can be given in terms of lists
and list-manipulating functions. Consequently, after introducing the subset of
Icon treated in this paper, we define a monadic semantics in terms of the list
monad. We then show that also a stream monad and two different continuation
monads can be used, and we give an example of how to prove equivalence of the
resulting monads using a monad morphism.

3.2.1 A subset of the Icon programming language

We consider the following subset of Icon:

E ::= i | E1 + E2 | E1 to E2 | E1 <= E2 | if E1 then E2 else E3

Intuitively, an Icon term either fails or succeeds with a value. If it succeeds, then
subsequently it can be resumed, in which case it will again either succeed or fail.
This process ends when the expression fails. Informally, i succeeds with the value
i; E1 + E2 succeeds with the sum of the sub-expressions; E1 to E2 (called a
generator) succeeds with the value of E1 and each subsequent resumption yields
the rest of the integers up to the value of E2, at which point it fails; E1 <= E2

succeeds with the value of E2 if it is larger than the value E1, otherwise it fails;
if E1 then E2 else E3 produces the results of E2 if E1 succeeds, otherwise
it produces the results of E3.

Generators can be nested. For example, the Icon term 4 to (5 to 7) gener-
ates the result of the expressions 4 to 5, 4 to 6, and 4 to 7 and concatenates
the results.

In a functional language such as Scheme, ML or Haskell, we can achieve the
effect of Icon terms using the functions map and concat. For example, if we
define

fun to i j = if i<=j then i::(to (i+1) j) else nil

in ML, then evaluating concat (map (to 4) (to 5 7)) yields [4, 5, 4, 5,
6, 4, 5, 6, 7] which is the list of the integers produced by the Icon term 4
to (5 to 7).

3.2.2 Monads and semantics

Computational monads were introduced as a tool for structuring denotational
semantics [21]. The basic idea is to parameterize a semantics over a monad;
many language extensions, such as adding a store or exceptions, can then be
carried out by simply instantiating the semantics with a suitable monad. Fur-
ther, correspondence proofs between semantics arising from instantiation with
different monads can be conducted in a modular way, using the concept of a
monad morphism [28].

80 A Unifying Approach to Goal-Directed Evaluation

Monads can also be used to structure functional programs [29]. In terms of
programming languages, a monad M is described by a unary type constructor
M and three operations unitM, mapM and joinM with types as displayed in
Figure 3.1. For these operations, the so-called monad laws have to hold.

In Section 3.2.4 we give a denotational semantics of the goal-directed lan-
guage described in Section 3.2.1. Anticipating semantics-directed compilation
by partial evaluation, we describe the semantics in terms of ML, in effect defin-
ing an interpreter. The semantics [[·]]M : Exp → int M is parameterized over a
monad M, where α M represents a sequence of values of type α.

3.2.3 A monad of sequences

In order to handle sequences, some structure is needed in addition to the three
generic monad operations displayed in Figure 3.1. We add three operations:

emptyM : α M
if emptyM : α M → β M → β M → β M

appendM : α M → α M → α M

Here, emptyM stands for the empty sequence; if emptyM is a discriminator
function that, given a sequence and two additional inputs, returns the first
input if the sequence is empty, and returns the second input otherwise; appendM

appends two sequences.
A straightforward instance of a monad of sequences is the list monad L, which

is displayed in Figure 3.2; for lists, “join” is sometimes also called “flatten” or,
in ML, “concat”.

3.2.4 A monadic semantics

A monadic semantics of the goal-directed language described in Section 3.2.1.
is given in Figure 3.3. We explain the semantics in terms of the list monad.

A literal i is interpreted as an expression that yields exactly one result;
consequently, i is mapped into the singleton list [i] using unit . The semantics
of to, + and <= are given in terms of bind2 and a function of type int →
int → int list. The type of function bind2 L is

(α → β → γ list) → α list → β list → γ list,

i.e., it takes two lists containing values of type α and β, and a function mapping
α×β into a list of values of type γ. The effect of the definition of bind2 L f xs ys
is (1) to map f x over ys for each x in xs and (2) to flatten the resulting list of
lists. Both steps can be found in the example at the end of Section 3.2.1 of how
the effect of goal-directed evaluation can be achieved in ML using lists.

3.2 Semantics of a Subset of Icon 81

unitM : α → α M
mapM : (α → β) → α M → β M
joinM : (α M)M → α M

Figure 3.1: Monad operators and their types

Standard monad operations:

unitL x = [x]

mapL f [] = []
mapL f (x :: xs) = (f x) :: (mapL f xs)

joinL [] = []
joinL (l :: ls) = l @ (joinL ls)

Special operations for sequences:

emptyL = []

if emptyL [] ys zs = ys
if emptyL (x :: xs) ys zs = zs

appendL xs ys = xs @ ys

Figure 3.2: The list monad

[[·]]M : Exp → int M

[[i]]M = unitM i
[[E1 toE2]]M = bind2M (λxy.toM x y) [[E1]]M [[E2]]M
[[E1 +E2]]M = bind2M (λxy.unitM (x + y)) [[E1]]M [[E2]]M

[[E1 <=E2]]M = bind2M (λxy.leqM x y) [[E1]]M [[E2]]M
[[ifE0 thenE1

elseE2]]M = if emptyM [[E0]]M [[E1]]M [[E2]]M

where

bind2M f xs ys = joinM (mapM (λx.joinM (mapM (f x) ys)) xs)
leqM i j = if i ≤ j then unitM j else emptyM

toM i j = if i > j then emptyM

else appendM (unitM i) (toM (i + 1) j)

Figure 3.3: Monadic semantics for a subset of Icon

82 A Unifying Approach to Goal-Directed Evaluation

Standard monad operations:

unitC x = λk.k x
mapC f xs = λk.xs (λx.k (f x))
joinC ls = λk.ls (λx.x k)

Special operations for sequences:

emptyC = λk.λl.l
if emptyC xs ys zs = λk.λl.xs (λ .λ .ys k l) (zs k l)
appendC xs ys = λk.(xs k) ◦ (ys k)

Figure 3.4: The continuation monad

3.2.5 A spectrum of semantics

In the following, we describe four possible instantiations of the semantics given
in Figure 3.3. Because a semantics corresponds directly to an interpreter, we
thus create four different interpreters.

A list-based interpreter

Instantiating the semantics with the list monad from Figure 3.2 yields a list-
based interpreter. In an eager language such as ML, a list-based interpreter
always computes all results. Such behavior may not be desirable in a situation
where only the first result is of interest (or, for that matter, whether there exists
a result): Consider for example the conditional, which examines whether a given
expression yields at least one result or fails. An alternative is to use laziness.

A stream-based interpreter

Implementing the list monad from Figure 3.2 in a lazy language results in a
monad of (finite) lazy lists; the corresponding interpreter generates one result
at a time. In an eager language, this effect can be achieved by explicitly imple-
menting a data type of streams, i.e., finite lists built lazily: a thunk is used to
delay computation.

α stream ≡ End | More of (α × (111 → α stream))

The definition of the corresponding monad operations is straightforward.

A continuation-based interpreter

Gudeman [13] gives a continuation-based semantics of a goal-directed language.
We can derive this semantics by instantiating our monadic semantics with the

3.2 Semantics of a Subset of Icon 83

continuation monad C as defined in Figure 3.4. The type-constructor α C of the
continuation monad is defined as (α → R) → R, where R is called the answer
type of the continuation.

A conceptual link between the list monad and the continuation monad with
answer type β list → β list can be made through a Church encoding [4] of the
higher-order representation of lists proposed by Hughes [16]. Hughes observed
that when constructing the partially applied concatenation function λys .xs @ ys
rather than the list xs , lists can be appended in constant time. In the resulting
representation, the empty list corresponds to the function that appends no ele-
ments, i.e., the identity, whereas the function that appends a single element is
represented by a partially applied cons function:

nil = λys .ys
cons x = λys .x :: ys

Church-encoding a data types means abstracting over selector functions, in this
case “ :: ”:

nil = λsc.λys .ys
cons x = λsc.λys .sc x ys

The resulting representation of lists can be typed as

(α → β → β) → β → β,

which indeed corresponds to α C with answer type β → β. Notice that nil and
cons for this list representation yield emptyC and unitC, respectively. Similarly,
the remaining monad operations correspond to the usual list operations.

Figure 3.5 displays the definition of [[·]]C where all monad operations have
been inlined and the resulting expressions β-reduced.

[[·]]C : Exp → (int → β → β) → β → β

[[i]]C = λk.k i
[[E1 toE2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.toC i j k))
[[E1 +E2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.k (i + j)))

[[E1 <=E2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.leqC i j k))
[[ifE0 thenE1

elseE2]]C2 = λk.λl.[[E0]]C2 (λ .λ .[[E1]]C2 k l) ([[E2]]C2 k l)

where
leqC i j = λk.if i ≤ j then (k j) else (λl.l)
toC i j = λk.if i > j then (λl.l)

else (k i) ◦ (toC (i + 1) j k)

Figure 3.5: A continuation semantics

84 A Unifying Approach to Goal-Directed Evaluation

An interpreter with explicit success and failure continuations

A tail-recursive implementation of a continuation-based interpreter for Icon uses
explicit success and failure continuations. The result of interpreting an Icon
expression then has type

(int → (111 → α) → α) → (111 → α) → α,

where the first argument is the success continuation and the second argument
the failure continuation. Note that the success continuation takes a failure con-
tinuation as a second argument. This failure continuation determines the re-
sumption behavior of the Icon term: the success continuation may later on apply
its failure continuation to generate more results. The corresponding continu-
ation monad C2 has the same standard monad operations as the continuation
monad displayed in Figure 3.4, and the sequence operations

emptyC2
= λk.λf.f ()

if emptyC2
xs ys zs = λk.λf.xs (λ .λ .zs k f) (λ().ys k f)

appendC2
xs ys = λk.λf.(xs k)(λ().ys k f)

Just as the continuation monad from Figure 3.4 can be conceptually linked to
the list monad, the present continuation monad can be linked to the stream
monad by a Church encoding of the data type of streams:

end = λsm.λse.se()
more x xs = λsm.λse.sm x xs

The fact that the second component in a stream is a thunk suggests one to give
the selector function sm the type int → (111 → α) → β; the resulting type for end
and more x xs is then

(int → (111 → α) → β) → (111 → β) → β.

Choosing α as the result type of the selector functions yields the type of a
continuation monad with answer type (111 → α) → α.

The interpreter defined by the semantics [[·]]C2 is the starting point of the
semantics-directed compilation described in Section 3.3. Figure 3.6 displays the
definition of [[·]]C2 where all monad operations have been inlined and the resulting
expressions β-reduced. Because the basic monad operations of C2 are the same
as those of C, the semantics based on C2 and C only differ in the definitions of
leq , to , and in how if is handled.

3.2.6 Correctness

So far, we have related the various semantics presented in Section 3.2.5 only
conceptually. Because the four different interpreters presented in Section 3.2.5
were created by instantiating one parameterized semantics with different mon-
ads, a formal correspondence proof can be conducted in a modular way building
on the concept of a monad morphism [28].

3.2 Semantics of a Subset of Icon 85

[[·]]C2 : Exp → (int → (111 → α) → α) → (111 → α) → α

[[i]]C2 = λk.k i
[[E1 toE2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.toC2 i j k))
[[E1 +E2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.k (i + j)))

[[E1 <=E2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.leqC2
i j k))

[[ifE0 thenE1

elseE2]]C2 = λk.λf.[[E0]]C2 (λ .λ .[[E1]]C2 k f) (λ().[[E2]]C2 k f)

where

leqC2
i j = λk.λf.if i ≤ j then k j f else f ()

toC2 i j = λk.λf.if i > j then f ()
else (k i) (λ().toC2 (i + 1) j k f)

Figure 3.6: A semantics with success and failure continuations

Definition 3.1 (Monad morphism) If M and N are two monads, then h :
α M → α N is a monad morphism if it preserves the monad operations1, i.e.,

h ◦ unitM = unitN

h ◦ mapM f = mapN f ◦ h
h ◦ joinM = joinN ◦ h ◦ mapM h

h emptyM = emptyN

h ◦ if emptyM = λxs.λys .λzs .if emptyN(h xs)(h ys)(h zs)
h ◦ appendM = λxs.λys .appendN(h xs)(h ys)

The following lemma shows that the semantics resulting from two different
monad instantiations can be related by defining a monad morphism between
the two sequence monads in question.

Lemma 3.2 Let M and N be monads of sequences as specified in Section 3.2.3.
If h is a monad morphism from M to N, then (h [[E]]M) = [[E]]N for every Icon
expression E.

Proof: By induction over the structure of E. A lemma to the effect that
h (toM i j) = toN i j is shown by induction over i − j for i ≥ j. 2

We use Lemma 3.2 to show that the list-based interpreter from Section 3.2.5 and
the continuation-based interpreter from Section 3.2.5 always yield comparable
results:

1We strengthen the definition of a monad morphism somewhat by considering a sequence-
preserving monomorphism that also preserves the monad operations specific to the monad of
sequences.

86 A Unifying Approach to Goal-Directed Evaluation

Proposition 3.3 Let show : α C → α L be defined as

show f = f (λx.λxs.appendL (unitL x) xs) emptyL.

Then (show [[E]]C) = [[E]]L for all Icon expressions E.

Proof: We show that (1) h : α L → α C, which is defined as

h [] = emptyC

h (x :: xs) = appendC (unitC x) (h xs)

is a monad morphism from L to C, and (2) the function (show ◦h) is the identity
function on lists. The proposition then follows immediately with Lemma 3.2. 2

3.2.7 Conclusion

Taking an intuitive list-based semantics for a subset of Icon as our starting point,
we have defined a stream-based semantics and two continuation semantics. Be-
cause our inital semantics is defined as the instantiation of a monadic semantics
with a list monad, the other semantics can be defined through a stream monad
and two different continuation monads, respectively. The modularity of the
monadic semantics allows us to relate the semantics to each other by relat-
ing the corresponding monads, both conceptually and formally. To the best of
our knowledge, the conceptual link between list-based monads and continuation
monads via Church encoding has not been observed before.

It is known that continuations can be compiled into efficient code relatively
easily [1, 14]; in the following section we show that partial evaluation is suffi-
cient to generate efficient code from the the continuation semantics derived in
Section 3.2.5.

3.3 Semantics-Directed Compilation

The goal of partial evaluation is to specialize a source program p : S × D → R
of two arguments to a fixed “static” argument s : S. The result is a residual
program ps : D → R that must yield the same result when applied to a “dy-
namic” argument d as the original program applied to both the static and the
dynamic arguments, i.e., [[ps(d)]] = [[p(s, d)]].

Our interest in partial evaluation is due to its use in semantics-directed com-
pilation: when the source program p is an interpreter and the static argument s
is a term in the domain of p then ps is a compiled version of s represented in the
implementation language of p. It is often possible to implement an interpreter
in a functional language based on the denotational semantics.

Our starting point is a functional interpreter implementing the denotational
semantics in Figure 3.6. The source language of the interpreter is shown in
Figure 3.7. In Section 3.3.1 we present the Icon interpreter written in ML.

3.3 Semantics-Directed Compilation 87

In Section 3.3.1, 3.3.2, and 3.3.3 we use type-directed partial evaluation to
specialize this interpreter to Icon terms yielding ML code, C code, and OCaml
byte code as output. Other partial-evaluation techniques could be applied to
yield essentially the same results.

structure Icon = struct
datatype icon = LIT of int

| TO of icon * icon
| PLUS of icon * icon
| LEQ of icon * icon
| IF of icon * icon * icon

end

Figure 3.7: The abstract syntax of Icon terms

3.3.1 Type-directed partial evaluation

We have used type-directed partial evaluation to compile Icon programs into
ML. This is a standard exercise in semantics-directed compilation using type-
directed partial evaluation [9].

Type-directed partial evaluation is an approach to off-line specialization of
higher-order programs [8]. It uses a normalization function to map the (value of
the) trivially specialized program λd.p(s, d) into the (text of the) target program
ps.

The input to type-directed partial evaluation is a binding-time separated pro-
gram in which static and dynamic primitives are separated. When implemented
in ML, the source program is conveniently wrapped in a functor parameterized
over a structure of dynamic primitives. The functor can be instantiated with
evaluating primitives (for running the source program) and with residualizing
primitives (for specializing the source program).

Specializing Icon terms using type-directed partial evaluation

In our case the dynamic primitives operations are addition (add), integer com-
parison (leq), a fixed-point operator (fix), a conditional functional (cond), and
a quoting function (qint) lifting static integers into the dynamic domain. The
signature of primitives is shown in Figure 3.8. For the residualizing primitives
we let the partial evaluator produce functions that generate ML programs with
meaningful variable names [8].

The parameterized interpreter is shown in Figure 3.9. The main function
eval takes an Icon term and two continuations, k : tint → (tunit → res) →
res and f : tunit → res, and yields a result of type res. We intend to specialize
the interpreter to a static Icon term and keeping the continuation parameters
k and f dynamic. Consequently, residual programs are parameterized over two

88 A Unifying Approach to Goal-Directed Evaluation

continuations. (If the continuations were also considered static then the residual
programs would simply be the list of the generated integers.)

signature PRIMITIVES = sig
type tunit
type tint
type tbool
type res

val qint : int -> tint
val add : tint * tint -> tint
val leq : tint * tint -> tbool
val cond : tbool * (tunit -> res) * (tunit -> res) -> res
val fix : ((tint -> res) -> tint -> res) -> tint -> res

end

Figure 3.8: Signature of primitive operations

The output of type-directed partial evaluation is the text of the residual
program. The residual program is in long beta-eta normal form, that is, it does
not contain any beta redexes and it is fully eta-expanded with respect to its
type.

Example 3.4 The following is the result of specializing the interpreter with
respect to the Icon term 10 + (4 to 7).

fn k => fn f =>
fix (fn loop0 =>

fn i0 =>
cond (leq (i0, qint 7),

fn () => k (add (qint 10, i0))
(fn () => loop0 (add (i0,

qint 1))),
fn () => f ()))

(qint 4)

Avoiding code duplication

The result of specializing the interpreter in Figure 3.9 may be exponentially
large. This is due to the continuation parameter k being duplicated in the
clause for IF. For example, specializing the interpreter to the Icon term 100 +
(if 1 < 2 then 3 else 4) yields the following residual program in which the
context add(100, ·) occurs twice.

3.3 Semantics-Directed Compilation 89

functor MakeInterp(P : PRIMITIVES) = struct
fun loop (i, j) k f =

P.fix
(fn walk =>

fn i =>
P.cond (P.leq (i, j),

fn _ =>
k i (fn _ =>

walk (P.add (i, P.qint 1))),
f))

i

fun select (i, j) k f =
P.cond (P.leq (i, j), fn _ => k j f, f)

fun sum (i, j) k = k (P.add (i, j))

fun eval (LIT i) k = k (P.qint i)
| eval (TO(e1, e2)) k =
eval e1 (fn i => eval e2 (fn j => loop (i, j) k))

| eval (PLUS(e1, e2)) k =
eval e1 (fn i => eval e2 (fn j => sum (i, j) k))

| eval (LEQ(e1, e2)) k =
eval e1 (fn i => eval e2 (fn j => select (i, j) k))

| eval (IF(e1, e2, e3)) k =
fn f =>

eval e1
(fn _ => fn _ => eval e2 k f)
(fn _ => eval e3 k f)

end

Figure 3.9: Parameterized interpreter

fn k => fn f =>
cond (leq (qint 1, qint 2),

fn () => k (add (qint 100, qint 3)) (fn () => f ()),
fn () => k (add (qint 100, qint 4)) (fn () => f ()))

Code duplication is a well-known problem in partial evaluation [17]. The
equally well-known solution is to bind the continuation in the residual program,
just before it is used. We introduce a new primitive save of two arguments, k
and g, which applies g to two “copies” of the continuation k.

90 A Unifying Approach to Goal-Directed Evaluation

signature PRIMITIVES = sig
...
type succ = tint -> (tunit -> res) -> res
val save : succ -> (succ * succ -> res) -> res

end

The final clause of the interpreter is modified to save the continuation pa-
rameter before it proceeds, as follows.

fun eval (LIT i) k = k (P.qint i)
...

| eval (IF(e1, e2, e3)) k =
fn f =>

save k
(fn (k0, k1) => eval e1

(fn _ => fn _ => eval e2 k0 f)
(fn _ => eval e3 k1 f))

Specializing this new interpreter to the Icon term from above yields the
following residual program in which the context add(100, ·) occurs only once.

fn k => fn f =>
save (fn v0 =>

fn resume0 =>
k (add (qint 100, v0)) (fn () => resume0 ()))

(fn (k0_0, k1_0) =>
cond (leq (qint 1, qint 2),

fn () => k0_0 (qint 3) (fn () => f ()),
fn () => k1_0 (qint 4) (fn () => f ())))

Two copies of continuation parameter k are bound to k0 0 and k1 0 before the
continuation is used (twice, in the body of the second lambda). In order just
to prevent code duplication, passing one “copy” of the continuation parameter
is actually enough. But the translation into C introduced in Section 3.3.2 uses
the two differently named variables, in this case k0_0 and k1_0, to determine
the IF-branch inside which a continuation is applied.

3.3.2 Generating C programs

Residual programs are not only in long beta-eta normal form. Their type

(tint → (tunit → res) → res) → (tunit → res) → res

imposes further restrictions: A residual program must take two arguments, a
success continuation k : tint → (tunit → res) → res and a failure continua-
tion f : tunit → res, and it must produce a value of type res. When we also
consider the types of the primitives that may occur in residual programs we see
that values of type res can only be a result of

3.3 Semantics-Directed Compilation 91

• applying the success continuation k to an integer n and function of type
tunit → res;

• applying the failure continuation f;

• applying cond to a boolean and two functions of type tunit → res;

• applying fix to a function of two arguments, loopn : tint → res and
in : tint, and an integer;

• (inside a function passed to fix) applying the function loopn to an integer;

• applying save to two arguments, the first being a function of two argu-
ments, vn : tint and resumen : tunit → res, and the second being a
function of a pair of arguments, k0

n and k1
n, each of type tint → (tunit →

res) → res;

• (inside the first function passed to save) applying the function resumen;
or

• (inside the second function passed to save) applying one of the functions
k0

n or k1
n to an integer and a function of type tunit → res.

A similar analysis applies to values of type tint: they can only arise from
evaluating an integer n, a variable in, or a variable vn or from applying add to
two argument of type tint. As a result, we observe that the residual programs
of specializing the Icon interpreter using type-directed partial evaluation are
restricted to the grammar in Figure 3.10. (The restriction that the variables
loopn, in, vn, and resumen each must occur inside a function that binds them
cannot be expressed using a context-free grammar. This is not a problem for our
development.) We have expressed the grammar as an ML datatype and used this
datatype to represent the output from type-directed partial evaluation. Thus,
we have essentially used the type system of ML as a theorem prover to show
the following lemma.

Lemma 3.5 The residual program generated from applying type-directed partial
evaluation to the interpreter in Figure 3.9 can be generated by the grammar in
Figure 3.10.

The idea of generating grammars for residual programs has been studied by,
e.g., Malmkjær [20] and is used in the run-time specializer Tempo to generate
code templates [6].

The simple structure of output programs allows them to be viewed as pro-
grams of a flow-chart language. We choose C as a concrete example of such a
language. Figure 3.11 and 3.12 show the translation from residual programs to
C programs.

The translation replaces function calls with jumps. Except for the call to
resumen (which only occurs as the result of compiling if-statements), the name
of a function uniquely determines the corresponding label to jump to. Jumps to

92 A Unifying Approach to Goal-Directed Evaluation

I ::= fn k => fn f => S
S ::= k E (fn () => S)

| f ()
| cond (E, fn () => S, fn () => S)
| fix (fn loopn => fn in => S) E
| loopn E

| save (fn vn => fn resumen => S) (fn (k0
n, k1

n) => S)
| resumen ()
| ki

n E (fn () => S), where i ∈ {0, 1}
E ::= qint n | in | vn | add (E, E) | leq (E, E)

Figure 3.10: Grammar of residual programs

resumen can end up in two different places corresponding to the two copies of
the continuation. We use a boolean variable gaten to distinguish between the
two possible destinations. Calls to loopn and kn pass arguments. The names
of the formal parameters are known (in and vn, respectively) and therefore
arguments are passed by assigning the variable before the jump.

In each translation of a conditional a new label l must be generated. The
entire translated term must be wrapped in a context that defines the labels succ
and fail (corresponding to the initial continuations). The statements following
the label succ are allowed to jump to resume. The translation in Figure 3.11 and
3.12 generates a C program that successively prints the produced integers one
by one. A lemma to the effect that the translation from residual ML programs
into C is semantics preserving would require giving semantics to C and to the
subset of ML presented in Figure 3.10 and then showing equivalence.

Example 3.6 Consider again the Icon term 10 + (4 to 7) from Example 3.4.
It is translated into the following C program.

i0 = 4;
loop0: if (i0 <= 7) goto L0;

goto fail;

L0: value = 10 + i0;
goto succ;

resume: i0 = i0 + 1;
goto loop0;

succ: printf("%d ", value);
goto resume;

fail: printf("\n");
exit(0);

3.3 Semantics-Directed Compilation 93

|fn k => fn f => S|I =

|S|S
succ: printf("%d ", value);

goto resume;

fail: printf("\n");

exit(0);

|k E (fn () => S)|S =

value = |E|E;
goto succ;

resume: |S|S
|f ()|S =

{
goto fail;

|cond (E, fn () => S, fn () => S′)|S =

if (|E|E) goto l;

|S′|S
l: |S|S

|fix (fn loopn => fn in => S) E|S =

{
in = |E|E;

loopn: |S|S

|loopn E|S =

{
in = |E|E;
goto loopn;∣∣∣∣save (fn vn => fn resumen => S)

(fn (k0
n, k1

n) => S′)

∣∣∣∣
S

=

{
|S′|S

succn: |S|S

|resumen ()|S =

{
if (gaten) goto resume1

n;

goto resume0
n;

|ki
n E (fn () => S)|S =

gaten = i;

vn = |E|E;
goto succn;

resumei
n: |S|S

Figure 3.11: Translating residual programs into C (Statements)

94 A Unifying Approach to Goal-Directed Evaluation

|qint n|E = n
|in|E = in

|vn|E = vn

|add (E, E′)|E = |E|E + |E′|E
|leq (E, E′)|E = |E|E <= |E′|E

Figure 3.12: Translating residual programs into C (Expressions)

The C target programs corresponds to the target programs of Proebsting’s
optimized template-based compiler [22]. In effect, we are automatically gener-
ating flow-chart programs from the denotation of an Icon term.

3.3.3 Generating byte code

In the previous two sections we have developed two compilers for Icon terms,
one that generates ML programs and one that generates flow-chart programs. In
this section we unify the two by composing the first compiler with an automatic
run-time code generation system for OCaml [25] and by composing the second
compiler with a hand-written compiler from flow charts into OCaml byte code.

Run-time code generation in OCaml

Run-time code generation for OCaml works by a deforested composition of tra-
ditional type-directed partial evaluation with a compiler into OCaml byte code.
Deforestation is a standard improvement in run-time code generation [6, 19, 26].
As such, it removes the need to manipulate the text of residual programs at spe-
cialization time. As a result, instead of generating ML terms, run-time code gen-
eration allows type-directed partial evaluation to directly generate executable
OCaml byte code.

Specializing the Icon interpreter from Figure 3.9 to the Icon term 10 + (4
to 7) using run-time code generation yields a residual program of about 110
byte-code instructions in which functions are implemented as closures and calls
are implemented as tail-calls. (Compiling the residual ML program using the
OCaml compiler yields about 90 byte-code instructions.)

Compiling flow charts into OCaml byte code

We have modified the translation in Figure 3.11 and 3.12 to produce OCaml
byte-code instructions instead of C programs. The result is an embedding of
Icon into OCaml.

Using this compiler, 10 + (4 to 7) yields 36 byte-code instructions in which
functions are implemented as labelled blocks and calls are implemented as an
assignment (if an argument is passed) followed by a jump. This style of target
code was promoted by Steele in the first compiler for Scheme [27].

3.4 Conclusions and Issues 95

3.3.4 Conclusion

Translating the continuation-based denotational semantics into an interpreter
written in ML and using type-directed partial evaluation enables a standard
semantics-directed compilation from Icon terms into ML. A further compilation
of residual programs into C yields flow-chart programs corresponding to those
produced by Proebsting’s Icon compiler [22].

3.4 Conclusions and Issues

Observing that the list monad provides the kind of backtracking embodied in
Icon, we have specified a semantics of Icon that is parameterized by this monad.
We have then considered alternative monads and proven that they also provide
a fitting semantics for Icon. Inlining the continuation monad, in particular,
yields Gudeman’s continuation semantics [13].

Using partial evaluation, we have then specialized these interpreters with
respect to Icon programs, thereby compiling these programs using the first Fu-
tamura projection. We used a combination of type-directed partial evaluation
and code generation, either to ML, to C, or to OCaml byte code. Generating
code for C, in particular, yields results similar to Proebsting’s compiler [22].

Gudeman [13] shows that a continuation semantics can also deal with addi-
tional control structures and state; we do not expect any difficulties with scaling
up the code-generation accordingly. The monad of lists, on the other hand, does
not offer enough structure to deal, e.g., with state. It should be possible, how-
ever, to create a rich enough monad by combining the list monad with other
monads such as the state monad [10, 18].

It is our observation that the traditional (in partial evaluation) generaliza-
tion of the success continuation avoids the code duplication that Proebsting
presents as problematic in his own compiler. We are also studying the results
of defunctionalizing the continuations, à la Reynolds [24], to obtain stack-based
specifications and the corresponding run-time architectures.

Acknowledgments

Thanks are due to the anonymous referees for comments and to Andrzej Filinski
for discussions.

Bibliography

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[2] Lawrence Byrd. Understanding the control of Prolog programs. Technical
Report 151, University of Edinburgh, 1980.

[3] Mats Carlsson. On implementing Prolog in functional programming. New
Generation Computing, 2(4):347–359, 1984.

[4] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[5] Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[6] Charles Consel and François Noël. A general approach for run-time spe-
cialization and its application to C. In Guy L. Steele, editor, Proceedings of
the Twenty-Third Annual ACM Symposium on Principles of Programming
Languages, pages 145–156, St. Petersburg Beach, Florida, January 1996.
ACM Press.

[7] Ron K. Cytron, editor. Proceedings of the ACM SIGPLAN’97 Confer-
ence on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 32, No 5, Las Vegas, Nevada, June 1997. ACM Press.

[8] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Tor-
ben Æ. Mogensen, and Peter Thiemann, editors, Partial Evaluation – Prac-
tice and Theory; Proceedings of the 1998 DIKU Summer School, number
1706 in Lecture Notes in Computer Science, pages 367–411, Copenhagen,
Denmark, July 1998. Springer-Verlag.

[9] Olivier Danvy and René Vestergaard. Semantics-based compiling: A case
study in type-directed partial evaluation. In Herbert Kuchen and Doaitse
Swierstra, editors, Eighth International Symposium on Programming Lan-
guage Implementation and Logic Programming, number 1140 in Lecture

96

BIBLIOGRAPHY 97

Notes in Computer Science, pages 182–197, Aachen, Germany, September
1996. Springer-Verlag. Extended version available as the technical report
BRICS-RS-96-13.

[10] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles
of Programming Languages, pages 175–188, San Antonio, Texas, January
1999. ACM Press.

[11] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Lan-
guage. Prentice Hall, Inc., 1983.

[12] Ralph E. Griswold and Madge T. Griswold. The Implementation of the
Icon Programming Language. Princeton University Press, 1986.

[13] David A. Gudeman. Denotational semantics of a goal-directed language.
ACM Transactions on Programming Languages and Systems, 1992.

[14] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control
in the presence of first-class continuations. In Bernard Lang, editor, Pro-
ceedings of the ACM SIGPLAN’90 Conference on Programming Languages
Design and Implementation, SIGPLAN Notices, Vol. 25, No 6, pages 66–77,
White Plains, New York, June 1990. ACM Press.

[15] Ralf Hinze. Prological features in a functional setting—axioms and
implementations. In Masahiko Sato and Yoshihito Toyama, editors,
Third Fuji International Symposium on Functional and Logic Programming
(FLOPS’98), pages 98–122, Kyoto, Japan, April 1998. World Scientific.

[16] John Hughes. A novel representation of lists and its application to the
function “reverse”. Information Processing Letters, 22(3):141–144, 1986.

[17] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. Prentice-Hall International, 1993.
Available online at http://www.dina.kvl.dk/~sestoft/pebook/pebook.
html.

[18] David J. King and Philip Wadler. Combining Monads. In John Launch-
bury and Patrick M. Sansom, editors, Glasgow Workshop on Functional
Programming, Workshops in Computing, Ayr, Scotland, 1992. Springer,
Berlin.

[19] Mark Leone and Peter Lee. Optimizing ML with run-time code generation.
In Proceedings of the ACM SIGPLAN’96 Conference on Programming Lan-
guages Design and Implementation, SIGPLAN Notices, Vol. 31, No 5, pages
137–148. ACM Press, May 1996.

[20] Karoline Malmkjær. Abstract Interpretation of Partial-Evaluation Algo-
rithms. PhD thesis, Department of Computing and Information Sciences,
Kansas State University, Manhattan, Kansas, March 1993.

98 BIBLIOGRAPHY

[21] Eugenio Moggi. Computational lambda-calculus and monads. In Proceed-
ings of the Fourth Annual IEEE Symposium on Logic in Computer Science,
pages 14–23, Pacific Grove, California, June 1989. IEEE Computer Society
Press.

[22] Todd A. Proebsting. Simple translation of goal-directed evaluation. In
Cytron [7], pages 1–6.

[23] Todd A. Proebsting and Gregg M. Townsend. A new implementation of the
Icon language. Technical Report 99-13, University of Arizona, Department
of Computer Science, 1999.

[24] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972).

[25] Morten Rhiger. PhD thesis, BRICS PhD School, University of Aarhus,
Aarhus, Denmark, 2001. Forthcoming.

[26] Michael Sperber and Peter Thiemann. Two for the price of one: composing
partial evaluation and compilation. In Cytron [7], pages 215–225.

[27] Guy L. Steele Jr. Compiler optimization based on viewing LAMBDA as
RENAME + GOTO. In Patrick Henry Winston and Richard Henry Brown,
editors, Artificial Intelligence: An MIT Perspective, volume 2. The MIT
Press, 1979.

[28] Philip Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 2(4):461–493, December 1992.

[29] Philip Wadler. Monads for functional programming. In Johan Jeuring and
Erik Meijer, editors, Advanced Functional Programming, number 925 in
Lecture Notes in Computer Science, pages 24–52. Springer-Verlag, 1995.

[30] Richard S. Wallace. An easy implementation of pil (PROLOG in LISP).
Association for Computing Machinery Special Interest Group on Artificial
Intelligence. SIGART NEWSL., (85):29–32, July 1983.

Chapter 4

Partial Evaluation of
Pattern Matching in
Strings, revisited

Abstract

Specialization of a string matcher is a canonical example of partial
evaluation. A naive implementation of a string matcher repeatedly
matches a pattern against every substring of the data string; this
operation should intuitively benefit from specializing the matcher
with respect to the pattern. In practice, however, producing an ef-
ficient implementation by performing this specialization using stan-
dard partial-evaluation techniques requires non-trivial binding-time
improvements. Starting with a naive matcher, we thus present a
derivation of such a binding-time improved string matcher. We show
that specialization with respect to a pattern yields a matcher with
code size linear in the length of the pattern and a running time
independent of the length of the pattern and linear in the length
of the data string. We then consider several variants of matchers
that specialize well, amongst them the first such matcher presented
in the literature, and we demonstrate how variants can be derived
from each other systematically.

4.1 Introduction

The Knuth-Morris-Pratt string-matching algorithm (KMP) [19] tests whether
a pattern string p occurs in a data string d in time O(|p| + |d|). The algorithm
calculates a failure table from the pattern in time O(|p|); using this failure table,
the data string can be traversed without backtracking. Although the KMP can

99

100 PE of Pattern Matching

be written in a few lines, it proves surprisingly difficult to comprehend. This
property has made it a fruitful topic in the area of program transformation,
from Knuth’s original derivation onwards.

Partial evaluation is an automatic program transformation that specializes
a program with respect to partial information about the input. Because a
string matcher conceptually matches a single pattern against every possible
starting position in the data string, string matching seems like a compelling
target for partial evaluation. In effect, partial evaluation with respect to the
pattern should have an effect comparable to calculating a failure table. Indeed,
this “KMP-test” has become a popular benchmark for partial evaluators and
related systems [28]. The systems that pass the KMP test have the ability
to infer information about the (unknown) data string based on the form of
enclosing conditional tests [8, 27, 28]. Such capability, however, goes beyond
standard partial evaluation.

Another approach is to rewrite a naive string matcher to make it more
amenable to standard partial evaluation by augmenting the implementation
with static data that records the results of tests on the dynamic data: A stan-
dard partial evaluator, such as Mix [15], Schism [6] or Similix [5], can generate
an efficient implementation from such a modified version. This insight, which
inspired further investigations into the applicability of program-specialization
systems to the string-matching problem, is due to Consel and Danvy [7]. Mod-
ifications to the source program to improve the result of partial evaluation
are common in practical applications of partial evaluation, and are known as
binding-time improvements [14, Chapter 12]. But, because in previous applica-
tions of this technique to string matching the naive matcher is modified in a
single step [2, 7, 14, 28], it is neither obvious that the modifications preserve
semantics, nor clear how such binding-time improvements can be achieved in a
systematic way.

In this paper we present a stepwise derivation of a matcher; (1) we modify
the naive matcher such that useful information is recorded, and (2) we ap-
ply standard binding-time improvements so as to increase the amount of static
computation. In this derivation, only the first step is problem specific; we
hope that this division illuminates how the approach can be applied to other
pattern-matching problems and implementations. We prove that specializing
our matcher with respect to a pattern string yields a residual program that has
size linear in the length of the pattern and a pattern-independent running time
linear in the length of the data string. Our first implementation only records
the information that can be derived from the truth of enclosing conditional tests
(positive information). The result of partial evaluation of this implementation
runs in time linear in the length of the data string (independent of the pattern),
but may perform some redundant tests. Therefore we modify the implemen-
tation to record information that can be derived from the falsity of enclosing
conditional tests (negative information); the result of applying partial evalua-
tion to this implementation never compares a character of the data string to the
same pattern character more than once. Finally, we analyze how two published
matchers (namely those of Consel and Danvy [7] and of Jones, Gomard, and

4.2 Partial evaluation 101

Sestoft [14]) can be derived from our matcher. In doing so, we explore a number
of variations that specialize well with partial evaluators such as Similix.

The paper is structured as follows: Section 4.2 gives a short overview of
the concepts of partial evaluation essential for this paper. In Section 4.3, a
straightforward implementation of a string matcher is presented. Section 4.4
describes a derivation of a string matcher that records positive information, and
proves that specializing this matcher yields a residual program of size linear in
the length of the pattern and with a pattern-independent running time linear
in the size of the data string. Section 4.5 does the same for a matcher that also
records negative information, and shows that no redundant tests are performed
by the specialized matcher. Section 4.6 discusses possible variations in the design
of string matchers amenable for specialization, and shows how the matchers of
Consel and Danvy and of Jones et al. can be derived from our implementation.
Section 4.7 treats related work and Section 4.8 concludes.

4.2 Partial evaluation

Partial evaluation is an automatic program transformation that uses inter-
procedural constant propagation to specialize a program with respect to known
parts of its input, the so-called static input. Running the specialized program
on the remaining input (called the dynamic input) must yield the same result
as running the original program on the complete input. Here we only describe
the concepts of partial evaluation that are essential for this paper—a thorough
account of partial evaluation can be found in the textbook of Jones et al. [14].

In this paper, we use offline partial evaluation. In offline partial evaluation,
the process of partial evaluation is staged into (1) a binding-time analysis (BTA)
and (2) the specialization of a program annotated with binding-time informa-
tion. Binding-time analysis classifies as static the expressions that depend only
on the static input; such expressions are evaluated during specialization. Ex-
pressions that also depend on the dynamic input are classified as dynamic, and
are reconstructed to form the specialized program. The goal of a binding-time
improvement is to rearrange the code so that more terms are classified as static.

In this paper, we use the Similix [5] partial evaluator for Scheme. Similix
has the following notable features:

• Monovariant BTA: A monovariant BTA annotates each program construct
with exactly one binding time.

• Memoization of specialized code: A memoizing specializer associates with
each block of specialized code the set of static values with respect to
which the code has been specialized. When the original code is to be
specialized again with respect to the same static values, the specializer
simply generates a function call or jump to the previously generated code.
Similix considers a conditional expression with a dynamic test to be such
a block of code, and these memoization points are identified during the

102 PE of Pattern Matching

BTA. Other degrees of granularity are possible. Residual code originating
from a memoization point is called a variant of this memoization point.

Even though the programs in this paper are presented in Scheme [18] (de-
scribed briefly in Appendix 4.A), no Scheme-specific features are used; we expect
the results to carry over directly to other functional languages and memoizing
offline partial evaluators with a standard monovariant BTA.

4.3 Straightforward implementation of a string
matcher

A pattern string p appears in a data string d if p is the prefix of some suffix
of d. Thus, a straightforward algorithm to match a pattern p against a data
string d is to proceed as follows: compare p against the prefix of d; if the match
fails, restart, by trying to match against the tail of d. Figure 4.1 shows a
direct implementation of this algorithm, where a string is represented as a list
of symbols: procedure main takes a pattern p and a data string d; it calls the
procedure match, passing p and d also to additional parameters pp and dd. The
match of the prefix is performed by traversing p and d; pp and dd are used to
restart the matching process on the original pattern and the tail of the current
data string in the case of a mismatch.

The straightforward implementation has a running time of O(|p| · |d|). A
worst-case example is matching ’(a a b) against ’(a a a a a a b): The
complete pattern is repeatedly matched against the data string. Figure 4.2
shows the result of specializing the straightforward algorithm with respect to
’(a a b):1 Similix simply unfolds the static recursion on p and no noteworthy
efficiency gain is achieved.

The source of the factor of |p| in the complexity of the implementation of
Figure 4.1 is the fact that this implementation loses information about the
prefix of the data string with every restart: if k characters of the pattern have
been successfully matched against the data string, and a restart occurs, then
the first k − 1 characters of the data string on which the matcher is restarted
are already known. This kind of information is called positive information,
because it originates from successful equality tests (the third conditional branch
in Figure 4.1).

4.4 Pattern matching with positive information

Our derivation begins with the straightforward implementation of a matcher
from Figure 4.1. We rewrite this implementation by exploiting information that
can be deduced from the truth of dynamic conditional tests (positive informa-
tion). Specialization of the resulting program with respect to a pattern of length

1In order to improve readability, in the output of Similix we have substituted more intuitive
function names and changed local to global definitions.

4.4 Pattern matching with positive information 103

(define (main p d)

(match p d p d))

(define (match p d pp dd)

(cond

[(null? p) ’accept] ; matched the complete pattern
[(null? d) ’reject] ; reached end of text without complete match
[(equal? (car p) (car d)) ; continue matching (cdr p) against (cdr d)

(match (cdr p) (cdr d) pp dd)]

[else ; restart, matching pp against (cdr dd)

(match pp (cdr dd) pp (cdr dd))]))

Figure 4.1: A straightforward implementation of a string matcher

(define (main-0 d_0) (matchaab d_0 d_0))

(define (matchaab d_1 dd_0)

(cond

[(null? d_1) ’reject]

[(equal? ’a (car d_1)) (matchab (cdr d_1) dd_0)]

[else (matchaab (cdr dd_0) (cdr dd_0))]))

(define (matchab d_1 dd_0)

(cond

[(null? d_1) ’reject]

[(equal? ’a (car d_1)) (matchb (cdr d_1) dd_0)]

[else (matchaab (cdr dd_0) (cdr dd_0))]))

(define (matchb d_1 dd_0)

(cond

[(null? d_1) ’reject]

[(equal? ’b (car d_1)) ’accept]

[else (matchaab (cdr dd_0) (cdr dd_0))]))

Figure 4.2: The straightforward implementation, specialized to ’(a a b). A
call (matchx d dd) corresponds to (match x d ’(a a b) dd).

n produces a specialized program that consists of n comparisons and null-tests,
and that performs at most 2m comparisons and at most 2m+1 null-tests when
applied to a string of length m.

4.4.1 Implementation

As pointed out in Section 4.3, the naive matcher loses information with every
restart: if a restart occurs after k characters have been successfully matched,

104 PE of Pattern Matching

then the first k−1 characters of the data string on which the matcher is restarted
are already known (see Figure 4.3a). Instead of backtracking on the data string
by “shifting” the pattern one position and matching it against the data string
(Figure 4.3b), a matcher that collects the positive information can initially com-
pare the pattern against the positive information (Figure 4.3c). While this
modification does not improve the performance of the source program, it does
improve the performance of the specialized program; because positive informa-
tion is only dependent upon the pattern, partial evaluation can precompute the
result of comparisons with this information.

a) a a a b

a a a a a a ba

mismatch
Pattern string

Data string

b)

a a a a a a ba

a a ba

Data string

Pattern string

c) a a ba

a a a

a a a a b

Pattern string

Data string

Positive info.

Figure 4.3: The role of positive information. a) A mismatch occurs. To the
left of the mismatch, pattern string and data string are equal (positive infor-
mation). b) Restart of the straightforward matcher. The pattern string is
shifted one position to the right and matching resumes by comparing the pat-
tern string with the data string. c) Restart of a matcher that specializes well.
Positive information has been collected, and matching resumes by comparing
the pattern string against it.

The straightforward matcher can be transformed into a matcher behaving
as outlined above as follows:

1. We transform the implementation to make positive information explicit.

2. Static positive information is still lost because it is mixed with dynamic
data. We remedy this by separating the affected static and dynamic values.

3. We reorder the algorithm such that decisions that depend only on static
data are always made before examining dynamic data.

4.4 Pattern matching with positive information 105

Step 1 is problem specific, while steps 2 and 3 amount to well-known binding-
time improvements.

Making positive information explicit Figure 4.4 shows an implementation
of the string matcher in which the arguments pp and dd have been replaced
by the single argument pi (“positive information”). As shown in the third
“cond” line, the argument pi records the characters that have been successfully
matched. At all times, the original pattern is the value of (append pi p), while
the current position in the data is the value of (append pi d). These invariants
are used to rewrite the fourth “cond” line, which restarts the matching process
on failure.

(define (main p d)

(match p d ’()))

(define (match p d pi)

(cond

[(null? p) ’accept]

[(null? d) ’reject]

[(equal? (car p) (car d))

(match (cdr p) (cdr d) (append pi (list (car p))))]

[else (match (append pi p) (cdr (append pi d)) ’())]))

Figure 4.4: The string matcher with explicit positive information

While the identification and introduction of positive information is somewhat
subtle, the use of such information appears to be critical to deriving efficient
implementations of pattern matchers. The use of partial evaluation enables
this information to be introduced while retaining a concise and monolithic im-
plementation. While the second and third steps below somewhat compromise
the conciseness of the implementation, they could, in principle, be carried out
by an automatic (but user-guided) tool performing a collection of binding-time
improvements.

Separating static and dynamic values The static positive information col-
lected in pi does not survive a restart: pi is bound to ’() and the concatenation
of the positive information pi with the dynamic data string d produces a dy-
namic value. Our next step is a binding-time improvement to separate (append
pi d). This transformation is a variation of the technique of structure splitting
that has been used to implement partially-static tuples [23]; here we modify this
standard approach in order to represent a partially-static list. Essentially, we (1)
replace d with an abstract data type that maintains the list as two components,
with operations null?, car, cdr and append, and (2) inline the operations on
this data type.

106 PE of Pattern Matching

Concretely, we divide the dynamic parameter d into two parameters s d
(“static d”) and d d (“dynamic d”); the former corresponds to the pi portion of
(cdr (append pi d)) and the latter corresponds to the d portion of this value.
The parameters s d and d d now represent the prefix and suffix of a single list,
so we must rewrite each operation on the data string accordingly. We illustrate
the transformation using the third “cond” line:

[(equal? (car p) (car d))

(match (cdr p) (cdr d) (append pi (list (car p))))]

In this case, the car and cdr operations on d are each replaced by either an
operation on d d or on s d, according to whether the prefix s d is empty or not:

[(equal? (car p) (if (null? s_d) (car d_d) (car s_d)))

(match (cdr p) (if (null? s_d) s_d (cdr s_d)) ; argument s d

(if (null? s_d) (cdr d_d) d_d) ; argument d d

(append pi (list (car p))))]

Because s d is static, the redundant null? tests are eliminated by partial eval-
uation.

Reordering control-flow decisions The previous transformation replaces
a comparison between the head of the static pattern and the head of the dy-
namic data string with a comparison between the head of the static pattern
and the result of a conditional expression. The conditional statically selects
either the head of the static or the dynamic portion of the new representation
of the data string. Because the result of this conditional expression is either
static or dynamic, the binding-time analysis considers the result to be dynamic.
Accordingly, the outer equality test becomes dynamic as well, even though it
may be possible to determine its value based on the value of static subexpres-
sions alone. To improve the binding times, we propagate the context of the
conditional into its branches, as can be performed by continuation-passing-style
specialization [4, 21]. The result is shown in Figure 4.5. Some static expressions
involving s d have been simplified by hand for readability; these simplifications
could as well be carried out during specialization.

Compared with the matcher with explicit positive information (Figure 4.4),
the code in Figure 4.5 looks rather complicated. Nevertheless, one should keep
in mind that the transition from Figure 4.4 to Figure 4.5 is purely mechanical.

Specializing the string matcher from Figure 4.5 with respect to the pattern
’(a a b) produces the residual program displayed in Figure 4.6. Now, when
matching fails, the specialized program restarts the matching on either the cur-
rent string or the tail of the current string, never backing up as done by the
original implementation (cf. Figure 4.2).

Correctness Let mainpos and matchpos be the functions defined in the orig-
inal implementation (Figure 4.1) and mainorig and matchorig be the functions
defined in the derived implementation using positive information (Figure 4.5).

4.4 Pattern matching with positive information 107

(define (main p d)

(match p ’() d ’()))

(define (match p s_d d_d pi)

(cond

[(null? p) ’accept]

[(null? s_d) ; no positive information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() (cdr d_d) ’())]

[else (match (append pi p) (cdr pi) d_d ’())])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) d_d (append pi (list (car p))))]

[else (match (append pi p) (cdr (append pi s_d)) d_d ’())])]))

Figure 4.5: The string matcher, ready for specialization

(define (main-0 d_0) (match|aab d_0))

(define (match|aab d_d_0)

(cond

[(null? d_d_0) ’reject]

[(equal? ’a (car d_d_0)) (matcha|ab (cdr d_d_0))]

[else (match|aab (cdr d_d_0))]))

(define (matcha|ab d_d_0)

(cond

[(null? d_d_0) ’reject]

[(equal? ’a (car d_d_0)) (matchaa|b (cdr d_d_0))]

[else (match|aab d_d_0)]))

(define (matchaa|b d_d_0)

(cond

[(null? d_d_0) ’reject]

[(equal? ’b (car d_d_0)) ’accept]

[else (matcha|ab d_d_0)]))

Figure 4.6: The string matcher, specialized to ’(a a b). A call (matchx|y
d d) corresponds to (match y ’() d d x).

We can then show by well-founded induction based on the lexicographic or-
dering 〈|d d|, |(append pi s d)|, |p|〉 that for all p, s d, d d and pi, evaluating

108 PE of Pattern Matching

(matchorig p d (append pi p) (append pi d)) (where d stands for the con-
catenation of s d and d d) and evaluating (matchpos p s d d d pi) yields the
same result (a formal proof is given in Appendix 4.B). It then follows directly
that mainpos and mainorig are equivalent.

4.4.2 Complexity of the specialized code

We analyze the size and the running time of the specialized program. In both
cases, it is helpful to distinguish the code that is residualized from the code that
is evaluated during specialization. We thus refer to the result of the binding-
time analysis by Similix, illustrated in Figure 4.7. The parameters of each
function are annotated with their binding times. Basic function calls that are
reconstructed during specialization are underlined; user-defined functions are
always unfolded. Static expressions whose results have to be residualized are
enclosed by underlined parenthesis. A comment marks a memoization point
inserted by Similix.

(define (main ps dd)

(match p ’() d ’()))

(define (match ps s_ds d_dd pis)

(cond

[(null? p) ’accept]

[(null? s_d)

(cond ; memoization point
[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() (cdr d_d) (append pi (list (car p))))]

[else

(cond

[(null? pi) (match p ’() (cdr d_d) ’())]

[else (match (append pi p) (cdr pi) d_d ’())])])]

[else

(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) d_d (append pi (list (car p))))]

[else (match (append pi p) (cdr (append pi s_d)) d_d ’())])]))

Figure 4.7: The annotated string matcher

It is easy to see that the size of the residual code is governed by the number
of residualized conditionals; we therefore make the number of residualized null
tests and comparisons (which directly corresponds to the number of residualized
conditionals) our measure for the size of the residualized code. We measure
complexity in terms of the length of input, assuming a finite alphabet of a given
fixed size.

4.4 Pattern matching with positive information 109

Size

The following theorem relates the size of the specialized code to the size of the
pattern:

Theorem 4.1 Specializing the implementation in Figure 4.5 with respect to a
pattern of length n yields a residual program of size linear in n. More precisely,
exactly n comparisons and null tests on the dynamic data are generated.

For the proof of Theorem 4.1 we need the following lemma, which is proved
straightforwardly by induction on the number of calls to match:

Lemma 4.2 In the evaluation of (main p0 d0) (as defined in Figure 4.5), for
any k ≥ 1, in the kth call to match, the concatenation of argument pi with
argument p is equal to p0.

We now turn to the proof of Theorem 4.1.

Proof: In match, there is only one occurrence of a null? test and one occur-
rence of an equal? test that are reconstructed during specialization (as shown
by the underlined constructs in Figure 4.7). Both are in the scope of the mem-
oization point in match. Thus, the number of residual tests depends on the
number of variants generated.

Analyzing the guards of the outer cond-expression in the definition of match
in Figure 4.7 shows that the memoization point is reached only if s d = ’().
Hence the number of possible configurations of the static data at the memo-
ization point is governed by the contents of p and pi. Lemma 4.2 implies that
there are at most n + 1 such configurations. All of them are indeed reached
during partial evaluation; however only n of them will be encountered at the
memoization point, because with p = ’(), it cannot be reached. 2

Execution time

We measure the execution time in terms of the number of equality and null tests
performed by the algorithm:

Theorem 4.3 Let main res be the code generated by specializing (main p d)
with respect to p. Let te be the number of equality tests and tn be the number
of null tests performed when applying main res to any d. Then te ≤ 2|d| and
tn ≤ te + 1.

Theorem 4.3 follows directly from the following lemma:

Lemma 4.4 Let match res be the code generated by specializing (match p s d
d d pi) with respect to p, s d and pi. Let te be the number of equality tests
and tn the number of null tests performed by applying match res to any d d.
Then, te ≤ 2|d d| + |s d| + |pi| and tn ≤ te + 1.

110 PE of Pattern Matching

Proof: The equality and null tests performed by match res are the same as
the equality and null tests that are performed by (match p s d d d pi) and
that are marked as irreducible (underlined in Figure 4.7) by the binding-time
analysis. Hence we can establish the bounds te and tn by analyzing the number
of such tests performed during the evaluation of (match p s d d d pi). The
proof is by well-founded induction over the evaluation of (match p s d d d pi)
based on the lexicographic ordering 〈|d d|, |(append pi s d)|, |p|〉. 2

4.5 Pattern matching with both positive and

negative information

Even though the result of partially evaluating the string matcher from Figure 4.5
has a pattern-independent running time linear in the size of the data string, its
behavior is not optimal; it may repeatedly compare a character of the data
string with the same character. This behavior is illustrated by the specialized
code in Figure 4.6. In matcha|ab, if the first character of the data string is not
‘a’, match|aab is called, which again compares the first character of the data
string to ‘a’.

Redundant comparisons can be avoided by using negative information, i.e.,
information about which comparisons have already failed for the current first
character of d d. We use techniques similar to those presented in Section 4.4.1,
now to exploit negative information such that the specialized code does not
perform redundant comparisons.

4.5.1 Implementation

We transform the algorithm from Figure 4.5 in three steps. First, we add neg-
ative information. Then, we use the negative information to avoid dynamic
operations when their result can be deduced statically from the negative infor-
mation. As before, this change only improves the result of specialization after
we reorganize conditionals to improve the binding times.

Making negative information explicit We introduce an additional argu-
ment ni that contains negative information. Whenever a mismatch between a
character c from the pattern and the head of the dynamic data d d occurs, c is
added to ni. Whenever the first character of d d is thrown away, the informa-
tion collected in ni is outdated and therefore ni is set to ’(). Figure 4.8 shows
the modified parts of the implementation—the changes have been underlined.

Using negative information The following invariant can be shown by in-
duction on the number of calls to match:

4.5 Pattern matching with both positive and negative information111

(define (main p d)

(match p ’() ni d ’()))

(define (match p s_d ni d_d pi)

(cond

[(null? p) ...]

[(null? s_d) ; no positive information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() ’() (cdr d_d) ’())]

[else

(match (append pi p) (cdr pi) (cons (car p) ni) d_d ’())])]

[else ...])) ; positive information available

Figure 4.8: Excerpts of a string matcher that maintains negative information
(underlined code computes negative information)

Lemma 4.5 In the evaluation of (main p0 d0) (as defined in Figure 4.8), for
any k ≥ 1, in the kth call to match, ni 6= ’() implies that d d 6= ’() and
(car d d) 6∈ ni.

Using this invariant, we transform the code of Figure 4.8 to only perform
null tests on d d and comparisons with (car d d) when their outcome cannot
be determined from the negative information. Specifically, the test (null? d d)
becomes (and (null? ni) (null? d d)) (if there is negative information, d d
is guaranteed to be nonempty), and the test

(equal? (car p) (car d_d))

becomes

(and (not (member (car p) ni)) (equal? (car p) (car d_d)))

(any character contained in the negative information cannot appear as the head
of d d).

Reordering control-flow decisions The previous transformation creates
“and” expressions where the first argument is static and the second argument
is dynamic. By the semantics of “and”, it may be possible to determine the
value of such an expression based on the value of the first (static) expression
alone. Thus, we improve the binding times by separating these tests; the result
is shown in Figure 4.9.

Correctness Correctness can be shown as for the implementation using only
positive information. Here, the relationship between the original and opti-
mized versions of match only holds under the condition that ni 6= ’() implies

112 PE of Pattern Matching

(define (main p d)

(match p ’() ’() d ’()))

(define (match p s_d ni d_d pi)

(cond

[(null? p) ’accept]

[(and (null? s_d) (null? ni)) ; no static information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() ’() (cdr d_d) ’())]

[else (match (append pi p) (cdr pi) (list (car p)) d_d ’())])]

[(null? s_d) ; negative information available
(cond

[(member (car p) ni)

(if (null? pi)

(match p ’() ’() (cdr d_d) ’())

(match (append pi p) (cdr pi) ni d_d ’()))]

[(equal? (car p) (car d_d))

(match (cdr p) ’() ’() (cdr d_d) (append pi (list (car p))))]

[(null? pi) (match p ’() ’() (cdr d_d) ’())]

[else

(match (append pi p) (cdr pi) (cons (car p) ni) d_d ’())])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) ni d_d (append pi (list (car p))))]

[else

(match (append pi p) (cdr (append pi s_d)) ni d_d ’())])]))

Figure 4.9: A string matcher that uses both positive and negative information,
ready for specialization

d d 6= ’() and (car d d) 6∈ ni (a formal proof is given in Appendix 4.C). By
straightforward induction over the number of recursive calls, we can further
show that the optimized matcher performs no redundant equality tests: the ar-
gument ni always contains all the characters that (car d d) has been matched
against in the previous calls, and matches against (car d d) occur only for
characters not in ni.

4.5.2 Complexity of the specialized code

Again, we analyze the size of the specialized program and its running time.
Using the same techniques as in Section 4.4.2, we show the following results
about the size and execution time of the specialized code:

4.6 Variants 113

Theorem 4.6 (Size) Specializing the algorithm from Figure 4.9 with respect to
a pattern of length n containing c distinct characters yields a residual program
with at most n null tests and n · c equality tests.

Theorem 4.7 (Execution time) Let mainneg res be the result of specializing
(mainneg p d) with respect to p, and mainpos res be the result of specializing
(mainpos p d) with respect to p. When applying mainneg res to d, the following
holds:

1. At most as many equality and null tests are performed as when applying
mainpos res to d.

2. At most |d| + 1 null tests are performed.

The actual proofs are deferred to Appendix 4.D.

4.6 Variants

So far, we have derived two implementations of the naive KMP algorithm that
specialize well using standard partial-evaluation techniques. Previously, other
implementations have been proposed that have similar properties [2, 7, 14, 28].
In this section, we explore the relationship between our implementation and the
variants proposed by Consel and Danvy [7] and by Jones et al. [14], as well as
other possible variants.

4.6.1 Linguistic variants

Our implementation can be characterized as using a single loop expressed as a
recursive equation, in which all of the arguments are disjoint, all of the recursive
calls are in tail position, the positive information is accumulated and maintained
in an auxiliary list, and (optionally) a set of negative information is maintained.
This characterization suggests that alternative implementations can be derived
by varying the following characteristics:

• Disjoint parameters vs. overlapping parameters (this point is rather tech-
nical, but is explained in Section 4.6.2 below).

• A single loop processing both the dynamic data string and the static
positive information vs. one loop processing the dynamic data string and
another processing the static positive information.

• Tail recursion vs. non-tail recursive calls.

• Accumulating positive information vs. reconstructing it where needed.

• Maintaining the positive information using a list vs. maintaining the pos-
itive information as an offset into the pattern.

• Recording 0, 1, or a set of characters of negative information.

• Recursive equations vs. block structure.

114 PE of Pattern Matching

4.6.2 Overlapping parameters

We first consider the implementation of Jones et al. While this implementation
postdates the implementation of Consel and Danvy, it can be derived from our
implementation more simply, by adding extra, overlapping parameters.

In our implementation, the parameters pi and p maintain disjoint partitions
of the pattern, while pi and s d maintain disjoint partitions of the positive
information. This approach implies that to access the complete pattern, we
must append pi and p, and to access the complete positive information, we
must append pi and s d. An alternative is to maintain the values (append pi
p) and (append pi s d) as extra parameters pat (for pattern) and pos (for
positive information). The values of these parameters overlap, because both
contain the value of pi. Their presence makes pi redundant: every remaining
occurrence either is used to rebind the parameter pi or can be replaced by
pos, because s d is known to be empty. Figure 4.10 shows the result of adding
parameters pat and pos, and removing parameter pi.

(define (main p d)

(match p ’() d p ’()))

(define (match p s_d d_d pat pos)

(cond

[(null? p) ’accept]

[(null? s_d) ; no positive information available
(cond

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match (cdr p) ’() (cdr d_d) pat (append pos (list (car p))))]

[(null? pos) (match p ’() (cdr d_d) pat ’())]

[else (match pat (cdr pos) d_d pat (cdr pos))])]

[else ; positive information available
(cond

[(equal? (car p) (car s_d))

(match (cdr p) (cdr s_d) d_d pat pos)]

[else (match pat (cdr pos) d_d pat (cdr pos))])]))

Figure 4.10: Arguments pat and pos are added, argument pi is eliminated

Because this implementation maintains static information in a form isomor-
phic to the use of static information in our implementation, the specialized code
is unchanged. Jones et al. also present a version using negative information,
which can be derived using the same techniques as presented in Section 4.5.1.

4.6.3 Towards Consel and Danvy’s implementation

The implementation proposed by Consel and Danvy can be derived from ours
by adding most of the identified linguistic variations, i.e, overlapping parame-

4.6 Variants 115

ters, two loops, non-tail recursion, reconstructing indices and one character of
negative information. We describe each step in one possible derivation path, be-
ginning with the implementation of Jones et al., which already uses overlapping
parameters.

Two loops and non-tail recursion

In the variants we have explored so far, there is a single loop, matching the
pattern to either the static positive information or the dynamic data string.
Nevertheless, the computation performed and the binding-time properties of
these two cases are quite distinct, and the emptiness of s d is essentially used as
a flag to distinguish between the two. Thus, it can be illuminating to manually
separate the implementation into specific functions match d and match s that
address each case.

Because Similix inserts memoization points only at dynamic conditionals,
this transformation is merely cosmetic if Similix is used. Another strategy is to
add a memoization point at the top of any function that contains a dynamic
conditional. Following this strategy, in the monolithic implementation, every
call to match would be a memoization point, introducing a chain of trivial
function calls. Splitting the implementation, producing the completely static
match s function, avoids this problem.

Intuitively, match s corresponds to the failure table used in the standard
KMP algorithm. This intuition can be made more obvious by slightly modify-
ing the code such that match d calls match s non–tail-recursively and match s
returns a result instead of calling match d. The result of carrying out these
transformations on the variant with overlapping parameters is shown in Figure
4.11.

Reconstructing positive information and using indices

All variants so far accumulate positive information by appending characters to
additional arguments such as pos. It is easy to show that (append pos p) is
equal to pat for every call to match d in Figure 4.11; therefore, whenever pos
is needed, it can be reconstructed by collecting the first |pat| − |p| characters
of pat. Further, instead of explicitly constructing the positive information by
copying a prefix of the pattern pat, one can use pat as it is, using an additional
parameter to keep track of the length of the prefix that corresponds to the
positive information.

Consel and Danvy’s implementation

Consel and Danvy [7] present an implementation of a string matcher that (1)
avoids redundant null tests on d d, and (2) uses negative information in a special
case.

Avoiding redundant null-tests In Figure 4.11, recursive calls of the dy-
namic loop match d to itself with an unchanged parameter d d lead to

116 PE of Pattern Matching

(define (main p d)

(match_d p d p ’()))

(define (match_d p d_d pat pos) ; no positive information is available
(cond

[(null? p) ’accept]

[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match_d (cdr p) (cdr d_d) pat (append pos (list (car p))))]

[(null? pos) (match_d p (cdr d_d) pat ’())]

[else

(let ([p-pos (match_s pat (cdr pos) pat (cdr pos))])

(match_d (car p-pos) d_d pat (cadr p-pos)))]))

(define (match_s p s_d pat pos) ; positive information might be available
(cond

[(null? s_d) (list p pos)]

[(equal? (car p) (car s_d)) (match_s (cdr p) (cdr s_d) pat pos)]

[else (match_s pat (cdr pos) pat (cdr pos))])]))

Figure 4.11: match is split and non-tail recursion is added

a redundant null-test: we know d d to be nonempty. By moving null-tests
on d d and p to additional entry-points for the dynamic loop and choosing
the appropriate entry-point according to what is known about d d and p,
we avoid such tests.

A special case of using negative information In Figure 4.11, when call-
ing match s from match d, it has already been determined that (car p)
is different from (car d d). Thus, if the first character of the pattern part
returned by match s is equal to (car p), the comparison with (car d d)
performed by the recursive call to match d is guaranteed to fail. Instead
of calling match d, we therefore can attempt to restart the matching pro-
cess on (cdr d d). However, there is no convenient way to restart the
matching process except in the case where the complete pattern needs
to be matched against (cdr d d). For this special case, restarting the
matching on (cdr d d) is straightforward.

Figure 4.12 displays the result of modifying the code from Figure 4.11 as
described above (also, positive information is reconstructed and indices are used,
as described in Section 4.6.3). The code is very similar to Consel and Danvy’s
implementation. They, however, additionally split match d into two functions,
distinguishing whether positive information has been accumulated (i.e., p 6=
pat) or not. The transformation does not affect the result of specialization and
we therefore omit it.

4.6 Variants 117

(define (main p d) ; p and d might be empty
(cond [(null? p) ’accept]

[else (match_d_orig_p p d)]))

(define (match_d_orig_p p d) ; only d might be empty
(cond [(null? d) ’reject]

[else (match_d p d p)]))

(define (match_d p d_d pat) ; neither p and d might be empty
(cond

[(equal? (car p) (car d_d))

(cond [(null? (cdr p)) ’accept]

[(null? (cdr d_d)) ’reject]

[else (match_d (cdr p) (cdr d_d) pat)])]

[(equal? p pat) (match_d_orig_p p (cdr d_d))]

[else

(let* ([pos_len (- (length pat) (length p))]

[np (match_s pat (cdr pat) (- pos_len 1)

pat (cdr pat) (- pos_len 1))])

(if (and (equal? np pat) (equal? (car np) (car p)))

(match_d_orig_p p (cdr d_d))

(match_d np d_d pat)))]))

(define (match_s p s_d s_d_len pat pos pos_len)

(cond

[(= s_d_len 0) p]

[(equal? (car p) (car s_d))

(match_s (cdr p) (cdr s_d) (- s_d_len 1) pat pos pos_len)]

[else

(match_s pat (cdr pos) (- pos_len 1)

pat (cdr pos) (- pos_len 1))]))

Figure 4.12: Redundant null tests are avoided and negative information is
used in a special case

Consel and Danvy also present a matcher that maintains exactly one char-
acter of negative information. The following lemma, which is easily proven
by well-founded induction based on 〈|d d|, |(append pi s d)|, |p|〉, shows how
one character of negative information already is maintained “automatically” in
match s:

Lemma 4.8 In the evaluation of (main p0 d0) (as defined in Figure 4.12),
whenever match s is called, the (s d len + 1)st character of s d is different
from (car d d).

This information can be used when match s is about to return p such that
(car p) is equal to the (s d len + 1)st character of s d: Instead of returning

118 PE of Pattern Matching

p, match s continues matching against the remaining positive information.

4.7 Related work

Consel and Danvy [7] conceived a binding-time improvement that makes it pos-
sible to generate an efficient matcher from a naive matcher by using standard
partial-evaluation techniques. Their insight was to exploit the relationship be-
tween the pattern string and the dynamic data, as exemplified by the diagram
of Figure 4.3 (a similar diagram appeared in their paper). Based on this in-
sight, further investigations into the derivation of efficient matchers using par-
tial evaluation have been carried out. Jones et al. [14] and Amtoft [2] present
a modified version of a matcher that standard partial evaluation can specialize
into an efficient matcher. Sørensen et al. [28] present a version that is basically
equivalent to the former of these variants. Amtoft et al. [3] parameterize a string
matcher over a static cache and present instantiations for which partial evalu-
ation produces KMP-like and Boyer-Moore–like string matchers. Gomard [12]
and Kaneko and Takeichi [17] show how to generate efficient matchers with
variants of a specialization scheme called fully lazy evaluation. Jørgensen [16]
and Sestoft [26] apply the combination of partial evaluation and explicit encod-
ing of positive and negative information to implement efficient matching of a
data structure against a collection of patterns, as is used in implementing the
case construct of languages such as ML and Haskell. What amounts to positive
information has also been used in hand-coded pattern-matching compilers [24,
Chapter 5].

Other work on applying partial evaluation to string matching is mainly con-
cerned with identifying the additional features that must be added to the stan-
dard partial-evaluation framework in order to pass the KMP-test: Instead of
making positive/negative information explicit in the source program, one can
use a specializer with the capability of collecting and using such information.
For example Sørensen et al. [28] observe that positive supercompilation [10, 11]
maintains more information during the transformation process than does par-
tial evaluation. Nevertheless only positive information is maintained; positive
supercompilation of a naive string matcher and a pattern results in a linear
matcher that may perform redundant tests. In contrast, Smith [27] observes
that a partial evaluator for a family of constraint logic programming languages
succeeds in generating linear matchers that do not perform redundant tests,
because negative information is maintained as well. The same is true for Gen-
eralized Partial Computation [8], where a theorem prover is used to derive ad-
ditional information from the truth or falsity of enclosing conditional tests, and
for Queinnec and Geffroy’s intelligent backtracking system [25], where abstract
descriptions of the matched and unmatched patterns are maintained across suc-
cess and failure continuations. Other partial evaluators that pass the KMP-test
include partial deduction [22] and partial evaluators for functional logic pro-
grams [1, 20]. A generic way to make a given partial evaluator more powerful
is the interpretive approach where an interpreter is inserted between a partial

4.8 Conclusion 119

evaluator and a source program. Glück and Jørgensen [9] show that compos-
ing an interpreter that propagates positive information with Similix produces a
positive supercompiler that passes the KMP test.

Whereas systems capable of collecting and using positive and negative infor-
mation successfully pass the KMP test, they are likely to be defeated by related
but more complicated problems. For example, Amtoft et al. [3] observe that to
derive Boyer-Moore–like matchers, information also needs to be thrown away;
different strategies for discarding information yield different matchers. Handling
such problems therefore requires modification of the input program not only for
standard partial evaluators, but also for most, if not all, of the more powerful
systems mentioned above.

4.8 Conclusion

Specializing string matchers is a canonical example of partial evaluation. Nev-
ertheless, it has been found that in string matchers that specialize well under
standard partial evaluation, statically-determinable implicit information about
the dynamic input has to be represented explicitly. Numerous implementa-
tions of such string matchers have been developed, usually by starting with a
naive string matcher and applying binding-time improvements to it. The pub-
lished presentations, however, generally carry out the binding-time improve-
ments atomically, and thus do not show how such binding-time improvements
can be achieved in a systematic way. Further, as Amtoft put it, “it is not ob-
vious that [the transformation applied to the naive string matcher] preserves
semantics” [2, p. 176].

We have presented a stepwise derivation of a string matcher that makes pos-
itive information explicit in the static data, and that thus specializes well using
standard partial-evaluation techniques. We have also derived an extension that
makes negative information explicit; as a consequence, redundant tests in the
specialized code are eliminated. In both cases, we have proved that the size
of the specialized program is linear in the size of the pattern and the running
time of the specialized program is linear in the size of the data string. We have
further explored the relationship between our implementation and alternative
implementations: we identified properties of our implementation that can be
varied without changing the overall effect of partial evaluation and derived sev-
eral variants of our implementation. In particular, we have shown how to derive
two of the published implementations [7, 14], thus providing a conceptual link
between them and a wide range of variants, all of which specialize well under
standard partial evaluation.

Acknowledgements

We thank Olivier Danvy for suggesting we explore the implementation vari-
ants analyzed in Section 4.6, and for helpful comments and encouragement

120 PE of Pattern Matching

throughout this work. We also thank Charles Consel and Riko Jacob for useful
comments on this paper.

4.A An overview of Scheme

Scheme is a call-by-value, dynamically-typed, statically-scoped dialect of Lisp.
In this appendix, we give a brief overview of the features of Scheme, restricted
to their use in this paper.

A Scheme term is either a symbol, a number, or a list. A symbol is a sequence
of characters, such as match. A list is denoted by an open parenthesis followed by
a sequence of terms, separated by whitespace, followed by a close parenthesis.
Square brackets [and] may be used in place of parentheses. Programs are
represented as terms, such as x or (cons 3 x). A symbol represents a variable
reference. A list indicates an application, in which the first element is the applied
operator, and the remaining elements are the arguments. Data is constructed
by quoting a term, as in ’accept (the symbol accept), ’() (the empty list),
and ’(cons 5 x) (a list consisting of the symbol cons, the number 5, and the
symbol x). Note the difference between (cons 5 x) and ’(cons 5 x): the
former is interpreted by Scheme as a program, the latter constitutes a piece of
data. In this paper, we use quoted lists of symbols to represent the pattern and
data strings.

The application of most operators in Scheme is performed following a call-
by-value strategy, and the application of most operators returns a value. We
refer to operators that satisfy these two properties as functions. Some operators
return no value. Some built-in operators, such as the conditional operator if,
the local-binding operator let, and the boolean operator and, do not necessarily
evaluate all of their arguments. We refer to operators that do not necessarily
evaluate all of their arguments as special forms.

Global functions are defined using the special form define:

(define (fn-name arg 1 arg 2 ...) body)

As shown by the example, define has two arguments: a list, of which the first
element is the function name and the remaining elements are the parameter
names, and the body of the function definition.

The list-processing functions we use are as follows (shown with arguments):

• (null? l): returns true if the value of l is the empty list, and false oth-
erwise.

• (cons a l): constructs a list with the value of a as the first element, and
the elements of l as the remaining elements.

• (car l): returns the first element of the list l.

• (cdr l): returns the a list containing all of the elements of l, except the
first one.

4.A An overview of Scheme 121

• (append l1 l2): constructs a list that contains all of the elements of l1,
followed by all of the elements of l1.

• (member a l): returns true if the value of a is an element of the list l,
and false otherwise.

• (list e1 e2 ...): constructs a list consisting of the elements e1, e2, etc.
The function list can take any number of arguments, including zero.

• (length l): returns the number of elements in the list l.

We also use the function equal?, which tests any two values for equality, the
function =, which tests two numerical values for equality, the function -, which
performs subtraction, and the special form and, which returns true if both of
its arguments are true, and false otherwise.

Conditionals are specified using an if expression, of the following form:

(if test consequent alternate)

If the value of the expression test is true, then the term consequent is eval-
uated; otherwise the term alternate is evaluated. A sequence of conditionals
can be abbreviated using a cond term, having the following form:

(cond [test 1 exp 1]

[test 2 exp 2]

...

[else exp n])

The terms test1, test2, etc. are evaluated in order until one is true, in which
case the corresponding expression is evaluated. If none of the test expressions
evaluates to true, then the expression corresponding to the else expression is
evaluated. An else line is not needed when the sequence of tests is exhaustive.
For readability, we use square brackets rather than parentheses to delimit the
test-expression pairs.

Local variables are introduced using a let expression, having the following
form:

(let ([var 1 exp 1]

...

[var n exp n])

exp)

The first argument to let is a list of pairs associating variables to expressions.
These variables are bound to the values of the corresponding expressions during
the evaluation of the body exp. The bindings to the variables var1, . . . , varn

are not visible during the evaluation of any of the exp1, . . . , expn. The special
form let* is a variant of let, in which the bindings preceeding [vari expi] are
visible in the evaluation of expi. For readability, we use square brackets rather
than parentheses to delimit the variable-expression pairs.

122 PE of Pattern Matching

4.B Correctness of the derived implementation
using positive information

Let matchorig be the original implementation (Figure 4.1 on page 103) and
matchpos be the derived implementation using positive information (Figure 4.5
on page 107). We show that for all p, s d, d d and pi, evaluating

(matchorig p d (append pi p) (append pi d))

(where d stands for the concatenation of s d and d d), and evaluating

(matchpos p s d d d pi)

yields the same result.

Proof: The proof is by induction on the tuple 〈|d d|, |(append pi s d)|, |p|〉,
ordered lexicographically. It is straightforward to show that this value decreases
at every function call of matchpos . We thus do not explicitly check that the
induction hypothesis applies in each case.

For conciseness, we rewrite the Scheme code using a more mathematical
notation. In particular, @ replaces append, [] replaces ’(), and hd and tl
replace car and cdr, respectively. We also implicitly rely on the associativity
of append.

We want to show that for all p, sd, dd and pi,

matchpos(p, sd, dd, pi) = matchorig (p, sd@dd, pi@p, pi@sd@dd).

In all cases where p = [], the calls to matchpos and matchorig evaluate to
accept. Otherwise, assume that the theorem is true for all smaller tuples. We
proceed with an exhaustive case distinction. In the following, we assume for
every case that none of the preceeding cases holds.

Consider the case sd = []:

• dd = []: In this case, the call to matchpos evaluates to reject. If both sd

and dd are empty, then the second argument of matchorig is empty as well,
and the call to matchorig also evaluates to reject.

• hd(p) = hd(dd): In this case the call to matchpos evaluates to

matchpos(tl(p), [], tl(dd), pi @[hd(p)]),

and the call to matchorig evaluates to

matchorig(tl(p), tl(dd), pi @p, pi @dd).

Both are equal:

matchpos(tl(p), [], tl(dd), pi@[hd(p)])
IH= matchorig(tl(p), []@tl(dd), pi @[hd(p)]@tl(p), pi @[hd(p)]@[]@tl(dd))
= matchorig(tl(p), tl(dd), pi@p, pi@dd)

4.B Correctness (positive information) 123

• pi = []: In this case, the call to matchpos evaluates to

matchpos(p, [], tl(dd), []),

and the call to matchorig evaluates to

matchorig(p, tl(dd), p, tl(dd)).

Both are equal:

matchpos(p, [], tl(dd), [])
IH= matchorig (p, []@tl(dd), []@p, []@[]@tl(dd))
= matchorig (p, tl(dd), p, tl(dd))

• pi 6= []: In this case, the call to matchpos evaluates to

matchpos(pi @p, tl(pi), dd, []),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd)).

Both are equal:

matchpos(pi @p, tl(pi), dd, [])
IH= matchorig (pi @p, tl(pi)@dd, []@pi@p, []@tl(pi)@dd)
= matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd))

Now we turn to the case sd 6= []:

• hd(p) = hd(sd): In this case, the call to matchpos evaluates to

matchpos(tl(p), tl(sd), dd, pi@[hd(p)]).

Because the first argument of matchorig is p and the second argument of
matchorig is sd@dd, the constraint hd(p) = hd(sd) implies that the third
cond line of matchorig is satisfied and the result is the value of

matchorig (tl(p), tl(sd@dd), pi@p, pi@sd@dd).

Both are equal:

matchpos(tl(p), tl(sd), dd, pi@[hd(p)])
IH= matchorig(tl(p), tl(sd)@dd, pi @[hd(p)]@tl(p), pi @[hd(p)]@tl(sd)@dd)
= matchorig(tl(p), tl(sd@dd), pi @p, pi @sd@dd)

124 PE of Pattern Matching

• hd(p) 6= hd(sd): In this case the call to matchpos evaluates to

matchpos(pi @p, tl(pi @sd), dd, []),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @sd@dd), pi@p, tl(pi @sd@dd)).

Both are equal:

matchpos(pi @p, tl(pi @sd), dd, [])
IH= matchorig (pi @p, tl(pi @sd)@dd, []@pi@p, []@tl(pi @sd)@dd)
= matchorig (pi @p, tl(pi @sd@dd), pi@p, tl(pi @sd@dd))

2

4.C Correctness of the derived implementation
using negative information

Let matchorig be the original implementation (Figure 4.1 on page 103) and let
matchneg be the derived implementation of match using positive and negative
information (Figure 4.9 on page 112). We show that for all p, s d, d d, pi
and ni, where ni is a set of characters such that if ni is nonempty then d d is
nonempty and (car d d) 6∈ ni, then evaluating

(matchorig p d (append pi p) (append pi d))

(where d stands for the concatenation of s d and d d), and evaluating

(matchneg p s d ni d d pi)

yield the same result.

Proof: The proof is by induction on the tuple 〈|d d|, |(append pi s d)|, |p|〉,
ordered lexicographically. It is straightforward to show that this value decreases
at every function call of matchneg . We thus do not explicitly check that the
induction hypothesis applies in each case. As in Appendix 4.B, we use a more
mathematical notation for conciseness.

We want to show that for all p, ds, dd, pi and ni, where ni is a set of
characters such that if dd is nonempty, then hd(dd) 6∈ ni,

matchneg(p, sd, ni, dd, pi) = matchorig(p, sd@dd, pi@p, pi@sd@dd).

In all cases where p = [], the calls to matchneg and matchorig evaluate to
accept. Otherwise, assume that the theorem is true for all smaller tuples. We
proceed with an exhaustive case distinction. In the following, we assume for
every case that none of the preceeding cases holds.

Consider the case that sd = [] and ni = []:

4.C Correctness (positive and negative information) 125

• dd = []: In this case the call to matchneg evaluates to reject. If both sd

and dd are empty, then the second argument of matchorig is empty as well,
and the call to matchorig also evaluates to reject.

• hd(p) = hd(dd): In this case the call to matchneg evaluates to

matchneg(tl(p), [], [], tl(dd), pi @[hd(p)]),

and the call to matchorig evaluates to

matchorig(tl(p), tl(dd), pi , pi @dd).

Both are equal:

matchneg(tl(p), [], [], tl(dd), pi @[hd(p)])
IH= matchorig (tl(p), []@tl(dd), pi @[hd(p)]@tl(p), pi @[hd(p)]@[]@tl(dd))
= matchorig (tl(p), tl(dd), pi @p, pi @dd)

• pi = []: In this case the call to matchneg evaluates to

matchneg(p, [], [], tl(dd), []),

and the call to matchorig evaluates to

matchorig(p, tl(dd), p, tl(dd)).

Both are equal:

matchneg(p, [], [], tl(dd), [])
IH= matchorig (p, []@tl(dd), []@p, []@[]@tl(dd))
= matchorig (p, tl(dd), p, tl(dd))

• pi 6= []: In this case the call to matchneg evaluates to

matchneg(pi @p, tl(pi), [hd(p)], dd, []),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd)).

Both are equal:

matchneg(pi @p, tl(pi), [hd(p)], dd, [])
IH= matchorig (pi @p, tl(pi)@dd, []@pi@p, []@tl(pi)@dd)
= matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd))

Now we turn to the case that sd = [] and ni 6= []. Recall that ni is a set of
characters that does not contain the first element of dd.

126 PE of Pattern Matching

• hd(p) ∈ ni and pi = []: In this case the call to matchneg evaluates to
matchneg(p, [], [], tl(dd), []). hd(p) ∈ ni implies that hd(p) 6= hd(dd), and
since sd = [], hd(p) 6= hd(sd@dd). Thus the call to matchorig evaluates to
matchorig(p, tl(dd), p, tl(dd)). Both are equal:

matchneg(p, [], [], tl(dd), [])
IH= matchorig(p, []@tl(dd), []@p, []@[]@tl(dd))
= matchorig(p, tl(dd), p, tl(dd))

• hd(p) ∈ ni and pi 6= []: In this case the call to matchneg evaluates to
matchneg(pi @p, tl(pi), ni, dd, []), and again the call to matchorig evaluates
to matchorig(pi @p, tl(pi @dd), pi@p, tl(pi @dd)). Both are equal:

matchneg(pi @p, tl(pi), ni, dd, [])
IH= matchorig(pi @p, tl(pi)@dd, []@pi@p, []@tl(pi)@dd)
= matchorig(pi @p, tl(pi @dd), pi@p, tl(pi @dd))

• hd(p) = hd(dd): In this case the call to matchneg evaluates to

matchneg(tl(p), [], [], tl(dd), pi@[hd(p)]),

and the call to matchorig evaluates to

matchorig(tl(p), tl(dd), pi @p, pi @dd).

Both are equal:

matchneg(tl(p), [], [], tl(dd), pi@[hd(p)])
IH= matchorig(tl(p), []@tl(dd), pi @[hd(p)]@tl(p), pi @[hd(p)]@[]@tl(dd))
= matchorig(tl(p), tl(dd), pi@p, pi@dd)

• pi = []: In this case the call to matchneg evaluates to

matchneg(p, [], [], tl(dd), []),

and the call to matchorig evaluates to

matchorig (p, tl(dd), p, tl(dd)).

Both are equal:

matchneg(p, [], [], tl(dd), [])
IH= matchorig(p, []@tl(dd), []@p, []@[]@tl(dd))
= matchorig(p, tl(dd), p, tl(dd))

4.C Correctness (positive and negative information) 127

• pi 6= []: In this case the call to matchneg evaluates to

matchneg(pi @p, tl(pi), hd(p) :: ni, dd, []),

and the call to matchorig evaluates to

matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd)).

Both are equal:

matchneg(pi @p, tl(pi), hd(p) :: n, dd, [])
IH= matchorig (pi @p, tl(pi)@dd, []@pi@p, []@tl(pi)@dd)
= matchorig (pi @p, tl(pi @dd), pi@p, tl(pi @dd))

Finally, we consider the case that sd 6= []:

• hd(p) = hd(sd): In this case the call to matchneg evaluates to

matchneg(tl(p), tl(sd), ni, dd, pi @[hd(p)]),

and the call to matchorig evaluates to

matchorig (tl(p), tl(sd@dd), pi@p, pi@sd@dd).

Both are equal:

matchneg(tl(p), tl(sd), ni, dd, pi@[hd(p)])
IH= matchorig(tl(p), tl(sd)@dd, pi @[hd(p)]@tl(p), pi @[hd(p)]@tl(sd)@dd)
= matchorig(tl(p), tl(sd@dd), pi @p, pi @sd@dd)

• hd(p) 6= hd(sd): In this case the call to matchneg evaluates to

matchneg(pi @p, tl(pi @sd), ni, dd, []),

and the call to matchorig evaluates to

matchorig(pi @p, tl(pi @sd@dd), pi@p, tl(pi @sd@dd)).

Both are equal:

matchneg(pi @p, tl(pi @sd), ni, dd, [])
IH= matchorig(pi @p, tl(pi @sd)@dd, []@pi@p, []@tl(pi @sd)@dd)
= matchorig(pi @p, tl(pi @sd@dd), pi@p, tl(pi @sd@dd))

2

128 PE of Pattern Matching

4.D Pattern matching with positive and negative
information: complexity of the specialized

code

We present proofs of Theorems 4.6 and 4.7 about size and execution time of
the specialized code for the matcher that uses positive and negative informa-
tion (Figure 4.9). Figure 4.13 shows a binding-time annotated version of this
matcher. Memoization points are indicated using comments. The subscripts on
calls to match are used for referencing only.

4.D.1 Size

As in the proof of Theorem 4.1, we give an upper bound for the number of
variants that are generated of each memoization point. We start by showing a
lemma corresponding to Lemma 4.2.

Lemma 4.9 In the evaluation of (main p0 d0), for any k ≥ 1, in the kth call
to match, the concatenation of argument pi with argument p is equal to p0.

We can now calculate the number of variants of M1:

Lemma 4.10 Specializing the implementation from Figure 4.9 with respect to
a pattern of length n yields a residual program with at most n variants of M1.

Proof: M1 is guarded by s d = ’() ∧ ni = ’(); thus, just as in the proof
of Theorem 4.1, the number of variants is bounded by the number of different
configurations of p and pi. Lemma 4.9 limits the number of different configu-
rations of p and pi to n + 1. Since M1 is never reached with p = ’(), we have
an upper bound of n variants of M1. 2

Next, we analyze the number of variants generated of M2. All variants of
M2 arise from specializing the body of a variant of M1: the initial s d and
ni arguments of match are ’(), so specialization of main first reaches either
’accept or M1, rather than M2. We thus need to bound the number of variants
of M2 generated in specializing the bodies of all variants of M1. In doing so, we
assume that the names for the variants of M1 are generated in advance, so that
specialization stops when an instance of M1 is reached. Under this assumption
we can show the following lemma:

Lemma 4.11 When specializing (match p s d ni d d pi) with respect to sta-
tic input p, s d, ni and pi such that specialization stops when an instance of
M1 is encountered, then (1) if ni = ’(), no variant of M2 is generated; (2) if
ni 6= ’(), then at most |A − ni| variants of M2 are generated (where A is the
set of characters contained in (append pi p)).

4.D Complexity (positive and negative information) 129

(define (main ps dd)

(match p ’() ’() d ’()))

(define (match ps s_ds nis d_dd pis)

(cond

[(null? p) ’accept]

[(and (null? s_d) (null? ni))

(cond ; memoization point M1
[(null? d_d) ’reject]

[(equal? (car p) (car d_d))

(match1 (cdr p) ’() ’() (cdr d_d)

(append pi (list (car p))))]

[else

(if (null? pi)

(match2 p ’() ’() (cdr d_d) ’())

(match3 (append pi p) (cdr pi) (list (car p))

d_d ’()))])]

[(null? s_d)

(if (member (car p) ni)

(if (null? pi)

(match4 p ’() ’() (cdr d_d) ’())

(match5 (append pi p) (cdr pi) ni d_d ’()))

(if (equal? (car p) (car d_d)) ; memoization point M2
(match6 (cdr p) ’() ’() (cdr d_d)

(append pi (list (car p))))

(if (null? pi)

(match7 p ’() ’() (cdr d_d) ’())

(match8 (append pi p) (cdr pi)

(cons (car p) ni) d_d ’()))))]

[else

(cond

[(equal? (car p) (car s_d))

(match9 (cdr p) (cdr s_d) ni d_d (append pi (list (car p))))]

[else

(match10 (append pi p) (cdr (append pi s_d)) ni d_d ’())])]))

Figure 4.13: The annotated string matcher (with negative information)

Proof: We begin with part (1): Because by assumption we start with ni being
empty, and because M2 is guarded with ni 6= ’(), ni has to be augmented
before M2 can be reached. The only call that adds an element to ni and is
reachable with ni = ’() is in the scope of M1. Therefore, by assumption, it is
never reached, so no variant of M2 is generated.

Now we show part (2): We order configurations of static data 〈p, s d, ni, pi〉
according to the lexicographic order on 〈|A − ni|, |(append pi s d)|, |p|〉; we
prove by well-founded induction with respect to this ordering. Suppose match

130 PE of Pattern Matching

is specialized with respect to the static input 〈p, s d, ni, pi〉. The proof is by an
exhaustive case distinction. We consider only the case where s d = ’() ∧ ni 6=
’() ∧ (car p) 6∈ ni.

If s d = ’() ∧ ni 6= ’() ∧ (car p) 6∈ ni then a variant of M2 is generated;
we have to make sure that specializing with respect to all new calls that are
encountered generates strictly fewer than |A − ni| variants of M2. Calls 6, 7,
and 8 are reachable. From the first part of this lemma we know that calls 6
and 7 produce no variants of M2, because they call match with ni = ’(). For
call 8 the induction hypothesis holds; because in the call the parameter ni is
augmented by one character, at most |A − ni|−1 variants of M2 are generated.
So in all, at most |A − ni| variants are generated. 2

We are now in a position to prove Theorem 4.6.

Proof: Analyzing Figure 4.13 we see that null-tests are only generated at M1.
Lemma 4.10 shows that at most n variants of M1 are generated.

Each of the at most n variants of M1 also generates one comparison in the
residual code. Each variant of M2 also generates one such comparison. Hence
it remains to show that M2 only gives rise to n · (c − 1) variants. Consider
the specialization of the body of one of the at most n variants of M1; the body
contains the call sites 1, 2 and 3. From the first part of Lemma 4.11 we can infer
that call 1 and call 2 never produce any variants of M2. For call 3, the second
part of Lemma 4.11 tells us that at most (c − 1) variants of M2 are generated.
Multiplying this by at most n variants of M1 gives us the desired upper bound
of at most n · (c− 1) variants of M2. Thus, in all, we have n · c residual equality
tests. 2

4.D.2 Execution time

When running the result of specializing a matcher with respect to p on some
data string d, the number of equality and null tests performed is equal to the
number of irreducible equality and null tests performed by the unspecialized
matcher when applied to p and d (cf. the proof of Lemma 4.4). The following
lemma gives an upper bound on the number of irreducible null tests performed
by the optimized matcher from Figure 4.9 (referred to as mainneg and matchneg
in this section). It further shows that the optimized matcher performs at most
as many irreducible equality and null tests as the matcher that only uses positive
information from Figure 4.5 (mainpos and matchpos).

Lemma 4.12 For all p, s d, ni and d d such that if d d = ’() then ni = ’()
and (car d d) 6∈ ni otherwise, (1) the number of irreducible null tests per-
formed by (matchneg p s d ni d d pi) is at most |d d|+1− sign(|ni|) (where
sign(0) = 0 and sign(n) = 1 for n > 0), and (2) (matchneg p s d ni d d pi)
always performs at most as many irreducible null tests and equality tests as
(matchpos p s d d d pi).

4.D Complexity (positive and negative information) 131

Proof: We prove by well-founded induction with respect to a termination re-
lation for matchneg. The proof of (1) proceeds just like the proof of Lemma 4.4.
The proof of (2) is by a straighforward exhaustive case distinction over the in-
put. 2

Theorem 4.7 follows immediately from Lemma 4.12.

Bibliography

[1] Maria Alpuente, Moreno Falaschi, Pascual Juliàn, and German Vidal. Spe-
cialization of inductively sequential functional logic programs. In Charles
Consel, editor, Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 151–162,
Amsterdam, The Netherlands, June 1997. ACM Press.

[2] Torben Amtoft. Sharing of Computations. PhD thesis, DAIMI, Department
of Computer Science, University of Aarhus, 1993. Technical report PB-453.

[3] Torben Amtoft, Charles Consel, Olivier Danvy, and Karoline Malmkjær.
The abstraction and instantiation of string-matching programs. Techni-
cal Report BRICS RS-01-12, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, April 2001.

[4] Anders Bondorf. Improving binding times without explicit cps-conversion.
In Proceedings of the Conference on Lisp and Functional Programming,
pages 1–10, San Francisco, CA, June 1992. ACM Press.

[5] Anders Bondorf. Similix 5.0 manual. Technical report, DIKU, Computer
Science Department, University of Copenhagen, Copenhagen, Denmark,
1993. Included in the Similix 5.0 distribution.

[6] Charles Consel. A tour of Schism: A partial evaluation system for higher-
order applicative languages. In David A. Schmidt, editor, Proceedings of the
Second ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 145–154, Copenhagen, Denmark, June
1993. ACM Press.

[7] Charles Consel and Olivier Danvy. Partial evaluation of pattern matching
in strings. Information Processing Letters, 30(2):79–86, January 1989.

[8] Yoshihiko Futamura and Kenroku Nogi. Generalized partial computation.
In Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors, Partial
Evaluation and Mixed Computation, pages 83–116. North Holland, 1988.

[9] Robert Glück and Jesper Jørgensen. Generating transformers for defor-
estation and supercompilation. In B. Le Charlier, editor, Static Analysis,

132

BIBLIOGRAPHY 133

volume 864 of Lecture Notes in Computer Science, pages 432–448. Springer-
Verlag, 1994.

[10] Robert Glück and Andrei Klimov. Occam’s razor in metacomputation:
the notion of a perfect process tree. In Patrick Cousot, Moreno Falaschi,
Gilberto Filè, and Antoine Rauzy, editors, Proceedings of the Third In-
ternational Workshop on Static Analysis WSA’93, number 724 in Lecture
Notes in Computer Science, pages 112–123, Padova, Italy, September 1993.
Springer-Verlag.

[11] Robert Glück and Valentin F. Turchin. Application of metasystem transi-
tion to function inversion and transformation. In Proceedings of the inter-
national symposium on symbolic and algebraic computation, pages 286–287,
Tokyo, Japan, August 1990. ACM, ACM Press.

[12] Carsten K. Holst and Carsten K. Gomard. Partial evaluation is fuller
laziness. In Hudak and Jones [13], pages 62–71.

[13] Paul Hudak and Neil D. Jones, editors. ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, SIGPLAN
Notices, Vol. 26, No 9, New Haven, Connecticut, June 1991. ACM Press.

[14] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. International Series in Computer
Science. Prentice Hall, June 1993.

[15] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation. Lisp
and Symbolic Computation, 2(1):9–50, 1989.

[16] Jesper Jørgensen. Generating a pattern matching compiler by partial eval-
uation. In Simon L. Peyton Jones, Guy Hutton, and Carsten K. Holst,
editors, Functional Programming, Glasgow 1990, Workshops in Comput-
ing, pages 177–195, Glasgow, Scotland, 1990. Springer-Verlag.

[17] Keiichi Kaneko and Masato Takeichi. Derivation of a Knuth-Morris-Pratt
algorithm by fully lazy partial computation. Advances in Software Science
and Technology, 5:11–24, 1993.

[18] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5 re-
port on the algorithmic language Scheme. Higher-Order and Symbolic Com-
putation, 11(1):7–105, 1998. Also appears in ACM SIGPLAN Notices 33(9),
September 1998. Available online at http://www.brics.dk/~hosc/11-1/.

[19] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[20] Laura Lafave and John P. Gallagher. Constraint-based partial evaluation of
rewriting-based functional logic programs. In Norbert E. Fuchs, editor, 7th

134 BIBLIOGRAPHY

International Workshop on Program Synthesis and Transformation, num-
ber 1463 in Lecture Notes in Computer Science, pages 168–188, Leuven,
Belgium, July 1997. Springer-Verlag.

[21] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation.
In Proceedings of the 1994 ACM Conference on LISP and Functional Pro-
gramming, pages 27–29, Orlando, FL, June 1994. ACM Press.

[22] Jonathan Martin and Michael Leuschel. Sonic partial deduction. In Dines
Bjørner, Manfred Broy, and Alexander V. Zamulin, editors, Perspectives of
System Informatics, Third International Andrei Ershov Memorial Confer-
ence, number 1755 in Lecture Notes in Computer Science, pages 101–112,
Akademgorodok, Novosibirsk, Russia, July 1999. Springer-Verlag.

[23] Torben Æ. Mogensen. Separating binding times in language specifications.
In Fourth International Conference on Functional Programming and Com-
puter Architecture (FPCA), pages 12–25, London, UK, September 1989.
ACM Press.

[24] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice Hall International Series in Computer Science.
Prentice-Hall International, 1987.

[25] Christian Queinnec and Jean-Marie Geffroy. Evaluation applied to symbolic
pattern matching with intelligent backtrack. In Antoine Rauzy, editor,
Actes WSA’92 Workshop on Static Analysis, volume 81-82 of Series Bigre,
pages 109–117, Campus de Beaulieu, September 1992. Atelier Irisa, IRISA.

[26] Peter Sestoft. ML pattern match compilation and partial evaluation. In
Olivier Danvy, Robert Glück, and Peter Thiemann, editors, Partial Evalu-
ation, number 1110 in Lecture Notes in Computer Science, pages 446–464,
Dagstuhl, Germany, February 1996. Springer-Verlag.

[27] Donald A. Smith. Partial evaluation of pattern matching in constraint logic
programming languages. In Hudak and Jones [13], pages 62–71.

[28] Morten H. Sørensen, Robert Glück, and Neil D. Jones. A positive super-
compiler. Journal of Functional Programming, 6:811–838, 1996.

Chapter 5

Cost Recurrences for DML
Programs

Abstract

A cost recurrence describes an upper bound for the running time of
a program in terms of the size of its input. Finding cost recurrences
is a frequent intermediate step in complexity analysis, and this step
requires an abstraction from data to data size. In this article, we
use information contained in dependent types to achieve such an ab-
straction: Dependent ML (DML), a conservative extension of ML,
provides dependent types that can be used to associate data with
size information, thus describing a possible abstraction. We sys-
tematically extract cost recurrences from first-order DML programs,
guiding the abstraction from data to data size with information con-
tained in DML type derivations.

5.1 Introduction

Analyzing the time complexity of a program is usually carried out in two steps.
First, one establishes an upper bound of the program’s running time as a func-
tion of the size of its input. Second, one approximates the growth of this ex-
tracted bounding function, thus determining the complexity class of the pro-
gram. The first step requires an abstraction from data to data size. Informa-
tion contained in dependent types can be used to achieve such an abstraction. In
this article, we show how to automatically extract time bounds from first-order
programs written in Dependent ML (DML), an extension of ML that provides
a limited form of dependent types. If a bound is successfully extracted, we can
guarantee that it is a recurrence, i.e., an equation defining a function in terms
of its result on smaller inputs. A recurrence that describes an upper bound for
the running time of a program is called a cost recurrence.

135

136 Cost Recurrences for DML Programs

Limits and achievements of automated cost analysis Automated cost
analyses have inherent limits. For example, finding a cost recurrence for a
program is at least as hard as proving termination of the program. Also, finding
good approximations for the growth of recurrences (or, in general, almost any
kind of function) is known to be a hard problem.

Nevertheless, automated methods for cost analysis have been proposed. One
choice is to restrict the class of programs such that termination is guaranteed,
and the extracted time bounds can easily be approximated. For example, Reis-
tad and Gifford [7] consider functional programs without general recursion, using
only combinators such as map and zip. Methods that treat more general pro-
grams, as for example proposed by Le Métayer [4] and Rosendahl [8], usually
focus on extracting a cost program pc; if pc terminates, it calculates an upper
bound for the running time of a program p. Transforming pc may yield a version
compact enough to read off the complexity class of p. If not, pc still may be
useful for more empirical attempts to determine the time complexity of p, such
as plotting input size against the running time calculated by pc.

Dependent ML DML, which was developed by Xi [12, 16] in his PhD thesis,
extends ML with a limited form of dependent types: A DML type can be en-
riched with indices taken from a constraint domain (e.g., integers equipped with
their usual operations, with linear (in)equalities as constraints). For example,
the data type of lists can be enriched with a notion of length or a data type of
trees with a notion of height. The type language is expressive enough to encode
well-formedness criteria, such as a tree being balanced. DML function types
can express non-trivial properties, for example that a list is always mapped to a
list of the same length, or that a function with a balanced tree as input always
returns a balanced tree.

The design philosophy of DML is to use type-checking for the verification of
non-trivial correctness properties of ML programs—every valid ML program is
a valid DML program, because DML extends ML conservatively. For example,
to verify that a program for inserting an element into a balanced tree indeed
returns a balanced tree, the user needs to (1) enrich a data type of trees such
that only balanced trees are accepted, and (2) declare in a type annotation that
the insert function maps balanced trees to balanced trees. A range of similar
examples convincingly demonstrates that DML is a useful tool for practical
programming [12, 13, 15, 16].

This work We use information contained in DML type derivations to extract
cost recurrences from DML programs. With DML types, data can be associated
with a measure of data size, which essentially describes an abstraction from data
to data size that is necessary for extracting a cost recurrence. For example,
enriching the data type of lists with a notion of length describes an abstraction
from lists to their length. More intricate measures—the high expressiveness
of DML types allows the user to tailor measures to each situation. In many
cases, measures with several components (e.g., for trees, the pair of height and
number of leaves) prove to be useful. Size measures often coincide with shape
information for data that is useful for verifying program properties by DML

5.1 Introduction 137

type-checking. Therefore, in many cases, DML types that express correctness
properties of a program can be reused for establishing the complexity of the
program.

We allow recurrences to contain logical formulas, which are used to restrict
arguments that cannot be completely determined. Thus, logical information
contained in DML type derivations about such arguments can be included in cost
recurrence rather than approximating them in an ad-hoc way. Compared with
other methods that extract executable cost bounds—and therefore are required
to carry out approximations—we leave the choice of how to approximate to the
user, thus separating concerns between extracting a cost recurrence and solving
it.

We combine the extraction of a cost bound with a check whether the result
is indeed a recurrence: The information contained in DML type derivations
facilitates a check of whether the size measure decreases for each recursive call
under a wellfounded ordering. In other words, the user has to choose a size
measure that constitutes a termination order for the program in question. This
is no limitation compared to other methods: Because finding a cost bound
entails a termination proof, in all methods for cost analysis a termination proof
needs to be found in some way. It is an asset of using DML that the termination
proof can be concisely encoded through the size measure.

An example Consider a zip function written in ML:

fun zip lp =

case lp of

(nil,nil) => nil

| (cons(x,xs),cons(y,ys)) => cons((x,y),zip(xs,ys))

DML offers the possibility to annotate zip with a type containing an enriched
version of lists. We enrich the data type of lists with a notion of length; the
type of α-typed lists consisting of n elements is written as α list(n). Obviously,
zip should take two lists of equal length and return a list of the same length.
DML type checking validates that zip has the type

Πn : N . α list(n) × β list(n) → (α × β)list(n).

Intuitively, Π can be read as “for all”.1 In ML, a pair of two lists with different
lengths could be passed to zip, which would result in a runtime error. In DML,
the given type of zip allows zip only to be called with two lists of equal length.
The type also shows that the resulting list is of the same length as the input
lists.

Let us measure running time as the number of calls to user-defined functions,
giving each call a cost of one unit. The resulting recurrence describes the number
of calls to zip as a function of the length of the two input lists:

1Formally, Π introduces a dependent product, i.e., a product where the value of the first
component (here n) determines the type of the second component (here the function from a
pair of lists of length n to a list of length n). Dependent products are also called Π-types.

138 Cost Recurrences for DML Programs

zipc(n) =

{
n = 0 → 0

n > 0 → 1 + zipc(n − 1)

This cost recurrence is extracted from a DML type derivation for zip. In the
type derivation, the arguments to zip—two lists—are associated with an index
n that represents their length. Using this information, the extraction algorithm
abstracts from the lists to their length n. For example, the case expression is
turned into a conditional by inferring for each branch a condition on n that has
to hold if the pattern is matched. Similarly, the algorithm derives from the type
derivation that the recursive call of zip has a list of length n − 1 as argument,
and thus generates a call zipc(n − 1). Obviously, n − 1 < n, so the extracted
bound is a recurrence.

The recurrence can easily be solved: zipc(n) = n.

The remainder of the article
The article is structured as follows: Section 5.2 gives an introduction to

DML, Section 5.3 presents an intuitive account of our method for extracting cost
recurrences and gives several examples, Section 5.4 contains a formal account,
Section 5.5 treats related work, and Section 5.6 concludes. Appendix 5.A gives
a short overview over the formal definition of DML, and Appendix 5.B contains
details of the formal development of this work.

5.2 Background: Dependent ML

DML provides dependent types in which type index objects are limited to some
constraint domain C. Type checking for DML is decidable; it is based on solv-
ing constraints in C. For dependently typed languages with significantly more
expressive types (e.g., Cayenne [1]) type checking is undecidable.

We consider an effect-free fragment of DML. As constraint domain, we choose
integers, constrained by linear (in)equalities—we write Z both for the sort of
integers and the constraint domain. In the following, we present a short intro-
duction to programming in DML and sketch the formal specification of DML.
The latter forms the basis for the formal development presented in Section 5.4.

5.2.1 A programmer’s view of DML

The only new aspect for an ML programmer is the extended type system, which
contains type indices, in the present case integers.

Enriched recursive data types

As indicated in the example in Section 5.1, in DML a list type can be enriched
with a notion of length, enabling us to express the type of α-typed lists of n
elements as α list(n). The DML data-type definition is

5.2 Background: Dependent ML 139

datatype α list with N =

nil(0)
| Π n : N . cons(n + 1) of α× α list(n)

It is obtained from an ordinary definition of lists in ML by making the following
additions:

1. The phrase “with N” has been added. This signifies that the data type
of lists is to be enriched with one index and that this index is restricted
to the sort of natural numbers. The constraint language of DML allows
the definition of subsorts of an already defined sort: N stands for {k : Z |
k ≥ 0}.

2. Constructors and occurrences of “list” are augmented with an index.
The constructor nil is indexed with 0, thus defining the empty list to be
of type α list(0). A list built with cons is of type α list(n + 1), provided
that cons was applied to an element of type α list(n). Hence, cons is
indexed with n + 1.

3. The definition of the cons case exhibits a quantification over an index vari-
able n. This index variable is necessary to express the dependence between
the index of cons and the index of the list appearing in its branch. The
quantification restricts the index variable to the sort of natural numbers.

Similarly, we can define the data type of a list of lists α llist(m,n) as

datatype α llist with (N,N) =

lnil(0,0)
| Π m,n1, n2 : N . lcons(m + 1,n1 + n2) of

α list(n1) × α llist(m,n2)

The first index stands for the number of inner lists and the second index for the
total number of elements the inner lists contain.

The example of lists provides some intuition of how to define enriched recur-
sive data types in two steps: First, decide on the number of indices to be used in
the data type, along with the sorts the indices are to be restricted to. Second,
annotate each constructor with the appropriate indices. When an index of a
constructor depends on indices of recursive data types that appear under that
constructor, introduce new index variables using quantification. An index can
be defined as a function of other indices using all operations of the constraint
domain.

In the introduction we mentioned that enriched data types can encode well-
formedness criteria. As an example, we define a data type of height-balanced
trees, i.e., the height difference between the two children of a node can be at
most one:

datatype α HBtree with (N,N) =

Leaf(0,0)
| Π s1, s2, h1 : N . Π h2 : {k : N | h1 − 1 ≤ k ≤ h1 + 1} .

Node(1 + max(h1, h2), s1 + s2 + 1) of

α HBtree(h1,s1) × α × α HBtree(h2,s2)

140 Cost Recurrences for DML Programs

We use two indices, where the first represents the height of the tree and the
second represents the number of elements stored in the tree. When defining a
node, we require for the heights h1 and h2 of the subtrees, that they differ by
at most one. This can be achieved by (1) defining a sort of natural numbers k
that differ by at most one from h1, and (2) restricting h2 to this new sort. As a
consequence, only two trees with a height difference of at most one can be the
children of a node, i.e., only height-balanced trees can have type α HBtree.

Note that for defining a new sort, all predicates and operations of the chosen
constraint domain can be used. In the case of height-balanced trees, we use −,
+, and ≤.

DML function types

As in ML, a data-type definition gives rise to type declarations for its construc-
tors. For example, the definition of enriched lists presented above yields a type
α list(0) for the constructor nil, and the type

Πn : N . α × α list(n) → α list(n + 1)

for the constructor cons.

append : Π n1, n2 : N . α list(n1) × α list(n2) → α list(n1 + n2)
fun append lp =

case lp of

(nil,l2) => l2

| (cons(x,xs),l2) => cons(x,append(xs,l2))

flatten : Πm, n : N . α llist(m,n) → α list(n)
fun flatten ll =

case ll of

lnil => nil

| lcons(xs,rest) => append(xs,flatten rest)

occurs : Π h, s : N . string × string HBtree(h,s) → bool
fun occurs(e,t) =

case t of

Leaf => false

| Node(t1,e’,t2) => if e = e’

then true

else if e < e’

then occurs(s,t1)

else occurs(s,t2)

Figure 5.1: Some functions with their DML types

5.2 Background: Dependent ML 141

Figure 5.1 shows three functions operating on the data types defined in
Section 5.2.1, together with their DML types:

• append takes two lists of n1 and n2 elements, respectively, and returns a
list of n1 + n2 elements.

• flatten takes a list of lists that contain a total number of n elements,
and returns a list of n elements

• occurs takes a string and a balanced tree, and returns a truth value,
according to whether the string is stored in the tree or not (assuming a
sorted balanced tree).

The DML types of append, flatten and occurs add shape information to
the respective ML type of each function: In the case of append and flatten,
we learn about the shape of the result, i.e., how long the output list is. For
occurs, the DML type restricts the input tree to trees of a special shape, namely
balanced trees.

So far, the output indices in the DML type of a function could always be
specified as a function of the input indices. For relational dependencies, DML
offers existential types. These allow one to restrict the index of an output
to a sort—because sorts can be defined in terms of already declared indices,
relational dependencies can be expressed.

Consider, for example, a function that inserts a string into a balanced tree.
Depending on how the tree is rebalanced, the result can be a tree of equal
height or a tree higher by one. Similarly, the number of elements in the tree
stays equal if the element to be inserted already was in the tree, otherwise the
number is increased by one. A valid DML type for a correct insert function
on height-balanced trees is as follows:

Πh, s : N . string × HBtree(h,s) →
∃h′ : {k : N | h ≤ k ≤ h + 1} .
∃ s′ : {k : N | s ≤ k ≤ s + 1} .
HBtree(h′,s′)

The type of the output tree restricts height and size to be either equal or larger
by one than the height and size of the input tree, respectively.

5.2.2 A formal specification of DML

In the theoretical development of DML [12], three languages are defined, whose
interplay is displayed graphically in Figure 5.2.

• ML0 basically is an extension of Mini-ML with general pattern matching.
It formalizes a manageable subset of ML.

• DMLΠ
0 (C) is an explicitly typed language with dependent types, i.e., types

that are indexed with elements from a constraint domain C. Its syntax is

142 Cost Recurrences for DML Programs

e∗ : τ

eval
��

||·|| // e : σ

eval
��

e′ : τ
|·|oo

type elaboration

ww

v∗ : τ
||·|| // v : σ

︸ ︷︷ ︸
DMLΠ

0 (C)
︸ ︷︷ ︸
ML0

︸ ︷︷ ︸
DML0(C)

Figure 5.2: Interplay of languages

that of ML0, adding abstraction over index variables and application of
an expression to index expressions. A canonical erasure || · || that removes
index-related syntax both from the term and the type language, maps
DMLΠ

0 (C) into ML0. The erasure commutes with evaluation.

• DML0(C) enriches ML0 with dependent types; it has the same type lan-
guage as DMLΠ

0 (C). DML0(C) requires type-annotations only for recur-
sive definitions. An erasure on the type language extends to an erasure
| · | that maps DML0(C) into ML0. A type-elaboration algorithm maps
a DML0(C) program with correct type annotations into DMLΠ

0 (C) such
that (1) the type annotations are preserved and (2) the erasure of both
terms results in the same ML0 term.

DMLΠ
0 (C) allows easy type-checking, because it is explicitly typed and in-

dices are part of the term language. For the same reason, however, DMLΠ
0 (C)

is impractical for actual programming. Instead, the user works with DML0(C),
which corresponds to the language, the example programs of Section 5.2.1 are
given in: Their displayed DML-types are the type-annotations that are required
for the implicit recursive definitions. Type-checking is carried out by a type elab-
oration algorithm [12, Chapter 4], evaluation by applying the erasure and the
ML0 evaluation mechanism.

In the following, we first give some basic facts about constraint domains and
the constraint language used to express the index objects for DML types. We
then briefly describe DMLΠ

0 (C).2 The description glosses over many details—we
refer the reader to Xi’s PhD thesis [12] for the complete picture.

2For simplicity, we restrict the presentation to the monomorphic case without existential
types—polymorphism and existential types are treated in extensions of DMLΠ

0 (C).

5.2 Background: Dependent ML 143

Constraints in DML

A constraint domain C is defined by (1) a signature Σ that declares a base sort
along with basic operations and predicates and (2) a Σ-structure. For example,
for the constraint domain Z, the signature declares the base sort Z and the
usual operations (+, −, mod , etc.) and predicates (<, ≥, etc.) over integers;
the Σ-structure is given by the standard model of integers.

sorts γ ::= b ||| 1 ||| γ1 × γ2 ||| {a : γ | P}
propositions P ::= > ||| ⊥ ||| i = j ||| p(i) ||| P1 ∧ P2 ||| P1 ∨ P2

objects i, j ::= a ||| f(i) ||| 〈〉 ||| 〈i, j〉 ||| fst(i) ||| snd(i)
contexts φ ::= · ||| φ, a : γ ||| φ, P

Figure 5.3: Constraint language

DML uses the constraint language defined in Figure 5.3 to express the index
objects for DML types. New sorts can be defined by pairing already defined sorts
or restricting an already defined sort with a sort proposition. Sort propositions
are built from the basic predicates p of the constraint domain. Index sorts serve
as types for index objects, in which basic operations f of the constraint domain
can appear. An index context is given as a collection of index propositions and
type declarations for index variables.

DML type-checking requires a constraint solver that is able to handle con-
straints of the form

Φ ::= > ||| ⊥ ||| i = j ||| p(i) ||| Φ1 ∧ Φ2 ||| Φ1 ∨ Φ2 ||| ∀a : γ.Φ ||| ∃a : γ.Φ

Constraint satisfaction under a given index context, which is written as φ |= Φ,
is defined in the canonical way.

The language DMLΠ
0 (C)

A grammar of the DMLΠ
0 (C) syntax is given in Figure 5.4.

τ ::= δ(i) ||| 1 ||| (τ1 × τ2) ||| (τ1 → τ2) ||| Π a : γ . τ
e ::= x ||| 〈〉 ||| 〈e1, e2〉 ||| c[i1] . . . [in] ||| c[i1] . . . [in](e)

||| (case e of ms) ||| (lam x : τ . e) ||| e1(e2)
||| let x = e1 in e2 end ||| (fix x : τ.e)
||| (λa : γ . e) ||| e[i]

p ::= x ||| c[a1] . . . [an] ||| c[a1] . . . [an](p) ||| 〈〉 ||| 〈p1, p2〉
ms ::= p ⇒ e ||| p ⇒ e | ms

Figure 5.4: Syntax of DMLΠ
0 (C)

144 Cost Recurrences for DML Programs

In the grammar of the type language, δ(i) stands for a data type δ that
is indexed with index object i. The DML data-type declaration of an enriched
data type δ(i) yields constructor types of form Πa1 : γ1. . . Π ak : γk . δ(i) for con-
structors without argument such as nil , and Π a1 : γ1. . . Π ak : γk . τ → δ(i) for
constructors with argument such as cons . Several examples of types appeared
in Section 5.2.1.

In addition to the usual constructs, the term language provides abstraction
over index variables (λa : γ . e) and application of an expression to an index
object (e[i]). Furthermore, a constructor c of a recursive data type only appears
with a number of index arguments—index variables when appearing in a pattern
p and index objects otherwise. The number and sorts of index arguments is
determined by the constructor type, which is inferred from the corresponding
data type definition (see Section 5.2.1).

A typing judgment for DMLΠ
0 (C) has the form

φ; Γ ` e : τ,

where φ is an index context and Γ a normal context; an overview over the typing
rules for DMLΠ

0 (C) is presented in Appendix 5.A.1.
Substitutions play a central role in the formalization of DML: They are used

both in the definition of the typing system and the semantics (Appendix 5.A.2).
A substitution can both affect index variables and normal variables:

θ ::= [] ||| θ[a 7→ i] ||| θ[x 7→ e]

For a substitution θ, its restriction to index variables is referred to as θφ, its
restriction to normal variables as θΓ.

The application of a substitution θ to a term t is written t[θ]. With θ1 ◦ θ2

we denote the substitution mapping t to (t[θ1])[θ2]; with θ1θ2 we denote the
substitution that behaves like θ1 on all variables in dom(θ1)\dom(θ2), and like
θ2 on all other variables.

5.3 Extracting cost recurrences

We first give an intuitive account of our method for extracting cost recurrences
from DML programs, deferring a formal treatment to Section 5.4. We then
present examples illustrating some distinctive features of the method.

5.3.1 The intuition behind extracting cost recurrences

We extract cost recurrences from first-order DML programs of the form

F1:Π a0 : γ0. . . Π aj1 : γj1 . (ρ10 × ρ11 · · · × ρ1l1) → ρ1

fun F1(x0,x1,. . .,xl1) = e1
...

Fk:Π a0 : γ0. . . Π ajk : γjk . (ρk0 × ρk1 · · · × ρklk) → ρk

fun Fk(x0,x1,. . .,xlk) = ek

5.3 Extracting cost recurrences 145

where we write ρ ::= δ(i) ||| 1 ||| (ρ1 × ρ2) for first-order types; also data-type
constructors are only allowed to take first-order arguments. Because indices are
used to abstract from data to data size, we require that (1) all sorts γ have
been constructed only with subsorts of N and (2) data types are enriched such
that for any i, all indices appearing in a branch of a data type δ(i) must be
bounded.3

We count cost in terms of the number of calls to user-defined functions F and
to constructors c, assigning a cost of cF and cc for each call, respectively. cF

and cc are constants of the domain in which cost is measured, e.g., the natural
numbers.

The first step of extracting a cost recurrence from a DML program is type
elaboration, which yields a DMLΠ

0 (Z) program.4

Example For the append function from Figure 5.1, type elaboration yields the
DMLΠ

0 (Z) program displayed in Figure 5.5. Type elaboration makes the indices
explicit in the term language: index variables n1 and n2 are abstracted over;
pattern matching against cons introduces a new index variable n′

1; cons and
the recursive call of append are passed index objects that describe the length of
the respective list arguments passed to cons and append. Because DMLΠ

0 (Z) is
monomorphic, assume that the data type list has been defined for a fixed type of
elements, say string. The constructors nil and cons then are typed as follows:

nil : list(0)
cons : Πn : N . string × list(n) → list(n + 1)

fix append : Πn1 : N . Πn2 : N . list(n1) × list(n2)
→ list(n1 + n2).

λn1 : N . λn2 : N . lam lp : list(n1) × list(n2) .
case lp of

〈nil , l2〉 ⇒ l2
| 〈cons [n′

1]〈x, xs〉, l2〉 ⇒
cons [n′

1 + n2]〈x, append [n′
1][n2]〈xs, l2〉〉

Figure 5.5: The append function in DMLΠ
0 (C)

3More precisely speaking, every constructor type Π a1 : γ1. . .Π ak : γk . ρ → δ(i) must be
such that for a fixed δ(i), there are only finitely many z1, . . . zk such that c[z1] . . . [zk] is of
type ρ → δ(i). This condition is met for every data-type definition in which the indices convey
size information: structures of a given size cannot contain substructures of arbitrary size.

4Because type elaboration as defined by Xi [12, Chapter 4] works on DML0(C) programs,
the program has to be rewritten in DML0(Z). This is easily done by replacing the ML
function-definition syntax with a recursive definition (keyword fix), a lambda-abstraction
(keyword lam), and a case expression with a single pattern, and declaring F1 . . . Fk in a row
of nested let-statements.

146 Cost Recurrences for DML Programs

We now describe intuitively how the extraction algorithm works. Note that
all steps can be carried out automatically; for manipulating constraints, the
algorithm uses a constraint solver for Z.

The type of each function determines the arguments of the corresponding
recurrence equation. A function

F : Π a0 : γ0. . . Π al : γl . ρ1 → ρ2

gives rise to a recurrence equation F c with a0 . . . al as formal parameters.

Example (cont.) For append, a recurrence equation append c with formal pa-
rameters n1 and n2 is extracted.

The extraction algorithm works on the body of the function definitions. The
issues that have to be dealt with are

1. How to treat case expressions?

2. How to treat index variables introduced by pattern matching?

3. How to assign and add up cost?

How to treat case expressions? To abstract from data to data size,
we need to turn case expressions, which examine data, into conditionals that
examine data size. Such a transformation can be achieved using information
contained in the DMLΠ

0 (Z) type derivation: During type checking, constraints
over the index objects in the program are collected in an index context. Consider
a branch of a case expression over some type ρ. The type derivation contains a
collection of constraints that have to be satisfied when entering the branch, i.e.,
when the pattern of the branch is matched. By projecting out these constraints
over the index variables contained in ρ, i.e., eliminating all other index variables,
a guard for the corresponding branch of a conditional can be derived.

Example (cont.) The case expression in append is type-checked under the in-
dex context

φ = n1 : N, n2 : N

For the two branches, additional constraints are generated:

• For the branch with pattern 〈nil , l2〉, the index context n1 = 0 is generated.

• For the branch with pattern 〈cons [n′
1]〈x, xs〉, l2〉, the index context n′

1 :
N, n1 = n′

1 + 1 is generated.

From the conjunction of φ and the newly generated index context of each branch,
we can derive a condition in terms of n1 and n2 by projecting out over n1 and
n2: The result is n1 = 0 for the first branch and n1 > 0 for the second branch.

5.3 Extracting cost recurrences 147

In general, it is possible that the generated guards overlap, even though
the patterns of the case expression are mutually exclusive. When, during the
evaluation of a recurrence equation, more than one guard is satisfied, all possible
branches are evaluated and the maximum value is returned.

How to treat index variables introduced by pattern matching? A
pattern can introduce new index variables; these index variables may appear
within the branch guarded by the pattern, and thus also may play a role in the
corresponding conditional branch of the extracted recurrence equation. Often,
we can eliminate such index variables by deriving equality constraints that de-
fine a new index variable in terms of other index variables. If not, then the
constraints can be used to derive a restriction for the values of the new index
variables. This restriction is inserted into the extracted conditional branch.

Example (cont.) The second branch of the case expression in append in-
troduces the new index variable n′

1. The constraints allow us to derive that
n′

1 = n1 − 1, so n′
1 can be eliminated.

How to count and add up cost? When extracting a cost recurrence, we
need to count every call to a user-defined function F with a cost of cF and every
use of a constructor c with a cost of cc. Consider first a constructor c without
arguments: In the cost recurrence, we simply replace c[i1] . . . [ik] with cc. For
constructors with arguments c[i1] . . . [ik](e) and function calls F [i1] . . . [ik](e),
the cost incurred by e also needs to be taken into account. Hence, we first
extract a recurrence-equation expression t that represents the cost of evaluating
the argument, and then add it to the cost incurred by the function call:

• The total cost of c[i1] . . . [ik](e) is t + cc

• The total cost of F [i1] . . . [ik](e) is t + cF + (F ci1 . . . ik), where F ci1 . . . ik
is a call to the cost recurrence extracted for F .

In our cost model, constants and variables can be accessed without cost, and
therefore are turned into the constant 0 when extracting a cost recurrence.

Example (ended) We now assemble all the pieces of a cost recurrence for
append. If we assign a cost of one unit to recursive calls of append and assume
the use of cons to be cost free, then the cost of append is described by

append c n1 n2 =

{
n1 = 0 → 0

n1 > 0 → 1 + append c(n1 − 1) n2

(In the second branch, we have removed additions of zero that resulted from the
variables x, xs and l2, and the application of constructor cons.)

5.3.2 Example: Flattening a list of lists

The flatten function (see Figure 5.1) is an interesting problem for extracting
a cost recurrence because of the choice of size measure for the input: The size

148 Cost Recurrences for DML Programs

of a list of lists is measured both in terms of the number of inner lists and the
total number of elements contained in the inner lists.

We measure cost in terms of calls to user-defined functions. Our method
yields the following cost recurrence:5

flattenc m n =

m = 0 ∧ n = 0 → 0
m > 0 → 2 + append c n1 n2

+ flattenc (m − 1) n2

where n1 + n2 = n

Here, a restriction n1 + n2 = n for the new variables n1 and n2 introduced
by pattern matching has been inserted by the extraction algorithm—neither n1

nor n2 can be eliminated automatically.

Using the equation append c n1 n2 = n1 derived in Section 5.3.1, we can
rewrite the cost recurrence for flatten as

flattenc m n =

m = 0 ∧ n = 0 → 0
m > 0 → 2 + n1

+ flattenc (m − 1) n2

where n1 + n2 = n

It is easy to see that the maximal cost incurred by n1 in the second branch,
added over all recursive calls, is n; all in all, we can approximate the cost of
flatten as flattenc(m, n) = 2m + n.

The size measure chosen here for a list of lists is intuitive and seems to be
crucial for deriving a useful bound. Yet it is unclear how this measure could be
be defined without the expressiveness offered by DML types, e.g., when using
abstract-interpretation techniques [8].

5.3.3 Example: Searching a balanced tree

The occurs function (see Figure 5.1) provides an example of how two cost
bounds in terms of different size measures can be obtained: one in terms of
the height of a tree, and one in terms of the number of elements stored in a
tree. The latter bound is obtained by reasoning with DML type guarantees—
we profit from the fact that DML can express properties of the input that are
not inferable from the code.

5Here and in all the following recurrences we have simplified additions of constants.

5.3 Extracting cost recurrences 149

Our method yields the following cost recurrence for occurs:

occursc h s =

h = 0 ∧ s = 0 → 0

h > 0 ∧ s > 0 →

0{

1 + occursc h1 s1

1 + occursc h2 s2

where h1 − 1 ≤ h2 ≤ h1 + 1
∧ max (h1, h2) + 1 = h
∧ s1 + s2 + 1 = s

(Each if expression gives rise to a guardless conditional, because no restrictions
on indices can be inferred from its test expression.)

The recurrence looks more daunting than it is: It keeps track both of the
height and the number of elements in the tree, but it is easy to see that the
number of elements is of no consequence to the result of the cost recurrence.
Approximating both h1 and h2 with h − 1 gives rise to a simple recurrence
equation whose solution is occursc(h, s) = h.

The complication of eliminating size information could have been avoided by
chosing a tree type which only keeps track of the height of a tree. Also keeping
track of the number of elements, however, allows us to derive a cost measure in
terms of the number of elements rather than the height of the tree. The crucial
observation to make is that DML data-type definitions give rise to induction
principles for proving relations among the indices of a data type. The definition
of HBtree, for example, yields the following induction schema:

For R ∈ N × N, if

1. R(0, 0)

2. if for all h1, h2, s1, s2 with h1 − 1 ≤ h2 ≤ h1 + 1, R(h1, s1) and
R(h2, s2) it follows that R(max (h1, h2) + 1, s1 + s2 + 1)

then whenever a value has type HBtree(h,s), the relation R(h, s)
holds.

Using this induction schema, one can show that s ≥ 2h − 1 for any height-
balanced tree with height h and size s. Taking the logarithm, we see that
h ≤ log(s + 1); combining this with the cost recurrence occursc(h, s) = h, we
derive that the cost of occurs is logarithmic in s. This derivation is fully formal,
i.e., based only on assumptions explicit in the types or the extracted recurrence.

5.3.4 Example: Merge sort

Merge sort provides an example of how the extraction algorithm preserves useful
information contained in a program’s DML type.

An implementation of merge sort in DML is given in Figure 5.6 (adapted
from the distribution of de Caml, a DML prototype [11]): Function initlist

150 Cost Recurrences for DML Programs

merge : Πn1, n2 : N . list(n1) × list(n2) → list(n1 + n2)
fun merge lp =

case lp of

(nil, l2) => l2

| (l1, nil) => l1

| (cons(h1,t1),cons(h2,t2)) =>

if h1 < h2 then cons(h1,merge(t1,l2))

else cons(h2,merge(l1,t2))

initlist : Πn : N . list(n) → llist(dn/2e,n)
fun initlist l =

case l of

nil => lnil

| cons(_,nil) => lcons(l, lnil)

| cons(e1,cons(e2, rest)) =>

lcons(if e1 < e2

then cons(e1,cons(e2,nil))

else cons(e2,cons(e1,nil)),

initlist rest)

merge2 : Π m,n : N . llist(m,n) → llist(dm/2e,n)
fun merge2 ll =

case ll of

lnil => ll

| lcons(_,lnil) => ll

| lcons(l1,lcons(l2,rest)) =>

lcons(merge(l1,l2),merge2 rest)

mergeall : Πm, n : N . llist(m,n) → list(n)
mergeall ll =

case ll of

lnil => nil

| lcons(l,lnil) => l

| lcons(_,lcons(_,_)) => mergeall(merge2 ll)

msort : Πn : N . list(n) → list(n)
msort l = mergeall(initlist l)

Figure 5.6: Merge sort in DML

converts the list to be sorted into a list of lists such that each of these lists
is sorted and has length two (apart from a possible last singleton list). Func-
tion merge2 goes through a list of lists, merging every two adjacent lists into
one. Function mergeall iterates the application of merge2 until a single list
is obtained. The types of initlist and merge2 capture the fact that the size

5.3 Extracting cost recurrences 151

mergec n1 n2 =
n1 = 0 → 0

n2 = 0 → 0

n1 > 0 ∧ n2 > 0 → 1 +

{
mergec (n1 − 1) n2

mergec n1 (n2 − 1)

initlistc n =
n = 0 → 0

n = 1 → 0

n > 1 → 1 + initlistc (n − 2)

merge2 c m n =
m = 0 ∧ n = 0 → 0

m = 1 → 0

m > 1 → mergec n1 n2 + merge2 c (m − 2) n3

where n1 + n2 + n3 = n

mergeall c m n =
m = 0 ∧ n = 0 → 0

m = 1 → 0

m > 1 → merge2 c m n + mergeall c(dm/2e) n

msortc n = initlistc n + mergeallc (dn/2e) n

a: Extracted cost recurrences

mergec n1 n2 = n1 + n2

initlistc n = bn/2c

merge2 c m n = n

mergeall c m n =

{
m ≤ 1 → 0

m > 1 → n + mergeall c (dm/2e) n

msortc n = bn/2c + mergeall c (dn/2e) n

b: Approximated cost recurrences

Figure 5.7: Cost recurrences for merge sort

measure that steers the recursion is continually halved—the index expression
dn/2e can be encoded as div (n, 2) + mod(n, 2) in the integer constraint domain
we are working with.

We extract cost recurrences (Figure 5.7a), this time counting the number

152 Cost Recurrences for DML Programs

of comparisons (counting calls to primitive functions works the same as count-
ing calls to user-defined functions). The recurrences for mergec, initlistc and
merge2 c(m, n) are easy to approximate, yielding a simplified set of recurrences
displayed in Figure 5.7b. Notice how the information about halving the length
of the list of lists captured in the type of merge2 appears in mergeall c m n.
The solution of this recurrence equation is well-known to be O(n log m), which
gives an overall complexity for msort of O(n log n).

An extraction scheme without access to such high-level information as pro-
vided by DML types might still provide enough implicit information in the
extracted cost bound to derive the same bound, but the reasoning over the cost
recurrence would be more involved. Basically, information about argument sizes
that is encoded in the DML type and carried over into the cost recurrence with
our method, would first have to be (re)proven for the cost bound.

5.4 Formal development

We now formally define the method for extracting cost recurrences from DML
programs. The development is based on the theoretical view of DML presented
in Section 5.2.2 and therefore only treats a monomorphic version of DML with-
out existential types. Extending the development into a polymorphic setting is
straightforward and has been omitted for the sake of conciseness. For simplicity,
the formalization also does not treat mutual recursion. Extracting a cost bound
from mutually recursive programs works exactly the same, but checking whether
an extracted bound is indeed a recurrence becomes somewhat more tricky. For
the latter, techniques such as presented in Xi’s latest work [14] could be used
(see Section 5.5).

A first assessment shows that our method can also be extended to existential
types in a straightforward way. Essentially, the application of a function that
returns a value of existential type introduces a new index variable that can be
treated in the same way as new index variables introduced by pattern matching.

We start by defining the first-order fragment of DML treated by our method.
For this fragment, we introduce a cost measure using a monadic translation with
a cost monad. After defining a language of recurrence equations, we present the
extraction algorithm. We prove its correctness by showing that extraction, if
successful, indeed yields an upper bound with respect to the cost model defined
by the monadic translation.

5.4.1 A first-order fragment of DML

As pointed out in Section 5.3.1, the first step of extracting cost recurrences from
a first-order DML0(Z) program is type-elaboration, which results in a DMLΠ

0 (Z)
program of the form given in Figure 5.8 (we abbreviate a row of abstractions over
a0 : γ0, . . . al : γl with λ~a : ~γ, and 〈x0, 〈x1, . . . , 〈xi−1, xi〉〉〉 with 〈x0, . . . , xi〉).
The extraction algorithm to be presented in Section 5.4.4 therefore operates on
the language defined in Figure 5.8 (cf. the full language in Figure 5.4).

5.4 Formal development 153

let F1 = fix F1 : Π a0 : γ0. . . Π al1 : γl1 . ρ11 → ρ12.
λ~a : ~γ . lam x : ρ11 . body

...
Fk = fix Fk : Π a0 : γ0. . . Π alk : γlk . ρk1 → ρk2.

λ~a : ~γ . lam x : ρk1 . body
in e
end

a: Def. of functions F1 . . . Fk in DMLΠ
0 (Z)

body ::= case x of 〈x0, . . ., xik
〉 ⇒ e

e ::= x ||| 〈〉 ||| 〈e1, e2〉 ||| c[i1] . . . [in] ||| c[i1] . . . [in](e)
||| (case e of ms) ||| let x = e1 in e2 end
|||Fi[i1] . . . [in](e)

p ::= x ||| c[a1] . . . [an] ||| c[a1] . . . [an](p) ||| 〈〉 ||| 〈p1, p2〉
ms ::= p ⇒ e ||| p ⇒ e | ms

b: Grammar of function bodies

Figure 5.8: A first-order fragment of DMLΠ
0 (Z)

The original semantics of DML (see Appendix 5.A.2) is defined as a natural
semantics: e −→ v means that e evaluates under environment Θ to value v.
The semantics has a rule ev-fix for unfolding fixed-point definitions to handle
recursion. For the first-order fragment of DML with its restricted form of func-
tion definition and function application used here, it is convenient to define a
semantics that handles recursion using an environment of function definitions.
We define a modified semantics: e −→Θ v means that e evaluates under envi-
ronment Θ to value v, where Θ is a substitution mapping function names to
their definitions. We show the following theorem:

Theorem 5.1 Let p be a program of the form given in Figure 5.8. Then p −→ v
in the standard semantics iff p −→[] v in the modified semantics.

The definition of the modified semantics and the proof of Theorem 5.1 are
deferred to Appendix 5.B.1.

5.4.2 Measuring cost of computation

One way of introducing a cost measure into functional programs is the monadic
translation [6] with a cost monad. It is well-known that state can be added to a
program by (1) performing a monadic translation with the state monad [10] and
(2) taking the term model of the result, i.e., expanding the monadic constructs
inserted by the translation to code. Similarly, using the cost monad instead

154 Cost Recurrences for DML Programs

of the state monad, we can transform a program such that a cost counter is
maintained.

The cost monad pairs computations that result in a value of type τ with a
second component of a type C that expresses the cost of the computation; all we
need to know is that C is an ordered Abelian monoid6 (C, +,0,≤). We write C α
as a type abbreviation for α×C. A call-by-value monadic translation with a cost
monad that is based on C turns a function of type Πa0 : γ0. . . Π ak : γk . ρ1 → ρ2

into a function of type Π a0 : γ0. . .Π ak : γk . ρ1 → C ρ2. The intended meaning
is that the transformed function not only returns the result value, but also the
cost of computing it.

The cost monad can be defined by specifying two language constructs, valC

and letC, which a monadic translation inserts into a program text. The typing
rule for valC is

φ; Γ ` e : ρ
(ty-monadic-val)

φ; Γ ` valC e : C ρ

The construct valC is used to inject a value v : ρ into C ρ as 〈v,0〉—values do
not require any computation and thus incur no cost. The typing rule for letC is

φ; Γ ` e1 : C ρ1 φ; Γ, x : ρ1 ` e2 : C ρ2
(ty-monadic-let)

φ; Γ ` letC x = e1 in e2 end : C ρ2

In (letC x = e1 in e2 end), the expression e1 is evaluated to a result v1 wrapped
with a cost z1. To calculate e2, the unwrapped v1 is used, yielding 〈v2, z2〉. The
final result of the let expression is 〈v2, z1 + z2〉.

The monadic translation provides only the infrastructure for tracking cost,
but does not assign costs to any program constructs. This assignment of costs
is done by inserting a monadic construct costz with typing rule

φ; Γ ` e : C ρ z ∈ C
(ty-monadic-cost)

φ; Γ ` costz e : C ρ

into the transformed program. costz is particular to the cost monad: It adds z
to the cost component of the value it is applied to.

A cost-conscious version of a program, i.e., a program that keeps track of
the cost incurred by calls to user-defined functions and uses of constructors, is
generated as follows: We first perform a monadic translation of the program
and then enclose (1) each application of a user-defined function F with costcF ,
and (2) each application of a constructor c with costcc .

Figure 5.9 displays the combined translation (·)∗ for function bodies. A pro-
gram p of the form given in Figure 5.8 is translated into p∗ by applying the
monadic translation to all function bodies and the body of the program, and
changing every result type ρl2 in the type annotation of the fixed-point defini-
tion to C ρl2. The cost-conscious version can easily be expressed in DMLΠ

0 (C):
Figure 5.10 shows how to expand valC, letC and costz.

6In an ordered monoid, the ordering ≤ is compatible with the monoid’s operation, i.e.,
if a ≤ b then a + c ≤ b + c. Relevant examples of ordered monoids are (N, +, 0,≤) and
(R, +, 0,≤).

5.4 Formal development 155

The following theorem shows that the cost translation is well-behaved:

Theorem 5.2 Let ·; · ` p : ρ be derivable. Then

1. judgment ·; · ` p∗ : C ρ is derivable.

2. p −→[] v iff p∗ −→[] 〈v, z〉 for some z ∈ C.

The proof is deferred to Appendix 5.B.2.

x∗ = valC x

〈〉∗ = valC 〈〉
〈e1, e2〉∗ = letC x1 = e1

∗ in
letC x2 = e2

∗

in valC 〈x1, x2〉 end

(c[i1] . . . [ik])∗ = costcc (valC (c[i1] . . . [ik]))

(c[i1] . . . [ik](e))∗ = letC x = e∗

in costcc (valC (c[i1] . . . [ik](x))) end

(case e of ms)∗ = letC x = e∗

in case x of ms∗ end

(p ⇒ e | ms)∗ = p ⇒ e∗ | ms∗

(let x = e1 in e2 end)∗ = letC x = e1
∗

in e2
∗ end

(F [i1] . . . [ik](e))∗ = letC x = e∗

in costcc (F [i1] . . . [ik](x)) end

Figure 5.9: Monadic translation of function bodies

5.4.3 A language of recurrence equations

The language of recurrence equations is based on the natural numbers part N of
the constraint domain Z and the cost domain C. Natural numbers and tuples
thereof serve as abstractions of input size, and therefore are used as arguments
of recurrence equations. The result of a recurrence equation represents cost of
computation and is expressed in C.

Syntax and types

We describe a system of recurrence equations with the language given in Fig-
ure 5.11. Because we extract recurrences from programs that are not mutual

156 Cost Recurrences for DML Programs

valC e ≡ 〈e,0〉
letC x = e1 ≡ case e1 of
in e2 〈x, z1〉 ⇒ case e2 of
end 〈v, z2〉 ⇒ 〈v, z1 + z2〉
costz e ≡ case e of

〈x, z′〉 ⇒ 〈x, z + z′〉

Figure 5.10: Monadic constructs as syntactic sugar

recursive, neither is a system of recurrence equations, i.e., a body tl may only
contain recurrence-equation names F c

1 . . . F c
l . Conditionals, which so far have

been pretty printed, are introduced with the keyword cond followed by a num-
ber of branches. Within a branch, the first constraint Φ1 represents the guard
of the branch, whereas the second constraint Φ2 represents a where-clause. The
scope of the quantification (we write ~a : ~σ as shorthand for the quantification
over variables a1 : σ1 . . . ak : σk) extends both over Φ2 and the branch body t.
For ∀~a : ~σ.Φ2 we require that for any interpretation of its free variables, there are
only finitely many instantiations of ~a such that Φ2 is satisfied; this requirement
is met for recurrence equations extracted from DML programs in which the data
types are enriched “sensibly” as required in the beginning of Section 5.3.1.

index types σ ::= N ||| 1 ||| σ1 × σ2

types ν ::= C ||| σ → ν
definitions E ::= F c

1 a0 a1 . . . al1 = t1
...

F c
k a0 a1 . . . alk = tk

body t ::= z ||| t1 + t2 ||| F c ~ı ||| (cond brs)
index objects i, j ::= a ||| f(i) ||| 〈〉 ||| 〈i, j〉 ||| fst(i) ||| snd(i)
branches brs ::= br ||| br | brs
branch br ::= (Φ1 → ∀~a : ~σ.Φ2 → t)

Figure 5.11: Syntax of recurrence equations

The rationale behind the shape of recurrence equation types is that for a
function Fl of type

Π a0 : γ0 . Π a1 : γ1. . . Π ak : γk . ρ1 → ρ2,

the associated cost recurrence F c
l should have type

γ̃0 → γ̃1 → . . . γ̃k → C,

5.4 Formal development 157

where ·̃ maps an index sort to the associated index type. For example {a :
N × N | fst(a) ≤ snd(a)} is mapped to N × N.

The formal definition of ·̃ and its extension to contexts Γ is deferred to
Appendix 5.B.3.

The body of a recurrence equation F c
k is typed using the judgment

ϕ; ∆ ` e : ν

in which ϕ maps index types σ to index variables, and ∆ assigns recurrence-
equation types to function names. Figure 5.12 gives typing rules, all of which
are straightforward. So are the rules for checking the type of an index object
(ϕ ` i : σ) and the wellformedness of a constraint (ϕ ` Φ), which have been
omitted.

Based on the typing rules for the body of a recurrence equation, we define
what it means for a system of recurrence equations to be well-typed with respect
to the program they have been extracted from.

Definition 5.3 Let p be a program and context Γ assign every Fl defined in
p to its declared type. A system of recurrence equations E is well-typed with
respect to p if for every

F : Π a0 : γ0 . Π a1 : γ1. . . Π ak : γk . ρ1 → ρ2

defined in p , for the extracted recurrence equation

F c a0 . . . ak = t

we have
a0 : γ̃0, . . ., ak : γ̃k; Γ̃ ` t : C.

Semantics

We give a simple denotational semantics to the language of recurrence equations.
A recurrence equation defining a function of type

σ0 → σ1 → . . . σk → C

is interpreted in the function domain

[I[[σ0]] → I[[σ1]] → . . . I[[σk]] → C⊥].

(Because all I[[σl]] are discrete cpos, such functions are necessarily continuous).
Here I[[·]] is the canonical semantics given to ground index objects i and index

types σ by the constraint domain Z; for an index substitution θ that maps index
variables to ground index objects, we write I[[θ]] for the corresponding mapping
into Z. With C⊥ we denote the domain that results from interpreting C as a
discrete domain and lifting it in the canonical way—in the semantics definition

158 Cost Recurrences for DML Programs

(ty-re-const)
ϕ; ∆ ` z : C

ϕ; ∆ ` e1 : C ϕ; ∆ ` e2 : C
(ty-re-plus)

ϕ; ∆ ` e1 + e2 : C

∆(F) = σ0 → . . . → σk → C
ϕ ` i0 : σ0 . . . ϕ ` ik : σk

(ty-re-app)
ϕ; ∆ ` F c i0 . . . ik : C

ϕ ` Φ11 ϕ, ~a1 : ~σ1 ` Φ12 ϕ, ~a1 : ~σ1; ∆ ` e1 : C
...

ϕ ` Φk1 ϕ, ~ak : ~σk ` Φk2 ϕ, ~ak : ~σk; ∆ ` ek : C
(ty-re-cond)

ϕ; ∆ ` (cond Φ11 → ∀ ~a1 : ~σ1.Φ12 → e1

...
| Φk1 → ∀ ~ak : ~σk.Φk2 → ek) : C

Figure 5.12: Typing rules for recurrence equations

T [[z]]Ψθ = xzy
T [[t1 + t2]]Ψθ = T [[t1]]Ψθ +⊥ T [[t2]]Ψθ

T [[F c
l i0 . . . ik]]Ψθ = Ψ(F c

l) (I[[i0[θ]]]) . . . (I[[ik[θ]]])
T [[cond br0 | . . . | brk]]Ψθ = max⊥{B[[br0]]Ψθ, . . . ,B[[brk]]Ψθ}

B[[(Φ1 → ∀~a : ~σ.Φ2 → t)]]Ψθ =

x0y if Φ1[θ] does not hold
max⊥{T [[t]]Ψθ[~a 7→ ~z] |

~z ∈ I[[~σ]] ∧ Φ2[θ[~a 7→ ~z]]}
if Φ1[θ] holds.

Figure 5.13: Semantics of recurrence equations

we also mark operations on C that have been lifted in the canonical way by
subscripting them with ⊥.

Figure 5.13 gives a semantics T [[·]]Ψθ for recurrence-equation expressions,
where Ψ is a mapping from recurrence-equation names to functions and θ an
index substitution that maps index variables to ground index objects. The
semantics treats a conditional by taking the maximum of the values returned
by the branches of the conditional. If the guard of a branch does not hold,

5.4 Formal development 159

the branch returns 0. Otherwise, all possible values for the universally quanti-
fied index variables in the branch are tried out and the maximum is returned.
Because, as required in Section 5.4.3, there is at most a finite number of such
values, the semantics of a branch is well-defined (we assume that max⊥∅ = x0y).

Given the definition of a recurrence equation

F ca0 a1 . . . ak = t

and a mapping Ψ that ranges over all names of recurrence-equations declared
previously to F c (recall that we do not consider mutually recursive systems of
recurrence equations), then the semantics of the defined function is the fixed
point of the functional

λF .λn0 n1 . . . nk.T [[t]](Ψ[F c 7→ F])[a0, . . . , ak 7→ n0, . . . nk].

This semantics of a single recurrence equation extends naturally to a system
E of recurrence equations and yields a mapping from recurrence-equation names
to functions; we write S[[E]].

5.4.4 The extraction algorithm

We extract cost recurrences from DMLΠ
0 (Z) type derivations. A DMLΠ

0 (Z)
typing judgment is of the form

φ; Γ ` e : τ,

where φ is an index context and Γ is a variable context (see Appendix 5.A.1
for details). The central part of the extraction algorithm operates on the type
derivations for the bodies of function definitions F1 . . . Fn: From an expression
e of first-order type that occurs within the body of a function definition, a
recurrence-equation expression t of type C is extracted. The algorithm is defined
in form of a judgment

φ; Γ ` e : ρ I t.

Consider the following definition of a function F (see Figure 5.8):

let F = fix F : Π a0 : γ0. . . Π al : γl . ρ1 → ρ2.
λ~a : ~γ . lam x : ρ1 . case x of 〈x0, . . ., xk〉 ⇒ e

Assuming that e is typed as φ; Γ ` e : ρ2, the extracted recurrence equation is
F c a0 . . . al = t, where t results from φ; Γ ` e : ρ2 I t.

Before we give a complete description of the extraction of cost recurrences,
we examine how an index context can be turned into a constraint over the
declared index variables.

Turning an index context into a constraint

DMLΠ
0 (Z) expressions are typed under a “normal” context and an index context

of form
φ ::= · ||| φ, a : γ ||| φ, P

160 Cost Recurrences for DML Programs

(See Figure 5.3). Basically, the index context collects constraints over index
variables. It is straightforward to define a function C that rewrites an index
context φ into a constraint Φ such that sort definitions are “flattened out”, i.e.,

C(a : {k : N | k > 0}, b : {k : {k′ : N | k′ > 1} | k ≥ a}) = a > 0 ∧ b > 1 ∧ b ≥ a

A precise definition of C is deferred to Appendix 5.B.3.
A useful operation over constraints is to project out a certain set of variables,

i.e., “hide” all remaining variables by existential quantification. We write ∃~a.Φ
for the constraint that results from existentially quantifying over the variables ~a
in Φ. With a constraint solver such as used for DML type-checking, existentially
quantified variables usually are simplified away.

Often equalities can be derived from a constraint Φ. Let ~a be a subset of
the free variables in Φ; we define a substitution θ := mk subst~a(Φ) as follows:
For all a ∈ ~a such that i is an index expression without free variables in ~a, and
a = i can be derived from Φ, we have θ(a) = i.

Definition of the extraction algorithm

The definition of the judgment φ; Γ ` e : ρ I t is given in Figure 5.14.
Most rules are fairly straightforward:

• Accessing a variable or the unit value has no cost.

• For pairs and let expressions, the total cost is the sum of the costs incurred
by their subexpressions.

• The cost of executing a user-defined function F has three components: the
cost of evaluating its argument, the cost cF of calling the function, and
the cost incurred by evaluating the function. For the latter component, a
recursive call with the appropriate arguments is generated.

• The use of a constructor c costs cc plus the cost of evaluating a possible
argument.

A case expression is handled by converting it into a conditional. The real
heart of the algorithm is the rule that handles branches of case expressions.
This rule extracts a conditional branch from a type derivation for

φ; Γ ` (p ⇒ e) : ρ′ ⇒ ρ.

This judgment types the branch of a case expression that matches a pattern p
against a value of type ρ′; the expression e in the branch has the same type ρ
as the total case expression. We go through the premises of the corresponding
extraction rule one by one:

1. The judgment p ↓ ρ′ B (φ′; Γ′) (see Figure 5.16 on page 167) is defined as
part of the DMLΠ

0 (C) type-checking rules. It generates an index context

5.4 Formal development 161

φ; Γ ` e : τ1 I t φ |= τ1 ≡ τ2
(extr-eq)

φ; Γ ` e : τ2 I t

(extr-var)
φ; Γ ` x : τ I 0

(extr-unit)
φ; Γ ` 〈〉 : 1 I 0

φ; Γ ` e1 : τ1 I t1 φ; Γ ` e2 : τ2 I t2
(extr-pair)

φ; Γ ` 〈e1, e2〉 : τ1 × τ2 I t1 + t2

φ; Γ ` e1 : ρ1 I t1 φ; Γ, x : ρ1 ` e2 : ρ2 I t2
(extr-let)

φ; Γ ` let x = e1 in e2 end : ρ2 I t1 + t2

φ; Γ ` e : ρ1 I t
(extr-app)

φ; Γ ` F [i1] . . . [ik](e) : ρ2 I t + cF + (F ci1 . . . ik)

(ty-cons-wo)
φ; Γ ` c[i1] . . . [in] : ρ I cc

φ; Γ ` e : τ I t
(ty-cons-w)

φ; Γ ` c[i1] . . . [in](e) : ρ I t + cc

φ; Γ ` e : ρ′ I t
φ; Γ ` (p0 ⇒ e0) : ρ′ ⇒ ρ I br1

...
φ; Γ ` (pk ⇒ ek) : ρ′ ⇒ ρ I brk

(ty-case)
φ; Γ ` (case e of p0 ⇒ e0 | . . . | pk ⇒ ek) : ρ

I t + (cond br1 | br2 | . . . | brk)

p ↓ ρ′ B (φ′; Γ′)
φ, φ′; Γ, Γ′ ` e : ρ I t
Φ1 = ∃(dom(φ, φ′)\var(ρ′)).C(φ, φ′)
θ = mk substdom(φ′)(C(φ′))
Φ2 = ∃(dom(θ)).C(φ′)

(ty-branch)
φ; Γ ` (p ⇒ e) : ρ′ ⇒ ρ

I Φ1 → ∀(dom(φ′)\dom(θ)).Φ2 → t[θ]

Figure 5.14: Extraction algorithm

162 Cost Recurrences for DML Programs

φ′ and a variable context Γ′ that describe the index variables and normal
variables occurring in the pattern p.

For example, after translation into DMLΠ
0 (Z), the pattern of the sec-

ond branch in flatten (Section 5.3.2) is lcons [m′][n1][n2]〈xs, rest〉; type-
checking under index context φ = m : N, n : N generates the following
index context:

φ′ = m′ : N, n1 : N, n2 : N, m = m′ + 1, n = n1 + n2.

2. DMLΠ
0 (C) type-checking types the branch expression under the contexts

φ, φ′ and Γ, Γ′. From the resulting type derivation, a recurrence-equation
expression t is extracted.

For the second branch of flatten, this yields

t = 2 + (append c n1 n2) + (flattenc m′ n2)

3. The guard of the branch Φ1 is derived by projecting out from C(φ, φ′) over
the index variables contained in ρ′.

In flatten, the only index variable in ρ′ = llist(m,n) are m and n; pro-
jecting them out yields m > 0. For n there is no information, because we
only know that n ∈ N, and (as pointed out in Section 5.3.1) we require all
indices to be of subsorts of N anyways.

4. All index variables declared in φ′ that can be expressed in terms of index
variables from φ should be are eliminated using substitution θ: In the
branch returned by the rule, the body is t[θ] rather than t.

For the second branch of flatten, we can infer that m′ = m − 1, so
θ = [m′ 7→ m − 1].

5. Index variables declared in φ′ for which no equality constraint can be
derived have to be restricted. This is done by (1) hiding the variables
dom(θ) via existential quantification in C(φ′), and (2) universally quan-
tifying over the remaining variables of dom(φ′), binding variables both
in Φ2 and in t[θ]. Conjuncts in Φ2 containing none of the universally
quantified variables can be dropped (such conjuncts are guaranteed to be
satisfied whenever Φ1 is satisfied).

For the second branch of flatten, existential quantification over m′ in φ′

yields, after normalization, m > 0∧n = n1 + n2. We universally quantify
over n1 and n2, and drop the conjunct m > 0.

To complete the running example: The second branch of flatten gives rise
to the following branch of the conditional in flattenc:

m > 0 → ∀n1, n2 : N.n1 + n2 = n →
2 + (append c n1 n2) + (flattenc (m − 1) n2)

5.5 Related work 163

5.4.5 Checking whether the bound is a recurrence

It remains to check whether we really extract a recurrence, i.e., a function
defined in terms of its value on smaller arguments. For the presented lan-
guage without mutual recursion (for handling mutual recursion, Xi’s most re-
cent work [14] could be adapted—see Section 5.5), this can be conveniently done
during extraction when generating a recursive call F c i1 . . . ik inside the body
that defines F c a1 . . . ak: The extraction yields a recurrence if for every such
call,

〈i1, . . . , in〉 < 〈a1, . . . , an〉
can be derived from the collected constraints for a well-founded order < on
tuples. In practice, one could for example fix the usual lexicographic ordering,
requiring the user to enrich data correspondingly, or leave the user a choice as
to which ordering should be used.

5.4.6 Correctness

Theorem 5.4 Let functions F1, . . . , Fk be a well-typed block of function def-
initions. Let E be the system of recurrence equations for F c

1 , . . . , F c
k extracted

from these definitions. Let p be a well-typed program consisting of these function
definitions F1, . . . , Fk and a program body Fl[z1] . . . [zl′](u), where z1, . . . , zl′ are
ground index objects and u is a value. Then:

1. E is well-typed with respect to p.

2. If T [[F c
l z1 . . . zl′]](S[[E]])[] = xz′y for some z′ ∈ C, then there exists a

value v and a z ∈ C with z ≤ z′ such that p∗ evaluates to 〈v, z〉.

3. If the test described in Section 5.4.5 has been passed during the extrac-
tion of E, then the denotation of F c

l z1 . . . zk under environment S[[E]] is
guaranteed to yield xz′y for some z′ ∈ C rather than ⊥.

Part 1 and 3 of the theorem capture that the extracted system of cost bounds
is well-formed: The system is well-typed, and the application of a bound F c

l ,
to some legal input z1, . . . zl (legal in the sense that Fl[z1] . . . [zl](u) type-checks
for some u) is well-defined. Because the translation (·)∗ (see Section 5.4.2) cap-
tures our cost model—in the translated program, a cost counter z is calculated
together with the actual result—part 2 states that this bound indeed is a cost
bound for the execution of Fl[z1] . . . [zl](u). The proof of Theorem 5.4 is deferred
to Appendix 5.B.4.

5.5 Related work

We discuss related work regarding automated complexity analysis and type
systems.

Le Métayer’s ACE system [4] automatically extracts cost bounds for a subset
of FP, expressing the extracted bounds as FP programs. The system is based

164 Cost Recurrences for DML Programs

on program transformation. The first step transforms the original program
into a step-counting version, i.e., a program that takes the same arguments,
but returns the cost of computation for these arguments rather than the re-
sult. Conceptually, this transformation corresponds to a monadic translation
with the cost monad as presented in Section 5.4.2, where the cost component
is projected out from the final result. Subsequent transformation steps try to
transform the step-counting version into a composition of a cost bound and a
measure function, where the measure function is composed from selector func-
tions and the length function for lists. The principal goal of the ACE system
is to eliminate recursion in the cost bound, which corresponds to solving recur-
rences; the system’s library holds more than 1000 transformation rules, many
of them tailored to recognize patterns of recursion. The process of finding a
measure function is interleaved with the process of eliminating recursion and
cannot easily be decoupled. Pointing the system to a given measure thus seems
difficult. In contrast, our method separates concerns: The user can specify an
appropriate measure using dependent types, but no attempts are made to solve
the extracted cost recurrence.

Sands [9] treats cost analysis for higher-order call-by-name languages: Cost
bounds are extracted by program transformation and reasoning over programs;
his method can be seen as an extension of Le Métayer’s overall approach. Sands
focuses on the complications for cost analysis caused by higher-order functions
and call-by-name evaluation. No special concern is given to the abstraction of
data to data size, which is the main concern of our work.

Rosendahl [8] develops a system that uses abstract interpretation and pro-
gram transformation techniques to extract cost bounds from a first-order subset
of Scheme. An abstract interpretation is used to extend the set of S-expressions
with partially known structures—unknown parts of a structure are represented
by a special token that stand for all possible structures. Size measures are
expressed through “inverse size functions”: For a given size, an inverse size
function returns a partially known structure that approximates all data struc-
tures of that size. For example, for lists, the inverse size function generates for
size n a list containing n times the special token representing all possible struc-
tures. An initial cost bound for a program is achieved by (1) composing a suit-
able inverse size function with the abstract interpretation of the step-counting
version of the program and (2) taking the term model. Program transforma-
tion is then used to simplify this initial cost bound as much as possible. Liu
and Gómez [5] propose a method based on Rosendahl’s work in which they
use advanced program-transformation techniques to make the cost bound more
efficient and more accurate. Both methods requires the user to define the ab-
straction from data to data size. However, with dependent types, measures can
be expressed that are impossible to define with an inverse size function—the
measure used in Section 5.3.2 for analyzing flatten is one example.

Reistad and Gifford [7] use an effect type system for automatically inferring
cost estimates of functional programs written with combinators such as map
and fold. Two indexed data-types, lists and vectors, are built into the type
system. The effects associated with function types are cost expressions that may

5.6 Conclusion 165

depend on indices of list/vector arguments and on cost expressions associated
with function arguments. The main focus of Reistad and Gifford is to guide
parallelization of programs with the inferred cost estimates.

Crary and Weirich [3] present a decidable type system for the specifica-
tion and certification of resource consumption in the setting of Typed Assembly
Language. The type system simulates dependent types using sum and inductive
kinds. Essentially, it allows the user to annotate function arrows with resource
bounds (e.g., time bounds or space bounds) in terms of the shape of data ar-
guments and of cost bounds associated with function arguments. The focus lies
on the certification of resource bounds through type checking rather than the
derivation of resource bounds.

Chin and Khoo [2] propose sized types in which size information is expressed
with Presburger formulas. They use a a constraint solver to infer size informa-
tion. It is very likely that complexity analysis in the style of this paper could
be integrated into their setting.

Recently, Xi [14] presented an extension of the DML type system that allows
program termination verification. The basic observation is the same as for our
work, namely that DML types can be used to encode a notion of input size. For
each function, the programmer supplies a metric in terms of the input indices;
if type checking succeeds, the metrics are guaranteed to specify a termination
order. Both higher-order functions and general recursion are handled. We
believe that our work would benefit substantially from reformulating it in this
extended type system: As an immediate benefit, extracted cost bounds could
be easily verified to be recurrences also for general recursion. Also an extension
of this work to higher-order functions, if possible, should be easier within Xi’s
new type system.

5.6 Conclusion

We have presented a method for automatically extracting cost recurrences from
first-order DML programs. The distinct feature of our method is the use of
dependent types to describe a size measure that abstracts from data to data
size. The user has to choose an appropriate size measure for our method to
successfully extract a cost recurrence. Because of the high expressiveness of
its types, DML offers high flexibility for tailoring size measures. The required
DML type annotations usually are easy to find: Because size measures encode
shape information of data types, they closely correspond to the programmer’s
intuitive understanding of how his program works. Our method harnesses this
intuition for automatic cost analysis.

Acknowledgments I am indebted to Olivier Danvy, Julia Lawall and Zhe
Yang for their encouragement and fruitful discussions on the subject of this
work. Further thanks are due to Olivier Danvy, Andrzej Filinski and Julia
Lawall for their numerous constructive comments. I am also grateful to the
anonymous referees and Neil Jones for further comments.

166 Cost Recurrences for DML Programs

5.A DML

In the following we give a short overview over the formalization of DMLΠ
0 (C)

that is used in this article. We gloss over details such as type-formation rules,
well-formedness of contexts, and type-equivalence. The complete formalization
can be found in Xi’s PhD thesis [12, Chapters 2–4].

5.A.1 DML typing rules

A typing judgment for DMLΠ
0 (C) has the form

φ; Γ ` e : τ,

where φ is an index context and Γ a (normal) context; typing is with respect to
a signature S that assigns types to constructors. In the following, we focus on
typing rules that treat indices—the remaining rules are fairly standard.

The treatment of indices is based on a judgment φ ` i : γ that expresses
that i : γ can be derived from the index context φ; to establish this judgment,
constraint solving is required. The judgment is used, for example, to express
type-soundness of an index substitution θ under a context φ as φ ` θ : φ′

(Figure 5.15a), which basically says that, assuming the context given by φ sub-
stitution θ assigns to all index variables declared in φ′ an index object of the
declared sort. The following lemma [12, Chapter 3] shows a useful link be-
tween type-soundness with respect to an index context φ and satisfyability with
respect to φ:

Lemma 5.5 Let φ and φ′ be index contexts and θ an index substitution such
that φ ` θ : φ′ is derivable. Then, if φ, φ′ |= Φ is derivable, also φ |= Φ[θ] is
derivable.

Figure 5.15b defines a corresponding judgment for general substitutions; it is
straightforward to show that if φ; Γ ` θ : (φ′; Γ′) holds for a substitution θ, then
φ ` θφ : φ′ holds for its restriction θφ to index variables.

Figure 5.16 and Figure 5.17 on page 168 display the typing rules for DMLΠ
0 (C).

The judgment p ↓ τ B (φ; Γ) defined in Figure 5.16 on the next page is used for
typing pattern matching over an expression of type τ : Type information about
variables and index variables occurring in pattern p is gathered. Figure 5.17
on page 168 defines the “top-level” typing judgment φ; Γ ` e : τ for DMLΠ

0 (C).
The rule for type equality ty-eq uses a judgment φ |= τ1 ≡ τ2 that is defined as
the congruent extension of φ |= i = j from index objects to types. The rules
ty-cons-wo, ty-cons-w and ty-iapp, for constructors and application to an index
object, respectively, examine whether index objects are indeed of the required
sort; when typing a constructor, the judgment for establishing type soundness
of index substitutions is used to account for possible sequential dependencies
among the sorts pertaining to the arguments of the constructor.

The following theorem [12, Chapter 4] shows that types are preserved under
a type-sound substitution.

5.A DML 167

(isubst-empty)
φ ` [] : ·

φ ` θ : φ′ φ ` i : γ[θ]
(isubst-ivar)

φ ` θ[a 7→ i] : φ′, a : γ

φ ` θ : φ′ φ |= P [θ]
(subst-iprop)

φ ` θ : φ′, P

a: Type-soundness of an index substitution

(subst-empty)
φ; Γ ` [] : (·; ·)

φ; Γ ` θ : (φ′; Γ′) φ; Γ ` e : τ [θ]
(subst-var)

φ; Γ ` θ[x 7→ e] : (φ′; Γ′, x : τ)

φ; Γ ` θ : (φ′; Γ′) φ ` i : γ[θ]
(subst-ivar)

φ; Γ ` θ[a 7→ i] : (φ′, a : γ; Γ′)

φ; Γ ` θ : (φ′; Γ′) φ |= P [θ]
(subst-iprop)

φ; Γ ` θ : (φ′, P ; Γ′)

b: Type-soundness of a substitution (general)

Figure 5.15: Type-soundness of a substitution

(pat-var)
x ↓ τ B (·; x : τ)

(pat-unit)
〈〉 ↓ 1 B (·; ·)

p1 ↓ τ1 B (φ1; Γ1) p2 ↓ τ2 B (φ2; Γ2)
(pat-prod)

〈p1, p2〉 ↓ τ1 × τ2 B (φ1, φ2; Γ1, Γ2)

S(c) = Π a1 : γ1. . .Π ak : γk . δ(i)
(pat-cons-wo)

c[a1] . . . [ak] ↓ δ(j) B (a1 : γ1, . . ., ak : γk, i = j; ·)

S(c) = Π a1 : γ1. . .Π ak : γk . τ → δ(i) p ↓ τ B (φ; Γ)
(pat-cons-w)

c[a1] . . . [ak](p) ↓ δ(j) B (a1 : γ1, . . ., ak : γk, i = j, φ; Γ)

Figure 5.16: Typing rules for patterns in DMLΠ
0 (C)

168 Cost Recurrences for DML Programs

φ; Γ ` e : τ1 φ |= τ1 ≡ τ2
(ty-eq)

φ; Γ ` e : τ2

Γ(x) = τ
(ty-var)

φ; Γ ` x : τ

S(c) = Π a1 : γ1. . .Π ak : γk . δ(i)
φ ` [a1, . . . , ak 7→ i1, . . . , ik] : (a1 : γ1, . . . , ak : γk)

(ty-cons-wo)
φ; Γ ` c[i1] . . . [ik] : δ(i[a1, . . . , ak 7→ i1, . . . , ik])

S(c) = Π a1 : γ1. . . Π ak : γk . τ → δ(i)
φ ` [a1, . . . , ak 7→ i1, . . . , ik] : (a1 : γ1, . . . , ak : γk)

φ; Γ ` e : τ [a1, . . . , ak 7→ i1, . . . , ik]
(ty-cons-w)

φ; Γ ` c[i1] . . . [ik](e) : δ(i[a1, . . . , ak 7→ i1, . . . , ik])

(ty-unit)
φ; Γ ` 〈〉 : 1

φ; Γ ` e1 : τ1 φ; Γ ` e2 : τ2
(ty-prod)

φ; Γ ` 〈e1, e2〉 : τ1 × τ2

φ; Γ ` e : τ ′

φ; Γ ` (p1 ⇒ e1) : τ ′ ⇒ τ
...

φ; Γ ` (pk ⇒ ek) : τ ′ ⇒ τ
(ty-case)

φ; Γ ` (case e of p1 ⇒ e1 | . . . | pk ⇒ ek) : τ

p ↓ τ ′ B (φ′; Γ′) φ, φ′; Γ, Γ′ ` e : τ
(ty-branch)

φ; Γ ` (p ⇒ e) : τ ′ ⇒ τ

φ, a : γ; Γ ` e : τ
(ty-ilam)

φ; Γ ` (λa : γ . e) : Π a : γ . τ

φ; Γ ` e : Π a : γ . τ φ ` i : γ
(ty-iapp)

φ; Γ ` e[i] : τ [a 7→ i]

φ; Γ, x : τ1 ` e : τ2
(ty-lam)

φ; Γ ` (lam x : τ1 . e) : τ1 → τ2

φ; Γ ` e1 : τ1 → τ2 φ; Γ ` e2 : τ1
(ty-app)

φ; Γ ` e1(e2) : τ2

φ; Γ ` e1 : τ1 φ; Γ, x : τ1 ` e2 : τ2
(ty-let)

φ; Γ ` let x = e1 in e2 end : τ2

φ; Γ, f : τ ` e : τ
(ty-fix)

φ; Γ ` (fix f : τ.e) : τ

Figure 5.17: Typing rules for DMLΠ
0 (C)

5.A DML 169

Theorem 5.6 (Substitution) If φ, φ′; Γ, Γ′ ` e : τ and φ; Γ ` θ : (φ′; Γ′) are
derivable, then φ; Γ ` e[θ] : τ [θ] is derivable.

5.A.2 DML semantics

Figure 5.18 on the next page describes a natural semantics for DMLΠ
0 (C): e −→

v means that e reduces to a value v, where

v ::= c[i1] . . . [ik] ||| c[i1] . . . [ik](v) ||| 〈〉 ||| 〈v1, v2〉 ||| (lam x : τ . e) ||| (λa : γ . v).

Notice that type indices are never evaluated. The language design decision is
that there is no direct interaction between indices and code execution; type
indices are used only for type-checking.

The rule that describes the semantics of a case expression makes use of a
judgment match(v, p) =⇒ θ defined in Figure 5.19 on page 171: If a value
v matches a pattern p, a substitution for the free variables in p is returned.
Notice that the semantics of case expressions is nondeterministic: an arbitrary
matching arm is picked.

Xi [12, Chapter 4] proves the following theorem connecting the type system
and the semantics:

Theorem 5.7 (Relating types and semantics) 1. Assume that there is
no a ∈ dom(φ) that occurs in pattern p. If φ; Γ ` v : τ , p ↓ τ B (φ′; Γ′)
and match(p, v) =⇒ θ, then φ; Γ ` θ : (φ′; Γ′) is derivable.

2. Given e,v in DMLΠ
0 (C) such that e −→ v is derivable. If φ; Γ ` e : τ is

derivable, then φ; Γ ` v : τ is derivable.

170 Cost Recurrences for DML Programs

(ev-cons-wo)
c[i1] . . . [ik] −→ c[i1] . . . [ik]

e −→ v
(ev-cons-w)

c[i1] . . . [ik](e) −→ c[i1] . . . [ik](v)

e1 −→ v1 e2 −→ v2
(ev-prod)

〈e1, e2〉 −→ 〈v1, v2〉

e0 −→ v0 match(v0, pl) =⇒ θ for some 1 ≤ l ≤ k el[θ] −→ v
(ev-case)

case e0 of (p1 ⇒ e1 | . . . | pk ⇒ ek) −→ v

e −→ v
(ev-ilam)

(λa : γ . e) −→ (λa : γ . v)

e −→ (λa : γ . v)
(ev-iapp)

e[i] −→ v[a 7→ i]

(ev-lam)
(lam x : τ . e) −→ (lam x : τ . e)

e1 −→ (lam x : τ . e) e2 −→ v2 e[x 7→ v2] −→ v
(ev-app)

e1(e2) −→ v

e1 −→ v1 e2[x 7→ v1] −→ v
(ev-let)

let x = e1 in e2 end −→ v

(ev-fix)
(fix f : τ.e) −→ e[f 7→ (fix f : τ.e)]

Figure 5.18: Natural Semantics of DMLΠ
0 (C)

5.A DML 171

(mat-var)
match(x, v) =⇒ [x 7→ v]

(mat-unit)
match(〈〉, 〈〉) =⇒ []

match(p1, v1) =⇒ θ1 match(p2, v2) =⇒ θ2

(mat-prod)
match(〈p1, p2〉, 〈v1, v2〉) =⇒ θ1θ2

(mat-cons-wo)
match(c[a1] . . . [ak], c[i1] . . . [ik]) =⇒ [a1 7→ i1, . . . , ak 7→ ik]

match(p, v) =⇒ θ
(mat-cons-w)

match(c[a1] . . . [ak](p), c[i1] . . . [ik](v)) =⇒ θ[a1 7→ i1, . . . , ak 7→ ik]

Figure 5.19: Semantics of pattern matching in DMLΠ
0 (C)

172 Cost Recurrences for DML Programs

5.B Formal development

5.B.1 A modified semantics a first-order fragment of DML

Figure 5.20 displays a modified semantics in which an environment of function
definitions is maintained. Rule ev-mod-fundef shows how the environment is
built up from function definitions, rule ev-mod-fapp shows how the environment
is used. The judgment match(v, p) =⇒ θ in rule ev-mod-case is defined as
in the standard semantics (see Figure 5.19 on the preceding page): If value v
can be matched against pattern p, the corresponding substitution θ of the free
variables in p is returned.

We present a proof of Theorem 5.1 on page 153, which states that the original

(ev-mod-cons-wo)
c[i1] . . . [ik] −→Θ c[i1] . . . [ik]

e −→Θ v
(ev-mod-cons-w)

c[i1] . . . [ik](e) −→Θ c[i1] . . . [ik](v)

e1 −→Θ v1 e2 −→Θ v2
(ev-mod-prod)

〈e1, e2〉 −→Θ 〈v1, v2〉

e0 −→Θ v0

match(v0, pl) =⇒ θ for some 1 ≤ l ≤ k
el[θ] −→Θ v

(ev-mod-case)
case e0 of (p1 ⇒ e1 | . . . | pk ⇒ ek) −→Θ v

e1 −→Θ v1 e2[x 7→ v1] −→Θ v
(ev-mod-let)

let x = e1 in e2 end −→Θ v

e −→Θ[F 7→eF] v
(ev-mod-fundef)

let F = fix F : τ.eF in e end −→Θ v

e −→Θ v′

Θ(F) = λ~a : ~γ . lam x : ρ . body
body [~a 7→~ı][x 7→ v′] −→Θ v

(ev-mod-fapp)
F [~ı](e) −→Θ v

Figure 5.20: Natural Semantics of first-order fragment of DML

5.B Formal development 173

semantics of DMLΠ
0 (C) from Appendix 5.A.2 and the modified semantics of

Figure 5.20 on the facing page are equivalent.
Given a program p of the form described in Figure 5.8 on page 153, the

modified semantics builds up an environment from the function definitions in
p (rule ev-mod-fundef), while the original semantics accumulates a substitution
(rule ev-let). The judgment ` Θ : Γ (Figure 5.21) is used to establish the
well-formedness of an environment Θ and to type the functions contained in it.

(ty-env-nil)
` [] : ·

` Θ : Γ ·; Γ, F : τ ` λ~a : ~γ . lam x : ρF . bodyF : τ
(ty-env-cons)

` Θ[F 7→ λ~a : ~γ . lam x : ρF . bodyF] : Γ, F : τ

Figure 5.21: Typing an environment

We further use a mapping (·)◦ to relate the environment of the modified
semantics with the substitution of the original semantics. Given an environment
` Θ : Γ, the substitution Θ◦ is defined as follows:

([])◦ = []
(Θ[F 7→ e])◦ = [F 7→ fix F : Γ(F).e] ◦ Θ◦

The following lemma relates the modified semantics with the original seman-
tics.

Lemma 5.8 Let ` Θ : ΓF and let e be a body expression such that φ; ΓF , Γ` e:ρ
is derivable. Then e[Θ◦] −→ v iff e −→Θ v.

Proof: The proof of the lemma is conducted by structural induction over the
derivation e[Θ◦] −→ v (proving the implication from left to right) and e −→Θ v
(right to left).

We show the implication from left to right, examining the last rule in a
derivation of e[Θ◦] −→ v. For rules ev-cons-wo, ev-cons-w, ev-prod, ev-case and
ev-let, the lemma follows immediately by induction hypothesis. For rules ev-
ilam, ev-iapp, ev-app and ev-fix observe, that because of the restricted shape
of e (see Figure 5.8 on page 153), only rule ev-ilam can occur as the last rule
in a derivation e[Θ◦] −→ v, namely for e = F [~ı](e′). Assume therefore that
(F [~ı](e′))[Θ◦] −→ v is derivable; an analysis of the shape of the corresponding
derivation (see Figure 5.18 on page 170 for the rules) shows that for some value
v1 there are derivations of e′[Θ◦] −→ v1 and body [~a 7→~ı][x 7→ v1][Θ◦] −→ v.
Using the induction hypothesis, we can derive that body [~a 7→~ı][x 7→ v1] −→Θ v,

174 Cost Recurrences for DML Programs

from which it follows easily with rule ev-mod-fapp (Figure 5.20 on page 172)
that F [~ı](e′) −→Θ v.

The other direction of the implication follows similarly. 2

We are now in a position to prove Theorem 5.1 on page 153.

Proof: Let program p be of the form given in Figure 5.8 on page 153 with
function definitions Fl = fix Fl : τl.el for 0 ≤ l ≤ k and program body e. With
the typing rules ty-let and ty-fix (Figure 5.17 on page 168) and the rules from
Figure 5.21 on the previous page a straightforward induction over the number
of function definitions shows that

` (F1 : τ1, . . ., Fk : τk) :

=:Θ︷ ︸︸ ︷
[F1 7→ e1, . . . , Fk 7→ ek].

Further, examining the modified and original semantics, we see:

p −→ v iff e[Θ◦] −→ v

p −→[] v iff e −→Θ v

With Lemma 5.8 on the preceding page it follows that p −→ v iff p −→[] v. 2

5.B.2 The monadic translation

We present a proof of Theorem 5.2 on page 155, which states that the monadic
translation preserves types and semantics.

The monadic translation preserves types

The following Lemma expresses the validity of the typing rules given for valC,
letC and cost in Section 5.4.2 with respect to the expansion of these constructs
as given in Figure 5.10 on page 156.

Lemma 5.9 The typing rules for valC, letC and cost as given in Section 5.4.2
are admissible (assuming that valC, letC and cost are expanded as described in
Figure 5.10 on page 156).

Proof: Straightforward by constructing the corresponding type derivations.
2

The first part of Theorem 5.2 on page 155 follows immediately from the
following lemma.

Lemma 5.10 For an expression e, if φ; Γ` e:ρ is derivable, then φ; Γ∗` e∗:C ρ is
derivable, where Γ∗ results from Γ by wrapping the result type of every function
declared in Γ with C .

5.B Formal development 175

Proof: The proof is conducted by structural induction on the derivation of
φ; Γ ` e : ρ (typing rules in Figure 5.17 on page 168). If the last rule of the
derivation is (ty-eq), then the lemma follows immediately by induction hypoth-
esis. Otherwise, because the remaining rules are syntax directed, we proceed by
examining all possible expressions e.

We present one interesting case, namely a function call φ; Γ ` F [~ı](e) : ρ.
Examining the possible derivations, we see that there exists ρ1 such that φ; Γ `
F [~ı] : ρ1 → ρ and φ; Γ ` e : ρ1 are derivable. The monadic translation of F [~ı](e)
is

letC x = e∗

in costcc (F [~ı](x)) end

Because of Lemma 5.9 on the facing page, rule ty-monadic-let (Section 5.4.2) is
admissible, hence we need to find derivations of φ; Γ` e∗ :C ρ1 and φ; Γ∗, x : ρ1`
costcF (F [~ı](x)) : C ρ. The former follows by induction hypothesis, the latter is
easily derived using rule ty-monadic-cost and the fact that φ; Γ ` F [~ı] : ρ1 → ρ
is derivable. 2

The monadic translation preserves semantics

In order to prove the second part of Theorem 5.2 on page 155, namely that the
monadic translation preserves semantics, we need the following lemma:

Lemma 5.11 Let ` Θ : ΓF and φ; ΓF , Γ ` e : ρ be derivable. Then e −→Θ v
iff there exists a z ∈ C such that e∗ −→Θ∗ 〈v, z〉 is derivable (where Θ∗(F) =
Θ(F)∗ for all F ∈ dom(Θ)).

Proof: The proof is conducted by structural induction over e −→Θ v (proving
the implication from left to right) and over e∗ −→Θ∗ 〈v, z〉 (right to left).

We show the case of a function call F [~ı](e). Assume that there exists a
derivation of F [~ı](e) −→Θ v. Rule inversion with ev-mod-fapp (Figure 5.20
on page 172) shows that there exists a value v′ such that e −→Θ v′ and
body [~a 7→~ı][x1 7→ v′] −→Θ v are derivable, where Θ(F) = λ~a : ~γ . lam x : ρ . body .
Consider now the translated term (F [~ı](e))∗ where the monadic constructs have
been expanded as shown in Figure 5.10 on page 156:

case e∗ of
〈x1, z1〉 ⇒ case (case F [~ı](x1) of 〈x3, z3〉 ⇒ 〈x3, z3 + cF 〉) of

〈x2, z2〉 ⇒ 〈x2, z1 + z2〉

By induction hypothesis, we know that there is a z′1 such that e∗ −→Θ∗ 〈v′, z′1〉;
with ev-mod-case it follows that we need to show a derivation of F [~ı](v′) −→Θ∗

〈v, z′3〉 for some z′3 ∈ C. Such a derivation can be constructed using ev-mod-fapp
and a derivation body∗[~a 7→~ı][x1 7→ v′] −→Θ∗ 〈v, z′3〉, which exists by induction
hypothesis. 2

We are now in a position to prove the second part of Theorem 5.2 on page 155:

176 Cost Recurrences for DML Programs

Proof: Let program p be of the form given in Figure 5.8 on page 153 with
function definitions Fl = fix Fl : τl.el for 0 ≤ l ≤ k and program body e. Let

Γ := F1 : τ1, . . ., Fk : τk

Θ := [F1 7→ e1, . . . , Fk 7→ ek]

Inspecting the type derivation of p it is easy to see that ` Θ : Γ and ·; Γ` e :ρ
are derivable. From the semantics we know that p −→[] v and p∗ −→[] 〈v′, z〉 iff
e −→Θ v and e∗ −→Θ∗ 〈v′, z〉, respectively. With Lemma 5.11 on the preced-
ing page we have that e −→Θ v iff e∗ −→Θ∗ 〈v, z〉, which concludes the proof. 2

5.B.3 Extraction of recurrence equations—preliminaries

An erasure from index sorts to index types

The erasure ·̃ maps an index sort to its associated index type by removing all
constraint-related information. It is defined as follows:

Ñ = N

1̃ = 1
γ̃1 × γ2 = γ̃1 × γ̃2

˜{a : γ | P} = γ̃

For a context Γ that maps function names to types we define Γ̃ such that

Γ̃(F c) = γ̃0 → γ̃1 → . . . γ̃k → C

if
Γ(F) = Π a0 : γ0 . Π a1 : γ1. . . Π ak : γk . ρ1 → ρ2.

For an index context φ we define φ̃ as follows:

·̃ = ·
φ̃, a : γ = φ̃, a : γ̃

φ̃, P = φ̃

The following lemma shows that the erasure preserves type soundness of index
substitutions.

Lemma 5.12 If φ ` θ : φ′ is derivable, then φ̃ ` θ : φ̃′ is derivable.

Proof: With a straightforward induction over the structure of sort γ, it is easy
to show that if φ ` i : γ is derivable, then φ̃ ` i : γ̃ is derivable. Using this fact,
one then can show the lemma with a straightforward induction over the length
of φ′. 2

5.B Formal development 177

Flattening index contexts into constraints

The algorithm for extracting cost recurrences uses a function C to rewrite an
index context into a conjunctive constraint by flattening subsort definitions.
A declaration i : {k : γ | P} is rewritten with the conjunction of (1) the
constraints imposed by the declaration i : γ and (2) the index proposition
P [k 7→ i]. The resulting constraint Φ := C(φ) is a quantifier-free conjunction of
equality constraints and index propositions:7

C(·) = >
C(φ, i : 1) = C(φ)
C(φ, i : N) = C(φ)
C(φ, i : γ1 × γ2) = C(φ, fst(i) : γ1, snd(i) : γ2)
C(φ, i : {k : γ | P}) = C(φ, i : γ) ∧ P [k 7→ i]
C(φ, P) = C(φ) ∧ P
C(φ, i = j) = C(φ) ∧ (i = j)

C is well-defined: Assuming a straightforward weight-function for sort defini-
tions, a termination order for C(φ) can be given as the lexicographic order of
the sum of the weights of all sort definitions in φ and the length of φ.

The following lemma expresses a useful correspondence between φ and C(φ):

Lemma 5.13 Let φ and φ′ be index contexts and θ an index substitution such
that dom(θ) = dom(φ′). Then

φ ` θ : φ′ iff φ |= C(φ′)[θ].

Proof: We conduct the proof by structural induction over φ. In the base case,
φ = ·, we have φ ` [] : · and φ |= >[θ] for all substitutions θ. Both directions
follow immediately (using dom(θ) = dom(φ′) from right to left).

A non-empty index context has form φ, a : γ or φ, P . We examine the first
of these cases, the second case follows by similar reasoning.

We have to show that

φ ` θ[a 7→ i] : φ′, a : γ iff φ |= C(φ′, a : γ)[θ[a 7→ i]],

which is equivalent to

(φ ` θ : φ′ and φ ` i : γ[θ]) iff (φ |= C(φ′)[θ] and φ |= C(a : γ)[θ[a 7→ i]]).

Assuming that for all i and γ

φ ` i : γ iff φ |= C(a : γ)[a 7→ i], (*)

we can conclude the proof using the induction hypothesis.

7Because of the way C handles product sorts, it actually is defined on contexts that assign
sorts to index objects rather than only index variables.

178 Cost Recurrences for DML Programs

It remains to show Equation (*). We use induction over the structure of γ
and demonstrate the case of a sort definition of form {k : γ | P}: We have to
show that

φ ` i : {k : γ | P} iff φ |= C(a : {k : γ | P})[a 7→ i]

Assuming the left-hand side, it follows with rule-inversion that φ ` i : γ and
φ |= P [k 7→ i]. Using the induction hypothesis, we further can derive that
φ |= C(a : γ)[a 7→ i], so obviously φ |= (C(a : γ ∧ P [k 7→ a]))[a 7→ i], which is
equivalent to φ |= (C(a : {k : γ | P}))[a 7→ i]. The direction from right to left
follows with similar reasoning steps. 2

5.B.4 Extraction of recurrence equations—correctness

In this section, we present a proof of the correctness of the extraction algorithm
for recurrence equations, as stated in Theorem 5.4 on page 163. As the theorem
is in three parts, we divide the proof into three parts.

The result of extraction is well-typed

The first part of Theorem 5.4 on page 163 follows directly from a lemma that
relates the type derivation of a function body to the type derivation of the
extracted recurrence-equation term.

Lemma 5.14 If φ; Γ` e :ρ I t is derivable for an expression e, then φ̃; Γ̃` t :C
is derivable.

Proof: The proof is conducted by structural induction over the type derivation
of e. In case the last rule of the type derivation is ty-eq, then the lemma follows
by induction hypothesis. Because the remaining typing rules for DMLΠ

0 (C) are
syntax directed, we proceed by examining the different syntactic forms of e as
given by the grammar in Figure 5.8 on page 153. We show the case of a function
call F [i0] . . . [ik] e; all other cases can be shown in a similar way.

For a function call F [i0] . . . [ik](e) , the extracted recurrence-equation term is
t := t′ + cF + (F c i0 . . . ik) where t′ has been extracted from e. The last rule of
the type derivation must be ty-app, i.e., for some ρ1, ρ2 there exist derivations

φ; Γ ` e : ρ1 (1)
φ; Γ ` F [i0] . . . [ik] : ρ1 → ρ2 (2)

Analyzing the shape of a type derivation for t, we see that we need to show

φ̃; Γ̃ ` t′ : C (1′)

φ̃ ` i0 : γ̃0 . . . φ̃ ` ik : γ̃k, (2′)

5.B Formal development 179

assuming that Γ(F) = Π a0 : γ0. . .Π ak : γk . ρ′1 → ρ′2. From (1), we can show
(1′) using the induction hypothesis. From (2), we can derive (2′): With a
straightforward induction on k one can show that (2) implies

φ ` [a0 7→ i0, . . . , ak 7→ ik] : (a0 : γ0, . . . , ak : γk).

With Lemma 5.12 on page 176, it follows that

φ̃ ` [a0 7→ i0, . . . , ak 7→ ik] : (a0 : γ̃0, . . . , ak : γ̃k),

which, because there are no dependencies between two index types γ̃l and γ̃l′ ,
implies (2′). 2

The result of extraction is a cost bound

We need to show that the cost of executing F [~ı] v for some user-defined function
F and some value v is bounded by F c ~ı, where F c is the cost recurrence extracted
for F . We start with Lemma 5.15, which says that when extracting a recurrence-
equation term t from a DML expression e, then t defines a bound for e under the
assumption that all calls to user-defined functions in e are bounded correctly by
the corresponding calls to F c in t.

Lemma 5.15 Let φ; ΓF , Γ` e : ρ I t be derivable. Let θ be a substitution such
that θφ substitutes index variables for ground terms, θΓ substitutes (normal)
variables for values, and ·; ΓF ` θ : (φ; Γ) is derivable, i.e., θ is type-sound with
respect to φ and Γ. Let Θ be an environment such that ` Θ : ΓF is derivable.
Let Ψ be a mapping from dom(ΓF) to functions such that

1. if ΓF (F) = Π a0 : γ0. . .Π al : γl . ρ1 → ρ2 then

Ψ(F c) ∈ [I[[γ̃0]] → . . . → I[[γ̃l]] → C⊥]

2. if F [~ı](u) type-checks under ΓF and T [[F c ~ı]]Ψ[] = xzy then

F [~ı](u) −→Θ∗ 〈u′, z′〉 with z′ ≤ z.

Then if T [[t]]Ψ(I[[θφ]]) = xzy, then e∗[θ] −→Θ∗ 〈v′, z′〉 with z′ ≤ z.

Proof: We use structural induction over the type derivation of e. In case the
last rule of the type derivation is ty-eq, then the lemma follows by induction
hypothesis. Because the remaining typing rules for DMLΠ

0 (C) are syntax di-
rected, we proceed by examining the different syntactic forms of e as given by
the grammar in Figure 5.8 on page 153. We show two interesting cases: function
application and case expression.

For a function application F [~ı](e), the extracted recurrence-equation term is
t + cF + F c ~ı, where t has been extracted from e. We express (F [~ı](e))∗, (see

180 Cost Recurrences for DML Programs

Figure 5.9 on page 155 for the definition of the monadic translation (·)∗) as a
DML program by removing syntactic sugar introduced in the translation (see
Figure 5.10 on page 156) and examine the shape of a possible derivation for

(F [~ı](e))∗[θ] −→Θ∗ 〈v′, z′〉.

It is easy to see that such a derivation can exist only if there are z′F , z′e ∈ C
such that z′ = z′F + cF + z′e and the following two assumptions hold:

(1) For some value ve, there is a derivation e∗[θ] −→Θ∗ 〈ve, z
′
e〉.

(2) There is a derivation F [~ı[θ]] ve −→Θ∗ 〈v′, z′F 〉.

Assume now that T [[t + cF + F c ~ı]]Ψ(I[[θφ]]) = xzy; using the semantics defini-
tion from Figure 5.13 on page 158 the following three facts follow easily:

(1′) For some ze ∈ C we have T [[t]]Ψ(I[[θφ]]) = xzey.

(2′) For some zF ∈ C, we have T [[F c ~ı]]Ψ(I[[θφ]]) = xzF y.

(3′) We have z = zF + cF + ze.

Using the induction hypothesis and (1′), we can deduce (1) for some z′e ≤ ze.
From (2′), it follows by assumption that (2) holds for some z′F ≤ zF ; this is
because T [[F c ~ı]]Ψ(I[[θφ]]) is equivalent to T [[F c (~ı[θφ])]]Ψ[]. Finally, using (3′)
we can infer that z′ ≤ z, which concludes the proof for this case.

For a case expression of form (case e of p0 ⇒ e0 | . . . pk ⇒ ek), the extracted
recurrence-equation term is

t + (cond br0 | . . . | brk)

where t is extracted from e by

φ; ΓF , Γ ` e : ρ′ I t

and every br j from the type-derivation of a branch (pj ⇒ ej) as

Φj1 → ∀(dom(φ′
j)\dom(θj)).Φj2 → t[θj]

where
p ↓ ρ′ B (φ′

j ; Γ
′
j)

φ, φ′
j ; Γ, Γ′

j ` ej : ρ I tj
Φj1 = ∃(dom(φ, φ′

j)\var(ρ′)).C(φ, φ′
j)

θj = mk substdom(φ′
j)

(C(φ′
j))

Φj2 = ∃(dom(θj)).C(φ′
j)

Like before, we examine the shape of a possible derivation for

(case e of p0 ⇒ e0 | . . . pk ⇒ ek)∗[θ] −→Θ∗ 〈v′, z′〉,

and see that such a derivation can exist only if there are z′e, z
′
b ∈ C such that

z′ = z′e + z′b and the following two assumptions hold:

5.B Formal development 181

(1) For some value ve, there is a derivation e∗[θ] −→Θ∗ 〈ve, z
′
e〉.

(2) For some j with 0 ≤ j ≤ k for which match(pj , ve) =⇒ θ′ is derivable,
there is a derivation ej

∗[θ ◦ θ′] −→Θ∗ 〈v′, z′b〉.

Assume now that T [[t + (cond br0 | . . . | brk)]]Ψ(I[[θφ]]) = xzy; using the se-
mantics definition from Figure 5.13 on page 158 we can deduce the following
facts:

(1′) For some ze ∈ C we have T [[t]]Ψ(I[[θφ]]) = xzey.

(2′) There is some zb ∈ C such that for every branch br j

Φj1 → ∀(dom(φ′
j)\dom(θj)).Φj2 → t[θj]

we have that if |= Φj1[θφ] then for all ~z with |= Φj2[θφ[~a 7→ ~z]] there is
zB ≤ zb such that T [[tj [θj]]]Ψ(I[[θφ[~a 7→ ~z]]]) = xzBy

(3′) We have z = ze + zb.

Using the induction hypothesis and (1′), we can deduce (1) for some z′e ≤ ze.
In the following, we prove (2), using the induction hypothesis and (2′):

• We first show that whenever match(pj , ve) =⇒ θ′ is derivable, then |=
Φj1[θφ], i.e., the precondition for (2’) holds.

We examine the form of Φj1 = ∃~b,~c.C(φ, φ′
j), where ~b are the variables in

dom(φ′
j) and ~c are the variables in dom(φ)\var(ρ′). We need to show

|= (∃~b,~c.C(φ, φ′
j))[θφ].

In fact, θφ and θ′φ hold witnesses for ~b and ~c, respectively: By assumption,
we have ·; ΓF ` θ : (φ; Γ), which implies ` θφ : φ. Further, with the first
part of Theorem 5.7 on page 169, it follows that φ ` θjφ : φ′. Using
Lemma 5.13 on page 177, we derive |= C(φ)[θφ] and φ |= C(φ′

j)[θ
′
φ]. With

Lemma 5.5 on page 166, we then can derive |= (C(φ′
j)[θ

′
φ])[θφ], so all in all

we have we have |= C(φ, φ′
j)[θ

′
φ θφ], which implies |= (∃~b,~c.C(φ, φ′

j))[θφ].

• With similar reasoning, we show that whenever match(pj , ve) =⇒ θ′ is
derivable, then |= Φj2[θφ[~a 7→ θ′φ(~a)]] (where ~a := dom(φ′

j)\dom(θj))
holds, so with (2′) it follows that

T [[tj [θj]]]Ψ(I[[θ[~a 7→ θ′φ(~a)]]]) = xzBy for some zB ≤ zb. (*)

• Knowing (*), we can show (2) by induction hypothesis if

T [[tj [θj]]]Ψ(I[[θφ[~a 7→ θ′φ(~a)]]]) = T [[tj]]Ψ(I[[θφ ◦ θ′φ]]).

With a straightforward structural induction over tj we can show that

T [[tj [θj]]]Ψ(I[[θφ[~a 7→ θ′φ(~a)]]]) = T [[tj]]Ψ(I[[θj ◦ θφ[~a 7→ θ′φ(~a)]]])

182 Cost Recurrences for DML Programs

It remains to show that b[θj ◦ θφ[~a 7→ θ′φ(~a)]] = b[θφ ◦ θ′φ] for all b ∈
dom(θ ◦ θ′). Some reasoning about the domains of the comprised substi-
tutions allows us to rearrange their composition and show instead that

b[(θj ◦ [~a 7→ θ′φ(~a)])θφ] = b[θ′φ θφ] (**)

For b ∈ ~a and b ∈ dom(θ) there is nothing to show. Consider now
b ∈ dom(θj). By definition of θj we know that φ′ |= b = b[θj]. Using
Lemma 5.5 on page 166 on ` θφ : φ and φ ` θjφ : φ′

j (established above),
we can derive that b[θj ◦ θ′φ ◦ θφ] = b[θ′φ ◦ θφ]. Equation (**) follows with
some basic reasoning about substitutions.

Now, with (3′) and the fact that zB ≤ zb, it follows that z′ ≤ z, which concludes
the proof for this case. 2

We have shown that extracting a recurrence-equation term t from a DML ex-
pression e yields a valid bound under the assumption that we have a valid bound
F c for every user-defined function F called in e. We now show that the seman-
tics of a recurrence equation Gc, which is based on the recurrence-equation term
extracted from the body of a user-defined function G (see Section 5.4.3), indeed
defines a bound for G.

Lemma 5.16
Let (fix G : Π~a : ~γ . ρ1 → ρ2.lam x : ρ1 . case x of 〈x0, . . ., xk〉 ⇒ e) be typable
under ΓF and let

·; ΓF , G : Π~a : ~γ . ρ1 → ρ2, x : ρ1, x0 : ρ0
1, . . . , xk : ρk

1 ` e : ρ2 I t

be derivable. Let Θ be an environment such that ` Θ : ΓF is derivable. Let Ψ
be a mapping from dom(ΓF) to functions such that

1. if ΓF (F) = Π a0 : γ0. . . Π al : γl . ρ1 → ρ2 then

Ψ(F c) ∈ [I[[γ̃0]] → . . . → I[[γ̃l]] → C⊥]

2. if F [~ı](u) type-checks under ΓF and T [[F c ~ı]]Ψ[] = xzy then

F [~ı](u) −→Θ∗ 〈u′, z′〉 with z′ ≤ z.

Let further

ϕ := fix(λF .λ~n.T [[t]](Ψ[Gc 7→ F])[~a 7→ ~n])
Θ1 := Θ[G 7→ lam x : ρ1 . case x of 〈x0, . . ., xk〉 ⇒ e]

Then, if G[~ı](u) type-checks under ΓF , G : Π~a : ~γ . ρ1 → ρ2 and

T [[Gc [~ı]]](Ψ[Gc 7→ ϕ])[] = xzy,

we have G[~ı](u) −→Θ1
∗ 〈v′, z′〉 with z′ ≤ z.

5.B Formal development 183

Proof: We use fixed-point induction over the definition of ϕ. For the base
case, we have

T [[G [~ı]]](Ψ[Gc 7→ ϕ])[] = ⊥,

so the lemma is vacuously true. For the induction step, assume that for ϕ′, if
G[~ı](u) type-checks under ΓF , G : Π~a : ~γ . ρ1 → ρ2 and

T [[Gc [~ı]]](Ψ[Gc 7→ ϕ′])[] = xzy,

we have G[~ı](u) −→Θ1
∗ 〈v′, z′〉 with z′ ≤ z. We have to show that if

T [[G [~ı]]](Ψ[Gc 7→ λ~n.T [[t]](Ψ[Gc 7→ ϕ′])[~a 7→ ~n]])[] = xzy (5.1)

then
G[~ı] u −→Θ1

∗ 〈v′, z′〉 (5.2)

with z′ ≤ z.
Using the definitions of the denotational semantics (Figure 5.13 on page 158)

of recurrence equations and operational semantics of DML (Figure 5.20 on
page 172), we see that Equations (5.1) and (5.2) are equivalent to

T [[t]](Ψ[Gc 7→ ϕ′])[~a 7→ I[[~ı]]] = xzy (5.1’)

e∗[~a 7→~ı][x 7→ u][x0 7→ fst(u)] . . . [xk 7→ sndk(u)] −→Θ1
∗ 〈v′, z′〉 (5.2’)

We can use Lemma 5.15 on page 179; its preconditions are satisfied:

• From the fact that G[~ı](u) type-checks under ΓF , G : Π~a : ~γ . ρ1 → ρ2, we
can deduce that the substitution

[~a 7→~ı][x 7→ u][x0 7→ fst(u)] . . . [xk 7→ sndk(u)]

is type-sound with respect to ~a : ~γ and x : ρ1, x0 : ρ0
1, . . . , xk : ρk

1 .

• The environment (Ψ[Gc 7→ ϕ′]) has the required properties, for F c ∈
dom(Θ) by assumption, and for Gc by induction hypothesis.

2

Part 2 of Theorem 5.4 on page 163 follows from Lemma 5.16 on the preceding
page with a straightforward induction proof over the number of user-defined
functions in program p.

Result of extraction is a recurrence

The intuition behind the test described in Section 5.4.5 of whether the extracted
cost bound is a recurrence is to use the constraint information contained in
DMLΠ

0 (C) type derivations for showing that the argument on each recursive
call decreases. Without further proof, however, such an argument only shows
the termination of the examined DML program. We further need to argue that
conclusions drawn from constraint information about index arguments to recur-
sive function calls also holds for arguments to the corresponding calls occurring
within an occurrence equation:

184 Cost Recurrences for DML Programs

Theorem 5.17 Assume that the extraction algorithm annotates every call F c ~ı
with the index context it was extracted under, i.e., φ′; Γ′` F [~ı](e′):ρ′ gives rise to
F c,φ′

~ı, and that the semantics T [[·]] ignores such annotations. If φ; Γ` e : ρ I t
and ` θ : φ, then, in the unfolded definition of T [[t]]Ψθ, for all applications
Ψ(F c,φ′

) I[[~ı[θ′]]] we have ` θ′ : φ′.

Proof: As in the proof of Lemma 5.15 on page 179, we use structural induc-
tion over the type derivation of e. The only interesting case is that of a case
expression case e of p0 ⇒ e0 | . . . pk ⇒ ek. The extracted recurrence-equation
term is

t + (cond br0 | . . . | brk)

where t is extracted from e by

φ; ΓF , Γ ` e : ρ′ I t

and every br j from the type-derivation of a branch (pj ⇒ ej) as

Φj1 → ∀(dom(φ′
j)\dom(θj)).Φj2 → t[θj]

where
p ↓ ρ′ B (φ′

j ; Γ
′
j)

φ, φ′
j ; Γ, Γ′

j ` ej : ρ I tj
Φj1 = ∃(dom(φ, φ′

j)\var(ρ′)).C(φ, φ′
j)

θj = mk substdom(φ′
j)

(C(φ′
j))

Φj2 = ∃(dom(θj)).C(φ′
j)

For T [[t]]Ψθ we can simply use the induction hypothesis. For the conditional,
however, we have to examine all possible calculations T [[tj [θj]]]Ψ(θ[~a 7→ ~z]) (with
~a := dom(φ′

j)\dom(θj)). With a straightforward structural induction on tj one
can show that

T [[tj [θj]]]Ψ(θ[~a 7→ ~z]) = T [[tj]]Ψ(θj ◦ (θ[~a 7→ ~z])).

To use the induction hypothesis, it remains to show that ` (θj ◦ θ[~a 7→ ~z]) :
(φ, φ′

j), which follows with a short derivation using Lemma 5.13 on page 177
and the assumptions about φ, φ′

j , θ, θj , and ~z. 2

Theorem 5.17 shows that index-based reasoning about the index arguments
to functions in a DML program carry over to the corresponding recurrence
equation, hence the third part of Theorem 5.4 on page 163 holds.

Bibliography

[1] Lennart Augustsson. Cayenne—a language with dependent types. In Paul
Hudak and Christian Queinnec, editors, Proceedings of ICFP’98, pages
239–250, Baltimore, Maryland, September 1998. ACM Press.

[2] Wei-Ngan Chin and Siau-Cheng Khoo. Calculating sized types. Higher-
Order and Symbolic Computation, 14(2/3), 2001. To appear.

[3] Karl Crary and Stephanie Weirich. Resource bound certification. In
Thomas Reps, editor, Proceedings of POPL’00, pages 184–198, Boston Mas-
sachusetts, January 2000. ACM Press.

[4] Daniel Le Métayer. ACE: An automatic complexity evaluator. ACM Trans-
actions on Programming Languages and Systems, 10(2):248–266, April
1988.

[5] Yanhong Annie Liu and Gustavo Gómez. Automatic accurate time-bound
analysis for high-level languages. In Frank Mueller and Azer Bestavros,
editors, Proceedings of the ACM SIGPLAN 1998 Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES), number 1474 in
LNCS, pages 31–40, Montréal, Canada, June 1998. Springer-Verlag.

[6] Eugenio Moggi. Computational lambda-calculus and monads. In Proceed-
ings of the Fourth Annual IEEE Symposium on Logic in Computer Science,
pages 14–23, Pacific Grove, California, June 1989. IEEE Computer Society
Press.

[7] Brian Reistad and David K. Gifford. Static dependent costs for estimat-
ing program execution time. In Carolyn L. Talcott, editor, Proceedings of
LFP’94, LISP Pointers, Vol. VII, No. 3, Orlando, Florida, June 94. ACM
Press.

[8] Mads Rosendahl. Automatic complexity analysis. In Joseph E. Stoy, editor,
Proceedings of the Conference on Functional Programming Languages and
Computer Architecture ’89, pages 144–156, London, September 1989. ACM
Press.

185

186 BIBLIOGRAPHY

[9] David Sands. Calculi for Time Analysis of Functional Programs. PhD
thesis, Department of Computing, Imperial College, University of London,
September 1990.

[10] Philip Wadler. The essence of functional programming. In Andrew W.
Appel, editor, Proceedings of POPL’92, pages 1–14, Albuquerque, New
Mexico, January 1992. ACM Press.

[11] Hongwei Xi. de Caml. A prototype implementation of DML, based on
Caml-light. Available from http://www.ececs.uc.edu/~hwxi/DML/DML.
html.

[12] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, 1998.

[13] Hongwei Xi. Dependently typed data structures. In Chris Okasaki, editor,
Proceedings of Workshop of Algorithmic Aspects of Advanced Programming
Languages (WAAAPL ’99), pages 17–32, Paris, September 1999. Available
from http://www.cs.columbia.edu/~cdo/waaapl99.pdf.

[14] Hongwei Xi. Dependent types for program termination verification. In Pro-
ceedings of 16th IEEE Symposium on Logic in Computer Science, Boston,
Massachusetts, June 2001. IEEE Computer Society Press.

[15] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through
dependent types. In Keith D. Cooper, editor, Proceedings of PLDI’98, pages
249–257, Montreal, June 1998. ACM Press.

[16] Hongwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Alex Aiken, editor, Proceedings of POPL’99, pages 214–227, San
Antonio, Texas, January 1999. ACM Press.

Recent BRICS Dissertation Series Publications

DS-01-6 Bernd Grobauer.Topics in Semantics-based Program Manipula-
tion. August 2001. PhD thesis. ii+x+186 pp.

DS-01-5 Daniel Damian.On Static and Dynamic Control-Flow Informa-
tion in Program Analysis and Transformation. August 2001. PhD
thesis. xii+111 pp.

DS-01-4 Morten Rhiger. Higher-Order Program Generation. August
2001. PhD thesis. xiv+146 pp.

DS-01-3 Thomas S. Hune. Analyzing Real-Time Systems: Theory and
Tools. March 2001. PhD thesis. xii+265 pp.

DS-01-2 Jakob Pagter.Time-Space Trade-Offs. March 2001. PhD thesis.
xii+83 pp.

DS-01-1 Stefan Dziembowski.Multiparty Computations — Information-
Theoretically Secure Against an Adaptive Adversary. January
2001. PhD thesis. 109 pp.

DS-00-7 Marcin Jurdziński. Games for Verification: Algorithmic Issues.
December 2000. PhD thesis. ii+112 pp.

DS-00-6 Jesper G. Henriksen.Logics and Automata for Verification: Ex-
pressiveness and Decidability Issues. May 2000. PhD thesis.
xiv+229 pp.

DS-00-5 Rune B. Lyngsø. Computational Biology. March 2000. PhD
thesis. xii+173 pp.

DS-00-4 Christian N. S. Pedersen.Algorithms in Computational Biology.
March 2000. PhD thesis. xii+210 pp.

DS-00-3 Theis Rauhe.Complexity of Data Structures (Unrevised). March
2000. PhD thesis. xii+115 pp.

DS-00-2 Anders B. Sandholm.Programming Languages: Design, Analy-
sis, and Semantics. February 2000. PhD thesis. xiv+233 pp.

DS-00-1 Thomas Troels Hildebrandt. Categorical Models for Concur-
rency: Independence, Fairness and Dataflow. February 2000.
PhD thesis. x+141 pp.

DS-99-1 Gian Luca Cattani. Presheaf Models for Concurrency (Unre-
vised). April 1999. PhD thesis. xiv+255 pp.

