
B
R

IC
S

D
S

-01-4
M

.R
higer:

H
igher-O

rder
P

rogram
G

eneration

BRICS
Basic Research in Computer Science

Higher-Order Program Generation

Morten Rhiger

BRICS Dissertation Series DS-01-4

ISSN 1396-7002 August 2001

Copyright c© 2001, Morten Rhiger.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/01/4/

Higher-Order Program Generation

Morten Rhiger

Ph.D. Dissertation

BRICS

BRICS Ph.D. School

Department of Computer Science

University of Aarhus

Denmark

July 2001 Supervisor: Olivier Danvy

Higher-Order Program Generation

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

Ph.D. Degree.

Morten Rhiger
July 30, 2001

Abstract

This dissertation addresses the challenges of embedding programming languages, special-
izing generic programs to specific parameters, and generating specialized instances of pro-
grams directly as executable code. Our main tools are higher-order programming techniques
and automatic program generation. It is our thesis that they synergize well in the develop-
ment of customizable software.

Recent research on domain-specific languages propose to embed them into existing
general-purpose languages. Typed higher-order languages have proven especially useful as
meta languages because they provide a rich infrastructure of higher-order functions, types,
and modules. Furthermore, it has been observed that embedded programs can be restricted
to those having simple types using a technique called “phantom types.” We prove, using
an idealized higher-order language, that such an embedding is sound (i.e., when all object-
language terms that can be embedded into the meta language are simply typed) and that it is
complete (i.e., when all simply typed object-language terms can be embedded into the meta
language). The soundness proof is shown by induction over meta-language terms using a
Kripke logical relation. The completeness proof is shown by induction over object-language
terms. Furthermore, we address the use of Haskell and Standard ML as meta-languages.

Normalization functions, as embodied in type-directed partial evaluation, map a simply-
typed higher-order value into a representation of its long beta-eta normal form. However,
being dynamically typed, the original Scheme implementation of type-directed partial eval-
uation does not restrict input values to be typed at all. Furthermore, neither the original
Scheme implementation nor the original Haskell implementation of type-directed partial
evaluation guarantee that type-directed partial evaluation preserves types. We present three
implementations of type-directed partial evaluation in Haskell culminating with a version
that restricts the input to typed values and for which the proofs of type-preservation and
normalization are automated.

Partial evaluation provides a solution to the disproportion between general programs
that can be executed in several contexts and their specialized counterparts that can be exe-
cuted efficiently. However, stand-alone partial evaluation is usually too costly when a pro-
gram must be specialized at run time. We introduce a collection of byte-code combinators
for OCaml, a dialect of ML, that provides run-time code generation for OCaml programs.
We apply these byte-code combinators in semantics-directed compilation for an imperative
language and in run-time specialization using type-directed partial evaluation.

Finally, we present an approach to compiling goal-directed programs, i.e., programs that

v

backtrack and generate successive results: We first specify the semantics of a goal-directed
language using a monadic semantics and a spectrum of monads. We then compile goal-
directed programs by specializing their interpreter (i.e., by using the first Futamura pro-
jection), using type-directed partial evaluation. Through various back ends, including a
run-time code generator, we generate ML code, C code, and OCaml byte code.

vi

Acknowledgements

The work that led this dissertation was carried out at the BRICS Ph.D. School at the
University of Aarhus from the fall of 1998 to the summer of 2001.

I am grateful to Helmut Schwichtenberg, Peter Sestoft, and Mogens Nielsen for serving on
my Ph.D. committee.

Foremost, however, I sincerely thank my supervisor Olivier Danvy for sharing with me his
visions of computer science.

Andrzej Filinski’s insights have greatly helped my understanding of the theory on pro-
gramming languages. I am grateful for the numerous enlightening comments he provided
on several parts of this dissertation.

Thanks are due to Jason Hickey who kindly hosted me for a pleasant half a year at the
Department of Computer Science, Caltech, Pasadena. Also thanks to Alexey Nogin for
unraveling the mysteries of MetaPRL.

I would like to thank my colleagues, Daniel Damian, Bernd Grobauer, Lasse R. Nielsen, and
Zhe Yang, for many fruitful discussions at our weekly programming language meetings
at BRICS. Thanks are also due to the occasional other participants to these meetings. Julia
Lawall and John Reynolds, in particular, have been inspiring guests.

Finally, I wish to thank my wife Margrethe for her patience, understanding, and support.

vii

Revised version.

c© 2001, Morten Rhiger. All rights reserved.

BRICS Ph.D. School
Departement of Computer Science
University of Aarhus
Denmark

Author’s E-mail: mrhiger@brics.dk
Homepage: http://www.brics.dk/~mrhiger

Contents

1 Introduction and motivations 1
1.1 Themes . 1

1.1.1 The λ-calculus . 2
1.1.2 Higher-order programming languages 3
1.1.3 Interpretation and compilation . 6
1.1.4 Program transformations . 7

1.2 Dissertation outline . 9

2 Embedded languages 13
2.1 Introduction . 13
2.2 An embedded higher-order language . 15

2.2.1 Higher-order abstract syntax . 15
2.2.2 An embedded type discipline . 16

2.3 Soundness and completeness . 17
2.3.1 A small functional meta-language . 18
2.3.2 Denotational semantics . 19
2.3.3 Soundness . 20
2.3.4 Completeness . 25

2.4 Haskell as a meta-language . 27
2.4.1 Extended object language . 29
2.4.2 Extended meta-language . 31

2.5 Related work and conclusions . 31

3 Type-directed partial evaluation 33
3.1 Deriving a statically typed type-directed partial evaluator 33

3.1.1 Introduction . 33
3.1.2 Inductively defined representation of types 36
3.1.3 Higher-order representation of types . 37
3.1.4 Pragmatics . 40
3.1.5 Extending the statically typed algorithm 40
3.1.6 Conclusion and issues . 41

3.2 A simple take on typed abstract syntax in Haskell-like languages 42
3.2.1 Introduction . 42

ix

3.2.2 Typeless first-order abstract syntax . 43
3.2.3 Typeless higher-order abstract syntax 44
3.2.4 Typeful higher-order abstract syntax . 45
3.2.5 Type-directed partial evaluation . 46
3.2.6 Application 1: Type-directed partial evaluation preserves types 49
3.2.7 Application 2: Type-directed partial evaluation yields normal forms . 51
3.2.8 Conclusions and issues . 55

3.3 Normalization by evaluation with typed abstract syntax 55
3.3.1 A write-only typed abstract syntax . 55
3.3.2 Normalization by evaluation preserves types 57
3.3.3 Normalization by evaluation yields normal forms 58
3.3.4 Conclusions and issues . 60

4 Run-time code generation 61
4.1 Introduction . 61
4.2 Deforested data types . 63
4.3 Run-time code generation for OCaml . 65

4.3.1 Overview of OCaml . 65
4.3.2 A library of byte-code combinators for OCaml 67

4.4 Semantics-directed compilation . 72
4.4.1 An imperative language . 73
4.4.2 A definitional interpreter for imperative programs 76
4.4.3 A definitional compiler for imperative programs 78
4.4.4 An optimized compiler for imperative programs 80
4.4.5 A native compiler for imperative programs 83
4.4.6 Benchmarks . 83

4.5 Run-time specialization . 87
4.5.1 Partial evaluation: What . 87
4.5.2 Partial evaluation: How . 88
4.5.3 Type-directed partial evaluation . 91
4.5.4 Applications . 95

4.6 Related work . 106
4.6.1 Run-time byte-code generation . 106
4.6.2 Run-time code generation for C . 107

4.7 Implementation of byte-code combinators . 107
4.7.1 Constants . 108
4.7.2 Global variables . 108
4.7.3 Finite products . 108
4.7.4 Conditionals . 109
4.7.5 Free variables . 109
4.7.6 Abstractions . 110
4.7.7 Applications . 111
4.7.8 Let expressions . 111

x

4.7.9 Imperative features . 111
4.7.10 Primitive operations . 112

4.8 Conclusions and issues . 112

5 Goal-directed evaluation 113
5.1 Introduction . 113
5.2 Semantics of a subset of Icon . 114

5.2.1 A subset of the Icon programming language 115
5.2.2 Monads and semantics . 115
5.2.3 A monad of sequences . 116
5.2.4 A monadic semantics . 116
5.2.5 A spectrum of semantics . 117
5.2.6 Correctness . 120
5.2.7 Summary . 121

5.3 Semantics-directed compilation . 122
5.3.1 Type-directed partial evaluation . 122
5.3.2 Generating C programs . 126
5.3.3 Generating byte code . 129
5.3.4 Summary . 129

5.4 Conclusions and issues . 130

6 Conclusions and perspectives 131

Bibliography 133

xi

xii

List of Figures

2.1 Higher-order abstract syntax. 16
2.2 A typed higher-order language embedded into Haskell. 17
2.3 Extended object language. 29

3.1 Type-directed partial evaluation . 35
3.2 Typeless higher-order abstract syntax in Haskell 44
3.3 Typeful higher-order abstract syntax in Haskell 46
3.4 A typeless implementation of type-directed partial evaluation 47
3.5 Typeful higher-order abstract syntax with coercions for atomic types 49
3.6 A typeful implementation of type-directed partial evaluation 50
3.7 Typeless representation of normal forms . 52
3.8 Typeful representation of normal forms . 52
3.9 Typeless implementation of type-directed partial evaluation

with normal forms
. 53

3.10 Typeful implementation of type-directed partial evaluation
with normal forms (first variant)

. 54

3.11 Typeful implementation of type-directed partial evaluation
with normal forms (second variant)

. 55

4.1 Syntax of an imperative language . 74
4.2 Valuation functions for an imperative language 75
4.3 Abstract syntax of an imperative language . 76
4.4 Direct-style interpreter for an imperative language 77
4.5 Direct-style compiler for an imperative language 79
4.6 Continuation-passing style compiler for an imperative language 81
4.7 Native compiler for an imperative language . 84
4.8 Semantics-directed compilation of imperative programs 86
4.9 Running compiled imperative programs . 86
4.10 Type-directed partial evaluation for pure λ-terms 92
4.11 Two-level code-generating primitives . 93
4.12 Type-directed partial evaluation in OCaml . 93
4.13 Two-level code-generating primitives for call-by-name 94
4.14 Two-level code-generating primitives for call-by-value 95
4.15 The power function in OCaml . 96

xiii

4.16 A direct interpretation of primitives . 99
4.17 Specializing the power function . 101
4.18 Sizes of residual programs . 101
4.19 Code-generation speed . 102
4.20 Running the specialized power function . 102
4.21 Relative effect of compile packet filters . 104

5.1 Monad operators and their types . 116
5.2 The list monad . 116
5.3 Monadic semantics for a subset of Icon . 117
5.4 The continuation monad . 118
5.5 A continuation semantics . 119
5.6 A semantics with success and failure continuations 120
5.7 The abstract syntax of Icon terms . 122
5.8 Signature of primitive operations . 123
5.9 Parameterized interpreter . 124
5.10 Grammar of residual programs . 127
5.11 Translating residual programs into C (Statements) 128
5.12 Translating residual programs into C (Expressions) 129

xiv

Chapter 1

Introduction and motivations

Customizable software adapts to its context of application. To this end, its components are
parameterized over the characteristics of the context and are instantiated to specific char-
acteristics when they are applied. This notion of parameterization and instantiation is pre-
cisely captured by the notion of abstraction from the λ-calculus. The λ-notation is inherently
“higher-order”, i.e., abstractions may occur as arguments to and as results of other abstrac-
tions. Therefore, we use this term instead of, e.g., “object oriented.”

Higher-order programming languages make it possible to respond to the challenge of
writing customizable software because they support parameterization at their core. Re-
usable libraries of solutions to commonly occurring problems can typically be expressed
as higher-order programs. Adaptive software components can be implemented in a higher-
order programming language as a collection of common operations that can be instantiated
in different environments. Higher-order functions, polymorphic types, and parameterized
implementation modules, in particular, support the implementation of generic programs.
Generic programs have a flaw, however: They are often less efficient than their specialized
counterparts.

Automatic program generation techniques can alleviate the penalty of generic program-
ming by constructing specialized instances of general software components. To also address
the cost of generating specialized instances, specialized programs can be generated directly
as executable code.

The need for adjustment and customization is not only reserved for programs. It also
arises for programming languages. General-purpose languages will almost certainly fulfill
the requirements of a certain application but it is sometimes desirable to use a specifically
tailored language. Compilers or interpreters for such domain-specific languages can be im-
plemented by standard means. Because these languages occur frequently, however, it has
been suggested that they should be realized as extensions of existing general-purpose lan-
guages by an embedding of their domain-specific operations.

1.1 Themes

Several concepts recur throughout this dissertation.

1

2 Introduction and motivations

1.1.1 The λ-calculus

In the late 1930’s and early 1940’s, Church invented the λ-calculus as a system for inves-
tigating the decision problem for the predicate calculus — the problem of finding effective
methods to determine whether or not an expression is provable in the predicate calculus [20].
Here, an effective method is one which consists of a finite number of instructions that can
be carried out without any ingenious knowledge and which ends with the desired result if
carried out without error. Church showed that λ-definable functions cannot solve the de-
cision problem for the predicate calculus. Since then, the λ-calculus has been an object of
independent study in the areas of logics, semantics, and programming languages.

The three fundamental kinds of λ-term are variables, function abstraction, consisting
of a variable and a term, and function application, consisting of two terms. For the pure
λ-calculus, the only means of computation is that of a β-reduction: An application of an
abstraction to an argument term can be replaced by the body of the abstraction instantiated
to the argument term:

(λx. e)e′ −→β e[e′/x]

The left-hand side is called the redex and the right-hand side the contractum. When the λ-
calculus is extended with constants, there are other reduction rules as well. Church’s thesis
states that this apparently simple notion of computation captures what it means for a func-
tion to be effective. The even simpler combinatory logic dispenses with bound variables but is
compatible with the notion of effectiveness.

The λ-calculus can be viewed as either typed or untyped. In the untyped world, all λ-terms
are valid, but repeatedly reducing a term may end in a stuck configuration instead of yielding
a element of a designated set of values. In the typed world, a type system distinguishes well-
typed λ-term from ill-typed ones. Repeatedly reducing a well-typed term is guaranteed not
to end in a stuck configuration. Different type systems classify different sets of λ-terms as
invalid. Type systems that classify many λ-terms as ill-typed may be inconvenient to work
with. On the other hand, type systems that classify many λ-terms as well-typed may be
difficult to implement or even undecidable.

• Simple types

In the simply-typed λ-calculus, types τ consist of base types b and function types τ1 →
τ2. An abstraction λx. e has function type τ1 → τ2 if the variable x has type τ1 and
the term e has type τ2. An application e1 e2 has type τ if the function term e1 has type
τ2 → τ and the argument term e2 has type τ2.

The type system sketched here is decidable. It is the core of most type systems for the
λ-calculus.

• Polymorphic types

Polymorphic type systems allows some terms to have more than one type. In the area
of programming languages, one of the most frequently used polymorphic type systems
extends the set of λ-terms with a polymorphic let-expression, let x=e in e ′, and allows

1.1 Themes 3

the type of the variable x to vary in ways consistent with the type of e ′. More precisely,
variables are assigned type schemes of form σ = ∀α1, . . . , αn.τ and a type τ may be
a polymorphic type identifier α. Each occurrence of variable may then be given a
separate instance of the type scheme, τ [τ1/α1, . . . , τn/αn].

• Dependent types

In dependent type systems, the result type of a function may depend on the value of
the function argument. Dependent type systems are often undecidable.

Type systems describe methods by which it can be decided whether a term has a certain
type. Type checking is the process of deciding whether a type-annotated term satisfy its an-
notations. The goal of type reconstruction, on the other hand, is to determine the type of an
un-annotated term.

1.1.2 Higher-order programming languages

Several higher-order languages are intimately connected with the λ-calculus and are then
often called functional languages. Functional languages can be classified according to several
properties. The evaluation order determines which of possible several redexes in a program
should be reduced. In particular, a call-by-name strategy selects the left-most outer-most
redex and a call-by-value strategy selects the left-most inner-most redex. Given an expression,
if both these strategies terminate with a value, then they produce the same results.

Dynamically typed languages correspond to the untyped λ-calculus. They do not require
before-hand that evaluation a program always will yield a result instead of terminating with
an error. In contrast, statically typed languages correspond to a typed λ-calculus. They only
accept well-typed programs whose evaluations never terminate with an error. Statically
typed languages are typically extensions of the polymorphically typed λ-calculus.

We shall mainly consider the following functional languages in this dissertation.

• Scheme

Scheme is a dynamically typed functional language with a call-by-value evaluation
strategy [89]. The core of Scheme consists of a small number of expressions which can
be extended using hygienic macros.

The base types of Scheme include booleans, numbers, strings, and symbols. Scheme
programs can construct compound objects by grouping two values into a pair, also
called a cons cell. Cons cells are used to represent compound data structures such as,
e.g., lists and trees.

The Scheme library provides primitive functions on numbers, strings, cons cells, etc. It
also provides operations for primitive I/O and assignment operations.

A unique feature of Scheme is that the text of a program is also the text of a piece of
data representing the abstract syntax tree of the program. Such syntax trees are called
S-expressions and are constructed using cons cells. S-expression are not limited to
representing Scheme program.

4 Introduction and motivations

• Standard ML

Standard ML is a statically typed functional language with a call-by-value evaluation
strategy [102]. Standard ML provides polymorphic let-expressions. There is no macro
system for Standard ML.

The base types of ML includes booleans, numbers, and strings. There are two ways
a Standard ML program can construct compound objects. Tuples, or finite products,
group together several values of possible different types. An element in a tuple can be
accessed by providing its index. (The index must be fixed: It is not possible to iterate
over a tuple.) Other compound values are given as elements of data types. A data
type is a (possibly recursively defined) disjoint union of types. Data types are used to
represent complex data structures such as, e.g., lists and trees. Functions and pattern
matching are used to take values of data types apart. These functions are recursively
defined when the data type is recursively defined.

The Standard ML library provides primitive functions on numbers, strings, lists, etc. It
also provides operations for primitive I/O and assignment operations.

Standard ML does not support representing programs using S-expressions, such as
Scheme. Instead, programs can be represented by a data type of abstract syntax trees.
Such data types have the advantage over S-expressions that only syntactically correct
abstract syntax trees can be represented. They do not, however, guarantee that only
well-typed programs can be represented.

• Haskell

Haskell is also a statically typed functional language [59]. The syntax and type system
of Haskell is akin to the syntax and type system of Standard ML. But Haskell uses
a call-by-name evaluation strategy rather than a call-by-value evaluation strategy. In
addition, Haskell provides overloaded function symbols via type classes.

Higher-order programming languages embody the principles of abstraction and param-
eterization, i.e., that any syntactic category of the language can be named an parameter-
ized [124]. Higher-order programs re-use a general pattern in many different places by
instantiating its formal parameter to an actual entity. Scheme, Standard ML, and Haskell
permit abstracting values over values; such an abstraction is a function that can be applied
to produce a result. In higher-order languages, functions are ordinary values that can be
abstracted over. Standard ML and Haskell permit abstracting types over types; such an ab-
straction is a type constructor that can be instantiated to an actual type. Haskell even permits
a limited way of abstracting over type constructors. Standard ML permits abstracting over
implementation modules; such an abstraction is a functor that can be applied to a module to
produce another module.

Functional languages support several programming styles. Let us illustrate a few in
Standard ML using a function that computes the total sum of a list of integers. All functions
recursively traverse the argument list from left to right.

1.1 Themes 5

• Direct style

This version of the sum function immediately returns the sum of the elements of its
argument. The result of a recursive call over the remaining list is added to the current
element and returned.

(* sum : int list → int *)
fun sum [] = 0

| sum (x::xs) = x + sum xs

• Accumulator style

This version uses an auxiliary function which is passed a list and an accumulator. The
accumulator holds the sum of the numbers seen so far.

(* sum’ : int list → int → int *)
fun sum’ [] ac = ac

| sum’ (x::xs) ac = sum xs (x + ac)

fun sum xs = sum’ xs 0

• Continuation-passing style

This version uses an auxiliary function which is passed a list and a continuation. The
continuation represents the rest of the computation; in this case, adding a number to
the sum of the elements of the rest of the list and then passing it to the continuation.

(* sum’ : int list → (int → ’a) → a *)
fun sum’ [] k = k 0

| sum’ (x::xs) k = sum xs (fn v ⇒ k (x + v))

The continuation parameter has a polymorphic type. We can apply several different
initial continuations, each with its own type of final result. The following examples
return the computed sum (like in the direct-style and accumulator-style functions),
print the sum, and check whether the sum is greater than 10, resp. On the right, we
have displayed the type of the continuations.

fun sum xs = sum’ xs (fn v ⇒ v) (* int → int *)
fun sum xs = sum’ xs (fn v ⇒ print v) (* int → unit *)
fun sum xs = sum’ xs (fn v ⇒ v > 10) (* int → bool *)

Direct-style functions usually correspond to mathematical definitions by structural in-
duction. Likewise, functions defined using an accumulator correspond to definitions by
well-founded induction. Accumulator-style functions are often advantageous since they do
not require the intermediate values to be remembered for each recursive call. Instead, they
pass the hitherto computed value as an argument. Hence, accumulator-style functions can
be executed without the need for a stack. Functions in continuation-passing style make

6 Introduction and motivations

evaluation order explicit. A continuation-passing style program has the same termination
behavior when evaluated under call-by-name and call-by-value.

1.1.3 Interpretation and compilation

Programs are effective methods for solving specific problems. The fields of algorithmics and
complexity concerns how algorithms, i.e., idealized representations of programs, solves spe-
cific problems and how efficient they are with respect to a given model of computation. The
field of semantics is concerned with what programs compute. Yet, the majority of programs
are written so that they can be executed on a physical machine.

Physical machines, or computers, are designed to run one kind of programs written in a
machine language. Machine-language programs can be executed very efficiently. However,
they cannot easily be ported to run on other machines, they are often cumbersome to write,
and they only directly provide one paradigm of computation. Therefore, machine languages
are seldom used directly as programming languages. Instead, programs are implemented in
machine-independent languages that support the needed paradigm. There are then several
approaches to running such a source program on a computer. (The following list is not
exhaustive.)

• Compilation

The program is first translated into machine language by a compiler. The machine-
language program can be executed directly on a physical machine.

• Interpretation

The source program is passed to an interpreter that already runs on a physical machine.
When the interpreter runs, it simulates the execution of the source program.

• Byte-code generation

In this hybrid approach, the program is first translated into another language, some-
times called a byte-code language, by a compiler. The result is passed to an interpreter,
sometimes called a virtual machine, that simulates the execution of the source program.

Running an interpreter is usually slower than running a compiled program because the
interpreter takes additional actions to parse and traverse the source program. On the other
hand, the compilation approach exercises a cost of first translating the source program into
machine language. The hybrid approach may seem as a step backwards: It requires the
source program to be compiled but the result is still executed by an interpreter. There are
advantages of the hybrid approach also, however. Most notably, both the byte-code compiler
and the virtual machine are machine independent. In addition, byte-code programs may be
considerably smaller than the corresponding machine-language programs [7]. Furthermore,
programs in most languages cannot easily be simulated without some preprocessing phases
performing, e.g, macro expansion and type checking.

1.1 Themes 7

1.1.4 Program transformations

A compiler is a semantics-preserving translator from one language to another. The purpose
of compiling a source program is to obtain an efficient program that can be executed on a
physical machine. Transformations for the sake of efficiency need not produce machine-
language programs. For example, a reasonable pass in a compiler for a higher-order lan-
guage may translate direct-style source functions into source functions using an accumula-
tor. Most source-to-source transformations are motivated by speed or space but there are
other reasons to transform one program into another.

• Partial evaluation

A general, parameterized program is likely to be less efficient than a specialized pro-
gram. Of course, the specialized program is not applicable in as many situation as
the general program so it is desirable to write general programs while having efficient
implementations. The goal of partial evaluation [83] is precisely to map a general, pa-
rameterized program and some fixed parameters into a specialized program.

Partial evaluation is often able to produce specialized programs that are faster and re-
quire less memory to run than their general counterparts. Partial evaluation is partic-
ularly successful when most of the flow of control in the source program only depend
on the fixed parameters.

Ideally, partial evaluation should be an automatic program transformation. In practice,
however, an expert user must often provide the partial evaluator with hints to ensure
that partial evaluation terminates with an efficient specialized program.

Partial evaluation has been applied in many areas. The Futamura projections describe
how partial evaluation can be used in compiling and compiler generation given just
an interpreter [65, 66]. To this end, an interpreter is viewed as a general program-
execution mechanism capable of running any source program. Given an interpreter
and a source program, partial evaluation thus yields a program-execution mechanism
specialized to the source program — in effect, a compiled version of the source pro-
gram. In a similar fashion, specializing the partial evaluator with respect to an inter-
preter yields a compiler from the interpreted language to the implementation language
of the interpreter.

Type-directed partial evaluation is an approach to partial evaluation for higher-order pro-
grams. A distinct feature of type-directed partial evaluation is its use of normalization
functions to extract, from a higher-order value, the syntax of its normal form. Thus,
the input to type-directed partial evaluation is not the text of a source program but its
compiled, higher-order value.

• Deforestation

Consider the following Standard ML function that generates a list of successive inte-
gers.

8 Introduction and motivations

fun to i j = if i ≤ j then i::to (i + 1) j else []

Combined with one of the the sum functions presented above, we can calculate the
sum of a range of integers, i + (i + 1) + · · · + j, by evaluating sum (to i j). (We shall
not consider the obvious solution that computes i(j−i+1)+(j−i)(j−i+1)/2 directly.)
But evaluating this expression will generate an intermediate list that is traversed once
and then discarded. Such a solution incurs an overhead from constructing the list and
from discarding it.

We can eliminate the intermediate list by combining the functions sum and to into one
function sumto by a few steps involving the definitions of the original functions, here
the direct-style sum function. Functional languages permit reasoning equationally on
the syntax of program, as follows.

sumto :: 0 i j = sum (to i j)

= sum (if i ≤ j then i :: to (i + 1) j else [])

= if i ≤ j then sum (i :: to (i + 1) j) else sum []

= if i ≤ j then i + sum (to (i + 1) j) else 0

= if i ≤ j then i + sumto (i + 1) j else 0

We can therefore define a function to sum a list of successive integers as follows.

fun sumto i j = if i ≤ j then i + sumto (i + 1) j else 0

This function does not construct an intermediate list and is therefore more efficient
than combining the two general functions. This transformation is called loop fusion [16]
or more generally deforestation [136].

• Church encoding

Most functional languages provide data types for representations of compound values
such as lists and trees. In contrast, the only “data types” of the pure λ-calculus are
higher-order functions. Yet, through Church encodings it is possible to map the func-
tionality of data types into the pure λ-calculus. The common idea is to represent data
in a form where the constructors of the data type are abstracted away using λ’s.

The data type of lists have two constructors, :: and []. Traditional lists can thus be
constructed using the following two values.

fun cons x xs = x :: xs
val nil = []

In contrast, a Church-representation of lists abstracts away the constructors, as follows.

fun cons x xs = fn c ⇒ fn n ⇒ c (x, xs c n)
val nil = fn c ⇒ fn n ⇒ n

1.2 Dissertation outline 9

A list of elements of type τ is then represented as a polymorphic function of type
∀α, β. (τ ×α → β) → α → β. Using the Church-encoded representation, we can sum a
list of integers i, i + 1, . . . , j by constructing a list and supplying an addition function
and its identity element.

let val l = cons i (cons (i + 1) · · · (cons j nil) · · ·)
in l (fn (x, y) ⇒ x + y) 0

end

Note that the list is not deforested. Instead, it is represented intermediately as a set of
higher-order functions.

Church-encoded data types may expose properties of the values they represent. For
example, the Church-encoded lists presented here directly encode the fold-function for
lists into the alternative representation.

1.2 Dissertation outline

The rest of the dissertation is organized into five chapters.

• Chapter 2. Embedded languages

During the 1990’s, compilers and interpreters for domain-specific languages (i.e., lan-
guages dedicated to a particular application domain) have been implemented by
adding the domain-specific operations to existing general-purpose languages. In these
implementations, the general-purpose meta language provides the linguistic structure
and the domain-specific object language provides objects and operations on them.

Functional languages are particularly successful meta languages since they provide a
rich infrastructure of higher-order functions, types, and modules. The primary goal of
embedding an object language into a meta language is to provide the object-language
functionality to end users. In addition, it has been suggested that also a part of the
object-language infrastructure can be provided. In particular, type systems for simply-
typed object languages have been embedded into polymorphically typed languages,
such as Haskell and Standard ML, by parameterizing the meta-language type associ-
ated with embedded object-terms over their object-language types. This technique is
called “phantom types.”

In Chapter 2 we investigate under which conditions such an embedding is sound (i.e.,
when all object-language terms that can be embedded into the meta language are sim-
ply typed) and complete (i.e., when all simply typed object-language terms can be em-
bedded into the meta language). The chapter presents the syntax of a small func-
tional meta language into which an object-language has been embedded. The deno-
tational semantics of the meta language is given along with a representation of object
terms. Soundness is then established using a Kripke logical relation and completeness

10 Introduction and motivations

is shown by structural induction. The chapter ends with a discussion of when Haskell
and Standard ML can be used as meta-languages.

This chapter is based on an article submitted for publication [120].

• Chapter 3. Type-directed partial evaluation

Type-directed partial evaluation extracts normal forms from values given their simple
type. The original Scheme implementation, however, can not insist on the input value
to have the given type since Scheme is dynamically typed. In fact, Scheme does not
even insist on a well-typed input value at all.

The first part of Chapter 3 presents an implementation of type-directed partial evalu-
ation in Haskell which does insist on input values of the correct type. The challenge
of the implementation is to implement the seemingly dependently typed normaliza-
tion functions of type-directed partial evaluation in a language with Hindley-Milner
polymorphism. The first solution, as shown in the first part of the chapter, is to use
a Church-encoded representation of types instead of a data-type encoded representa-
tion.

This part is based on work presented at PEPM 1999 [119].

The second and third parts of Chapter 3 are concerned with the output from type-
directed partial evaluation. Since it yields the normal form of its input, type-directed
partial evaluation preserves types. This result follows as a corollary of the general
correctness results for type-directed partial evaluation [61, 62]. In this second part,
we present instead two implementations of type-directed partial evaluation in stati-
cally typed languages that provably preserve types. The first solution uses a Church-
encoded representation of types. The second solution uses Haskell’s overloading to
avoid dependent types. In addition, both solutions also show that type-directed par-
tial evaluation yields normal forms.

This part is based on joint work with Olivier Danvy presented at FLOPS 2001 [42]
and joint work with Olivier Danvy and Kristoffer H. Rose to appear in the Journal of
Functional Programming [43].

• Chapter 4. Run-time code generation

Partial evaluation addresses the trade-off between generic program components that
can be adapted to the context of application and specialized program components that
are efficient to use. But traditional partial evaluation generates specialized components
that must be compiled before use. Adaptive systems address this discrepancy by using
efficient run-time compilation techniques instead of stand-alone compilers.

In Chapter 4 we present a collection of byte-code combinators that provides support
for run-time code generation in OCaml, a dialect of ML. The byte-code combinators
provide Lisp-like S-expressions in OCaml, but without the interpretive overhead of
Lisp-like eval for running them. We apply the byte-code combinators in semantics-
directed compilation and run-time specialization.

1.2 Dissertation outline 11

• Chapter 5. Goal-directed evaluation

Goal-directed evaluation is built on the notions of backtracking and of generating suc-
cessive results. In goal-directed languages, such as Icon and Snobol, evaluating an
expression either succeeds with a value or it fails. A successful evaluation may be re-
sumed to produce more results. When the evaluation of an expression fails, previously
successful expressions are resumed.

Goal-directed evaluation has always been a challenge to specify and implement. Icon
has previously been specified using a continuation-based denotational semantics [71]
and implemented by template-based compilers [113]. In Chapter 5 we specify a subset
of Icon with a monadic semantics and using a spectrum of related monads. For ex-
ample, we derive a continuation monad as a Church encoding of the list monad. The
resulting semantics coincides with the existing continuation-based semantics of Icon.

We then implement the continuation-based semantics as a continuation-passing style
interpreter in Standard ML. This interpreter can directly be specialized to yield Stan-
dard ML programs. However, we also show how to compose partial evaluation with
a translation from Standard ML to C program. This composition coincides with the
existing template-based compilers for Icon. As a final back-end we also consider gen-
erating OCaml byte code as the output of partial evaluation.

This chapter is based on joint work with Olivier Danvy and Bernd Grobauer presented
at SAIG 2001 [37] and to appear in New Generation Computing [38].

• Chapter 6. Conclusions and perspectives

Chapter 6 concludes and also discusses future work.

12 Introduction and motivations

Chapter 2

Embedded languages

Recent work on embedding object languages into Haskell use “phantom types” (i.e., param-
eterized types whose parameter does not occur on the right-hand side of the type definition)
to ensure that the embedded object-language terms are simply typed. But is it a safe assump-
tion that only simply-typed terms can be represented in Haskell using phantom types? And
conversely, can all simply-typed terms be represented in Haskell under the restrictions im-
posed by phantom types? In this chapter we investigate the conditions under which these
assumptions are true: We show that these questions can be answered affirmatively for an
idealized Haskell-like language and discuss to which extent Haskell can be used as a meta-
language.

Note. This chapter is based on an article which is submitted for publication [120].

Thanks are due to Olivier Danvy and Andrzej Filinski for providing insight-
ful comments and to Mikkel N. Hansen and Lasse R. Nielsen for kindly proof-
reading earlier versions of this work.

2.1 Introduction

A program is typically written in terms of library routines. Once stabilized, it may itself
become a library routine and be used in other programs. This bottom-up style of program-
ming makes program development and maintenance easier and more efficient since the pro-
grammer can rely on well-understood routines. One of the goals of module systems, macro
systems, and separate compilation is precisely to ease the definition of new routines and the
use of existing routines in new programs.

Similarly, new programming languages typically arise from extending (or, as Steele says,
“growing” [130]) existing languages with new features. Programming languages built from
existing pieces are easier to design, implement, and understand since, in principle, they com-
prise well-understood components. For example, many realistic programming languages
embody the λ-calculus as a core component. Yet, it was not until Scott that the λ-calculus it-
self was given a meaning. He warned that the hitherto “formalistic play with symbols” was
useless and that, eventually, symbols must be given an interpretation [125]. Scott developed

13

14 Embedded languages

domain theory to provide a foundation for the λ-calculus. The result is the denotational se-
mantics that we know it today in which the λ-calculus is used as a meta-language to define
the semantics of programming languages [131].

A programming language can also be embedded into another, instead of directly giving
its semantics in terms of, e.g., domains. The result combines the domain-specific operations
(such as domain-specific values, their types, and operations on them) of the object language
with the domain-independent linguistic features (such as evaluation strategy and type sys-
tem) of the meta-language. (There is an unfortunate clash of terminology between formal
domains as complete, partially ordered sets and informal domains as specific areas of appli-
cations.) Already in the 1960’s, this style was envisioned by Landin [92] who observed that
the design of programming languages splits into “the choice of written appearances of pro-
grams” and “the choice of abstract entities that can be referred to in the language.”

Statically typed higher-order languages provide powerful domain-independent linguis-
tic features. In particular, the module system, type classes, and polymorphic types of Has-
kell [59] make it a natural candidate to host domain-specific components [78]. Examples
of domain-specific languages embedded into Haskell include languages for geometric re-
gion analysis [18], interactive 3D animation [53], image synthesis and manipulation [54],
interfacing with Microsoft’s Component Object Model [63, 85], music description and com-
position [79], and accessing SQL databases [93].

The domain-specific operations may be provided by an external system such as a graph-
ical display showing images, a sound device playing music, or a database processing SQL
queries; or they may be provided by an interpreter implemented in the meta-language. The
domain-specific language may also provide a notion of well-typed domain-specific objects
and restrict the range of the domain-specific operations to these objects. It is then crucial
that only well-typed domain-specific objects can be expressed in the meta-language. When
the object-language type system is sufficiently simple it can be expressed directly by the
meta-language types of the domain-specific operations.

“Phantom types” were introduced to embed stronger object-language type into Has-
kell [63, 85, 93]. (We call a formal type parameter of a parameterized type “phantom” if
all instances of the parameterized type are independent of the actual type parameters.) For
example, phantom types are instrumental for embedding COM objects and for embedding
SQL queries into Haskell. They also provide a key for using Haskell’s type inferencer as
a theorem prover to show that normalization functions as embodied in type-directed par-
tial evaluation preserve types and yield normal forms [42, 43]. These applications of phan-
tom types show that embedded type systems provide a powerful tool for both designing
embedded programming languages and reasoning about program correctness. All existing
embeddings using phantom types, however, take the following key properties for granted.

• Soundness

No well-typed meta-language expression can represent an ill-typed domain-specific
object; and

2.2 An embedded higher-order language 15

• Completeness

Any well-typed domain-specific object can be represented in the meta-language.

In this chapter we formally prove that these properties hold when embedding a
monomorphic, higher-order language into an idealized Haskell-like meta-language. This
paper is organized as follows. Section 2.2 gives an implementation of an embedding of
the terms and types of the simply typed λ-calculus into Haskell. In Section 2.3 we present
a semantics of an idealized Haskell-like meta-language and then prove the two properties
mentioned above. In Section 2.4 we investigate the use of Haskell as a meta-language, in
partcular, which precautions to take when Haskell is used as a meta-language. This section
also discusses extensions to the object and meta-languages. Section 2.5 concludes.

2.2 An embedded higher-order language

Let us consider a domain-specific object language for manipulating integers and higher-
order functions, i.e., an extension of the simply typed λ-calculus. We include addition of
integers but, depending on the domain, one can add other base types, finite products, lists,
etc. and primitive operations on these types. In Haskell, the object language can be repre-
sented by the following data type.

type Ide = String
data Raw = INT Int | ADD Raw Raw

| VAR Ide | LAM Ide Raw | APP Raw Raw

instance Show Raw where
showsPrec _ t = ...

Here we have equipped the data type with a function showing terms as strings. An alter-
native to using a data type is to directly encode terms as strings (if, for example, terms are
passed to an external system as concrete syntax).

2.2.1 Higher-order abstract syntax

The key to embedding a typed higher-order object language is to use higher-order abstract
syntax [110] as the interface to constructing terms. In higher-order abstract syntax variables
and bindings of the object language are modeled by variables and bindings of the meta-
language, in this case Haskell. It is precisely this connection that enables meta-language
types to model object-language types: Short of a typeable representation of type contexts
for free variables, this appears an imposible task for first-order syntax. The higher-order
implementation hides the (first-order) constructors VAR and LAM; instead a (higher-order)
constructor lam groups together the construction of a symbolic variable and the lambda that
binds it. Hence, only closed object-language terms can be constructed.

To facilitate automatic generation of variable names, terms are abstracted over a list of
fresh variable names. The type of terms are [Ide] → Raw. The same list of variable names is

16 Embedded languages

module Lambda(Exp, int, add, lam, app) where

...

type Exp = [Ide] → Raw

int i = λns → INT i
add a b = λns → ADD (a ns) (b ns)
lam f = λ(n:ns) → LAM n (f (λz → VAR n) ns)
app a b = λns → APP (a ns) (b ns)

Figure 2.1: Higher-order abstract syntax.

passed to all subterms, except in the case of lambdas where the first name is used to construct
a symbolic variable and the rest of the names are passed to the body of the lambda. Variables
will therefore be named by their de Bruijn level [48]. Figure 2.1 shows how the higher-order
abstract syntax is added on top of the raw first-order data type above.

The higher-order abstract syntax does not impose any type constraints on the embedded
language. For example, Haskell accepts the expression

app (int 1) (lam (λx → x))

even though it represents the ill-typed object term 1 (λx → x) (here presented in Haskell
syntax).

2.2.2 An embedded type discipline

We restrict the higher-order constructors to only yield representations of well-typed terms.
To this end, we make the following observations about constructing representations of well-
typed object terms:

• int produces an object-language term of type Int.

• When add is applied to two object-language terms of type Int it produces an object-
language term of type Int.

• When app is applied to two object-language terms of types a → b and a it produces a
term of object-language type b.

• When lam is applied to a function mapping an object-language term of type a into an
object-language term of type b it produces an object-language term of type a → b.

These dependencies are just verbal formulations of the standard type rules for the
simply-typed λ-calculus. They suggest that the (polymorphic) types of the constructors ac-
tually could reflect the object-language types. We thus parameterize the type Exp over the
type of the represented object-language term and we restrict the types of the constructors

2.3 Soundness and completeness 17

module Lambda(Exp, int, add, lam, app) where

type Ide = String
data Raw = INT Int | ADD Raw Raw

| VAR Ide | LAM Ide Raw | APP Raw Raw

newtype Exp t = E ([Ide] → Raw)
make (E a) ns = a ns

int :: Int → Exp Int
add :: Exp Int → Exp Int → Exp Int
lam :: (Exp a → Exp b) → Exp (a → b)
app :: Exp (a → b) → Exp a → Exp b

int i = E (λns → INT i)
add a b = E (λns → ADD (make a ns) (make b ns))
lam f = E (λ(n:ns) → LAM n (make (f (E (λz → VAR n))) ns))
app a b = E (λns → APP (make a ns) (make b ns))

instance Show (Exp t) where
showsPrec i (E a) = showsPrec i r where
r = a [c:i | i ← ("":map show [1..]), c ← [’a’..’z’]]

Figure 2.2: A typed higher-order language embedded into Haskell.

according to the observations above. The type parameter of Exp is a phantom type: it is not
used in the right-hand side of the definition of Exp.

The complete embedding of the simply-typed λ-calculus into Haskell is shown in Fig-
ure 2.2. Terms are given by an abstract data type: a newtype declaration hides their rep-
resentations as functions of type [Ide] → Raw and the module only exports the typed con-
structors.

As an example, Haskell rejects the expression app (int 1) (lam (λx → x)), since this
expression is an attempt to represent the ill-typed object-language term 1 (λx → x). On
the other hand, the object-language term λf → 2 + (f 1) has the type (Int → Int) → Int.
It can thus be represented in Haskell by lam (λf → add (int 2) (app f (int 1))) of type
Exp ((Int → Int) → Int). It is, however, not clear just from the implementation in Fig-
ure 2.2 and the inferred types that all ill-typed terms are ruled out. It is also not clear that ev-
ery well-typed term can be represented. In the next section we present an idealized Haskell-
like meta-language in which these properties do hold.

2.3 Soundness and completeness

We consider an idealized meta-language without let-polymorphism but with a set of prede-
fined polymorphic constant symbols. We first give the syntax, type system, and denotational
semantics of the meta-language. We then introduce the syntax and type system of the simply

18 Embedded languages

typed λ-calculus (the object language) with constants of base type. Soundness follows from
a proof using a Kripke logical relation and completeness fothe llows by structural induction.
Section 2.4 discussed the differences between the idealized meta-language and Haskell.

2.3.1 A small functional meta-language

Let β range over a set B of base types. The types of the meta-language consist of base types,
function types, and types of representations of terms.

τ ::= β | τ1 → τ2 | Exp τ

In the type Exp τ , the intention is that τ is the type of the represented object term (as also
suggested by the examples at the end of Section 2.2). As we shall see, soundness implies
that this τ cannot itself contain occurrences of Exp . This also means that the object language
cannot itself express encoded terms, such as used in a multi-stage framework.

Let x range over an infinite set V of variable names and cτ1···τn
over a set C of constant

symbols. The syntax of our small language is then given as follows.

e ::= x | λx. e | e1 e2 | cτ1···τn
| rec x.e

A signature Σ = (B,C) lists base types and constant symbols and additionally assigns
types Σ(cτ1···τn

) to constants cτ1···τn
. (In other words, we treat cτ1···τn

as an instance of a
polymorphic constant symbol c.) A type context Γ is a finite mapping from variables to
types. Given a signature Σ, the type rules for the language are as follows.

Γ(x) = τ

Γ `Σ x : τ

Γ[x : τ1] `Σ e : τ2

Γ `Σ λx. e : τ1 → τ2

Γ `Σ e1 : τ2 → τ Γ `Σ e2 : τ2

Γ `Σ e1 e2 : τ

Σ(cτ1···τn
) = τ

Γ `Σ cτ1···τn
: τ

Γ[x : τ] `Σ e : τ

Γ `Σ rec x.e : τ

We define a base signature Σ0 = (B0,C0) for an addition function and for higher-order
constructors,

B0 = {Int}
C0 = Z ∪ {+, int, add} ∪ {lamτ1,τ2, appτ1,τ2}τ1,τ2

where Z is the set of integers. The associated assignment of types to constant symbols is
given as follows. (This is where the types of the higher-order constructors are restricted.)

Σ0(i) = Int, for each i ∈ Z Σ0(int) = Int → Exp Int

Σ0(+) = Int → Int → Int Σ0(add) = Exp Int → Exp Int → Exp Int

Σ0(lamτ1,τ2) = (Exp τ1 → Exp τ2) → Exp (τ1 → τ2)
Σ0(appτ1,τ2) = Exp (τ1 → τ2) → Exp τ1 → Exp τ2

It is straightforward to extend the meta-language with other base types and constant
symbols. The formal requirements that constant symbols must satisfy are discussed in Sec-
tion 2.3.3.

2.3 Soundness and completeness 19

2.3.2 Denotational semantics

To model the construction of object-language terms, we assume the existence of a discretely
ordered set L that is capable of representing terms and we assume the existence of the fol-
lowing injective functions with mutually disjoint ranges,

INT ∈ N → L ADD ∈ L × L → L
VAR ∈ V → L LAM ∈ V × L → L
APP ∈ L × L → L

where N is the set of natural numbers. As an example one might take L to be, e.g., the set
of finite strings of symbols. We need not require the constructor functions to be surjective.
That is, we do not rule out “syntactically invalid” elements in L.

We draw fresh object-language variables from the same source as meta-language vari-
ables, namely the infinite set V. In particular, we assume that there is an injective function
fresh ∈ N → V.

In the semantical development that follows we shall use standard domain-theoretic no-
tation: For CPOs A and B, we write A⊥ for the lifted domain, ⊥A for the bottom element
of this domain, up ∈ A → A⊥ for the lifting injection, f ∗ ∈ A⊥ → B⊥ for the strict exten-
sion of f ∈ A → B⊥, f⊥ ∈ A⊥ → B⊥ for the strict version of f ∈ A → B. We shall write
(·, ·)⊥ ∈ A⊥ × B⊥ → (A × B)⊥ for the strict pairing function, e.g., the function for which
(up(a),up(b))⊥ = up(a, b) and where (a, b)⊥ = ⊥A×B if either a = ⊥A or b = ⊥B . We write
A →c B for the continuous function space between A and B. The partial order on a domain
A is @A.

An interpretation I of a signature Σ assigns predomains (i.e., bottomless CPOs) to base
types and values to constant symbols. For a given interpretation I , the meaning of types is
defined as follows.

[[β]]I = I(β)⊥
[[τ1 → τ2]]I = [[τ1]]I →c [[τ2]]I

[[Exp τ]]I = N⊥ →c L⊥
The interpretation furthermore assigns values to constant symbols such that if

Σ(cτ1···τn
) = τ then I(cτ1···τn

) ∈ [[τ]]I .
The meaning of a type context Γ is the labelled product

[[Γ]]I =
∏

x∈dom(Γ)

[[Γ(x)]]I

Finally, to any well typed meta-language expression Γ `Σ e : τ we assign a continu-
ous function [[e]]I ∈ [[Γ]]I →c [[τ]]I . The following is a standard call-by-name semantics for
functional languages.

[[x]]I ρ = ρ(x)
[[λx. e]]I ρ = λa. [[e]]I ρ[x 7→ a]
[[e1 e2]]I ρ = [[e1]]I ρ ([[e2]]I ρ)

[[cτ1···τn
]]I ρ = I(cτ1···τn

)
[[rec x.e]]I ρ =

⊔
i∈ω φi(⊥[[τ]]I), where φ(a) = [[e]]I ρ[x 7→ a]

20 Embedded languages

The initial signature Σ0 is given the interpretation I0: First, the type Int is interpreted
by the integers, i.e., I0(Int) = Z. For the constant symbols, the interpretation is defined as
follows.

I0(i) = up(i)
I0(+) = λx. λy. x+⊥ y

I0(int) = λi. λn. INT⊥(i)
I0(add) = λv1. λv2. λn.ADD⊥(v1(n), v2(n))⊥

I0(lamτ1,τ2) = λf. λn.LAM⊥(fresh⊥(n),
f (λz.VAR⊥(fresh⊥(n))) (n +⊥ up(1)))⊥

I0(appτ1,τ2) = λv1. λv2. λn.APP⊥(v1(n), v2(n))⊥
It follows by construction that the functions involved in defining the semantics of terms

and in defining the initial interpretation of the constant symbols are all continuous.

2.3.3 Soundness

To reason about object-language types and terms we use the following concrete representa-
tions.

σ ::= Int | σ1 → σ2

u ::= i | u1 + u2 | x | λx. u | u1 u2

We let ∆ range over finite mappings from variables to object language types. The following
type rules assigns types to object-language terms.

∆ ` i : Int

∆ ` u1 : Int ∆ ` u2 : Int

∆ ` u1 + u2 : Int

∆(x) = σ

∆ ` x : σ

∆[x : σ1] ` u : σ2

∆ ` λx. u : σ1 → σ2

∆ ` u1 : σ1 → σ2 ∆ ` u2 : σ1

∆ ` u1 u2 : σ2

These rules are standard and standard results apply to them. We shall only need the
following weakening lemma.

Lemma 1 (Weakening) If for all x ∈ dom(∆), ∆′(x) = ∆(x) and ∆ ` u : σ then ∆′ ` u : σ

Proof. By induction on the derivation of ∆ ` u : σ. �

We define the obvious injective representation functions mapping object-language terms
into L as follows.

die = INT (i) du1 + u2e = ADD(du1e, du2e)
dxe = VAR(x) dλx. ue = LAM (x, due)

du1 u2e = APP(du1e, du2e)
This representation function need not be surjective: Some elements in L may not corre-

spond to any object-language term. It is our goal to show, however, that any element of L
that is denoted by an expression in the meta-language corresponds to an object-language
term and, furthermore, that these terms are well typed.

2.3 Soundness and completeness 21

Definition 1 For a type context ∆ and a type σ define a subset of L⊥ as follows.

T ∆
σ = {⊥L} ∪ {up(l) ∈ L⊥ | ∃u.due = l ∧ ∆ ` u : σ}

The set T ∆
σ contains exactly the elements in L⊥ that are undefined or that correspond to

object-language terms of type σ in type context ∆.

Lemma 2 (Admissibility of T) For any type τ and type context ∆ the relation T∆
τ is admissible.

That is, it is pointed (i.e., ⊥L ∈ T ∆
τ) and it is chain complete (i.e., if (li)i∈ω is a chain in L⊥ such that

for all i ∈ ω, li ∈ T ∆
τ then

⊔
i∈ω li ∈ T ∆

τ).

Proof. Pointedness follows trivially by the definition. Chain completeness follows from
the fact that L⊥ is discretely ordered and that any chain in L⊥ therefore eventually becomes
constant. �

Definition 2 A world is a type context ∆. Worlds are ordered as follows.

∆′ � ∆ ⇐⇒ ∀x ∈ dom(∆).x ∈ dom(∆′) ∧ ∆′(x) = ∆(x)

We let #∆ = max({0} ∪ {i | fresh(i) ∈ dom(∆)}).

It is easy to show that � is reflexive and transitive, that ∆′ � ∆ implies #∆′ ≥ #∆, and
that n > #∆ implies n + 1 > #∆[g : σ] where g = fresh(n).

Terms that are well typed in one world are also well typed in any larger world, a result
due to weakening.

Lemma 3 (Monotonicity of T) For type σ, if two type contexts satisfy ∆′ � ∆ then T ∆′
τ ⊇ T ∆

τ .

Proof. A consequence of Lemma 1. �

Definition 3 (Logical relation R) For any type τ and type context ∆ we define a subset of [[τ]]I as
follows.

(1) R∆
β = [[β]]I

(2) R∆
τ1→τ2 = {f ∈ [[τ1]]I →c [[τ2]]I | ∀∆′ � ∆.∀a ∈ R∆′

τ1 .f(a) ∈ R∆′
τ2 }

(3) R∆
Exp σ = {f ∈ N⊥ →c L⊥ | ∀n > #∆.f(up(n)) ∈ T ∆

σ }

The logical relation defines a notion of well-behaved values. Informally, it states that all
values of base type are well-behaved, that a function is well-behaved if it maps well-behaved
values to well-behaved result, and that a representation of an object term is well-behaved if,
given a fresh variable index, it has the correct type in the given type context.

Lemma 4 (Admissibility of Rτ) For any type τ and type context ∆ the relation R∆
τ is admissible.

22 Embedded languages

Proof. Using admissibility of T ∆
τ (Lemma 2). Chain completeness follows by induction on

τ . For the case τ = β we use the fact R∆
β is the constantly true predicate. For the case

τ = Exp σ we use chain completeness of T ∆
τ and the fact that for any chain of continuous

functions (fn)n∈ω ,
(⊔

n∈ω fn

)
(x) =

⊔
n∈ω fn(x). Pointedness follows by induction on τ using

pointedness of T ∆
τ and [[β]]I . �

Together with Definition 3, the following lemma shows that Rτ is a Kripke logical rela-
tion [103].

Lemma 5 (Monotonicity of Rτ) For any type τ , if two type contexts satisfy ∆′ � ∆ then R∆′
τ ⊇

R∆
τ .

Proof. By induction on τ .

Case τ = β. Holds trivially since R∆′
β = R∆

β .

Case τ = τ1 → τ2. Follows from the transitivity of �.

Case τ = Expσ. Follows from the monotonicity of T (Lemma 3) and using the fact that
#∆′ ≥ #∆. �

We extend the logical relation of values and types to a relation of environments and type
contexts. This gives a notion of well-behaved environments.

Definition 4 For any type contexts ∆ and Γ we define a subset of [[Γ]]I as follows.

R∆
Γ = {ρ ∈ [[Γ]]I | ∀x ∈ dom(Γ).ρ(x) ∈ R∆

Γ(x)}

This extension preserves monotonicity.

Lemma 6 (Monotonicity of RΓ) For all type contexts Γ, ∆, and ∆′, if ∆′ � ∆ then R∆′
Γ ⊇ R∆

Γ .

Proof. Follows from Lemma 5. �

Adding a well-behaved value to an already well-behaved environment results in another
well-behaved environment.

Lemma 7 If d ∈ R∆
τ and ρ ∈ R∆

Γ then also ρ[x 7→ d] ∈ R∆
Γ[x:τ].

Proof. Follows from Definition 4. �

Using the results established so far, soundness amounts to showing that the semantics of
a well-typed expression is well-behaved. The following lemma shows that this result holds
for the constant symbols defined by the initial interpretation.

Lemma 8 For any constant symbol cτ1···τn
∈ C0 with Σ0(cτ1···τn

) = τ and for any type context ∆
we have I0(cτ1···τn

) ∈ R∆
τ .

2.3 Soundness and completeness 23

Proof. By analysis of the individual constant symbols.

Case cτ1···τn
= i. Holds trivially since all values of base type are well behaved.

Case cτ1···τn
= +. Holds trivially since + produces a value of base type which is always

well behaved.

Case cτ1···τn
= int. Since ∆ ` i : Int we have up(INT (i)) ∈ T ∆

Int for any i ∈ Z and type context
∆. Therefore λi. λn. INT⊥(up(i)) = λi. λn.up(INT (i)) ∈ R∆

Int→Exp Int as required.

Case cτ1···τn
= add. Given ∆′ � ∆, ∆′′ � ∆′, v1 ∈ R∆′

Exp Int, v2 ∈ R∆′′
Exp Int, and n > #∆′′ we

must show that ADD⊥(v1(up(n)), v2(up(n)))⊥ is either ⊥L or equal to up(due) for some
u with ∆′′ ` u : Int.

Since n > #∆′′ ≥ #∆′ ≥ #∆ we immediately have v2(up(n)) ∈ T ∆′′
Int . Using Lemma 3

we also get v1(up(n)) ∈ T ∆′
Int ⊆ T ∆′′

Int . Therefore, either v1(up(n)) = ⊥L or v2(up(n)) =
⊥L, in which case we are done since ADD⊥(v1(up(n)), v2(up(n)))⊥ = ⊥L, or we have
terms u1 and u2 with v1(up(n)) = up(du1e), v2(up(n)) = up(du2e), ∆′′ ` u1 : Int, and
∆′′ ` u2 : Int. We set u = u1 + u2 and have

ADD⊥(v1(up(n)), v2(up(n)))⊥ = updu1 + u2e

and
∆′′ ` u1 : Int ∆′′ ` u2 : Int

∆′′ ` u1 + u2 : Int

as required.

Case cτ1···τn
= lamτ1,τ2 . Given ∆′ � ∆, n > #∆′, g = fresh(n), and f ∈ R∆′

Exp τ1→Exp τ1
we

must show that

LAM⊥(up(g), f (λz.VAR⊥(up(g))) (up(n + 1)))⊥

is either ⊥L or equal to up(due) for some u with ∆′ ` u : τ1 → τ2.

We have λz.VAR⊥(up(g)) = λz.up(VAR(g)) ∈ R∆′[g:τ1]
Exp τ1

since dge = VAR(g) and ∆′[g :
τ1] ` g : τ1. Since also n + 1 > #(∆′[g : τ1]) we have

f (λz.VAR⊥(up(g))) (up(n + 1)) ∈ T ∆′[g:τ1]
τ2

This value must therefore either be ⊥L, in which case we are done, or be equal to
up(du′e) for some term u′ with ∆′[g : τ1] ` u′ : τ2. We set u = λg. u′ and have

LAM⊥(up(g), f (λz.VAR⊥(up(g))) (up(n + 1)))⊥ = up(dλg. u′e)

and
∆′[g : τ1] ` u′ : τ2

∆′ ` λg. u′ : τ1 → τ2

as required.

24 Embedded languages

Case cτ1···τn
= appτ1,τ2 . (Follows the same structure as the case for addition.) Given ∆′ � ∆,

∆′′ � ∆′, v1 ∈ R∆′
Exp (τ1→τ2)

, v2 ∈ R∆′′
Exp τ1

, and n > #∆′′ we must show that

APP⊥(v1(up(n)), v2(up(n)))⊥

is either ⊥L or equal to up(due) for some u with ∆′′ ` u : τ2

Since n > #∆′′ ≥ #∆′ ≥ #∆ we immediately have v2(up(n)) ∈ T ∆′′
τ1 . Using Lemma 3

we also get v1(up(n)) ∈ T ∆′
τ1→τ2 ⊆ T ∆′′

τ1→τ2 . Thus, either v1(up(n)) = ⊥L or v2(up(n)) =
⊥L, in which case we are done since APP⊥(v1(up(n)), v2(up(n)))⊥ = ⊥L, or we have
terms u1 and u2 with v1(up(n)) = up(du1e), v2(up(n)) = up(du2e), ∆′′ ` u1 : τ1 → τ2,
and ∆′′ ` u2 : τ1. We set u = u1 u2 and have

APP⊥(v1(up(n)), v2(up(n)))⊥ = updu1 u2e

and

∆′′ ` u1 : τ1 → τ2 ∆′′ ` u2 : τ1

∆′′ ` u1 u2 : τ2

as required. �

Other constant symbols can be added to the meta-language if they satisfy Lemma 8. The
main result states that evaluating a well-typed expression in a well-behaved environment
yields a well-behaved value.

Theorem 1 (Soundness) In the initial interpretation I0 of the initial signature Σ0, if Γ `Σ0 e : τ

and ρ ∈ R∆
Γ then [[e]]I0 ρ ∈ R∆

τ .

Proof. By structural induction on e.

Case e = x. Then Γ(x) = τ and [[x]]I0 ρ = ρ(x) so [[x]]I0 ρ ∈ R∆
τ follows from Definition 4.

Case e = λx. e′. Then τ = τ1 → τ2 where Γ[x : τ1] `Σ0 e′ : τ2 and

[[λx. e′]]I0 = λa. [[e′]]I0 ρ[x 7→ a]

We must show [[λx. e′]]I0 ∈ R∆
τ1→τ2 . So given ∆′ � ∆ and d ∈ R∆′

τ1 we must show that
[[e′]]I0 ρ[x 7→ d] ∈ R∆′

τ2 . From Lemma 6 it follows that ρ ∈ R∆′
Γ and then from Lemma 7

we have that ρ[x 7→ d] ∈ R∆′
Γ[x:τ1]

. Thus, [[e′]]I0 ρ[x 7→ d] ∈ R∆′
τ2 follows from the induction

hypothesis.

Case e = e1 e2. Then Γ `Σ0 e1 : τ2 → τ , Γ `Σ0 e2 : τ2, and [[e1 e2]]I0 ρ = [[e1]]I0 ρ ([[e2]]I0 ρ).
Using the induction hypothesis twice we get [[e1]]I0 ρ ∈ R∆

τ2→τ and [[e2]]I0 ρ ∈ R∆
τ2 . Using

reflexivity of �, Definition 3(2) gives [[e1 e2]]I0 ρ ∈ R∆
τ as required.

Case e = cτ1···τn
. Follows from Lemma 8.

Case rec x.e′. Using pointedness for the base case and Lemma 7 for the induction step an
induction on i shows that φi(⊥) ∈ R∆

τ for all i, where φ(a) = [[e′]]I0 ρ[x 7→ a] . The result
then follows from admissibility (Lemma 4). �

2.3 Soundness and completeness 25

The following corollary states that an expression of type Exp τ evaluates to a function
that, when passed an initial variable index, either diverges or yields a representation of an
object-language term of type τ .

Corollary 1 For any type σ and closed expression e with ∅ Σ̀0 e : Exp σ, if [[e]]I0 [] 0 = l then
either l = ⊥L or l = up(due) for some term u with ∅ ` u : σ.

Proof. Follows from Theorem 1 since [] ∈ R∅
∅. �

2.3.4 Completeness

We show that for any well-typed object-language term there exists a meta-language expres-
sion that evaluates to a representation of the term. The translation straightforwardly uses
int, add, lamτ1,τ2 , and appτ1,τ2 to build integers, additions, lambdas, and applications. We
present the translation as an extended type system so that the polymorphic constant sym-
bols are indexed by the correct types. (In languages such as Haskell, where constant symbols
are not annotated by the polymorphic type, the translation can be defined by a simple struc-
tural induction over the object-language term.) In addition, the type rules carry symbolic
variable indices so that these can be related to the corresponding meta-language variables in
the proofs below. (This extra information is also not needed to just perform the translation.)

We let a translation context Ξ range over finite mappings from variables to pairs of types
and integers. The translation rules are given as follows.

n; Ξ ` i : Int / int i

n; Ξ ` u1 : Int / e1 n; Ξ ` u2 : Int / e2

n; Ξ ` u1 + u2 : Int / add e1 e2

Ξ(x) = (σ,m)

n; Ξ ` x : σ /x

n + 1;Ξ[x : (σ1, n)] ` u : σ2 / e

n; Ξ ` λx. u : σ1 → σ2 / lamσ1,σ2 (λx. e)

n; Ξ ` u1 : σ1 → σ2 / e1 n; Ξ ` u2 : σ1 / e2

n; Ξ ` u1 u2 : σ2 / appσ1,σ2
e1 e2

We first relate the type of the object-language term and the type of the meta-language
expression.

Lemma 9 For any translation context Ξ, type context Γ, n ∈ Z, and type σ, if n; Ξ ` u : σ / e and
if Γ(x) = Expσ when Ξ(x) = (σ, n) then Γ `Σ0 e : Expσ

Proof. By induction on the derivation of n; Ξ ` u : σ / e. �

Not all well-typed object-language terms can be encoded syntactically in the meta-
language since fresh variable names drawn from the predetermined list might differ from
the intended variable names. We will show, however, that a term and its encoding as given
above are equal up to renaming of bound variables.

26 Embedded languages

Definition 5 (Substitutions and α-convertibility) A substitution s is a finite mapping of vari-
ables to variables. We let (s\x) be the restricted substitution satisfying (s\x) (x) = x and
(s\x) (y) = s(y) for x 6= y. Substitutions extend to terms in such a way that s(λx. u) = λx. u′

where u′ = (s\x) (u).
We say that a term u can be α-converted to a term u′ under a substitution s, written s ` u −→

u′, if renaming bound variables in u according to s yields u′. The relation is defined by the following
rules.

s ` i −→ i

s(x) = y

s ` x −→ y

y /∈ (s\x) (u) s[x 7→ y] ` u −→ u′

s ` λx. u −→ λy. u′

s ` u1 −→ u′
1 s ` u2 −→ u′

2

s ` u1 + u2 −→ u′
1 + u′

2

s ` u1 −→ u′
1 s ` u2 −→ u′

2

s ` u1 u2 −→ u′
1 u′

2

where y 6∈ u indicates that the variable y does not occur (free or bound) in the expression u.

Two closed term u1 and u2 are α-congruent in the traditional sense [6, p. 26] if they are
related by [] ` u1 −→ u2.

Definition 6 Given a translation context Ξ we define a substitution ΞS and an environment ΞE

such that if fresh(n) = g then

(1) (Ξ[x : (σ, n)])S = ΞS [x 7→ g]

(2) (Ξ[x : (σ, n)])E = ΞE [x 7→ λz.up(VAR(g))]

Lemma 10 For any integer n, term u, expression e, type σ, and translation context Ξ with
range(Ξ) = {(σ, i) | i < n}, if n; Ξ ` u : σ / e then there exists a term u′ such that ΞS ` u −→ u′

and [[e]]I0 ΞE (up(n)) = up(du′e).

Proof. By induction on the derivation of n; Ξ ` u : σ / e.

Case n; Ξ ` i : Int / int i. Then [[int i]]I0 ΞE (up(n)) = up(INT (i)) = up(die) and indeed
ΞS ` i −→ i.

Case n; Ξ ` u1 + u2 : Int / add e1 e2 where n; Ξ ` u1 : Int / e1 and n; Ξ ` u2 : Int / e2. Then by
two applications of the induction hypothesis there exist u ′

1 and u′
2 such that ΞS ` u1 −→

u′
1, ΞS ` u2 −→ u′

2, [[e1]]I0 ΞE (up(n)) = up(du′
1e), and [[e2]]I0 ΞE (up(n)) = up(du′

2e).
We therefore have

[[add e1 e2]]I0 ΞE (up(n)) = ADD⊥
(
[[e1]]I0 ΞE (up(n)), [[e2]]I0 ΞE (up(n))

)
⊥

= ADD⊥(up(du′
1e),up(du′

2e))⊥
= up(ADD(du′

1e, du′
2e))

= up(du′
1 + u′

2e)

and indeed ΞS ` u1 + u2 −→ u′
1 + u′

2.

2.4 Haskell as a meta-language 27

Case n; Ξ ` x : σ /x where Ξ(x) = (σ,m). Then with g = fresh(m),

[[x]]I0 ΞE (up(n)) = ΞE(x) (up(n)) = up(VAR(g)) = up(dge)

and indeed ΞS ` x −→ g.

Case n; Ξ ` λx. u : σ1 → σ2 / lamτ1,τ2 (λx. e) where n + 1;Ξ[x : (σ1, n)] ` u : σ2 / e. Then
with g = fresh(n), we have from the induction hypothesis that there exists u ′ such that
Ξ[x : (σ1, n)]S ` u −→ u′. Definition 6(1) then gives ΞS [x 7→ g] ` u −→ u′. Together
with Definition 6(2) the induction hypothesis also gives

[[λx. e]]I0 ΞE (up(n)) = LAM⊥
(
up(g), [[e]]I0 Ξ[x : (σ1, n)]E (up(n + 1))

)
⊥

= LAM⊥
(
up(g),up(du′e)

)
⊥

= up(LAM (g, du′e)
= up(dλg. u′e)

Since range(Ξ) ⊆ {(σ, i) | i < n} we have that for all z, ΞS(z) 6= g. Hence indeed
ΞS ` λx. u −→ λg. u′.

Case n; Ξ ` u1 u2 : σ2 / appτ1,τ2 e1 e2 where n; Ξ ` u1 : σ1 / e1 and n; Ξ ` u2 : σ1 → σ2 / e2.
(Follows the same structure as the case for addition.) Then by induction hypothesis
there exist u′

1 and u′
2 such that ΞS ` u1 −→ u′

1, ΞS ` u2 −→ u′
2, [[e1]]I0 ΞE (up(n)) =

up(du′
1e), and [[e2]]I0 ΞE (up(n)) = up(du′

2e). We therefore have

[[appτ1,τ2 e1 e2]]I0 ΞE (up(n)) = APP⊥
(
[[e1]]I0 ΞE (up(n)), [[e2]]I0 ΞE (up(n))

)
⊥

= APP⊥(up(du′
1e),up(du′

2e))⊥
= up(APP(du′

1e, du′
2e))

= up(du′
1 u′

2e)

and indeed ΞS ` u1 u2 −→ u′
1 u′

2. �

Theorem 2 (Completeness) For any closed term ∅ ` u : σ there exists an expression ∅ Σ̀0 e :
Expσ and a closed term u′ such that [] ` u −→ u′ and [[e]]I0 [] (up(0)) = up(du′e).

Proof. The type part follows from Lemma 9 and the evaluation part from Lemma 10. �

2.4 Haskell as a meta-language

There are a number of issues that must be addressed to use Haskell as a meta-language
for embedded languages. Differences between Haskell and the idealized meta-language
presented in the previous section influence the conditions under which Haskell can safely
be used as a meta-language.

There are no built-in types Exp τ or constant symbols lamτ1,τ2 and appτ1,τ2 in Haskell.
Instead, we must define global variables as in Figure 2.2 and argue that their semantics
agree with the semantics of lamτ1,τ2 and appτ1,τ2 . We have designed the semantics of these
constant symbols to match the Haskell implementation. Furthermore, in Haskell, the types

28 Embedded languages

of these symbols are restricted outside the module of their implementation. In contrast, in
the formal development they are given as constant symbols of the restricted types.

The formal treatment in this work uses strict data type constructors. In contrast, Haskell’s
constructors are non-strict. For the soundness result, the strict constructors guarantee that
we only observe the types of “finite” object-language terms. In Haskell, it is possible to ob-
serve the shape of “infinite” terms using the top-level read-eval-print loop. For example, the
following well-typed Haskell expression uses recursion to build an infinite object-language
term.

let f = lam (λx → app f x) in f

Its meaning is the representation of the limit of the chain of incomplete terms

⊥
v LAM ”x1” (APP ⊥ (VAR ”x1”))
v LAM ”x1” (APP (LAM ”x2” (APP ⊥ (VAR ”x2”))) (VAR ”x1”))
v · · ·

where ⊥ denotes the bottom element of the CPO of (non-strict) data types. In a formal
account for the soundness property using non-strict data types it may be desirable not to
give types to such infinitely expanding terms. Instead, the soundness property might state
that if a “finite” object-language term is denoted by an expression of type Exp τ then it has
type τ .

Haskell’s function space is lifted, e.g. [[τ1 → τ2]]I = ([[τ1]]I →c [[τ2]]I)⊥, allowing observ-
ing termination of expressions of higher types using the top-level read-eval-print loop. In
contrast, in the idealized meta-language an expression of higher type is always applied so its
termination behavior is never observed independently. Changing the semantics to account
for Haskell-like lifted function spaces does not appear to introduce any difficulties in the
soundness proof.

Finally, the approach to embedding languages into higher-order host languages that we
have presented inherits the known problems of higher-order abstract syntax [76]. Most im-
portantly, a higher-order abstract syntax does not admit a notion of case analysis. In order to
make any use of constructed object-language terms, the embedding we have presented di-
rectly represents terms using a first-order data type which can be printed as text. However,
the standard function spaces of functional languages are generally too large for adequate
higher-order abstract syntax. For example, the implementation in Figure 2.2 actually allows
representations of “exotic terms”, such as the following expression of type Exp (Int → Int).

lam (λx → if show x = "a" then int 1 else int 2)

Although closed, this term do not correspond to any object-language term. Depending on
the context, it may behave as either λa → 1 or λx → 2. Research on higher-order abstract syn-
tax alleviates these problems by restricting the function spaces of the meta-language using,
e.g., modal logics [49]. In Haskell-like languages, however, such a requirement cannot be en-
forced by the type system. In the presence of show-like functions, there are no ways around

2.4 Haskell as a meta-language 29

-- Finite products
pair :: Exp a → Exp b → Exp (a, b)
pfst :: Exp (a, b) → Exp a
psnd :: Exp (a, b) → Exp b

-- Lists
nil :: Exp [a]
cons :: Exp a → Exp [a] → Exp [a]
hd :: Exp [a] → Exp a
tl :: Exp [a] → Exp [a]

-- Booleans
tt :: Exp Bool
ff :: Exp Bool
ift :: Exp Bool → Exp a → Exp a → Exp a

iszero :: Exp Int → Exp Bool
isnull :: Exp [a] → Exp Bool

Figure 2.3: Extended object language.

the problems of higher-order abstract syntax other than to informally require the program-
mer to only observe the behavior of closed object-language terms. This requirement appears
to match the typical use of embedded languages in existing applications.

Below, we briefly discuss the embedded type discipline in the context of extended object
languages and in the context of extended meta-languages.

2.4.1 Extended object language

As already mentioned, other domain-specific types and operations are easily added to the
object language. Figure 2.3 presents the types of operations on finite products, lists, and
booleans. (The actual definition of these primitives are similar to those presented in Fig-
ure 2.2 and are left out for conciseness.) It is straightforward to extend the proof of sound-
ness and completeness to also handle the extensions outlined here.

It is also possible to extend the object language with types that do not exist in the meta-
language. For example,

type Ref a = ()

ref :: Exp a → Exp (Ref a)
get :: Exp (Ref a) → Exp a
set :: Exp (Ref a) → Exp a → Exp ()

declares the types of pointer-manipulating object-language functions in Haskell. (Appro-
priate values can be defined as in Figure 2.2.) Values of type Ref will never be constructed

30 Embedded languages

and therefore we can choose a minimal representation, here as the unit type (). A similar
technique is used to integrate COM objects into Haskell [63].

The domain-specific operations on base types considered here (i.e., int, add, and the op-
erations of the extended language in Figure 2.3) are meta functions: they do not represent
first-class functions in the object language. For example, there is no object-language equiv-
alent of a first-class zero predicate. Indeed, Haskell rejects the expression cons iszero nil

(an attempt to represent a singleton list of a zero predicate). A first-class zero predicate can
be embedded by

data Raw = ... | ISZERO’

iszero’ :: Exp (Int → Bool)
iszero’ = E (λns → ISZERO’)

and used as in cons iszero’ nil of type Exp [Int → Bool]. Since the object language is
higher order we can also apply object-language β and η conversions at the meta level. The
two function compositions

lam . app :: Exp (a → b) → Exp (a → b)
app . lam :: (Exp a → Exp b) → Exp a → Exp b

are the extensional identity function on object-language functions, and the extensional iden-
tity function on meta-language functions. In fact, in the sense of binding-times and two-level
coercions, the first composition coerces a dynamic function to static and back to dynamic
again whereas the second composition coerces a static function to dynamic and back to static
again, using two-level η-expansions [40].

Given, for example, a Haskell-like object language where the meta-language expres-
sion iszero E represents (e ≡ 0) (where E represents e) and the meta-language expression
iszero’ represents (≡ 0). (In Haskell, ≡ denotes structural equality.) In the meta-language
we then have the (extensional) identities

iszero = app iszero’ -- of type Exp Int → Exp Bool
iszero’ = lam iszero -- of type Exp (Int → Bool)

since (for the first equality) for any meta-language expression E of type Exp Int represent-
ing e, app iszero’ E represents (≡ 0) e and (for the second equality) lam iszero’ repre-
sents λx → x ≡ 0 and indeed e ≡ 0 and (≡ 0) e are semantically identical, as are (≡ 0) and
λx → x ≡ 0.

As opposed to Haskell, the object-language does not provide polymorphism and recur-
sion. Polymorphic or recursive meta-language expressions that are accepted by Haskell’s
type system are unfolded in the object-language. For example, it is possible to define poly-
morphic representations of object-language values in the meta-language as illustrated above
for finite products and lists. Even though we cannot represent object term such as

let f = λx → x in (f 0, f True)

2.5 Related work and conclusions 31

we can inline let-bound polymorphic values in the object term. For example, the following
expression has type Exp (Int, Bool).

let f = lam(λx → x) in pair (app f (int 0)) (app f tt)

It evaluates to the object term ((λa → a) 0, (λa → a) True).

2.4.2 Extended meta-language

It is possible to extend the meta-language with other base types, finite products, and lists à
la Haskell, and also to extend the proofs of soundness and completeness.

It is also possible to change the evaluation strategy of the meta-language to call-by-value.
Adding other effects than non-termination, however, might give an unsound embedding.
This is the case for ML [102]. Using assignments, for example, some well-typed ML expres-
sions do not represent well-typed object language terms. In fact, as the following example
shows, some expressions do not even yield representations of closed terms.

let val v = ref (int 0)
in lam (fn x ⇒ (v := x; x));

v
end

This expression returns whatever symbolic variable was generated at the time of construct-
ing the object-language lambda. This problem is due to the use of higher-order abstract
syntax, not the typed embedding.

2.5 Related work and conclusions

Phantom types make it possible to embed not only the (abstract) syntax but also the type
system of a monomorphic object language into a statically typed meta-language such as
Haskell. They have been used to design embedded languages [63, 85, 93] and to prove
properties of programs [42, 43]. In this chapter, we have formally proved that phantom
types yield sound and complete embeddings into an idealized meta-language and we have
discussed the shortcomings of Haskell as such a meta-language.

Our soundness proof uses a Kripke logical relation. The development is akin to Filin-
ski’s proof that type-directed partial evaluation implements a normalization function [61].
A corollary of Filinski’s work is that type-directed partial evaluation is type preserving, a
result we have also established using the typed embedded language described in this chap-
ter [42, 43].

Completeness could also be stated by giving a semantics of the object language and then
show that a term and its encoding are semantically equivalent. Our proof is stronger in that
it shows that a term and its encoding are syntactically equal modulo renaming of bound
variables. It also avoids to deal with the semantics of the object language.

32 Embedded languages

Phantom types provide a simple form of dependent types for constructing representations
of simply-typed terms in Haskell. The embedding is limited, however, in that it does not
allow a type-preserving deconstruction of simply-typed terms. This is partly due to the lack
of higher-order matching in Haskell. A dependently typed language, such as Martin-Löf’s
type theory [108], can directly express both type-safe construction and deconstruction of
object terms. Previously, Yang has shown how to encode another class of dependently typed
expressions in ML [145].

In the mid-1980’s, Wand has defined the meaning of an object language (with primitive
I/O and non-local jumps) in terms of the λ-calculus, viewing the latter as a semantic meta-
language [142]. His translation is sound and complete in the sense that exactly the well-
typed object-language terms have a well-typed meta-language counterpart. Thus, it can
be seen as providing both a static and a dynamic semantics for the object language. (In
fact, since the translated terms are in continuation-passing style, Wand also shows that the
CPS transformation preserves well-typedness [101].) Wand’s translation does not yield first-
order data as result such as the embedding we consider here. Instead, it maps higher-order
functions to higher-order functions. Furthermore, Wand’s object-language type system is
not presented in terms of his meta-language. In contrast, the embedded type discipline we
consider here expresses the type system of the object language in terms of the type system
of the meta-language (using phantom types).

Davies’s λ©-calculus is an extension of the simply-typed λ-calculus for expressing staged
evaluation [45]. A term of type ©τ evaluates in one stage to a value representing a term of
type τ . Terms of type ©τ are thus first-class representations of terms, much as the expres-
sions of type Exp τ in our work are representations of object-language terms. There is a
syntactic difference, however. In λ© there is one uniform construct for building terms at
the next stage. The meta-language in our work provides several constructors, one for each
syntactic category of the object language. (Analogy: λ© provides a type system for Lisp-like
quasiquotation [8] whereas phantom types provide a type system for ML-like data types.)
Another difference is that λ©-terms build other λ©-terms for a later stage. In contrast, the
object-language terms in our work are always simply typed λ-terms. Consequently, we can-
not embed object languages with an arbitrary number of stages. There is some hope, though,
that type encodings as described by Yang [145] could achieve such a nested embedding.

Chapter 3

Type-directed
partial evaluation

In this chapter we present three implementations of type-directed partial evaluation in stat-
ically typed languages.

3.1 Deriving a statically typed type-directed partial evaluator

Type-directed partial evaluation was originally implemented in Scheme, a dynamically typ-
ed language. It has also been implemented in ML, a statically Hindley-Milner typed lan-
guage. This section shows how the latter implementation can be derived from the former
through a functional representation of inductively defined types.

Note. This section is based on work presented at PEPM 1999 [119].

Thanks are due to Olivier Danvy and the anonymous referees for commenting
earlier versions of this paper. Also many thanks to Kristoffer Rose for shepherd-
ing this paper.

3.1.1 Introduction

Type-directed partial evaluation is an approach to specializing a term written in a higher-
order language. Such a higher-order term is specialized by normalizing it with respect to its
type. Normalization is done by η-expanding the term in a two-level lambda-calculus and
statically β-reducing the expanded term.

The two stages — η-expansion and β-reduction — share an intermediate result: a two-
level term. We consider two versions of the type-directed partial evaluation algorithm:

(1) If the two-level term is represented as a value of an inductively defined data type then
the algorithm can be implemented in any (Turing complete) language. In this case both
η-expansion and β-reduction are implemented in this language.

33

34 Type-directed partial evaluation

(2) If the algorithm is implemented in a higher-order language an alternative is to rep-
resent the two-level term as a mixture of object-language terms (dynamic parts) and
implementation-language terms (static parts). In this case η-expansion is implemented
in the implementation language. It generates a two-level term whose implementation-
language parts are β-reduced by the native β-reducer of the implementation language.

The problem

Both of the versions of the algorithm are directed by the type of the term to be normalized.
They are applied to a term and a representation of the type of the term. In (2), if the type
is given as an element of an inductively defined type then it is impossible to statically type-
check the algorithm, and indeed this also has been implemented in a dynamically typed
language, Scheme [11, 30].

This section shows how to derive a statically typed analogue of (2) from (1). It is obtained
by Church-encoding types as higher-order values. Andrzej Filinski was the first to use a
Church-encoding of types for type-directed partial evaluation.

Related work

The first statically typed version of type-directed partial evaluation is due to Andrzej Filinski
in the spring of 1995. This unpublished work showed that type-directed partial evaluation
could be implemented at all using a Hindley-Milner type system. The second one is due
to Zhe Yang in the spring of 1996 [145]. Yang provides general methods for encoding type-
indexed values in a Hindley-Milner typed language and applies them to type-directed par-
tial evaluation. The present work was carried out in the fall of 1997 and, according to Olivier
Danvy, it is the third independent implementation of type-directed partial evaluation in a
Hindley-Milner typed language [118].

Kristoffer Rose implemented type-directed partial evaluation in Haskell in the spring
of 1998 using type classes [121]. Haskell’s type classes permit overloaded functions, i.e.,
functions that have several definitions, one for each type of argument. Type-directed partial
evaluation fits exactly into this pattern.

In her M. Sc. thesis, Belmina Dzafic implements type-directed partial evaluation in Elf,
a statically typed, constraint logical language (summer 1998) [52]. Furthermore, she proves
the equivalence of the dynamically typed and the statically typed versions of type-directed
partial evaluation. Earlier on, Catarina Coquand stated and proved the correctness of the
type-directed partial evaluation algorithm using the proof editor Alf [26].

The derivation

Type-directed partial evaluation is given by ↓ (reify) and ↑ (reflect) in Figure 3.1. Based on
this algorithm we derive a statically typed, type-directed partial evaluator analogous to (2)
in the following steps:

3.1 Deriving a statically typed type-directed partial evaluator 35

(types) t ::= b | t1 → t2

(reify) ↓b v = v

↓t1→t2 v = λx. ↓t2 (v@(↑t1 x))
where x is fresh

(reflect) ↑b e = e

↑t1→t2 e = λx. ↑t2 (e@(↓t1 x))

tdpe t v = ↓t v

Figure 3.1: Type-directed partial evaluation

• Starting from (1), we represent types using a datatype Type and representing both static
and dynamic terms as a datatype Term we translate the ↓ and ↑ of Figure 3.1 into into
reify and reflect. This solution is interpretive in that it uses an explicit static β-
reducer.

• We change the representation of static terms from elements of the datatype Term into
higher-order values and replace the explicit β reducer by the native β reducer of the
implementation language. This solution is not interpretive but it is also not statically
typeable.

• We observe an invariant property: reify is applied only to types occurring covariantly
in the source type, and reflect only to types appearing contravariantly in the source
type. We encode this distinction in the datatype Type. This solution is not statically
typeable but by changing the representation of types from the datatype Type to higher-
order values we obtain a statically typed solution which is still not interpretive: it uses
the native (implicit) β-reducer to statically reduce the two-level term.

Using the implicit static β-reducer or an explicit one is independent of the representation
of types. However, using the implicit static β-reducer together with a datatype representa-
tion of types does not yield a solution that is statically typeable in a Hindley-Milner typing
system.

Overview

We consider four successive implementations of type-directed partial evaluation in this sec-
tion.

In Section 3.1.2, object-language types are represented by an inductively defined type.
Terms are represented either by values of an inductively defined type or by a mixture of
higher-order values and terms.

36 Type-directed partial evaluation

In Section 3.1.3, types are represented by higher-order values. The main result is an
implementation of terms as higher-order values. For completeness we also take a step back-
wards and represent terms by values of an inductively defined data type.

In Section 3.1.4 we briefly consider the efficencies of the programs appearing in this sec-
tion. In Section 3.1.5 we present two extensions over the statically typed algorithm. Sec-
tion 3.1.6 concludes.

All programs in this section are written in a functional notation à la Haskell [59]. We
defer the problem of generating fresh identifiers [118].

3.1.2 Inductively defined representation of types

First we consider two implementations of type-directed partial evaluation that use a repre-
sentation of types as elements of the following inductively defined type.

data Type = Base | Func Type Type

The two implementations differ in the way the static parts of two-level terms are represented.

Inductively defined representation of terms

In this approach, of which only an outline is given here, both the static and the dynamic
parts of terms are represented by an inductively defined type.

type Id = [Char]
data Term = Num Int | Str String

| SVar Id | SLam Id Term | SApp Term Term
| DVar Id | DLam Id Term | DApp Term Term

The static syntax constructors are prefixed with an “S” and the dynamic syntax constructors
are prefixed with a “D”. Constants are both static and dynamic.

The algorithm proceeds in two stages: First, given a completely static term and its type,
a fully η-expanded two-level term is constructed using reify and reflect below. Second,
the static parts of the term are β-reduced (the β-reducer is omitted here).

reify, reflect :: Type → Term → Term

reify Base v = v
reify (Func t1 t2) v =

DLam x (reify t2 (SApp v (reflect t1 (DVar x))))
where x = fresh "x"

reflect Base v = v
reflect (Func t1 t2) v =

SLam x (reflect t2 (DApp v (reify t1 (SVar x))))
where x = fresh "x"

etaExpand t v = reify t v

3.1 Deriving a statically typed type-directed partial evaluator 37

staticBetaReduce v = ...

tdpe :: Type → Term → Term
tdpe t v = staticBetaReduce (etaExpand t v)

This program is statically typeable in a Hindley-Milner typing system and can be implemented
in any language with inductively defined types, regardless of the typing discipline. The im-
plementation-language type of the output of reify and reflect does not depend on the
representation of the object-language type (a value of type Type).

The explicit use of a β-reducer is undesirable since it embeds the lambda calculus into the
implementing language via an interpreter. This is inefficient and the question arises whether
we could not implement the algorithm in a higher-order language using the underlying β-
reduction mechanism of this implementation language.

Higher-order representation of terms

The following approach uses the β-reduction mechanism of the higher-order implementa-
tion language.

Types are represented by the same type as above. Two-level terms are represented by a
mixture of implementation-language terms (values) and object-language terms.

reify Base v = v
reify (Func t1 t2) v =

DLam x (reify t2 (v (reflect t1 (DVar x))))
where x = fresh "x"

reflect Base v = v
reflect (Func t1 t2) v =

λx → reflect t2 (DApp v (reify t1 x))

etaExpand t v = reify t v

tdpe t v = etaExpand t v

This program is not statically typeable in a Hindley-Milner typing system: The
implementation-language type of the output of reify and reflect depends on the repre-
sentation of the object-language type (a value of type Type).

Short of dependent types, at compile time, there is not enough information available
so that the type-checker can accept the program. The above program corresponds to the
original implementation of type-directed partial evaluation in Scheme [30].

3.1.3 Higher-order representation of types

Observe that reify is always applied to types that occur covariantly in the source type (a
value of type Type) and that reflect is always applied to types that occur contravariantly
in the source type. We make this explicit by distinguishing between covariant occurrences
(postfixed by “P” for positive) and contravariant occurrences (postfixed by “N” for negative):

38 Type-directed partial evaluation

data TypeP = BaseP | FuncP TypeN TypeP
data TypeN = BaseN | FuncN TypeP TypeN
type Type = TypeP

Higher-order representation of terms

Now reify and reflect are

reify BaseP v = v
reify (FuncP t1 t2) v =

DLam x (reify t2 (v (reflect t1 (DVar x))))
where x = fresh "x"

reflect BaseN v = v
reflect (FuncN t1 t2) v =

λx → reflect t2 (DApp v (reify t1 x))

This program is not statically typeable in a Hindley-Milner typing system. Again, the implem-
entation-language type of the output of reify and reflect depends on the representation
of the object-language type (values of types TypeP and TypeN).

In order to obtain a statically typeable program we apply the following change: Instead
of representing a positively occuring type t as a TypeP we represent it as a value equal to
(reify t) and instead of representing a negatively occuring type t as a TypeN we represent
it as a value equal to (reflect t).

baseP, baseN :: a → a
funcP ::

(Term → a) → (b → Term) → (a → b) → Term
funcN ::

(a → Term) → (Term → b) → Term → (a → b)

baseP v = v
funcP t1 t2 v = DLam x (t2 (v (t1 (DVar x))))

where x = fresh "x"
baseN v = v
funcN t1 t2 v = λx → t2 (DApp v (t1 x))

etaExpand t v = t v

tdpe :: (a → b) → a → b
tdpe t v = etaExpand t v

This program is statically typeable in a Hindley-Milner typing system. The implementation-
language type of tdpe does not depend on the representation of the object-language type,
but on the type of the object-language type.

Thus, even without dependent types, the type-checker has enough information to instan-
tiate the polymorphic type of tdpe. This is the main result of this section.

For example, the type b (a base type) is represented by Base of type Type in the first part
of Section 3.1.2. In the current section it is represented by baseP (i.e., the identity function)

3.1 Deriving a statically typed type-directed partial evaluator 39

of type a → a. Filinski and Yang’s representation of this type is the pair of functions (↓b, ↑b),
i.e., a pair of identity functions. (A discussion of this representation follows below.)

The type b → b is represented by Func Base Base of type Type in the first part of Section
3.1.2. In the current section it is represented by funcP baseN baseP of type

(Term → Term) → Term

Filinski and Yang’s representation of this type is the pair of functions (↓b→b, ↑b→b).
As an example, let’s specialize some terms that contain static redeces using the result of

this section:

> :t tdpe baseP
tdpe baseP :: a → a
> :type tdpe (funcP baseN baseP)
tdpe (funcP baseN baseP) :: (Term → Term) → Term
> tdpe baseP ((λx → x) (Num 42))
Num 42
> tdpe (funcP baseN baseP) ((λx → λy → x) (Num 42))
DLam "x0" (Num 42)
>

Inductively defined representation of terms

For the record, let us repeat the solution above using a “traditional” inductively defined
representation of terms. To this end we use again the type of terms.

type Id = [Char]
data Term = Num Int | Str String

| SVar Id | SLam Id Term | SApp Term Term
| DVar Id | DLam Id Term | DApp Term Term

baseP v = v
funcP t1 t2 v = DLam x (t2 (SApp v (t1 (DVar x))))

where x = fresh "x"
baseN v = v
funcN t1 t2 v = SApp x (t2 (DApp v (t1 (SVar x))))

where x = fresh "x"

etaExpand t v = t v
staticBetaReduce v = ...

tdpe :: Type → Term → Term
tdpe t v = staticBetaReduce (etaExpand t v)

This program is statically typeable. It also requires explicit static β-reduction (which is omitted
here).

40 Type-directed partial evaluation

3.1.4 Pragmatics

We have compared the performance of the three statically typed solution in ML. We used a
simple-minded, hand-coded static β-reducer for terms represented as a data type and the na-
tive β-reducer of ML for the higher-order representation of terms. The hand-coded reducer
uses the same reduction strategy as the native reducer of ML.

Specializing the power function with respect to a static exponent of value 12 is about 9
times faster using the higher-order representation of term than using a data-type represen-
tation. Specializing (S K)K at type b → b is about 4 times faster using the higher-order
version than using the data-type solutions versions. These results confirm Berger, Eberl, and
Schwichtenberg’s empirical observations [10].

There do not appear to be any perceptible difference between the two solutions that use
the hand-coded static reducer.

3.1.5 Extending the statically typed algorithm

Consider again

tdpe baseP :: a → a
tdpe (funcP baseN baseP) :: (Term → Term) → Term

This indicates that constants of base type must be coerced to dynamic values in the source
programs. For example, to obtain something of type Term we must coerce the integer 42 into
a Term in

> tdpe baseP (Num 42)
Num 42
> tdpe (funcP baseN baseP) (λx → (Num 42))
DLam "x0" (Num 42)
>

Furthermore, we must explicitly indicate the variance of types (by the postfix “P” or “N”).
Both shortcomings are alleviated below.

The need for coercing base values

At covariant base types the explicit coercion of values of base type can be removed by dis-
tinguishing the base types. We introduce a more specific version of baseP for each base type.

numP v = Num v
strP v = Str v

tdpe numP :: Int → Term
tdpe strP :: String → Term
tdpe (funcP baseN numP) :: (Term → Int) → Term

3.1 Deriving a statically typed type-directed partial evaluator 41

These new functions will reify a static value into its dynamic counterpart. Static values
of base type, such as integers and strings, are represented uniquely and these values are
used directly when constructing the dynamic term. A similar solution does not work at
contravariant base type since dynamic values of base type can be any dynamic term.

> tdpe (funcP baseN numP) (λx → 42)
DLam "x0" (Num 42)
> tdpe (funcP baseN strP) (λx → "fortytwo")
DLam "x0" (Str "fortytwo")
>

The need for specifying the variance

The other shortcoming of the implementation — the explicit distinction between covariant
and contravariant types — can also be alleviated. Instead of representing a type in two parts
(i.e., a covariant part and a contravariant part as above) we can merge the two parts into a
pair that represents the type, obtaining Filinski and Yang’s solution [145].

base :: (a → a, b → b)
func :: (a → Term, Term → b) →

(c → Term, Term → d) →

((b → c) → Term, Term → (a → d))

base = (reify, reflect)
where reify v = v

reflect v = v
func t1 t2 = (reify, reflect)

where reify v =
DLam x (fst t2 (v (snd t1 (DVar x))))
where x = fresh "x"

reflect v =
λx → (snd t2 (DApp v (fst t1 x))))

etaExpand t v = (fst t) v

tdpe :: (a → b,c) → a → b
tdpe t v = etaExpand t v

Using this implementation we can specialise terms without specifying the covariance and
contravariance of the type involved.

> tdpe (func (func base base) base) (λf → f (Num 8))
DLam "x0" (DApp (DVar "x0") (Num 8))
>

3.1.6 Conclusion and issues

Being directed by the type of a term, the type-directed partial evaluation algorithm requires
a way of representing types. In dynamically typed languages an inductively defined sum

42 Type-directed partial evaluation

over the different kind of types (base types, product types, function types, etc.) suffices. In
statically typed languages with a Hindley-Milner typing system this does not work: the type
of the algorithm depends on the value of the representation of the type.

The solution is to represent types as higher-order polymorphic functions. This works
since the type of the algorithm thus depends on the implementation-language type of the
representation of the object-language type.

Our work suggests to view the higher-order encoding as a functional representation of
types, specialised to the purpose of being deconstructed by reify and reflect.

3.2 A simple take on
typed abstract syntax in Haskell-like languages

We present a simple way to program typed abstract syntax in a language following a
Hindley-Milner typing discipline, such as Haskell and ML, and we apply it to automate
two proofs about normalization functions as embodied in type-directed partial evaluation
for the simply typed lambda calculus: normalization functions (1) preserve types and (2)
yield long beta-eta normal forms.

Note. This section is based on joint work with Olivier Danvy presented at FLOPS
2001 [42] .

Part of it was carried out while visiting Jason Hickey at Caltech, in the summer
and fall of 2000. We are grateful to the anonymous reviewers and to Julia Lawall
for perceptive comments.

3.2.1 Introduction

Programs (implemented in a meta language) that manipulate programs (implemented in an
object language) need a representation of the manipulated programs. Examples of such pro-
grams include interpreters, compilers, partial evaluators, and logical frameworks.

When the meta language is a functional language with a Hindley-Milner type system,
such as Haskell [59] or ML [102], a data type is usually chosen to represent object programs.
In functional languages, data types are instrumental in representing sum types and inductive
types, both of which are needed to represent even the simplest programs such as arithmetic
expressions.

However, the object-language types of object-language terms represented by data types
cannot be inferred from the representation if the meta language does not provide dependent
types. Hence, regardless of any typing discipline in the object language, when the meta
language follows a Hindley-Milner type discipline, it cannot prevent the construction of
object-language terms that are untyped, and correspondingly, it cannot report the types of
object-language terms that are well-typed. This typeless situation is familiar to anyone who
has represented λ-terms using a data type in an Haskell-like language.

3.2 A simple take on typed abstract syntax in Haskell-like languages 43

In this section we consider a simple way of representing monomorphically typed λ-terms
in an Haskell-like language. We describe a typeful representation of terms that prevents one
from constructing untyped object-language terms in the meta language and that makes the
type system of the meta language report the types of well-typed object-language terms.

We apply this typeful representation to type-directed partial evaluation [34, 61], using Has-
kell [119]. In Haskell, the object language of type-directed partial evaluation is a subset
of the meta language, namely the monomorphically typed λ-calculus. Type-directed partial
evaluation is an implementation of normalization functions. As such, it maps a meta-language
value that is simply typed into a (textual) representation of its long beta-eta normal form.

All previous implementations of type-directed partial evaluation in Haskell-like lan-
guages have the type t → Term, for some t and where Term denotes the typeless repre-
sentation of object programs. This type does not express that the output of type-directed
partial evaluation is a representation of an object of the same type as the input. In contrast,
our implementation has the more expressive type t → Exp(t), where Exp denotes our type-
ful representation of object programs. This type proves that type-directed partial evaluation
preserves types. Furthermore, using the same technique, we also prove that the output of
type-directed partial evaluation is indeed in long beta-eta normal form.

The rest of this section is organized as follows. In Section 3.2.2 we review a traditional,
typeless data-type representation of λ-terms in Haskell. In Section 3.2.3, we review higher-
order abstract syntax, which is a stepping stone towards our typeful representation. Sec-
tion 3.2.4 presents our main result, namely an extension of higher-order abstract syntax that
only allows well-typed object-language terms to be constructed. In Section 3.2.5, we review
type-directed partial evaluation, which is our chosen domain of application. Section 3.2.6
presents our first application, namely an implementation of type-directed partial evaluation
preserving types. Section 3.2.7 presents our second application, namely another implemen-
tation of type-directed partial evaluation demonstrating that it produces long beta-eta nor-
mal forms. Section 3.2.8 concludes.

3.2.2 Typeless first-order abstract syntax

We consider the simply typed λ-calculus with integer constants, variables, applications, and
function abstractions:

(Types) t ::= α | int | t1 → t2
(Terms) e ::= i | x | e0 e1 | λx.e

Other base types (booleans, reals, etc.) and other type constructors (products, sums, lists,
etc.) are easy to add. So our object language is the λ-calculus.

Our meta language is Haskell. We use the following data type to represent λ-terms. Its
constructors are: integers (INT), variables (VAR), applications (APP), and functional abstrac-
tions (LAM).

data Term = INT Int
| VAR String
| APP Term Term

44 Type-directed partial evaluation

module TypelessExp(int, app, lam, Exp) where

data Term = INT Int | VAR String | APP Term Term | LAM String Term

type Exp = Int → Term

int i j = INT i
app e0 e1 j = APP (e0 j) (e1 j)
lam f j = LAM v (f (λ_ → VAR v) (j + 1))

where v = "x" ++ show j

Figure 3.2: Typeless higher-order abstract syntax in Haskell

| LAM String Term

Object-language terms are constructed in Haskell using the translation below. Note that the
type of dee0 is Term regardless of the type of e in the λ-calculus.

die0 = INT i

dxe0 = VAR "x"

de0 e1e0 = APP de0e0 de1e0
dλx.ee0 = LAM "x" dee0

The constructors of the data type are typed in Haskell: The term INT 9 is valid whereas
INT "a" is not. However, Haskell knows nothing of the λ-terms we wish to represent.
In other words, the translation d·e0 is not surjective: Some well-typed encodings of object-
language terms do not correspond to any legal object-language term. For example, the term
APP (INT 1) (LAM "x" (VAR "x")) has type Term in Haskell, even though it represents the
term 1(λx.x) which has no type in the λ-calculus.

The fact that we can represent untyped λ-terms is not a shortcoming of the meta lan-
guage. One might want to represent programs of an untyped object language like Sche-
me [89] or even structures for which no notion of type exists.

3.2.3 Typeless higher-order abstract syntax

To the data type Term we add an interface using higher-order abstract syntax [110]. In higher-
order abstract syntax, object-language variables and bindings are represented by meta-lan-
guage variables and bindings. The interface to the data type Term is shown in Figure 3.2.

The interface consists of syntax constructors for integers, applications, and abstractions.
There is no constructor for variables. Instead, fresh variable names are generated and passed
to the higher-order representation of abstractions. A λ-expression is represented by a func-
tion accepting the next available fresh-variable name, using de Bruijn levels.

Object-language terms are constructed in the meta language using the following transla-

3.2 A simple take on typed abstract syntax in Haskell-like languages 45

tion. Note again that the type of dee1 is Term regardless of the type of e in the λ-calculus.

die1 = int i

dxe1 = x

de0 e1e1 = app de0e1 de1e1
dλx.ee1 = lam (\x -> dee1)

This translation is also not surjective in the sense outlined in Section 3.2.2. Indeed, the types
of the three higher-order constructors in Haskell still allow untypable λ-terms to be con-
structed. These three constructors are typed as follows.

int :: Int → Exp

app :: Exp → (Exp → Exp)

lam :: (Exp → Exp) → Exp

Therefore, the term app (int 1) (lam (\x -> x)) still has a type in Haskell, namely Exp.

3.2.4 Typeful higher-order abstract syntax

Let us restrict the three higher-order constructors above to only yield well-typed terms. To
this end, we make the following observations about constructing well-typed terms.

• The constructor int produces a term of object-language type Int.

• The first argument to app is a term of object-language type α → β, the second argument
is a term of object-language type α, and app produces a term of object-language type
β.

• The argument to lam must be a function mapping a term of object-language type α

into a term of object-language type β, and lam produces a term of object-language type
α → β.

These observations suggest that the (polymorphic) types of the three constructors actu-
ally could reflect the object-language types. We thus parameterize the type Exp with the
object-language type and we restrict the types of the constructors according to these obser-
vations. In Haskell we implement the new type constructor as a data type, not just as an
alias for Int → Term as in Figure 3.2. In this way the internal representation is hidden. The
result is shown in Figure 3.3. The three constructors are typed as follows.

int :: Int → Exp(Int)

app :: Exp(α → β) → (Exp(α) → Exp(β))

lam :: (Exp(α) → Exp(β)) → Exp(α → β)

The translation from object-language terms to meta-language terms is the same as the one
for the typeless higher-order abstract syntax. However, unlike for the typeless version, if e

is an (object-language) term of type t then the (meta-language) type of dee1 is Exp(t).

46 Type-directed partial evaluation

module TypefulExp (int, app, lam, Exp) where

data Term = INT Int | VAR String | APP Term Term | LAM String Term

data Exp t = EXP (Int → Term)

int :: Int → Exp Int
app :: Exp (a → b) → Exp a → Exp b
lam :: (Exp a → Exp b) → Exp (a → b)

int i = EXP (λx → INT i)
app (EXP e0) (EXP e1) = EXP (λx → APP (e0 x) (e1 x))
lam f = EXP (λx → let v = "x" ++ show x

EXP b = f (EXP (λ_ → VAR v))
in LAM v (b (x + 1)))

Figure 3.3: Typeful higher-order abstract syntax in Haskell

As an example, consider the λ-term λf.f(1) of type (Int → α) → α. It is encoded in
Haskell by dλf.f(1)e1 = lam (\f -> app f (int 1)) of type Exp((Int → α) → α). Now
consider the λ-term 1(λx.x) which is not well-typed in the λ-calculus. It is encoded by
d1(λx.x)e1 = app 1 (lam (\x -> x)) which is rejected by Haskell.

In the remaining sections, we apply typeful abstract syntax to type-directed partial eval-
uation.

3.2.5 Type-directed partial evaluation

The goal of partial evaluation [83] is to specialize a program p of type t1 → t2 → t3 to a fixed
first argument v of type t1. The result is a residual program pv that satisfies pv(w) = p(v)(w)
for all w of type t2, if both expressions terminate. The motivation for partial evaluation is
that running pv(w) is more efficient than running p(v)(w).

In type-directed partial evaluation [34, 61, 119, 145], specialization is achieved by normal-
ization. For simply typed λ-terms, the partial application p(v) is residualized into (the text
of) a program pv in long beta-eta normal form. That is, the residual program contains no beta-
redexes and it is fully eta-expanded with respect to its type.

Type-directed partial evaluation in Haskell

Figure 3.4 displays a typeless implementation of type-directed partial evaluation for the sim-
ply typed λ-calculus in Haskell. To normalize a polymorphic value v of type t, one applies
the main function normalize to the value, v, and a representation of the type, |t|, defined as
follows.

|α| = rra

|t1 → t2| = rrf(|t1|, |t2|)

3.2 A simple take on typed abstract syntax in Haskell-like languages 47

module TypelessTdpe where

import TypelessExp -- from Figure 3.2

data Reify_Reflect(a) =
RR { reify :: a → Exp,

reflect :: Exp → a }

rra = -- atomic types
RR { reify = λx → x,

reflect = λx → x }

rrf (t1, t2) = -- function types
RR { reify = λv → lam (λx → reify t2 (v (reflect t1 x))),

reflect = λe → λx → reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 3.4: A typeless implementation of type-directed partial evaluation

To analyze the type of the representations of types, we first define the instance of a type
as follows.

[α]0 = Exp

[t1 → t2]0 = [t1]0 → [t2]0

Then, for any type t, the type of |t| is Reify Reflect([t]0). Haskell infers the following type for
the main function.

normalize :: Reify Reflect(α) → α → Exp

This type shows that normalize maps an α-typed input value into an Exp-typed output
value, i.e., a term. This type, however, does not show that the input (meta-language) value
and the output (object-language) term have the same type. In Section 3.2.6, we show that
type-directed partial evaluation is type-preserving, and in Section 3.2.7, we show that the
output term is in normal form.

Example: Church numerals, typelessly

As an example, we apply type-directed partial evaluation to specialize the addition of two
Church numerals with respect to one argument. The Church numeral zero, the successor
function, and addition are defined as follows.

zero :: (a → a) → a → a
zero = λs → λz → z
suc n = λs → λz → s (n s z)
add m n = λs → λz → m s (n s z)

48 Type-directed partial evaluation

Specializing add with respect to 0: We specialize the addition function with respect to the
Church numeral 0 by normalizing the partial application add zero. This expression has the
following type.

tadd = ((α → α) → β → α) → (α → α) → β → α

This type is represented in Haskell as follows.

|tadd| = rrf(rrf(rrf(rra, rra), rrf(rra, rra)),

rrf(rrf(rra, rra), rrf(rra, rra)))

Thus, evaluating the Haskell expression

normalize |tadd| (add zero) 37

(taking 37, for example, as the first de Bruijn level) yields a representation of the following
residual term.

λx37.λx38.λx39.x37(λx40.x38 x40)x39

For readability, let us rename this residual term:

λn.λs.λz.n(λn′.s n′)z

This term is the (η-expanded) identity function over Church numerals, reflecting that 0 is
neutral for addition.

Haskell infers the following type of the expression normalize |tadd|.

(((t′ → t′) → t′ → t′) → (t′ → t′) → t′ → t′) → t′, where t′ = Int → Term

This type does not express any relationship between the type of the input term and the type
of the residual term.

Specializing add with respect to 5: We specialize the addition function with respect to the
Church numeral 5 by normalizing the partial application add five, where five is defined
as follows.

five = suc (suc (suc (suc (suc zero)))

The expression add five also has the type tadd. Thus, evaluating the Haskell expression

normalize |tadd| (add five) 57

(taking 57 this time as the first de Bruijn level) yields a representation of the following resid-
ual term.

λx57.λx58.λx59.x58(x58(x58(x58(x58(x57(λx60.x58 x60)x59)))))

For readability, let us rename this residual term:

λn.λs.λz.s(s(s(s(s(n(λn′.s n′)z)))))

In this term, the successor function is applied five times, reflecting that the addition function
has been specialized with respect to five.

3.2 A simple take on typed abstract syntax in Haskell-like languages 49

module TypefulExpCoerce (int, app, lam, coerce, uncoerce, Exp) where

[...]

coerce :: Exp a → Exp (Exp a)
uncoerce :: Exp (Exp a) → Exp a

coerce (EXP f) = EXP f
uncoerce (EXP f) = EXP f

Figure 3.5: Typeful higher-order abstract syntax with coercions for atomic types

3.2.6 Application 1: Type-directed partial evaluation preserves types

In this section, we use the type inferencer of Haskell as a theorem prover to show that type-
directed partial evaluation preserves types. To this end, we implement type-directed partial
evaluation using typed abstract syntax.

Typeful type-directed partial evaluation (first variant)

We want the type of normalize to be Reify Reflect(α) → α → Exp(α). As a first step to
achieve this more expressive type, we shift to the typeful representation of terms from Fig-
ure 3.3. The parameterized type constructor Exp(α) replaces the type Exp. Thus, we change
the data type Reify Reflect(α) from Figure 3.4 to the following.

data Reify_Reflect a =
RR { reify :: a → Exp a,

reflect :: Exp a → a }

This change, however, makes the standard definition of rra untypable: The identity function
does not have type α → Exp(α) (or Exp(α) → α for that matter). We solve this problem by
introducing two identity functions in the module of typed terms.

coerce :: Exp(α) → Exp(Exp(α))

uncoerce :: Exp(Exp(α)) → Exp(α)

At first it might seem that a function of type Exp(α) → Exp(Exp(α)) cannot be the identity.
However, internally Exp(t) is an alias for Int → Term, thus discarding t, so in effect we are
looking at two identity functions of type (Int → Term) → (Int → Term). Figure 3.5 shows the
required changes to the typeful representation of Figure 3.3.

We can now define rra using coerce and uncoerce. The complete implementation is
shown in Figure 3.6. Types are represented as in Section 3.2.5, but the types of the repre-
sented types differ. We define the instance as follows.

[α]1 = Exp(α)

[t0 → t1]1 = [t0]1 → [t1]1

50 Type-directed partial evaluation

module TypefulTdpe where

import TypefulExpCoerce -- from Figure 3.5

data Reify_Reflect(a) =
RR { reify :: a → Exp a,

reflect :: Exp a → a }

rra = -- atomic types
RR { reify = λx → coerce x,

reflect = λx → uncoerce x }

rrf (t1, t2) = -- function types
RR { reify = λv → lam (λx → reify t2 (v (reflect t1 x))),

reflect = λe → λx → reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 3.6: A typeful implementation of type-directed partial evaluation

Then the type of |t| is Reify Reflect([t]1). Haskell infers the following type for the main func-
tion.

normalize :: Reify Reflect(α) → α → Exp(α)

This type proves that type-directed partial evaluation preserves types.
N.B. The typeless implementation in Figure 3.4 and the typeful implementation in Fig-

ure 3.6 are equally efficient. Indeed, they differ only in the two occurrences of coerce and
uncoerce in rra in Figure 3.6, which are defined as the identity function.

Typeful type-directed partial evaluation (second variant)

The two auxiliary functions coerce and uncoerce are only necessary to obtain an automatic
proof of the type-preservation property of type-directed partial evaluation: They are arte-
facts of the typeful encoding. But could one do without them? In this section, we present an
alternative proof of the type preservation of type-directed partial evaluation without using
these coercions. Instead, we show that when type-directed partial evaluation is applied to a
correct representation of the type of the input value, the residual term has the same type as
the input value.

To this end, we implement rra as a pair of identity functions, as in Figure 3.4, and we
modify the data type Reify Reflect by weakening the connection between the domains and
the codomains of the reify / reflect pairs.

module TypefulTdpe where
import TypefulExp -- from Figure 3.3

data Reify_Reflect a b =
RR { reify :: a → Exp b,

reflect :: Exp b → a }

3.2 A simple take on typed abstract syntax in Haskell-like languages 51

[...]

These changes make all of rra, rrf, and normalize well-typed in Haskell. Their types read
as follows.

rra :: Reify Reflect(Exp(α))(α)

rrf :: (Reify Reflect(α)(γ),Reify Reflect(β)(δ)) →
Reify Reflect(α → β)(γ → δ)

normalize :: Reify Reflect(α)(β) → α → Exp(β)

The type of normalize no longer proves that it preserves types. However, we can fill in
the details by hand using the inferred types of rra and rrf: We prove by induction on the
type t that the type of |t| is Reify Reflect([t]1)(t). For t = α, we have |t| = rra which has
type Reify Reflect(Exp(α))(α) as required. For t = t1 → t2, we have |t| = rrf(|t1|, |t2|). By
hypothesis, |ti| has type Reify Reflect([ti]1)(ti) for i ∈ {1, 2}. Hence, by the inferred type for
rrf we have that rrf(|t1|, |t2|) has type Reify Reflect([t1]1 → [t2]1)(t1 → t2) as required. As
a corollary we obtain that for all types t,

normalize |t| :: [t]1 → Exp(t)

This proof gives a hint about how to prove (by hand) that typeless type-directed partial
evaluation preserves types.

Example: Church numerals, typefully

Let us revisit the example of Section 3.2.5. We specialize the addition function with re-
spect to a fixed argument using the two typeful variants of type-directed partial evalua-
tion. In both cases the residual terms are the same as in Section 3.2.5. The Haskell expres-
sion normalize |tadd| has type [tadd]1 → Exp([tadd]1) using the first variant and it has type
[tadd]1 → Exp(tadd) using the second variant.

3.2.7 Application 2: Type-directed partial evaluation yields normal forms

In this section, we use the type inferencer of Haskell as a theorem prover to show that type-
directed partial evaluation yields long beta-eta normal forms. We first specify long beta-eta
normal forms, both typelessly and typefully. Then we revisit type-directed partial evalua-
tion, both typelessly and typefully.

Long beta-eta normal forms

We consider explicitly typed λ-terms:

(Types) t ::= a | t1 → t2
(Terms) e ::= x | e0 e1 | λx ::t. e

52 Type-directed partial evaluation

module TypelessNf where

data Nf_ = AT_ At_
| LAM String Nf_

data At_ = VAR String
| APP At_ Nf_

type Nf = Int → Nf_
type At = Int → At_

app e1 e2 x = APP (e1 x) (e2 x)
lam f x = LAM v (f (λ_ → VAR v) (x + 1))

where v = "x" ++ show x
at2nf e x = AT_ (e x)

Figure 3.7: Typeless representation of normal forms

module TypefulNf where

data Nf_ = AT_ At_
| LAM String Nf_

data At_ = VAR String
| APP At_ Nf_

data Nf t = NF (Int → Nf_)
data At t = AT (Int → At_)

app :: At (a → b) → Nf a → At b
lam :: (At a → Nf b) → Nf (a → b)

coerce :: Nf a → Nf (Nf a)
uncoerce :: At (Nf a) → Nf a

at2nf :: At a → Nf a

app (AT e1) (NF e2) = AT (λx → APP (e1 x) (e2 x))
lam f = NF (λx → let v = "x" ++ show x

NF b = f (AT (λ_ → VAR v))
in LAM v (b (x + 1)))

coerce (NF f) = NF f
uncoerce (AT f) = NF (λx → AT_ (f x))

at2nf (AT f) = NF (λx → AT_ (f x))

Figure 3.8: Typeful representation of normal forms

3.2 A simple take on typed abstract syntax in Haskell-like languages 53

module TypelessTdpeNf where

import TypelessNf -- from Figure 3.7

data Reify_Reflect a =
RR { reify :: a → Nf,

reflect :: At → a }

rra = -- atomic types
RR { reify = λx → x,

reflect = λx → at2nf x }

rrf (t1, t2) = -- function types
RR { reify = λv → lam (λx → reify t2 (v (reflect t1 x))),

reflect = λe → λx → reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 3.9: Typeless implementation of type-directed partial evaluation
with normal forms

Definition 7 (long beta-eta normal forms [61, 80]) A closed term e of type t is in long beta-eta
normal form if and only if it satisfies · `nf e :: t where “·” denotes the empty environment and
where terms in normal form and atomic form are defined by the following rules:

∆, x :: t1 `nf e :: t2

∆ `nf λx ::t1. e :: t1 → t2
[lam]

∆ `at e :: a

∆ `nf e :: a
[coerce]

∆ `at e0 :: t1 → t2 ∆ `nf e1 :: t1

∆ `at e0 e1 :: t2
[app]

∆(x) = t

∆ `at x :: t
[var]

No term containing β-redexes can be derived by these rules, and the coerce rule ensures that
the derived terms are fully η-expanded.

Figure 3.7 displays a typeless representation of normal forms in Haskell. Figure 3.8 dis-
plays a typeful representation of normal forms in Haskell.

Typeless type-directed partial evaluation and normal forms

We now reexpress type-directed partial evaluation as specified in Figure 3.9 to yield typeless
terms, as also done by Filinski [61]. The type of normalize reads as follows.

normalize :: Reify Reflect(α) → α → Nf

This type proves that type-directed partial evaluation yields residual terms in beta nor-
mal form since the representation of Figure 3.7 does not allow beta redexes. These residual
terms are also in eta normal form because at2nf is only applied at base type: residual terms
are thus fully eta expanded.

54 Type-directed partial evaluation

module TypefulTdpeNf1 where

import TypefulNf -- from Figure 3.8

data Reify_Reflect a =
RR { reify :: a → Nf a,

reflect :: At a → a }

rra = -- atomic types
RR { reify = λx → coerce x,

reflect = λx → uncoerce x }

rrf (t1, t2) = -- function types
RR { reify = λv → lam (λx → reify t2 (v (reflect t1 x))),

reflect = λe → λx → reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 3.10: Typeful implementation of type-directed partial evaluation
with normal forms (first variant)

Typeful type-directed partial evaluation and normal forms (first variant)

We now reexpress type-directed partial evaluation to yield typeful terms as specified in Fig-
ure 3.10. The type of normalize reads as follows.

normalize :: Reify Reflect(α) → α → Nf(α)

This type proves that type-directed partial evaluation (1) preserves types and (2) yields terms
in normal form.

Typeful type-directed partial evaluation and normal forms (second variant)

On the same ground as Section 3.2.6, i.e., to bypass the artefactual coercions of the type-
ful encoding of abstract syntax, we now reexpress type-directed partial evaluation to yield
typeful terms as specified in Figure 3.11. The type of normalize reads as follows.

normalize :: Reify Reflect(α)(β) → α → Nf(β)

This type only proves that type-directed partial evaluation yields terms in normal form. As
in Section 3.2.6, we can prove type preservation by hand, i.e., that

normalize |t| :: [t]2 → Nf(t)

where the instance of a type is defined by

[α]2 = Nf(α)

[t1 → t2]2 = [t1]2 → [t2]2

3.3 Normalization by evaluation with typed abstract syntax 55

module TypefulTdpeNf2 where

import TypefulNf -- from Figure 3.8

data Reify_Reflect a b =
RR { reify :: a → Nf b,

reflect :: At b → a }

rra = -- atomic types
RR { reify = λx → x,

reflect = λx → at2nf x }

rrf (t1, t2) = -- function types
RR { reify = λv → lam (λx → reify t2 (v (reflect t1 x))),

reflect = λe → λx → reflect t2 (app e (reify t1 x)) }

normalize t v = reify t v

Figure 3.11: Typeful implementation of type-directed partial evaluation
with normal forms (second variant)

3.2.8 Conclusions and issues

We have presented a simple way to express typed abstract syntax in a Haskell-like language,
and we have used this typed abstract syntax to demonstrate that type-directed partial evalu-
ation preserves types and yields residual programs in normal form. The encoding is limited
because it does not lend itself to programs taking typed abstract syntax as input—as, e.g., a
typeful transformation into continuation-passing style. Nevertheless, the encoding is suffi-
cient to establish two key properties of type-directed partial evaluation automatically.

These two properties could be illustrated more directly in a language with dependent
types such as Martin-Löf type theory. In such a language, one can directly represent typed
abstract syntax and program type-directed partial evaluation typefully.

3.3 Normalization by evaluation with typed abstract syntax

Note. This section is based on joint work with Olivier Danvy and Kristoffer H.
Rose to appear in the Journal of Functional Programming [43].

A preliminary and longer version of this article is available in the proceedings
of FLOPS 2001 [42]. We would like to thank Simon Peyton Jones for identify-
ing phantom types in it. The present version has benefited from Richard Bird’s
editorial advice and from Ralf Hinze’s comments.

3.3.1 A write-only typed abstract syntax

In higher-order abstract syntax, the variables and bindings of an object language are repre-
sented by variables and bindings of a meta-language. Let us consider the simply typed λ-

56 Type-directed partial evaluation

calculus as object language and Haskell as meta-language. For concreteness, we also throw
in integers and addition, but only in this section.

data Term = INT Int | ADD Term Term
| APP Term Term | LAM (Term → Term)

The constructors are typed as follows.

INT :: Int → Term ADD :: Term → Term → Term
APP :: Term → (Term → Term) LAM :: (Term → Term) → Term

They do not prevent us from forming ill-typed terms. For example, in the scope of these
constructors, evaluating LAM(λx→APP x x) yields a value of type Term.

We can, however, provide a typed interface to these constructors preventing us from
forming ill-typed terms.

newtype Exp t = EXP Term

int :: Int → Exp Int add :: Exp Int → Exp Int → Exp Int
int i = EXP (INT i) add (EXP e1) (EXP e2) = EXP (ADD e1 e2)

app :: Exp (a → b) → (Exp a → Exp b)
app (EXP e1) (EXP e2) = EXP (APP e1 e2)

lam :: (Exp a → Exp b) → Exp (a → b)
lam f = EXP (LAM (λx → let EXP b = f (EXP x) in b))

The type Exp is parameterized over a type t but does not use it: t is a phantom type.
These typeful constructors prevent us from forming ill-typed terms. For example, in the

scope of these constructors, evaluating lam(λx→app x x) yields a type error. Conversely, if
a term has the simple type t then its typed abstract-syntax representation has type Exp t,
which can be illustrated as follows.

λx → x + 5 :: Int → Int
lam (λx → add x (int 5)) :: Exp (Int → Int)

We intend to use this typed abstract syntax to show that normalization by evaluation
preserves types (Section 3.3.2) and yields normal forms (Section 3.3.3) for the pure and sim-
ply typed λ-calculus. Therefore, we are only interested in constructing abstract syntax. (To
convert a constructed term into first-order abstract syntax where variables are represented
as strings, one needs to add another constructor to Term for free variables.) Furthermore,
such a write-only typed abstract syntax does not solve the basic problem of programming
higher-order abstract syntax in Haskell, which is that the function space in the LAM summand
is “too big” in the sense that it allows both non-strict and non-total functions. But again, this
representation is sufficient for our purpose here. In the remainder of this section, Term and
Exp are restricted to the pure λ-calculus.

3.3 Normalization by evaluation with typed abstract syntax 57

3.3.2 Normalization by evaluation preserves types

Normalization by evaluation is an extensional, reduction-free technique for strongly nor-
malizing closed λ-terms. Source terms are represented as meta-language values and a nor-
malization function maps these values into a syntactic representation of their normal form.

The technique is extensional instead of intensional because the source terms are (higher-
order) values, not (first-order) symbolic representations. It is reduction-free because all the
β-reductions needed to yield a normal form are carried out implicitly by the underlying
implementation of the meta-language. For this reason, it runs at native speed and thus is
more efficient than traditional, symbolic normalization.

Normalization by evaluation uses two type-indexed and mutually recursive functions.
One, reify, traditionally noted ↓, maps a value into its representation and the other, reflect,
traditionally noted ↑, maps a representation into a value. These two functions are canonically
defined as follows, for the simply typed λ-calculus.

t ::= α | t1 → t2

↓α = λv. v

↓t1→t2 = λv. λx. ↓t2 @ (v @ (↑t1 @ x))

↑α = λe. e

↑t1→t2 = λe. λx. ↑t2 @ (e@ (↓t1 @ x))

where overlined λ and @ denote meta-level abstractions and applications, respectively, and
underlined λ and @ denote object-level abstractions and applications.

A simply typed term is normalized by reifying its value. For example, let us consider
Church numbers.

zero = λs. λz. z succ = λn. λs. λz. s @ (n @ s @ z)
three = succ @ (succ @ (succ @ zero)) add = λm.λn. λs. λz.m @ s @ (n @ s @ z)

Reifying three yields λs. λz. s @ (s @ (s @ z)), i.e., the representation in normal form of 3.
Similarly, reifying add @ zero yields

λn. λs. λz. n @ (λn′. s @ n′)@ z

i.e., the representation in long βη-normal form of the identity function over Church num-
bers, reflecting that zero is identity for addition. And finally, reifying add @ three yields the
representation in normal form of a function iterating the successor function three times, i.e.,
λn. λs. λz. s @ (s @ (s @ (n @ (λn′. s @ n′)@ z))). The source terms are values (i.e., with over-
lined λ and @) and, using ↓, we have reified them into a syntactic representation of their
normal form (i.e., with underlined λ and @).

The type of a Church number is (a→a) → a → a. The type of its normal form is Term, or,
perhaps more vividly, (Exp a → Exp a) → Exp a → Exp a.

Normalization by evaluation is defined by induction on the structure of types, which
makes it a natural candidate to be expressed with type classes. We thus define a type class

58 Type-directed partial evaluation

Nbe hosting two type-indexed functions, reify and reflect. Representing object terms with
the type Term of Section 3.3.1 would give us the usual uninformative type t→Term for reify
and Term→t for reflect. Instead, let us use the parameterized type Exp of Section 3.3.1.

class Nbe a
where reify :: a → Exp a reflect :: Exp a → a

The challenge now is to populate this type class with values of function type and of
base type implementing normalization by evaluation. If we can do that, the type inferencer
of Haskell will act as a theorem prover and will demonstrate that this implementation of
normalization by evaluation preserves types.

The canonical definition above dictates how to instantiate Nbe at function type.

instance (Nbe a, Nbe b) ⇒ Nbe (a → b)
where reify v = lam (λx → reify (v (reflect x)))

reflect e = λx → reflect (app e (reify x))

For base types, reify and reflect are two identity functions. To be type correct, how-
ever, reify must produce a term and reflect must consume a term. We can ensure that
reify produces a term when its argument is a term. Similarly, we can ensure that reflect
consumes a term when its result is a term. Taking advantage of the fact that the type pa-
rameter of Exp is a phantom type, we thus introduce the following two ‘phantom’ identity
functions for the base case.

coerce :: Exp (Exp a) → Exp a uncoerce :: Exp a → Exp (Exp a)
coerce (EXP v) = EXP v uncoerce (EXP e) = EXP e

instance Nbe (Exp a)
where reify = uncoerce reflect = coerce

A value v is normalized by applying reify to it. In usual implementations of normal-
ization by evaluation, (a representation of) the type of v must be supplied on par with v, as
an input data. Here, because we use type classes, this type is supplied as a cast, to resolve
overloading. It is obtained by instantiating type variables a with Exp a, in the original type.
So for example, id . id has the type a→a. Reifying it at type Exp a → Exp a yields λx→x, and
reifying it at type (Exp a → Exp a) → (Exp a → Exp a) yields λx→λx’→x x’.

3.3.3 Normalization by evaluation yields normal forms

In the simply typed λ-calculus, long βη-normal forms are closed terms without β-redexes
that are fully η-expanded with respect to their type. A closed term e of type t and in normal
form satisfies `nf e :: t, where terms in normal form (and atomic form) are defined by the
following rules.

∆, x :: t1 `nf e :: t2

∆ `nf (λx ::t1. e) :: t1 → t2
(Lam)

∆ `at e :: α

∆ `nf e :: α
(Coerce)

3.3 Normalization by evaluation with typed abstract syntax 59

∆ `at e0 :: t1 → t2 ∆ `nf e1 :: t1

∆ `at e0 e1 :: t2
(App)

∆(x) = t

∆ `at x :: t
(Var)

No term containing β-redexes can be derived by these rules, and restricting the Coerce rule
to base types ensures that the derived terms are fully η-expanded.

As in Section 3.3.1, we provide a typed interface to the constructors of terms in normal
form, preventing us from forming ill-typed terms.

data NfTerm = COERCE AtTerm | LAM (AtTerm → NfTerm)
data AtTerm = APP AtTerm NfTerm

newtype NfExp a = NF NfTerm
newtype AtExp a = AT AtTerm

app’ :: AtExp (a → b) → (NfExp a → AtExp b)
app’ (AT e1) (NF e2) = AT (APP e1 e2)

lam’ :: (AtExp a → NfExp b) → NfExp (a → b)
lam’ f = NF (LAM (λx → let NF t = f (AT x) in t))

coerce’ :: AtExp (NfExp a) → NfExp a
coerce’ (AT v) = NF (COERCE v)

uncoerce’ :: NfExp a → NfExp (NfExp a)
uncoerce’ (NF e) = NF e

These declarations specialize the representation from Section 3.3.2 to reflect that the rep-
resented terms are in normal form. As in Section 3.3.2, we provide two phantom identity
functions, coerce’ and uncoerce’, where coerce’ constructs terms that arise from using
the above Coerce rule.

Thus equipped, we can re-express normalization by evaluation in an implementation
that yields a representation of λ-terms in normal form.

class Nbe’ a
where reify :: a → NfExp a reflect :: AtExp a → a

Again, the challenge is to populate this type class with values of function type and of
base type implementing normalization by evaluation. If we can do that, the type inferencer
of Haskell will act as a theorem prover and will demonstrate that this implementation of
normalization by evaluation preserves types and yields normal forms.

The instances use the constructors for terms in normal forms but are otherwise defined
as in Section 3.3.2.

instance (Nbe’ a, Nbe’ b) ⇒ Nbe’ (a → b)
where reify v = lam’ (λx → reify (v (reflect x)))

reflect e = λx → reflect (app’ e (reify x))

instance Nbe’ (NfExp a)
where reify = uncoerce’ reflect = coerce’

60 Type-directed partial evaluation

As in Section 3.3.2, reifying id . id at type NfExp a → NfExp a yields λx→x, and reifying it
at type (NfExp a → NfExp a) → (NfExp a → NfExp a) yields λx→λx’→x x’.

For a last example, here are the Haskell definitions of Church numbers mentioned in
Section 3.3.2.

type Number a = (a → a) → a → a
zero = λs z → z
succ = λn s z → s (n s z)
three = succ (succ (succ zero))
add = λm n s z → m s (n s z)

Reifying three, add zero, and add three at type Number (Exp a) → Number (Exp a) gives
the text of their normal form.

3.3.4 Conclusions and issues

We have presented a simple encoding of typed abstract syntax in Haskell, and we have used
this typed abstract syntax to demonstrate that normalization by evaluation preserves simple
types and yields residual programs in βη-normal form. The encoding is write-only because
it does not lend itself to programs taking typed abstract syntax as input—as, e.g., a typed
transformation into continuation-passing style. Nevertheless, it is sufficient to establish two
key properties of normalization by evaluation automatically, using the Haskell type infer-
encer as a theorem prover.

These two properties could be illustrated more directly in a language with dependent
types such as Martin-Löf’s type theory. In such a language, one can directly embed simply
typed λ-terms (in normal form or not), express normalization by evaluation, and prove that
it preserves types and yields normal forms.

Normalization by evaluation takes its roots in type theory [27, 99], proof theory [9, 10,
11], logic [3], category theory [2, 28, 117], and partial evaluation [34, 61, 119, 121]. Long
βη-normal forms were specified, e.g., in Huet’s thesis [80]. The particular characterization
we use originates in Pfenning’s work on Logical Frameworks, and so does higher-order
abstract syntax [110]. We use it further to pair normalization by evaluation and run-time
code generation [5]. Our typed abstract syntax is akin to Leijen and Meijer’s embedding of
SQL into Haskell, which introduced phantom types [93]. Phantom types provide a typing
discipline for otherwise untyped values such as pointers in a foreign language interface [63].

Chapter 4

Run-time
code generation

Automated program-optimization techniques, such as partial evaluation, can improve the
efficiency of programs by several orders of a magnitude. However, they are often expressed
as source-to-source transformations. A separate compilation phase is required to run the
optimized programs.

In this chapter we present a library of byte-code combinators for OCaml, a dialect of
ML. They allow direct generation of optimized programs as OCaml byte code. We present
two applications of byte-code combinators in program optimizations. One is in semantics-
directed compilation: From a definitional interpreter for an imperative language we obtain
a compiler producing byte code. We have thus achieved a source-to-target transformation.
The other application is in run-time specialization: We implement a type-directed partial
evaluator producing residual programs as byte code. The input to type-directed partial
evaluation is already compiled code. We have thus also achieved a target-to-target trans-
formation.

4.1 Introduction

Lisp dialects, such as Scheme [89], support a distinctive style of programming where quasi-
quotation is used to construct syntactic representations of programs (S-expressions) and
where the procedure eval is used to execute such S-expressions. Quasi-quotation, S-
expressions, and the eval procedure probably account for a good part of the popularity
of Lisp-like languages [8]. One particular application is in run-time code generation. Con-
sider, for example, the problem of computing the nth power of several arguments, where n

is unknown. The following traditional solution maps a general procedure for computing xn

onto a list of elements.

(define (power n x)

(if (zero? n) 1 (* x (power (- n 1) x))))

61

62 Run-time code generation

(define (main1 n xs)

(map (lambda (x) (power n x)) xs))

The problem of specializing the power function to a known value for n can be solved
by standard partial evaluation. However, in the case we consider here, n is unknown and
cannot be inlined to yield a specialized version of power. Instead, we can construct (the text
of) a specialized version when n becomes known and then use eval to produce an executable
function. This idea is implemented using the generating extension of the power function, as
follows.

(define (power-gen n)

(if (zero? n) ‘1 ‘(* x ,(power-gen (- n 1)))))

(define (main2 n xs)

(map (eval ‘(lambda (x) ,(power-gen n))) xs))

Given a fixed exponent n, the auxiliary procedure power-gen constructs a specialized multi-
plication which is wrapped inside a λ-abstraction as follows. (Since the specialized program
contains only one variable we do not bother giving it a fresh name.)

(lambda (x) (* x (* x · · · (* x︸ ︷︷ ︸
n

1))))

The result of evaluating this expression is a specialized version of the power function which
is faster to execute than the unspecialized power function. For example, computing the fifth
power of 10000 small integers using the improved solution is about 2.5 times faster than
using the original solution (measured on a 266MHz Pentium system running Petite Chez
Scheme [109]).

The style of run-time code generation that we have sketched here can easily be com-
bined with traditional partial evaluation [83] to yield run-time specialization. In run-time
code generation, however, it is crucial that the compilation or interpretation of the generated
programs exercise as little overhead as possible. Most run-time code generators therefore
make an effort to pre-compile as much of the generated program fragments as possible be-
fore the main program is executed. These pre-compiled code templates are then combined
at run-time to produce the final executable program.

Code templates cannot generally be compiled completely into executable code. For ex-
ample, the position of free variables in the pre-compiled program fragments may be un-
known when these positions (in, e.g., a register or the stack) depend on where the variable
is bound. The pre-compiled program fragments therefore have “holes” for the free vari-
ables which are adjusted when the position of variables become known. In this chapter we
define a set of combinators for generating OCaml byte code at run time. These byte-code
combinators can be combined freely to produce complete programs which can then be ex-
ecuted directly without first applying a stand-alone compiler. We thus provide support for
run-time code generation using generating extensions as sketched above. We also use the

4.2 Deforested data types 63

byte-code combinators as code-generating primitives in an implementation of type-directed
partial evaluation. The result is a run-time specializer for higher-order OCaml programs.

This chapter is structured as follows. In Section 4.2 we present a deforestation technique
for inductively defined data types. In Section 4.3 we give an overview of the OCaml byte-
code compiler and run-time system and we apply deforestation to an abstract syntax tree
of OCaml expressions. The result is a set of byte-code combinators implemented in OCaml.
In Section 4.4 we apply these byte-code combinators to semantics-directed compilation and
in Section 4.5 we apply them to run-time specialization. In Section 4.6 we discuss related
work. The implementation of the byte-code combinators is given in Section 4.7. Section 4.8
concludes.

4.2 Deforested data types

In statically typed, higher-order languages, such as Haskell [59] and ML [102], a data type
is an inductively defined disjoint sum T with n injective constructors Ci : ti[T] → T for
1 ≤ i ≤ n. (We write t[T] for an expression that may contain T as a free variable.) Such a
data type can be modeled by an (infinite) union of disjoint sets,

⋃
n∈ω

Dn, where

{
D0 = ∅
Dk+1 =

⋃
1≤i≤n{(i, x) | x ∈ ti[Dk/T]}

The only meaningful operation on a data type is the corresponding fold-function (or
catamorphism)

foldT
α : T → (t1[α/T] → α) × · · · × (tn[α/T] → α) → α

where the result type α may be a function type β1 → · · · → βk. A data type is uniquely
defined by its constructors (up to isomorphism).

Example 1 Lists and binary trees are traditional examples of inductively defined data types
given by the following injective constructors.

nilα : 1 → listα leaf α : α → treeα

consα : α × listα → listα nodeα : treeα × treeα → treeα

Other (degenerated) examples of data types include Booleans, the type option of ML,
and the type Either of Haskell. The fold function for Booleans is an if-expression.

Consider a particular application of the fold function,

fα(v) = foldT
α v (g1, . . . , gn)

When f is applied to an element v : T , a case dispatch on v essentially replaces each of the
constructors Ci : ti[T] → T with the corresponding gi : ti[α/T] → α. The result is an element
of type α. A natural alternative to applying the fold function is to directly replace the Ci’s
by gi’s in the construction of the element v.

64 Run-time code generation

Example 2 Instead of evaluating

fold listint
α (cons int(41, cons int(42,nil int()))) (g1, g2)

using the auxiliary functions g1 : 1 → α and g2 : int × α → α we can directly evaluate

g2(41, g2(42, g1()))

Evaluating the latter is more efficient than evaluating the former since the case dispatch is
removed.

Computations inside the gi’s may be performed at the time of constructing an element
instead of at the time of deconstructing the element using its associated fold function. As
a consequence, if elements are constructed at an inexpensive early stage and deconstructed
at an expensive late stage then the alternative representation may be more efficient than the
traditional representation.

Consider, for example, the following function which sums a list of integers using an
accumulator.

sum (nil()) = λa. a

sum (cons(0, xs)) = λa. sum xs a

sum (cons(x, xs)) = λa. sum xs (x + a)

The function sum tests whether it has encountered the identity element 0 in the list and
short-cuts the addition if this is the case. However, when applied to a list and an initial
value for the accumulator, it must traverse the whole list and make the test for each ele-
ment. It is straightforward to implement this function using the fold-function for lists. The
corresponding gi’s are defined as follows.

g1 () = λa. a

g2 (0, xs) = λa. xs a

g2 (x, xs) = λa. xs (x + a)

In the context of the summation function, these gi’s provide a representation of lists which
is more efficient than the traditional one. Although summing a list still traverses the whole
list, it does not test for occurrences of 0.

The alternative to an inductively defined data type corresponds to a Church encod-
ing [20]. Such an encoding is not only a more efficient representation than traditional disjoint
sums. The transformation can also expose properties of the data type that are otherwise hid-
den. For example, Church-encoded data types have been used to encode dependently typed
functions in the Hindley-Milner type disciplines of ML [32, 64, 119, 145]. They can also pro-
vide a link between different styles of implementations, such as relating a direct-style imple-
mentation using an accumulator with a continuation-passing style implementation [37, 38].

Our interest in Church-encoded data types is due to their use in deforestation of abstract
syntax trees in compilers. Most compilers can be expressed using a fold function over ab-
stract syntax trees [1]. By Church-encoding the abstract syntax tree, computations in the
compiler that only depend on the syntax can be carried out when an abstract syntax tree is

4.3 Run-time code generation for OCaml 65

constructed. In stand-alone compilers, where both the construction and the deconstruction
of abstract syntax is done at compile time, such an improvement is negligible. In staged eval-
uation, such as in run-time code generation, where abstract syntax is generated at an early
stage and compiled to executable code at a later stage, using a Church-encoded abstract
syntax tree may be more efficient than using a traditional representation.

4.3 Run-time code generation for OCaml

We describe a representation of byte-code combinators for OCaml byte code. These corre-
spond to a Church-encoded abstract syntax of OCaml expressions.

4.3.1 Overview of OCaml

OCaml is a dialect of ML [102]: It is a strict, higher-order, statically typed, language with a
module system [96]. The OCaml implementation consists of a byte-code compiler, a native-
code compiler, and a run-time system with a virtual machine for running byte-code executa-
bles. Both compilers are implemented in OCaml and they share a common front end. The
run-time system consists of a byte-code interpreter, a garbage collector, and a set of prede-
fined library procedures. It is implemented in C.

The byte-code compiler

OCaml’s compiler consists of modules each implementing a phase. The initial input is a
stream of characters, either read from a file (in batch mode) or from standard input (in inter-
active mode).

• Lexical analysis and parsing

Together, lexical analysis and parsing read a sequence of characters and produce an
abstract syntax tree.

• Type analysis

This phase type-checks the source program. It produces a type-annotated abstract syn-
tax tree.

• Semantics-preserving translations

This phase translates OCaml expressions into an extended λ-calculus. The major dif-
ference between an OCaml expression and a λ-term is that modules and functors are
represented as tuples and higher-order functions in the λ-terms.

• Code generation

This phase produces a list of symbolic byte-code instructions from a λ-term.

66 Run-time code generation

• Byte-code emission

This phase writes a list of symbolic byte-code instructions to a file (in batch mode) or
into memory (in interactive mode).

The byte-code run-time system

OCaml’s run-time system provides memory management, a virtual machine, and primi-
tive operations. The memory is split into a stack and a heap. Function arguments, return
addresses, let-bound variables, and temporary values are stored on the stack. So are instruc-
tion operands that do not fit into registers. For example, there is one instruction that allocates
tuples and vectors by copying the top portion of the stack the heap.

Heap-allocated blocks are tagged by the memory management system to differentiate
values during garbage collection. These tags are not accessible to any of the instructions.
Small constants, such as integers, booleans, and characters, are represented as unboxed in-
tegers. All other values are represented by pointers to heap-allocated data. Function values
are represented by closures that group a code pointer together with values for the free vari-
ables of the function. Blocks of byte-code instructions are heap-allocated and are subject to
garbage collection.

The virtual machine executes OCaml byte-code instructions. It uses the following regis-
ters. The code pointer, pc, points to the current instruction to execute. Jumps and returns
may set this register explicitly but otherwise it is just incremented to point to the next instruc-
tion when a new cycle is started. The stack pointer, sp, points to the top of the stack. The
accumulator, accu, contains the most recently computed value. It also points to the closure
in an application of a function. The current environment, env, points to a heap-allocated
block of values for free variables in the current closure. In fact, env points directly to the
current closure itself. There are a few other registers that we do not deal with.

The OCaml implementation encourages the use of curried functions and applications by
compiling these into efficient byte code [95]. Traditional approaches to evaluating strict func-
tional languages allocate one closure per λ-abstraction. For example, using a naive right-to-
left evaluation strategy to apply a curried n-argument closure f = λx1. . . . λxn. e to k argu-
ments a1 · · · ak amounts to push the values of the ai on the stack, load the accumulator with
the closure for f , and then repeatedly call the closure in the accumulator until all arguments
are processed. Each call processes one argument and returns a new closure in the accumula-
tor. In contrast, applying an uncurried n-argument closure f = λ(x1 . . . xn). e to n arguments
f (a1, . . . , ak) amounts to allocate a stack frame containing all the values of the ai, evaluate f

to a closure, and call it. The call processes all arguments at once. OCaml’s run-time system
supports both of these function call mechanism. But in addition, OCaml defines instructions
for applying a curried function to k arguments using one instruction without introducing k

intermediate closures.

4.3 Run-time code generation for OCaml 67

4.3.2 A library of byte-code combinators for OCaml

Byte-code combinators encapsulate enough information that they can be reassembled into a
sequence of byte-code instructions.

(1) A byte-code combinator carries a list of the variables that occur free in the expression
it represents. Such a list is used to construct the byte-code instructions for creating
closures.

(2) If a byte-code combinator represents a variable, then it carries the name of that variable.
This information is used in generating byte-code combinators for let-expression that
preserves tail calls, as discussed below.

(3) A byte-code combinator carries a function that generates the actual byte-code instruc-
tions. It takes two arguments, an environment mapping variable names to stack or
environment positions and a list of byte-code instructions for the continuation. It adds
code for the current byte-code combinator to the front of the continuation.

Byte-code combinators efficiently support two key operations, namely concatenation of
byte-code instructions and instantiation of free variables. When the code-generating func-
tion of a complete byte-code combinator is applied to an environment and a continuation,
byte-code instructions are generated in a backwards manner using the continuation and the
positions of variables are resolved using the environment. There is no copying of the gen-
erated byte-code instructions and they are not traversed once they are created. The type of
byte-code combinators is exp and is defined as follows.

type code = instruction list
type exp = ide list * ide option * (env * code → code)

Here instruction is a data type of symbolic byte-code instructions defined in the OCaml
compiler. The code-generating function of a byte-code combinator corresponds to a Church
encoding of an abstract syntax tree of expressions in the context of a compiler of type

comp : ast → (env * code) → code

For byte-code combinators involving variables and bindings (such as variables, λ-
abstractions, and let-expressions) we provide both a low-level first-order interface and a
higher-order interface similar to a higher-order abstract syntax [110]. The low-level interface
allows direct generation and manipulation of variables, λ-abstractions, and let-expressions.
The higher-order interface groups common patterns involving bindings into convenient
functions.

OCaml byte-code combinators

Below follows a description of a library of byte-code combinators. Each byte-code combi-
nator corresponds naturally to an OCaml expression. The byte-code combinators are imple-
mented in the OCaml compiler as part of the interactive environment.

68 Run-time code generation

• mkunit : exp

• mkbool : bool → exp

• mkint : int → exp

• mkstr : string → exp

Construct values of base types.

• mkglob : string → exp

• mkqref : string list → exp

Construct global variables. The first function generates a reference to a global variable
from a string of its name. The second function generates a reference to a field of a global
module. At run time, global data is stored in a table. The search for the index of global
variables in the table is done when the byte-code combinators are applied.

• mktup : exp list → exp

Constructs a finite product of more than 1 element. An auxiliary function generates
code that evaluates a sequence of expressions and pushes their results on the stack.
The first element must be stored in the accumulator.

• mkprj : int → exp → exp

Constructs a projection of a tuple of values. The index is known at the time of gener-
ating the byte-code combinator. It is assumed that the index is within the range of the
heap-allocated block representing the tuple.

• mkift : exp → exp → exp → exp

Constructs an if-expression.

• mkvar : ide → exp

This function is used in generating fresh variables independently of their binding λ-
abstractions or let-expression.

• mklam1 : ide → exp → exp

• mklam : (exp → exp) → exp

• mkclam : int → (exp list → exp) → exp

Construct λ-abstractions. The function mklam1 provides a low-level first-order inter-
face while mklam and mkclam provide higher-order interfaces. The first two functions
construct unary lambda expressions. The third constructs a curried n-ary lambda ex-
pressions given an integer n. It generates optimized code similar to what the OCaml
byte code compiler produces for curried λ-abstractions.

• mkapp : exp → exp → exp

• mkcapp : exp → exp list → exp

Construct function applications. The first function constructs an application of a func-
tion to one argument. The second function constructs a curried application of a function

4.3 Run-time code generation for OCaml 69

to n arguments given a list of length n. It generates optimized code similar to what the
OCaml byte-code compiler produces for curried applications.

• mklet1 : ide → exp → exp → exp

• mklet : exp → (exp → exp) → exp

Construct let-expressions. The first function provides a low-level first-order interface.
The second function provides a higher-order interface. (The second function is imple-
mented in terms of the first.)

These constructors preserve tail-calls: For example, instead of generating byte-code in-
structions corresponding to an expression let x = E in x they generate simply the
byte-code instructions corresponding to E. Such an optimization is not performed by
the OCaml compiler. It is sometimes needed when let-expressions are generated auto-
matically, as done, e.g., by partial evaluation.

• mkseq : exp → exp → exp

Constructs a sequencing of two expressions. This byte-code combinator does not gen-
erate any instructions itself. Instead, it concatenates the instructions from the two sub-
combinators.

• mkref : exp → exp

• mkget : exp → exp

• mkset : exp → exp → exp

Construct byte-code combinators for allocating a mutable cell, for accessing the con-
tents of a mutable cell, and for overwriting the contents of a mutable cell.

• mkadd : exp → exp → exp

• mksub : exp → exp → exp

• mkmul : exp → exp → exp

• mkeqint : exp → exp → exp

• mklss : exp → exp → exp

• mkleq : exp → exp → exp

• mkgre : exp → exp → exp

• mkgeq : exp → exp → exp

Construct byte-code combinators corresponding binary addition, subtraction, multipli-
cation, and comparisons.

The implementation of the byte-code combinators and a description of the byte-code
instructions they generate are shown in Section 4.7.

An eval for OCaml byte code

To run a byte-code combinator, its code-generating function is first applied to an empty
environment and a continuation consisting only of a symbolic return instruction. The result

70 Run-time code generation

is a list of symbolic instructions. Using functions provided by OCaml’s interactive run-
time system, the list of symbolic instructions is then written to the memory in the form of
executable byte-code instructions. We use the following two auxiliary function as a front-end
to the internals of the run-time system.

• run_code : instruction list → ’a

This function writes a list of symbolic byte-code instructions to the memory, relocates
global pointers in the allocated block, and passes it to the virtual machine for execution.

• run_exp : exp → ’a

This function instantiates a byte-code combinator and executes the resulting list of in-
structions.

let run_exp (_, _, f) = run_code (f ([], [Kreturn 1]))

If a complete byte-code combinator contains free variables, then instantiation will stop
when the code generator for variables (mkvar) is applied. Together, byte-code combinators
and run_exp supports run-time code generation in the same way as Lisp-like S-expressions
and eval.

Example 3 Consider again the generating extension of the power function from the intro-
duction. It can be implemented in OCaml as follows.

let rec power_gen n x =
if n = 0 then mkint 1 else mkmul x (power_gen (n - 1) x)

let main n (xs : int list) : int list =
List.map (run_code (mklam (fun x → power_gen n x))) xs

Specializing the power function to the exponent 3 yields the following byte-code instruc-
tions.

closure L1, 0

return 1

L1: const 1

push

acc 1

mulint

push

acc 1

mulint

push

acc 1

mulint

return 1

Type safety

The byte-code combinators provide an untyped interface to OCaml byte code. OCaml is a
statically typed language, so no type-checks occur in the run-time system. There are, how-
ever, no compile-time type checks to ensure that only legal byte-code combinators are gen-
erated. The programmer must manually cast the results of using run_code and run_exp to
the correct type of the values they return.

4.3 Run-time code generation for OCaml 71

Static type-checking in the context of run-time code generation is somewhat of an open
problem. Davies’s λ©-calculus [45], motivated by linear-time temporal logic, provides a
type©τ of programs of type τ . A complete program of type©τ evaluates to a value nextM

where M is a program of type τ that can be evaluated subsequently. The type-system of λ© is
able to describe standard partial evaluation where one program (the partial evaluator) gen-
erates another complete program (the residual program). For example, a partial evaluator
that specializes programs of type S × D → R has type ©(S × D → R) → S → ©(D → R).
However, in λ©, there is no way to express immediate evaluation of sub-terms because
terms of type ©τ may contain free variables. The same problem actually exists for Lisp-like
eval procedures: The source S-expression may contain free variables. In Scheme, this prob-
lem is solved by passing an environment of bindings to eval along with the S-expression
to evaluate [89, 115]. This approach cannot easily be adapted to λ©, however, since such
environments cannot be given a meaningful type.

Davies and Pfenning’s λ -calculus [46], motivated by modal logic, provides a type �τ of
closed programs of type τ . Therefore, since it contains no free variables, a sub-term of type
�τ can be directly evaluated to a value of type τ . However, since only closed programs can
be constructed these often contain administrative redexes [45, 47]. At any rate, neither λ©

nor λ have been designed for a strict language with mutable state such as OCaml. There
are other approaches to languages that support both generation of staged programs and for
evaluating them but these seem to be operationally rather than logically motivated [56, 133,
134].

Lisp-like languages, being dynamically typed, leave the generation of correctly staged
programs to the programmer. The challenge is not to mix computed values with (textual)
program parts. The following two expressions illustrate how a value (the addition function)
may end up in the text of a program and how the text of an identifier (+) may be evaluated,
here in Scheme.

‘(apply ,+ ’(4 5)) −→ (apply #<procedure +> ’(4 5))

‘(apply ’+ ’(4 5)) −→ (apply ’+ ’(4 5))

Taken as two-stage programs, both expressions are incorrect. We notice, however, that the
result of the first expression is a valid argument to Chez Scheme’s eval [51]:

(eval ‘(apply ,+ ’(4 5))) −→ 9

The Chez Scheme compiler directly inlines the value of the addition function as a constant in
the generated target code. We also notice that the value of the second “invalid” expression
above is a valid argument to eval in Emacs Lisp:

(eval ‘(apply ’+ ’(4 5))) −→ 9

The Lisp function apply interprets the function argument as an expression.
For statically typed languages, implementing S-expressions as a first-order data type

prevents these problems. In addition, under certain conditions, “phantom types” can pro-
vide a typing discipline for data types by restricting generated terms to the simply typed

72 Run-time code generation

λ-calculus. (Phantom types are discussed in Chapter 2.) The idea is to parameterize the type
of term-representations over the type of the represented terms. In a similar fashion, it is pos-
sible to give types to byte-code combinators. However, phantom types only apply to certain
representations of terms. Variables and bindings must be implemented using a higher-order
abstract syntax, so phantom types does not give meaningful types to the byte-code combi-
nators mkglob, mkvar, mklam1, and mklet1. Furthermore, variable-length argument list for
the byte-code combinators mktup, mkprj, mkclam, and mkcapp cannot be typed either. We do
not use phantom types in the rest of this chapter.

4.4 Semantics-directed compilation

The pipeline of programming-language development involves analyzing and reasoning
about existing languages, inventing and designing new languages, implementing compil-
ers and interpreters, and using the language to solve programming problems. These stages
are not always followed chronologically as listed. For example, using an inappropriate lan-
guage to solve a specific problem may suggest to design a new and better language for the
task. Similarly, implementing a compiler for a language may suggest a different design to
facilitate efficient compilation. In fact most realistic languages pass through several rounds
of analysis, design, and implementation, and are even used meanwhile by the end-users.

The reference points for researchers involved in analyzing, designing, and implement-
ing a programming language and for programmers who use the language to solve specific
problems are formal or informal explanations of what programs of the language look like
and how they behave. The “look” of a programming language, commonly called its syntax,
is most succinctly described by a (context-free) grammar. A grammar is a formal description
that lists the rules allowed in constructing programs of the language. The syntax of the vast
majority of programming languages and other formal languages is given by grammars.

The behavior of deterministic programs can only meaningfully be given by unambigu-
ous means. An unambiguous explanation of the behavior of a program is the only contract
that avoids conflicts between, e.g., the intended behavior of program and its actual behavior
when executed on a physical machine. A property of a programming language may inten-
tionally be unspecified but even that must be communicated to the users of the language.
Whether an English explanation of the language serves as an unambiguous description is
a question that can be debated. Numerous examples have shown, however, that program-
ming languages are most succinctly described by formal semantics. A formal semantics
provides unambiguous means for communicating the behavior of programs among the pro-
gramming languages researcher and end-users. In fact, the formal semantics itself may also
provide guide-lines at each stage of the programming-language development, such as, e.g.,
by suggesting to design more general features or to implement more efficient compilers.

The purpose of an implementation of a programming language is to model its look and
behavior on a physical machine. The task of writing a compiler or an interpreter can be
seen as translating the syntax and semantics of the language into a program that processes
programs of the language. The problem of translating a grammar into a parser is well-

4.4 Semantics-directed compilation 73

supported by most general-purpose languages. They typically offer a tool that generates
lexical analyzers and parsers from textual description of the syntax of tokens and compound
program parts [1, 82, 97].

The semantics of a programming language formally specifies how programs are trans-
lated into semantic entities. For example, a denotational semantics specifies the mean-
ing of programs by mapping program phrases to mathematical entities, usually domains
(i.e., function spaces with certain properties) and functions and (other) relations on do-
mains [123, 131]. An equivalent view states that a concrete denotational semantics maps
program phrases to terms in a mathematical meta language and that these terms then denote
the semantic entities [140, 141, 142]. Due to the foundational work by Scott, the λ-calculus
has proven a sound meta language [125].

The λ-calculus is also embodied in higher-order programming languages, such as
Haskell [59], Scheme [89], and ML [102]. These languages seemingly provide a connection
between the λ-calculus as a mathematical meta language and as a programming language.
A direct translation from the meta language into a higher-order programming language is,
however, not always possible. It is tempting, but often incorrect, to equate the function
spaces denoted by higher-order functions with the function spaces of the mathematical meta
language. Yet, when these problems are carefully addressed, a denotational semantics can
be translated into a definitional interpreter, thus providing a direct implementation for a pro-
gramming language [116]. This approach is particularly attractive since partial evaluation
enables compilation of source programs given their definitional interpreters [65]. This style
of semantics-directed compilation has been used to generate compilers for a wide variety of
functional [13, 86, 87], logical [22, 37, 38, 88], and imperative languages [12, 23, 44, 67] as
well as for semantics descriptions of programming languages [14, 15, 41].

Traditional partial evaluation yields target programs in the implementation language
of the definitional interpreter, in our case a higher-order language. Such a target program
must be subsequently compiled to be executed on a physical machine. But what we want
is a directly executable program. In this section we propose to solve this discrepancy by
using byte-code combinators in the course of translating the semantics of a programming
language into a definitional interpreter. We support our proposal by an application to the
development of a small imperative language.

4.4.1 An imperative language

In an imperative program, the programmer describes in a step-by-step manner how he wants
the computer to behave. An imperative program is thus very similar to a traditional cooking
recipe or to assembling instructions, which may be one reason for the popularity of impera-
tive languages. Another reason could be that the core syntactic category of imperative lan-
guages, the statement, can be executed without the need for a stack. This obviously makes
it easier (for humans) to trace the execution of programs.

74 Run-time code generation

〈pgm〉 ::= input(x); 〈block〉
〈block〉 ::= var x = 〈exp〉; 〈block〉

| 〈stm〉; output(〈exp〉);
〈stm〉 ::= skip

| x := 〈exp〉
| 〈stm〉; 〈stm〉
| if 〈exp〉 then 〈stm〉 else 〈stm〉
| while 〈exp〉 do 〈stm〉

〈exp〉 ::= i | x | 〈exp〉 - 〈exp〉 | 〈exp〉 * 〈exp〉 | 〈exp〉 < 〈exp〉

Figure 4.1: Syntax of an imperative language

Syntax

We consider a small imperative language for computing integer results from integer inputs.
The syntax of the language is given by the grammar in Figure 4.1. There are four syntactic
categories: Expressions, statements, blocks, and complete programs. An expression is either
a constant, a variable, or a primitive operation applied to some sub-expressions. A statement
is either empty, an assignment, a sequencing of two expressions, an if-statement, or a while
loop. A block, which only occurs as the outermost component of a program, lists bindings
for global variables. Its body consists of a statement and an expression. Finally, a program
consists of a formal input parameter and a block. A valid program is one where the variables
that occur in the body are declared in the surrounding block.

Example 4 The factorial program Fac looks as follows.

input(n);

var x = 1;

while (0 < n) do (

x := x * n;

n := n - 1

);

output(x);

Semantics

The intended behavior of expressions and statements is straightforward. A program reads
an integer and assigns it to the input parameter. It then assign the values of the top-level
bound expressions to the variables and executes the body. The value of the final output
statement is also the value of the entire program. An expression in a top-level binding may

4.4 Semantics-directed compilation 75

P[[input(x); b]] = λv.B[[b]][x 7→ v]

B[[var x = e; b]] = λσ.B[[b]]σ[x 7→ E [[e]]σ]
B[[S; output(e);]] = λσ. let σ′=S[[s]]σ in up(E [[e]]σ′)

S[[skip]] = λσ.up(σ)
S[[x := e]] = λσ.up(σ[x 7→ E [[e]]σ])
S[[s1; s2]] = λσ. let σ′=S[[s1]]σ inS[[s2]]σ′

S[[if e then s1 else s2]] = λσ.

{
S[[s1]]σ, if E [[e]]σ = 1

S[[s2]]σ, otherwise
S[[while e do s]] =

⊔
n∈ω Φn(⊥)

where Φ = λfσ.

{
up(σ), if E [[e]]σ = 0

f∗(S[[s]]σ), otherwise

E [[i]] = λσ. i

E [[x]] = λσ. σ(x)
E [[e1 - e2]] = λσ. E [[e1]]σ − E [[e2]]σ
E [[e1 * e2]] = λσ. E [[e1]]σ × E [[e2]]σ

E [[e1 < e2]] = λσ.

{
1, if E [[e1]]σ < E [[e2]]σ

0, otherwise

Figure 4.2: Valuation functions for an imperative language

use the bound variables from earlier bindings. Both the statements in the body of the pro-
gram and the final output statement may use all the bound variables. The purpose of the
semantics is to formalize these verbal explanations of the behavior of programs.

Both the syntax of our mathematical meta language as well as the semantics that we
present are similar to what one might find in standard text-books on denotational seman-
tics [106, 123, 144]. A state, Σ ∈ Var → Z, is a mapping from variables to integers. Ex-
pressions, whose evaluation does not diverge or have any other (side) effects, are simply
modeled by functions from states to the integers. Statements, whose evaluation may di-
verge and may have (side) effect, are traditionally modeled by partial functions between
states. We shall instead model statements as continuous functions whose range is a lifted
domain A⊥ = {⊥} ∪ {up(a) | a ∈ A}. We write f ∗ ∈ A⊥ → B⊥ for the strict extension of
f ∈ A → B⊥, i.e., f(⊥) = ⊥ and f(up(a)) = f(a), and abbreviate (λx. e)∗(v) as let x=v in e.
Blocks are modeled by partial functions from states to integers. Finally, programs are partial
functions between integers. To summarize, for any expression e, statement s, block b, and
program p,

E [[e]] ∈ Σ → Z, S[[s]] ∈ Σ → Σ⊥, B[[b]] ∈ Σ → Z⊥, P[[p]] ∈ Z → Z⊥

76 Run-time code generation

type ide = string

type exp = INT of int
| VAR of ide
| SUB of exp * exp
| MUL of exp * exp
| LESS of exp * exp

type stm = SKIP
| SEQ of stm * stm
| ASSIGN of ide * exp
| IF of exp * stm * stm
| WHILE of exp * stm

type block = BIND of ide * exp * block
| BODY of stm * exp

type pgm = INPUT of ide * block

Figure 4.3: Abstract syntax of an imperative language

The valuation functions for the imperative language are displayed in Figure 4.2.

Example 5 The semantics of the factorial program is as follows.

P[[Fac]] = λv. let σ=
(⊔

n∈ω

Φn(⊥)
)
[x 7→ 1, n 7→ v] in up(σ(x))

where

Φ = λfσ.

{
up(σ), if σ(n) ≤ 0

f(σ[n 7→ σ(n) − 1, x 7→ σ(x) × σ(n)]), otherwise

For example, P[[Fac]]4 = up(24).

4.4.2 A definitional interpreter for imperative programs

The implementation of the syntax and semantics of the imperative language into OCaml pro-
vides an abstract syntax of programs and a definitional interpreter for evaluating program
given by their abstract syntax. (We shall not deal with the problem of parsing the concrete
syntax of programs.) The abstract syntax of programs, blocks, statements, and expressions
is given in Figure 4.3.

Example 6 The factorial program is represented as the following piece of abstract syntax.

let fact =
INPUT ("n",
BIND ("x", INT 1,

4.4 Semantics-directed compilation 77

let rec fix f x = f (fix f) x

let rec e_exp e st =
match e with
INT(i) → i

| VAR(x) → lookup st x
| SUB(e1, e2) → e_exp e1 st - e_exp e2 st
| MUL(e1, e2) → e_exp e1 st * e_exp e2 st
| LESS(e1, e2) →

if e_exp e1 st < e_exp e2 st then 1 else 0

let rec e_stm s =
match s with
SKIP → fun st → st

| ASSIGN(x, e) → fun st → update st x (e_exp e st)
| SEQ(s1, s2) → fun st → e_stm s2 (e_stm s1 st)
| IF(e, s1, s2) → fun st →

if e_exp e st = 1 then e_stm s1 st else e_stm s2 st
| WHILE(e, s) →

fix (fun f st →

if e_exp e st = 0 then st else f (e_stm s st))

let rec e_block b st =
match b with
BIND(x, e, b) → e_block b (update st x (e_exp e st))

| BODY(s, e) → e_exp e (e_stm s st)

let start (INPUT(x, b)) v = e_block b (init x v)

Figure 4.4: Direct-style interpreter for an imperative language

BODY
(WHILE (LESS (INT 0, VAR "n"),

SEQ (ASSIGN ("x", MUL (VAR "x", VAR "n")),
ASSIGN ("n", SUB (VAR "n", INT 1)))),

VAR "x")))

The definitional interpreter, shown in Figure 4.4, is an almost direct transcription of the
denotational semantics into OCaml. We have taken precautions in mapping lifted domains
into OCaml types. Fortunately, we have arranged the semantic domains to match OCaml’s
types. Note, however, that the domain associated with expressions guarantees that the eval-
uation of expressions terminate. The type of the definitional interpreter cannot make such
guarantee. Instead, such a result can be shown manually by observing, e.g., that the evalua-
tion function for expressions can be defined by induction instead of recursion.

78 Run-time code generation

Example 7 Evaluating start fact 4 in OCaml yields the integer 24.

4.4.3 A definitional compiler for imperative programs

The first Futamura projection states that specializing an interpreter with respect to a source
program yields, if specialization terminates, an equivalent program in the implementation
language of the interpreter [65]. Even if the implementation language is a higher-level lan-
guage, as opposed to, e.g., machine code, it is often the case that the translation produces a
more efficient version of the source program. In particular, an efficient partial evaluator will
remove the interpretive overhead involved in processing the abstract syntax of the source
program. (We come back to partial evaluation in Section 4.5.)

The second Futamura projection states that specializing a partial evaluator with respect
to an interpreter yields, if specialization terminates, a compiler from the interpreted lan-
guage to the implementation language of the interpreter (which must coincide with the
source language of the partial evaluator). In the general case of specializing a partial eval-
uator with respect to a program, the result is also called a “generating extension” of the
program. Ershov, who coined the term “generating extension”, used them derive a compiler
from an interpretational semantics for an imperative language [58]. Ershov’s generating
extension was not obtained by specializing a self-applicable partial evaluator. Instead, he
defined a function mapping a program into its generating extension. By the third Futamura
projection, such a compiler generator can also be achieved by partial evaluation.

We shall implement a range of compilers for the imperative language. We start out with
a handwritten generating extension for the definitional interpreter. This first definitional
compiler is obtained, as usual in handwriting generating extensions, by first binding-time
annotating the interpreter (in this case with respect to a static source program) and then
translating the result into a two-level program [24, 83]. Program parts annotated as “static”
are evaluated during compile-time while program parts annotated as “dynamic” are re-built
in the residual target program. Because we use byte-code combinators, the residual program
parts are re-built (almost) directly as OCaml byte code. We shall use the following code-
generating versions of the environment manipulating functions and fixed-point operator.

• mklookup : exp → string → exp

Constructs the byte-code combinator for a call lookup st x given a byte-code combina-
tor for st and a string x .

let mklookup st x =
mkcapp (mkglob "lookup") [st; mkstr x]

• mkupdate : exp → string → exp → exp

Constructs the byte-code combinator for a call update st x v given byte-code combi-
nators for st and v and a string x .

4.4 Semantics-directed compilation 79

let rec c_exp e =
mklam (fun st →

match e with
INT(i) → mkint i

| VAR(x) → mklookup st x
| SUB(e1, e2) →

mksub (mkapp (c_exp e1) st) (mkapp (c_exp e2) st)
| MUL(e1, e2) →

mkmul (mkapp (c_exp e1) st) (mkapp (c_exp e2) st)
| LESS(e1, e2) →

mkif (mklss (mkapp (c_exp e1) st) (mkapp (c_exp e2) st))
(mkint 1)
(mkint 0))

let rec c_stm s =
match s with
SKIP → mklam (fun st → st)

| ASSIGN(x, e) → mklam (fun st →

mkupdate st x (mkapp (c_exp e) st))
| SEQ(s1, s2) → mklam (fun st →

mkapp (c_stm s2) (mkapp (c_stm s1) st))
| IF(e, s1, s2) → mklam (fun st →

mkif (mkeqint (mkapp (c_exp e) st) (mkint 1))
(mkapp (c_stm s1) st)
(mkapp (c_stm s2) st))

| WHILE(e, s) →

mkfix (mkclam 2 (fun [f; st] →

mkif (mkeqint (mkapp (c_exp e) st) (mkint 0))
st
(mkapp f (mkapp (c_stm s) st))))

let rec c_block b =
mklam (fun st →

match b with
BIND(x, e, b) →

mkapp (c_block b) (mkupdate st x (mkapp (c_exp e) st))
| BODY(s, e) → mkapp (c_exp e) (mkapp (c_stm s) st))

let start (INPUT(x, b)) =
mklam (fun v → mkapp (c_block b) (mkinit x v))

Figure 4.5: Direct-style compiler for an imperative language

let mkupdate st x v =
mkcapp (mkglob "update") [st; mkstr x; v]

80 Run-time code generation

• mkinit : string → exp → exp

Constructs the byte-code combinator for a call init x v given a byte-code combinator
for v and a string x .

let mkinit x v =
mkcapp (mkglob "init") [mkstr x; v]

• mkfix : exp → unit → exp

Constructs the byte-code combinator for a call fix f given a byte-code combinator for
f .

let mkfix f =
mkapp (mkglob "fix") f

Residual programs map states to states. The operations that are re-built in the residual
target program are those involving integer operations (i.e., subtraction, multiplication, and
comparison), operations on states (i.e., lookups, updates, and initialization), and recursion
(i.e., the fixed-point operator). Thus, the first compiler we consider, shown in Figure 4.5, cor-
responds to a binding-time separation where all state-transforming functions are annotated
as dynamic. Each call to one of the semantic valuations will generate a residual call and
each statement will generate a residual λ-abstraction. As a result, residual programs contain
many “administrative redexes” that do not correspond to redexes in the source program.

Example 8 Compiling the program

input(n); skip; output(2 * n);

using the compiler in Figure 4.5 yields the byte-code instructions corresponding to the fol-
lowing OCaml expression.

fun v →

(fun st0 →

(fun st1 →

(((fun st4 → 2) st1) *

((fun st3 → lookup st3 "n") st1)))
((fun st2 → st2) st0))

(init "n" v)

This expression contains five administrative β-redexes.

In the following two sections we consider two compilers that do not generate adminis-
trative redexes.

4.4 Semantics-directed compilation 81

let rec c_exp e st = ...

let generalize k_sta f =
mklet (mklam k_sta)
(fun k_dyn → f (mkapp k_dyn))

let rec c_stm s k st =
match s with
SKIP → k st

| ASSIGN(x, e) → mklet (mkupdate st x (c_exp e st)) k
| SEQ(s1, s2) → c_stm s1 (c_stm s2 k) st
| IF(e, s1, s2) →

generalize k
(fun k →

mkif (mkeqint (c_exp e st) (mkint 1))
(c_stm s1 k st)
(c_stm s2 k st))

| WHILE(e, s) →

mkapp (mkfix (mkclam 2 (fun [f; st] →

mkif (mkeqint (c_exp e st) (mkint 0))
(k st)
(c_stm s (mkapp f) st))))

st

let rec c_block b st =
match b with
BIND(x, e, b) →

mklet (mkupdate st x (c_exp e st)) (c_block b)
| BODY(s, e) → c_stm s (fun st → c_exp e st) st

let start (INPUT(x, b)) =
mklam (fun v →

mklet (mkinit x v) (c_block b))

Figure 4.6: Continuation-passing style compiler for an imperative language

4.4.4 An optimized compiler for imperative programs

The second compiler uses continuations to translate statements into residual byte-code in-
structions. Continuations are (static) functions from (dynamic) states to (dynamic) integers.
They correspond to static state-transformers between dynamic states. (The direct-style com-
pilers produced dynamic state-transformers between dynamic states.) The use of continua-
tions enables the generation of residual programs where intermediate states are bound in let
expressions and where let-expressions are flattened. The translation of expressions is similar
to the direct-style compiler. The compiler is shown in Figure 4.6.

82 Run-time code generation

Example 9 Using the continuation-passing style compiler to compile the program

input(n); skip; output(2 * n);

from Example 8 yields the byte-code instructions

closure L1, 0

return 1

L1: acc 0

push

const "n"

push

getglobal init/1868g

apply 2

push

const "n"

push

acc 1

push

getglobal lookup/1860g

apply 2

push

const 2

mulint

return 2

which corresponds to the following OCaml expression.

fun v → let st = init "n" v in 2 * (lookup st "n")

The residual program does not contain any administrative redexes.

The program in Figure 4.6 contains a “generalization” in the case for if-statements.
To avoid code duplication, the continuation, which is passed to both branches of the if-
statement, must be inlined in the residual program just once. The compiler first binds the
continuation in a residual let-expression and then passes the bound variable to the two
branches of the if-statement. Without this coercion of binding-times, the continuation may
be applied in both branches of the if-statement thus inlining the code for the continuation
twice.

Example 10 The following program performs one multiplication after having made a test.

input(n);

if n then n := 1 else n := 2;

output(n * 10);

The continuation-passing style compiler in Figure 4.6 translates it into byte-code instructions
that correspond to the following expression. The residual program contains one multiplica-
tion.

fun v →

let st0 = init "n" v in
let k = fun st3 → lookup st3 "n" * 10 in
if lookup st0 "n" = 1 then
let st2 = update st0 "n" 1 in k st2

else
let st1 = update st0 "n" 2 in k st1

4.4 Semantics-directed compilation 83

Compiling this program without the generalization yields the following program, which
contains two multiplications.

fun v →

let st0 = init "n" v in
if lookup st0 "n" = 1 then
let st2 = update st0 "n" 1 in lookup st2 "n" * 10

else
let st1 = update st0 "n" 2 in lookup st1 "n" * 10

The direct-style compiler in Figure 4.5 does not duplicate code.

4.4.5 A native compiler for imperative programs

The third compiler is based on the observation that the small imperative language that we
consider can be mapped directly into OCaml byte code. The most prominent features of
the imperative language are its store and its sequential evaluation of statements. Both are
easily modeled by OCaml’s mutable cells and strict evaluation. The third compiler, shown
in Figure 4.7, is therefore in direct style and uses the native OCaml store to model the store
of while-programs. Instead of passing a store, this compiler passes an environment map-
ping variables to their run-time location. Locations are conveniently represented by residual
temporary variables stored on the stack. Consequently, there are no occurrences of variable
names in the residual program.

Example 11 Using the native compiler to compile the program

input(n); skip; output(2 * n);

from Example 8 yields the byte-code instructions

closure L1, 0

return 1

L1: acc 0

makeblock 1, 0

push

const 0a

acc 0

getfield 0

push

const 2

mulint

return 2

which correspond to the following OCaml expression.

fun v → let n = ref v in (); 2 * !n

4.4.6 Benchmarks

To measure the effect of using the three compilers we use the factorial program, fact, from
Example 6 and four programs, matn for n = 1 . . . 4, that multiplies two n × n matrices.

84 Run-time code generation

let mkfix f () =
mkcapp (mkglob "fix") [f; mkunit]

let rec c_exp e env =
match e with
INT(i) → mkint i

| VAR(x) → mkget (lookup env x)
| SUB(e1, e2) → mksub (c_exp e1 env) (c_exp e2 env)
| MUL(e1, e2) → mkmul (c_exp e1 env) (c_exp e2 env)
| LESS(e1, e2) →

mkif (mklss (c_exp e1 env) (c_exp e2 env))
(mkint 1)
(mkint 0)

let rec c_stm s env =
match s with
SKIP → mkunit

| ASSIGN(x, e) → mkset (lookup env x) (c_exp e env)
| SEQ(s1, s2) → mkseq (c_stm s1 env) (c_stm s2 env)
| IF(e, s1, s2) →

mkif (mkeqint (c_exp e env) (mkint 1))
(c_stm s1 env)
(c_stm s2 env)

| WHILE(e, s) →

mkfix (mkclam 2 (fun [f; _] →

mkif (mkeqint (c_exp e env) (mkint 0))
mkunit
(mkseq

(c_stm s env)
(mkapp f mkunit))))

()

let rec c_block b env =
match b with
BIND(x, e, b) →

mklet (mkref (c_exp e env))
(fun c → c_block b ((x, c) :: env))

| BODY(s, e) → mkseq (c_stm s env) (c_exp e env)

let start (INPUT(x, b)) =
mklam (fun v →

mklet (mkref v)
(fun c → c_block b [(x, c)]))

Figure 4.7: Native compiler for an imperative language

4.4 Semantics-directed compilation 85

The matrix-multiplication programs statically represents the indices of three matrices and
contains an unfolded version of naive matrix-multiplication. The sizes of these program
are proportional to n3. The following measures were performed on an IBM ThinkPad 600
equipped with a 266MHz Pentium II and with 96 Mb of RAM running RedHat Linux 2.2.1.
We have not measured the space usage.

We use one interpreter and three compilers.

INTP: The definitional interpreter from Figure 4.4.

DS-COMP: The first definitional compiler from Figure 4.5 corresponding to a naive binding-
time analysis of the interpreter INTP.

CPS-COMP: The second compiler from Figure 4.6 corresponding to an improved binding-
time analysis of the interpreter INTP.

NATIVE-COMP: The third compiler from Figure 4.7 that directly maps imperative programs
into OCaml.

The times spent compiling the example imperative programs using the three compilers
are shown in Figure 4.8. The times spent running the residual program and the time spent
applying the interpreter are shown in Figure 4.9. We make the following observations about
compiling imperative programs into byte code.

• On the average, CPS-COMP is 5.09 times faster than DS-COMP.

• On the average, NATIVE-COMP is 10.09 times faster than the DS-COMP and 2.42 times
faster than the CPS-COMP.

• On the average, for DS-COMP, writing byte-code combinators to memory accounts for
86.14% of the total time spent compiling.

• On the average, for CPS-COMP, writing byte-code combinators to memory accounts
for 80.11% of the total time spent compiling.

• On the average, for NATIVE-COMP, writing byte-code combinators to memory ac-
counts for 57.13% of the total time spent compiling.

We make the following observations about running the residual program.

• On the average, the residual programs produced by DS-COMP are 1.11 times faster
than running the interpreter INTP.

• On the average, the residual programs produced by CPS-COMP are 1.29 times faster
than running the interpreter INTP.

• On the average, the residual programs produced by NATIVE-COMP are 17.93 times
faster than running the interpreter INTP.

86 Run-time code generation

Source program
Compile time (ms.)

fact mat1 mat2 mat3 mat4

Generate 2.61 0.31 1.44 4.53 11.36
DS-

Write 4.64 1.96 13.05 69.67 309.30
COMP

Total 7.25 2.26 14.49 74.20 320.67
Generate 0.32 0.23 0.98 2.64 5.83

CPS-
Write 1.30 1.02 3.46 9.95 26.08

COMP
Total 1.63 1.24 4.45 12.58 31.92

Generate 0.16 0.11 0.64 3.51 14.78
NATIVE-

Write 0.71 0.22 0.84 2.88 8.73
COMP

Total 0.87 0.32 1.48 6.39 23.51

Times are in milli-seconds (1/1000 of a second) and are averaged over 100 itera-
tions.

The table shows both the times for generating byte-code combinators (Generate),
the time for writing them to memory (Write), and the total time spent compiling
(Total).

Figure 4.8: Semantics-directed compilation of imperative programs

Source program
Run time (ms.)

fact mat1 mat2 mat3 mat4

INTP 0.1747 0.0192 0.2090 1.3026 5.1944
DS-COMP 0.1625 0.0165 0.1899 1.1827 4.6515

CPS-COMP 0.1267 0.0125 0.1704 1.1220 4.5024
NATIVE-COMP 0.0239 0.0019 0.0051 0.1225 0.2519

Times are in milli-seconds (1/1000 of a second) and are averaged over 1000 iter-
ations.

The input to the program fact was 10.

The input to the programs matn was 0. These programs do not use their input.

Figure 4.9: Running compiled imperative programs

4.5 Run-time specialization 87

We conclude that the cost of avoiding generating many byte-code combinators pays off
for the continuation-passing style compiler. The native compiler processes environments at
compile time. This processing exercises a cost at compile time but the residual program are
correspondingly faster.

4.5 Run-time specialization

In the previous section, we have seen examples of compilers generating OCaml byte-code
from imperative programs. Each compiler was a handwritten generating extension of an
interpreter for imperative program. In this section we shall illustrate how partial evaluation,
a technique for specializing a program with respect to parts of its input, can be applied to
achieve the effect of compilation.

4.5.1 Partial evaluation: What

Partial evaluation is an approach to program specialization. Given a partial evaluator PE

(implemented in a language L1) for a source language L2, a two-argument L2-program p,
and an static value s, applying PE to p and s yields a specialized version of p with respect to
s (if partial evaluation terminates). Applying the specialized program ps to a dynamic value
d gives the same result as applying the original program p to both s and d. If we let [[·]]L
denote the partial valuation function for L-programs then the correctness criterion for PE is
given by the following mix equation [83].

[[PE]]L1(p, s) = ps where
[[ps]]L2(d) = [[p]]L2(s, d)

The motivation for partial evaluation is efficiency: Running ps on input d is likely to be faster
and require less memory than running p on inputs (s, d) since operations in p that depend
only on s may have been removed from ps.

The most fascinating applications of partial evaluation are perhaps found in the area
of semantics-directed compilation and compiler generation: In the early 1970’s, Yoshihiko
Futamura observed the following applications of partial evaluation, which became known
as the Futamura projections [65, 66].

(1) Using a partial evaluator PE, an interpreter intp, and a source program src written in
the interpreted language one can compile src into the implementation language L2 of
intp by specializing the interpreter with respect to the source program.

[[PE]]L1(intp, src) = trg where
[[trg]]L2(inp) = [[intp]]L2(src, inp)

(2) If the partial evaluator is self-applicable, that is, if its implementation language L1 is
a subset of its source language L2, one can generate a compiler from the interpreted

88 Run-time code generation

language to the implementation language of the interpreter by specializing the partial
evaluator with respect to the interpreter.

[[PE]]L1(PE, intp) = comp where
[[comp]]L1(src) = [[PE]]L1(intp, src)

(3) Finally, one can generate a compiler generator by specializing the partial evaluator
with respect to itself.

[[PE]]L1(PE,PE) = cogen where
[[cogen]]L1(intp) = [[PE]]L1(PE, intp)

In the previous section we already derived a compiler from an interpreter, although it
was handwritten instead of obtained by self-applying a partial evaluator. Such a compiler
is a generating extension of an interpreter, or equivalently, a dedicated partial evaluator for
the interpreter: It takes the static input src and produces the specialized version of intp with
respect to src, namely trg. As illustrated above, a generating extension for a program p can
be obtained by specializing the partial evaluator with respect to p.

4.5.2 Partial evaluation: How

A partial evaluator is a non-standard interpreter that combines evaluation with code genera-
tion. Program parts that only depend on the static input are reduced by the partial evaluator
while program parts that depend on the dynamic input are rebuilt in the residual program.

On-line partial evaluation

An on-line partial evaluator decides whether to reduce or rebuild a program part as it pro-
cesses the source program and the static input. This decision is precise since it is based on the
actual static input and therefore, on-line partial evaluation most often yields efficient resid-
ual programs [122]. Typically, however, on-line partial evaluation does not yield good results
when self-applied. A compiler generated from self-application of on-line partial evaluation,
comp = [[PE]]L1(PE, intp), is too general to be efficient. The reason is that the generated com-
piler can not only be applied to a static source program and a dynamic input but also to a
dynamic source program and a static input. The price for generality is a compiler in which
few static reductions are carried out.

Off-line partial evaluation

An off-line partial evaluator decides whether to reduce or rebuild a program part indepen-
dently of the actual static input. To this end, off-line partial evaluation is split into (1) a
binding-time analysis stage which annotates source program parts as either static or dynamic
and (2) a specialization stage which reads the static input and reduces or rebuilds program
parts depending on whether they are static or dynamic. The specialization stage is fast since

4.5 Run-time specialization 89

the reduce/rebuild decisions have been made beforehand. However, due to the necessar-
ily approximate binding-time information, residual programs are usually less efficient than
those obtained by on-line partial evaluation. Off-line partial evaluation was introduced by
Jones’s group in the mid 1980’s to make self-applicable partial evaluation feasible in prac-
tice [84].

Off-line partial evaluation gives rise to a notion of two-stage programs: The static parts
of a program are executed at specialization time while the dynamic parts are rebuilt in the
specialized program and executed at run time. Staged languages provide frameworks where
binding times are explicitly represented in the syntax of programs. In the following grammar
for a higher-order language with integers, underlined terms are “dynamic”. (Here, function
application is denoted by the infix @. A program is a multi-argument λ-abstraction.)

p ::= λ(x1, . . . , xn). e
e ::= x | i | λx. e | e1 @ e2 | let x=e1 in e2 | e1 + e2

| i | λx. e | e1 @ e2 | let x=e1 in e2 | e1 + e2

Staged languages provide an interpretation of binding-annotations. Specializing a
binding-time annotated terms amounts to reducing the overlined construct of a term while
rebuilding the underlined terms. It is required that binding-time annotated terms are well-
annotated in the sense that static reduction “does not go wrong” and yields a completely
dynamic term. This requirement can be expressed by extended type systems such as, e.g.,
the λ©-calculus [45] or two-level calculi [105]. A binding-time analysis must produce a well-
annotated two-stage term from a source program.

Example 12 Consider a program fragment

λ(d, h). let f =λg. g (g d) in (f (λx. x)) + (f h)

where d and h are dynamic. Since f is applied to both a static and a dynamic argument
a binding-time analysis must assign the most conservative binding-time to f , namely “dy-
namic”. Specialization will therefore rebuild the first application of f instead of reducing
it.

λ(d, h). let f =λg. g @ (g @ d) in f @ (λx. x)+ f @ h

Specializing this binding-time annotated program gives the residual program

λ(d, h). let g=λx. x in (g (g d)) + (h (hd))

which contains two β-redexes.

As illustrated by this example, binding-time improvements are often necessary to obtain
good results from partial evaluation. In particular, inserting η-expansion in higher-order
programs can coerce static functions in dynamic contexts and vice versa [39, 40]. Such
binding-time coercions play a crucial role in making partial evaluation effective. For ex-
ample, binding-time improvements were instrumental for Palsberg and Bondorf to obtain
good results from specializing an interpreter for Action Notation using Similix [14, 15, 41].

90 Run-time code generation

Example 13 We η-expand the occurrence of h in the source program:

λ(d, h). let f =λg. g (g d) in (f (λx. x)) + (f (λx. hx))

Now, the argument in the second application of f is static and a binding-time analysis can
assign the binding-time “static” to f .

λ(d, h). let f =λg. g @ (g @ d) in (f @ (λx. x))+ (f @ (λx. h@ x))

Statically reducing this improved binding-time annotated program gives the residual pro-
gram

λ(d, h). d + (h (hd))

which contains no redexes.

The two stages of off-line partial evaluation operate as follows.

pbta = [[bta]]L1 (p)
ps = [[spec]]L1 (pbta, s)

where bta is the binding-time analyser, spec is the specializer, and pbta is the binding-time
annotated version of p. Languages of binding-time annotated terms directly give a seman-
tics to annotated terms. The specializer is then, in fact, an (definitional) interpreter for a
language of binding-time annotated terms. The binding-time annotated program is a gener-
ating extension of the source program implemented in the language of binding times:

[[pbta]]bta (s) = [[spec]]L1 (pbta, s) = ps

where [[·]]bta is the semantic valuation for the language of binding times. As illustrated by
the second Futamura projection, we can also obtain a generating extension for p in the im-
plementation language L1 of the partial evaluator as follows.

pgen = [[PE]]L1 (spec, p)
ps = [[pgen]]L1 (s)

Hybrid approaches to partial evaluation combine the static decisions from off-line partial
evaluation with the dynamic choices from on-line partial evaluation [126, 132, 143]. Such
approaches typically consists of a binding-time analysis stage, which annotates program
parts as either static, dynamic, or unknown, and a specialization stage, which reduces static
program parts, rebuilds dynamic parts, and dynamically decides the action to take upon
unknown program parts.

Monovariance and polyvariance

A partial evaluator for a language with functions is said to perform polyvariant specialization if
it can produce several versions of each source function. In contrast, monovariant specialization

4.5 Run-time specialization 91

produces at most one version of each source function. A polyvariant binding-time analysis
handles several versions of each source function, one for each binding-time signature, that
is, assignment of binding-time to the function arguments. In contrast, monovariant binding-
time analysis chooses the conservative “dynamic” when merging two functions with different
binding-time signature and is therefore less flexible.

4.5.3 Type-directed partial evaluation

Type-directed partial evaluation is an approach to off-line, monovariant specialization for
higher-order programs [30, 34]. For closed source programs, binding-time information is
given by the type of the program. If a source program contains free variables, these must be
separated into static and dynamic occurrences beforehand. Type-directed partial evaluation
is extended with online features, such as primitive operations that probe their arguments for
static reduction opportunities at specialization time [33].

Type-directed partial evaluation is stated and formalized in both a call-by-name set-
ting [61] and a call-by-value setting [62]. Due to the unsoundness of the general β-reduction
rule for call-by-value, “serious” expressions, such as applications and certain primitive op-
erations, that may have effects must be let-bound in the residual programs. For pure, closed
λ-terms, type-directed partial evaluation coincides with Berger and Schwichtenberg’s nor-
malization by evaluation [10, 11].

Type-directed partial evaluation is based on the idea of extracting normal forms from
the semantics (or compiled value) of a program: In higher-order languages with a base type
exp of syntactic representations of terms, there exists, for each type τ built out of exp and
function space alone, a term ↓τ : τ → exp such that for any pure closed term e : τ , evaluating
↓τ e either diverges or yields the text of the long βη-normal form of e. Such a normal form
does not contain β-redexes and it is fully η-expanded with respect to its type (i.e., terms of
higher type are either abstractions or they occur in function position in an application). In
the call-by-value setting all applications are let-bound.

Given a closed program p : s × d → r and a static input s : s, type-directed partial evalu-
ation works as follows. The trivially specialized program λd. p(s, d) is a solution to the mix
equation, albeit a sub-optimal one: For any value v, evaluating (λd. p(s, d))d yields the same
result as evaluating p(s, d). The result of evaluating ↓d→r (λd. p(s, d)), on the other hand, is in
normal form and is thus an efficient specialized version of p with respect to s. For programs
with free variables, such as arithmetic primitives, conditionals, and fixed point operators,
the input to type-directed partial evaluation is a binding-time separated program in which
statically occurring variables are given a standard evaluating interpretation and where dynam-
ically occurring variables are given a non-standard residualizing interpretation. In languages
with a module system, the source program can be given by a functor parameterized over an
interpretation. The same program can then be subject to both evaluation and specialization.

Type-directed partial evaluation for pure λ-terms can be characterized as the two type-
indexed and inductively defined functions in Figure 4.10. It is here expressed in a staged
λ-calculus where the underlined constructs are code generating primitives and where @
denotes infix application.

92 Run-time code generation

(Types) τ = exp | τ1 → τ2

↓exp = λv. v
(Reify) ↓τ1→τ2 = λv. λx. ↓τ2 @ (v @ (↑τ1 @ x))

↑exp = λv. v
(Reflect) ↑τ1→τ2 = λv. λx. ↑τ2 @ (v @ (↓τ1 @ x))

(Tdpe) tdpeτ1→τ2→τ3 = λp : τ1 → τ2 → τ3. λs : τ1. ↓τ2→τ3 @ (λd. p s d)

Figure 4.10: Type-directed partial evaluation for pure λ-terms

Example 14 The closed term M = λx. (λy. y)x of type exp → exp contains a β-redex. Stati-
cally reducing ↓exp→exp M yields the normal form of M , λx. x.

Example 15 (Running example.) Consider function composition as defined by C =
λf. λg. λx. f(g x). We can specialize the term M = λg. λf. g f f with respect to g = C by stat-
ically reducing ↓(exp→exp)→exp→exp (M C). The result is the specialized term λf. λx. f (f x).

In practice, type-directed partial evaluation is usually not given by a class of terms (↓τ :
τ → exp)τ but rather as a function reify mapping a representation pτq : type of a type τ into
a function of type τ → exp. Such a dependently typed function can be implemented in a
Hindley-Milner type system by a Church-encoded representation of types [119, 145].

Partial evaluation was originally designed to specialize source programs to their static in-
puts at compile time. The result was the text of the residual program which was compiled by
a stand-alone compiler to yield an executable program. During the 1990’s, it was observed
that a number of programs can benefit from partial evaluation but that the static input to
these systems are not available at compile time. Instead the static data is computed by one
part of the system and passed to the program part that would benefit from specialization.
In most situations, it is immediately clear that just applying a standard partial evaluator to
the program part under consideration and then applying a standard compiler to produce
the binary executable is infeasible in practice. A number of run-time specializers were intro-
duced that supported efficient specialization and subsequent compilation at compile time.
(See Section 4.6 for a discussion of related work.)

All existing implementation of type-directed partial evaluation model the dynamic con-
structs by operations that generate text. Instead, we shall use code templates to directly
generate byte code. We parameterize the implementation of type-directed partial evaluation
over a module of constructors of dynamic λ-terms satisfying the signature in Figure 4.11. The
core of the implementation is shown in Figure 4.12. It defines two functions for constructing
representations of types. Such a representation consists of two functions that inductively

4.5 Run-time specialization 93

module type RESIDUAL = sig
val lam : (exp → exp) → exp
val app : exp → exp → exp

end

Figure 4.11: Two-level code-generating primitives

module Tdpe(R : RESIDUAL) = struct
type ’a rr = RR of (’a → exp) * (exp → ’a)

let base =
RR ((fun e → e),

(fun e → e))

let func(RR(reify1, reflect1), RR(reify2, reflect2)) =
RR ((fun v → R.lam (fun x → reify2 (v (reflect1 x)))),

(fun e → fun x → reflect2 (R.app e (reify1 x))))

let tdpe (RR (reify, reflect)) e = reify e
let tdpe’(RR (reify, reflect)) e = reflect e

end

Figure 4.12: Type-directed partial evaluation in OCaml

descends the represented type. See Chapter 3 for a discussion of this technique.

In the following two sections we instantiate type-directed partial evaluation to a call-by-
name setting and to a call-by-value setting by providing two implementations of residual
terms.

Call-by-name type-directed partial evaluation

By directly plugging the module of byte-code combinators into type-directed partial evalu-
ation we obtain an implementation of type-directed partial evaluation for pure λ-terms in
OCaml. The module is shown in Figure 4.13.

Example 16 (Example continued.) In OCaml we can specialize the pure term λg. λf. g f f

with respect to λf. λg. λx. f(g x) by running

tdpe (func(func(base,base),func(base,base)))
((fun g f → g f f) (fun f g x → f(g x)))

The result is the following byte-code instructions.

94 Run-time code generation

module CBN = struct
let lam = mklam
let app = mkapp

end

module TdpeCBN = Tdpe(CBN)

Figure 4.13: Two-level code-generating primitives for call-by-name

closure L1, 0

return 1

L1: acc 0

closure L2, 1

return 1

L2: acc 0

push

envacc 1

apply 1

push

envacc 1

appterm 1, 2

These instructions correspond to the term

fun f → fun x → f (f x)

of type (exp → exp) → exp → exp.

Call-by-value type-directed partial evaluation

Type-directed partial evaluation as presented above is unsound in call-by-value settings,
such as OCaml, when functions that may diverge or that have (other) side effects are in-
volved. For example, using call-by-name type-directed partial evaluation to normalize the
term

λf. λx. (λy. x)(f x)

yields λf. λx. x. This residual term is generally not equivalent to the original term in a call-
by-name setting. (Consider, for example, a situation where f denotes a function that di-
verges.) To remedy this, we can insert a residual let expression to bind the possible effect-full
expression f x as in λf. λx. let y=f x in x.

This kind of let-insertion can be implemented in type-directed partial evaluation if the
host language supports first-class continuations or mutable state [34, 62]. Both solutions
amounts to recording a list of residual applications for each residual λ-abstraction. A stack
of such lists is maintained in order to correctly gather let-bindings for nested residual λ-
abstractions. The solution using first-class continuations also provides the means to special-
ize dynamic disjoint sums. The standard distribution of OCaml does not support first-class
continuations so we shall use the state-based solution.

Residual terms, given in Figure 4.14, adds let-expressions to the terms used in the call-
by-name setting. Residual bindings are accumulated in the global variable hook in reverse
order of occurrence. The function reset overwrites the current list of accumulated bindings

4.5 Run-time specialization 95

module CBV = struct

let hook = ref []

let reset c = let temp = !hook in hook := c; temp

let rec wrap = function
([], e) → e

| ((x, v)::bs, e) → wrap(bs, mklet1 x v e)

let bind e =
let r = gensym () in
hook := (r, e) :: !hook;
mkvar r

let lam f =
let x = gensym () in
let c = reset [] in
let e = f (mkvar x) in
let b = reset c in
mklam1 x (wrap(b, e))

let app a b = bind (mkapp a b)
end

module TdpeCBV = Tdpe(CBV)

Figure 4.14: Two-level code-generating primitives for call-by-value

and returns the previous value. The stack is not explicitly represented. Instead, lists of
bindings are saved in temporary variables in the function lam. Thus, the stacking of lists is
provided by the execution stack. Bindings are added to the current list by the function bind.
Let expressions are generated by wrap, which unfolds a list of bindings to a chain of nested
let-expressions. We rely on code templates to preserve tail-calls in let-expressions.

Example 17 (Example continued.) Specializing M = λg. λf. g f f with respect to C =
λf. λg. λx. f(g x) under call-by-value yields the following sequence of byte-code instruc-
tions.

closure L1, 0

return 1

L1: acc 0

closure L2, 1

return 1

L2: acc 0

push

envacc 1

apply 1

push

acc 0

push

envacc 1

appterm 1, 3

These instructions correspond to the following term.

96 Run-time code generation

module type INTERPRETATION = sig
type tint
val qint : int → tint
val mul : tint → tint → tint

end

module Eval : INTERPRETATION with type tint = int = struct
type tint = int
let qint i = i
let mul x y = x * y

end

module Resi : INTERPRETATION with type tint = exp = struct
type tint = exp
let qint i = mkint i
let mul x y =
tdpe’ (func(base, func(base, base)))
(mkqref ["Eval"; "mul"]) x y

end

module Power(I : INTERPRETATION) = struct
let rec power n x =
if n = 0 then I.qint 1 else I.mul x (power (n-1) x)

end

module PowerEval = Power(Eval)
module PowerResi = Power(Resi)

Figure 4.15: The power function in OCaml

fun f → fun x → let y = f x in f y

Note that the final call occurs at tail-position.

4.5.4 Applications

We present examples and applications of run-time code generation for type-directed partial
evaluation, starting with some benchmark results.

The power function: Example of specialization

As an application of run-time code generation for type-directed partial evaluation we con-
sider the example of the power function. The source program, shown in Figure 4.15 is struc-
tured as three modules, a standard evaluating interpretation of primitives, a non-standard
residualizing interpretation of primitives, and the power function parameterized over these
primitives. The residualizing interpretation builds byte-code combinators.

4.5 Run-time specialization 97

We can run the general power function by using the evaluating interpretation. For exam-
ple, running PowerEval.power 3 5 directly yields 125. We can also generate an intermediate
specialized function first. To this end, we apply type-directed partial evaluation to generate
the byte-code combinator of the specialized power function. Instantiating the combinator
and running the result yields an executable function. (It must be manually cast to its type,
int → int.) Incidentally, it is safe to specialize the power function using both type-directed
partial evaluation for pure λ-terms and type-directed partial evaluation that inserts residual
let-expressions.

Example 18 Specializing the power function to the static exponent 3 using call-by-name
type-directed partial evaluation yields the following byte-code instructions.

closure L1, 0

return 1

L1: const 1

push

acc 1

push

getglobal Eval/945g

getfield 1

apply 1

apply 1

push

acc 1

push

getglobal Eval/945g

getfield 1

apply 1

apply 1

push

acc 1

push

getglobal Eval/945g

getfield 1

appterm 2, 3

which corresponds to the expression

fun x → Eval.mul x (Eval.mul x (Eval.mul x 1))

The multiplication by 1 is not reduced such as can be done by an on-line definition of
multiplication. On-line primitives for standard type-directed partial evaluation can generate
specialized code when their input are known constants [33]. We cannot take this approach
here since the inputs to primitives are byte-code combinators that cannot be compared. It
would be possible, however, to add extra information to byte-code combinators indicating
whether they represent known constants or not.

Example 19 Specializing the power function to the static exponent 3 using call-by-value
type-directed partial evaluation yields the following byte-code instructions.

98 Run-time code generation

closure L1, 0

return 1

L1: acc 0

push

getglobal Eval/1130g

getfield 1

apply 1

push

const 1

push

acc 1

apply 1

push

acc 2

push

getglobal Eval/1130g

getfield 1

apply 1

push

acc 1

push

acc 1

apply 1

push

acc 4

push

getglobal Eval/1130g

getfield 1

apply 1

push

acc 1

push

acc 1

appterm 1, 7

which corresponds to the expression

fun x →

let f1 = Eval.mul x in
let v1 = f1 1 in
let f2 = Eval.mul x in
let v2 = f2 v1 in
let f3 = Eval.mul x in
f3 v2

All applications are let-bound except the last which occurs in tail position. Even partial
applications of curried function are bound. Using the byte-code combinator for curried ap-
plications, this can be avoided by adding a special n-argument function type to type-directed
partial evaluation. The technique is similar to generating function calls with several argu-
ments in type-directed partial evaluation for Scheme [31].

The previous two examples follow the standard pattern of type-directed partial evalu-
ation by defining the residualizing interpretation in terms of the evaluation interpretation.
This means that the residual programs contain references to the fields in the module for the
evaluating interpretation. A more efficient solution is to use residualizing primitives that
directly generate the correct instructions in the residual program. Figure 4.16 implements
such a direct residualizing interpretation.

Example 20 Specializing the power function with respect to 3 using the direct residualizing
primitive (using either call-by-name or call-by-value type-directed partial evaluation) yields
the following byte-code instructions.

4.5 Run-time specialization 99

module Direct : INTERPRETATION with type tint = exp = struct
type tint = exp
let qint i = mkint i
let mul x y = mkmul x y

end

module PowerDirect = Power(Direct)

Figure 4.16: A direct interpretation of primitives

closure L1, 0

return 1

L1: const 1

push

acc 1

mulint

push

acc 1

mulint

push

acc 1

mulint

return 1

which corresponds to the expression

fun x → x * (x * (x * 1))

The generating extension for the power function in Example 3 yields the same residual pro-
gram.

The power function: Assessment

We have compared the efficiency of the different versions of the power function. The follow-
ing measures were performed on an IBM ThinkPad 600 equipped with a 266MHz Pentium II
and with 96 Mb of RAM running RedHat Linux 2.2.1. We consider the following programs.

POWER: The parameterized power function using the evaluating interpretation, Eval. This
function exercises a cost of accessing the multiplication function and the lifting opera-
tion in the module of primitives and it incurs an interpretive overhead.

DIRECT-POWER: A power function where the multiplication has been inlined and which
does not lift integers. This function incurs an interpretive overhead.

CBN-TDPE: The parameterized power function using the residualizing interpretation Resi

and which is specialized using call-by-name type-directed partial evaluation.

SHORT-CBN-TDPE: The same as for CBN-TDPE except that curried applications are im-
plemented as one efficient call instead of several. The OCaml compiler automatically
improves both the interpreters in a similar way.

100 Run-time code generation

CBV-TDPE: The parameterized power function using the residualizing interpretation Resi

and which is specialized using call-by-value type-directed partial evaluation. Curried
applications are not optimized.

DIRECT-TDPE: The parameterized power function using the direct interpretation Direct.

We have measured these functions over the static values 0, 10, 100, 1000, and 2000 for
the exponent. In order not to overflow for large exponents, we have used a dynamic base
value of 1. The times for compiling the power function are shown in Figure 4.17. The sizes
of the residual programs as functions of the exponent n are shown in Figure 4.18. The av-
erage code-generation speed is shown in Figure 4.19. The times for running the residual
programs and for running the interpreters are shown in Figure 4.20. We make the following
observations about specializing the power function.

• On the average, SHORT-CBN-TDPE is 1.06 times faster than CBN-TDPE.

• On the average, CBN-TDPE is 13.17 times faster than CBV-TDPE.

• On the average, DIRECT-TDPE is 3.90 times faster than CBN-TDPE, 3.65 times faster
than SHORT-CBN-TDPE, and 66.37 times faster than CBV-TDPE.

• On the average, for CBN-TDPE, writing byte-code combinators to memory accounts
for 61.81% of the total time spent specializing.

• On the average, for SHORT-CBN-TDPE, writing byte-code combinators to memory ac-
counts for 66.89% of the total time spent specializing.

• On the average, for CBV-TDPE, writing byte-code combinators to memory accounts for
48.60% of the total time spent specializing.

• On the average, for DIRECT-TDPE, writing byte-code combinators to memory accounts
for 81.46% of the total time spent specializing.

We also observe that the specialization times for CBV-TDPE are quadratic in the value of
the exponent.1 The reason is that looking up variables in the representation of environments
in byte-code combinators is linear in the number of variables in the environment. Further-
more, the residual programs comprise a sequence of nested let expressions that all refer to
the input parameter x. It is the repeated lookup of this variable that leads to quadratic time
usage.

We make the following observations on the speed at which byte-code instructions are
generated.

• On the average, SHORT-CBN-TDPE generates 1.03 times more instructions per second
than CBN-TDPE.

1This quadratic behavior was spotted by Peter Sestoft.

4.5 Run-time specialization 101

Exponent
Compile time (ms.)

0 10 100 1000 2000

Generate 0.01 0.36 3.95 50.33 108.38
CBN-TDPE Write 0.08 0.52 4.81 57.89 120.74

Total 0.09 0.89 8.76 108.21 229.17
Generate 0.01 0.30 3.00 41.61 86.51

SHORT-
Write 0.08 0.58 4.91 60.24 121.59

CBN-TDPE
Total 0.09 0.88 7.91 101.85 208.11

Generate 0.01 0.78 35.78 3462.92 —
CBV-TDPE Write 0.08 0.88 19.31 1237.45 —

Total 0.10 1.66 55.08 4700.04 —
Generate 0.01 0.05 0.33 4.29 10.70

DIRECT-
Write 0.08 0.21 1.47 16.38 35.27

TDPE
Total 0.09 0.26 1.80 20.67 45.96

Times are in milli-seconds (1/1000 of a second) and are averaged over 100 itera-
tions.

The table shows both the times for generating byte-code combinators (Generate),
the time for writing them to memory (Write), and the total time spent compiling
(Total).

Specializing the power function to a static exponent 2000 did not terminate
within reasonable time.

Figure 4.17: Specializing the power function

Exponent
Size (instructions)

0 n

CBN 5 7×n+3
SHORT-CBN-TDPE 5 6×n+4

CBV-TDPE 5 11×n+2
DIRECT-TDPE 5 3×n+5

Number of instructions in the residual programs measured as a function of the
exponent n.

Figure 4.18: Sizes of residual programs

102 Run-time code generation

Code-generation Exponent
(instruction/ms.) 0 10 100 1000 2000

Generate 294 205 178 139 129
CBN Write 40 137 146 121 116

Total 35 82 80 65 61
Generate 393 214 201 144 139

SHORT-
Write 48 111 123 100 99

CBN-TDPE
Total 43 73 76 59 58

Generate 143 143 31 3 —
CBV-TDPE Write 23 128 57 9 —

Total 20 68 20 2 —
Generate 295 713 927 701 562

DIRECT-
Write 65 163 208 183 170

TDPE
Total 53 133 170 145 131

Instructions generated per milli-second (1/1000 of a second).

The table shows both the speed at which byte-code combinators are generated
(Generate), the speed at which they are written to memory (Write), and the over-
all speed of compiling (Total).

Figure 4.19: Code-generation speed

Exponent
Run time (ms.)

0 10 100 1000 2000

POWER 0.001 0.007 0.054 0.541 1.098
DIRECT-POWER 0.001 0.005 0.040 0.404 0.927

CBN 0.001 0.009 0.081 0.802 1.592
SHORT-CBN-TDPE 0.001 0.004 0.031 0.329 0.680

CBV-TDPE 0.001 0.009 0.088 1.031 —
DIRECT-TDPE 0.001 0.002 0.008 0.073 0.147

Times are in milli-seconds (1/1000 of a second) and are averaged over 10000 iter-
ations.

Figure 4.20: Running the specialized power function

4.5 Run-time specialization 103

• On the average, CBN-TDPE generates 9.86 times more instructions per second than
CBV-TDPE.

• On the average, DIRECT-TDPE generates 1.93 times more instructions per second than
CBN-TDPE, 2.00 times more instructions per second than SHORT-CBN-TDPE, and 17.12
times more instructions per second than CBV-TDPE.

We make the following observations about running the residual program.

• On the average, the residual programs produced by CBN-TDPE are 1.34 times slower
than running the original POWER and 1.71 times slower than running the original
DIRECT-POWER

• On the average, the residual programs produced by SHORT-CBN-TDPE are 1.55 times
faster than running the original POWER and 1.23 times slower than running the original
DIRECT-POWER

• On the average, the residual programs produced by CBV-TDPE are 1.46 times slower
than running the original POWER and 1.89 times slower than running the original
DIRECT-POWER

• On the average, the residual programs produced by DIRECT-TDPE are 5.23 times faster
than running the original POWER and 4.07 times slower than running the original
DIRECT-POWER

The reason why running the residual programs produced by CBN-TDPE is slower than
directly running POWER is that the OCaml compiler generates optimized curried applica-
tions for the original power function. In the programs produced by CBV-TDPE the inserted
let-expressions add an extra penalty. Inserting let-expressions also exercise a high cost at
specialization time. These observations confirm the results of the following two preliminary
experiments with run-time code generation for type-directed partial evaluation.

A BSD packet-filter interpreter

Packet filtering is an obvious application area for run-time specialization [25, 94]. When a
user-level process receives network packets, these are copied from the kernel space to the
user space. To minimize copying and context switching, the user-level program can ask
the kernel to filter out packets satisfying certain criteria. Because recognizing an incoming
packet can be quite complicated, filtering mechanisms have quite general filter languages.
BSD packet filters [100] are expressed as the abstract syntax of a general, RISC-like instruc-
tion set. A virtual machine run as a kernel process applies a filter on each incoming packet
and depending on the outcome the packet is copied to the user-level process.

A filter specified by a user-level process will be applied to a large number of incoming
packets. The overhead from having the kernel interpreting filters can obviously be reduced
by specializing the packet filter interpreter with respect to the filter. However, conventional

104 Run-time code generation

Filter Amortization factor Speedup

1 125 packets 0.61 ms. 118%.
2 275 packets 4.77 ms. 65%.
3 1016 packets 12.43 ms. 48%.
4 1798 packets 24.14 ms. 58%.
5 783 packets 9.57 ms. 49%.
6 1870 packets 22.23 ms. 49%.

Times are in milli-seconds (1/1000 of a second).

The second column shows the number of packets required before compilation
pays for itself and the third column shows how early that may happen.

The fourth column shows the increase in the number of packets the compiled
filter handles per time-unit.

Figure 4.21: Relative effect of compile packet filters

partial evaluation is not sufficient because (1) exactly how to recognize packets may depend
on information which is not present until the user-level program is executed and (2) the filter
must be verifiably safe. Thus, it is not possible to specialize the kernel code when the user-
level program is compiled. Something like “just-in-time” specialization is needed. This is
just what run-time code generation for type-directed partial evaluation gives.

Leone and Lee have already applied run-time code generation to packet filtering using
the Fabius system [94]. They conclude that using Fabius to compile a filter and then using
the compiled filter is faster than running the C implementation of the packet-filter interpreter
after about 250 packets.

We have performed some initial experiments to test whether the same idea applies using
run-time code generation for type-directed partial evaluation in OCaml. We have concen-
trated on measuring the speedup of running compiled filters compared with interpreted
filters. The packet-filter interpreter is implemented in OCaml. It operates on the abstract
syntax of filters and not on sequences of bytes as in the C implementation.

The packet-filter interpreter is applied to the six filters. In all cases, compiling a filter
“pays for itself” after less than 2000 packets have been received and in all cases this can
happen after less than 0.03 seconds when enough packets are available. The compiled fil-
ters handles around 50-100% more packets per time-unit than the interpreted filters. The
numbers are summarized in Figure 4.21.

Using random packets probably gives a higher amortization factor than using “real”
packets. Many filters reject random packets early because the packet header does not match
the very first tests. For example, a filter that checks whether packets come from a specific
IP address would first check whether packets are IP packets at all and only then check the
address. Compilation time is independent of the packets so if packet processing increases

4.5 Run-time specialization 105

for both interpreted filters and compiled filters then the amortization factor decreases.
An amortization factor ranging between 125 and 1870 may be eminently reasonable for

packet filtering. Typical packet filters handle packets counted in millions, e.g., for a TCP/IP
monitor, and it is not uncommon for a host to have more than 50 million packets transit
every day. However, our target programs are interpreted by OCaml’s virtual machine and
are therefore less efficient than running the original packet-filter interpreter written in C.

The MetaPRL term rewriter

Another application area for run-time code generation is in the proof-search engines of auto-
mated theorem provers. Higher-order logical frameworks provide an expressive foundation
for reasoning about formal systems. They permit concise problem descriptions and re-use
of logical models. MetaPRL is a logical programming environment that embeds OCaml in
a higher-order logical framework [72]. The MetaPRL tactic prover consists of a proof editor,
logic definitions, and a refiner. The logic definitions describes the language of a logic. It
also contains primitive inference rules that define axioms and theorems of the logic, rewrites
that define computational equivalences, and theorems which provide proofs for derived in-
ference rules and axioms. Inference rules are compiled to a byte-code language. The refiner
interprets the byte-code instructions during rule application and term rewriting.

Since reasoning about programs is expensive, it is crucial that proof searching is efficient.
To this end, MetaPRL provides specialized implementations for the parts of a logic, such
as term representations and proof-search strategies [73]. Furthermore, the set of inference
rules is fixed for a particular proof search so the term rewriter can be specialized to the set
of inference rules at the time a proof search is initiated. We have applied run-time code
generation for type-directed partial evaluation to specialize the term rewriter of MetaPRL to
a set of inference rules, directly yielding compiled byte-code programs for inference rules.

Our implementation consists of a binding-time separated version of the term rewriter,
a module of evaluating primitives, and a module of residualizing primitives. The original
module of the term rewriter consists of a dozen recursive functions of a total of around 500
lines. It is parameterized over specialized domain-specific representations of terms and over
primitive operations on terms. The refiner modules of MetaPRL consist of roughly 5000
lines of OCaml code. Since byte-code combinators do not support generating references to
parameterized modules, the binding-time separated rewriting module has been instantiated
to a fixed representation of terms. The binding-time separated module is around 800 lines of
OCaml code. In total, the evaluating and residualizing primitives consist of around 700 lines
of code. As usual with type-directed partial evaluation [34], the binding times of the primi-
tive operations of the term rewriter have been determined manually. (The original rewriter
makes one recursive call feeding a dynamic term into a static argument. To avoid collaps-
ing binding times, it was necessary to split the rewriter into a static part for specialization
and a dynamic part for running dynamic terms. The lifting of terms into dynamic values at
specialization time is performed by OCaml’s marshaling library.)

The first preliminary experiments with run-time code generation for the MetaPRL term
rewriter show high amortization factors. Compiling small terms does not pay for itself until

106 Run-time code generation

after several hundreds of iterations. Furthermore, the gain in speed of using compiled terms
over interpreted terms is small. There are two reasons for the little gain in speed. First,
dynamic primitive operations require an extra level of indirection in the residual programs
since they refer to the module of evaluating primitives instead of directly to the module
where they are defined. Second, type-directed partial evaluation produces residual pro-
grams where all function calls are let-bound. Such programs are larger and less efficient
than equivalent programs where only a minimal amount of calls are let-bound.

A more promising approach to specializing MetaPRL’s term rewriter is to directly im-
plement its generating extension by hand, using byte-code combinators. In the generating
extension, the programmer can control the amount of let-insertions. Constructing the gen-
erating extension of a program also amounts to producing a binding-time separation of the
primitive operations. We have not implemented this idea.

We draw two conclusions from the experiments with MetaPRL. First, manually deter-
mining binding times is an error-prone and tedious task. In particular, binding-time sep-
arating large programs that were not written as source programs to type-directed partial
evaluation, may require several iterations until a correctly separated program is obtained.
In practice, applying type-directed partial evaluation to large existing system would benefit
from an automated binding-time analysis. Second, let-expressions exercise a cost for both
type-directed partial evaluation and the residual programs it produces.

4.6 Related work

4.6.1 Run-time byte-code generation

Sperber and Thiemann present a run-time specializer for Scheme that generates byte
code [127]. Conceptually, they have composed an existing partial evaluator for Scheme [135]
with an existing Scheme compiler producing byte code [90]. For efficiency, however, their
run-time specializer does not construct intermediate residual programs as text. Instead, they
have obtained a set of byte-code combinators directly from the Scheme compiler by deforest-
ing the data type of abstract syntax trees. The result is a set of byte-code combinators similar
to those presented in this chapter.

Balat and Danvy have designed a run-time specializer for OCaml using type-directed
partial evaluation [5]. They have composed standard type-directed partial evaluation with
a compiler from normal forms into OCaml byte code. They have exploited the fact that
normal forms form a subset of full OCaml to implement a fast dedicated compiler. They im-
plement continuation-based type-directed partial evaluation using an experimental version
of call/cc for OCaml.

We have designed a set of byte-code combinators for directly representing OCaml byte
code. We have illustrated the use of byte-code combinators to stage a program directly using
its generating extension. This style of programming amounts to implementing generating
extensions by hand and occurs in macro-systems and partial evaluation. The generating
extensions we write are fast and they generate efficient byte code. We have also integrated
the byte-code combinators with type-directed partial evaluation to facilitate specialization

4.7 Implementation of byte-code combinators 107

with byte code as output. This style of programming amounts to implementing general
programs that can be specialized at run time. The representation of residual programs as
text or as byte-code combinators is orthogonal to type-directed partial evaluation. Similarly,
the byte-code combinators could easily be integrated with other partial evaluators.

Sperber and Thiemann’s run-time specialization generates byte-code instructions for an
untyped language. Balat and Danvy’s dedicated compiler generates byte-code instructions
for a strongly typed language. They only produce normal forms of closed terms. These are
always simply typed. In contrast, we produce residual programs that are not guaranteed
to be typed. We note, however, that run-time specializers can predict the type of a residual
program from the type of the source program.

4.6.2 Run-time code generation for C

There exist a number of run-time code generators for C. Both DCG [57] and VCODE [55]
extend C with low-level code-generation primitives. DCG implements a set of library rou-
tines for constructing binary code while VCODE provides a RISC-like low-level interface
to generating binary code. ‘C is an extension of the C language with Lisp-like quasiquota-
tion for specifying dynamically generated code [56]. ‘C programs are translated into either
ANSI C programs employing either DCG [56] or VCODE [112] as a run-time code generation
back-end. DCG, VCODE, and ‘C support writing generating extensions by hand but do not
automatically specialize source program.

Tempo [25, 107], DyC [68], and Cyclone [77] are run-time specialization systems for C.
Based on an initial binding-time signature, these systems split the source program into static
and dynamic parts. While the dynamic parts do contain unknowns, they can be compiled
into binary code by an almost standard C compiler. From the binding-time annotations the
static compiler also generates a template that specifies how the pre-compiled blocks should
be re-assembled at run time. Tempo, DyC, and Cyclone do not support writing generating
extensions by hand.

Template-based run-time code generation often generates efficient code at run time. In
particular, when the source program is split into few large blocks, they may provide enough
flow information that an optimizing C compiler can generate efficient code for them. In
contrast, run-time code generators that supports direct manipulation of compiled code, such
as DCG, VCODE, ‘C, and the system that we have presented, typically does not expose
optimization opportunities. Furthermore, byte-code programs are difficult to optimize since
the set of instructions is often highly specialized. Instead, byte-code run-time systems can
often provide a fast virtual machine since each byte-code instruction corresponds to several
machine instructions. Thus, the virtual machine imposes a minimal interpretive overhead
and can be compiled into efficient binary code.

4.7 Implementation of byte-code combinators

In this section we present the details of the implementation of byte-code combinators.

108 Run-time code generation

4.7.1 Constants

let mkunit =
([], None,
fun(rho, k) →
Kconst(Lambda.Const_pointer 0) :: k)

let mkbool b =
([], None,
fun(rho, k) →
Kconst(Lambda.Const_pointer (if b then 1 else 0)) :: k)

let mkint i =
([], None,
fun(rho, k) →
Kconst(Lambda.Const_base(Asttypes.Const_int i)) :: k)

let mkstr s =
([], None,
fun(rho, k) →
Kconst(Lambda.Const_base(Asttypes.Const_string s)) :: k)

The instruction Kconst p loads the accumulator with the operand p.

4.7.2 Global variables

We illustrate mkglob here. The function mkqref is similar, but searches through modules.

let mkglob g =
match lookup_global g with
None → raise ERROR

| Some ident →
([], None,
fun (env, k) → Kgetglobal ident :: k)

The instruction Kgetglobal i accesses the global table at run time.

4.7.3 Finite products

let rec comp l es rho k =
match es with
[(_, _, f)] → f(rho, Kmakeblock (l, 0) :: k)

| (_, _, f) :: es → f(rho, Kpush :: comp l es (installTmp rho) k)

let mktup (es : term list) =
let l = List.length es in
let es’ = List.rev es in
(List.concat (List.map (fun (vs, _, _) → vs) es), None,
fun(rho, k) → comp l es’ rho k)

4.7 Implementation of byte-code combinators 109

The instruction Kmakeblock(l, t) allocates a block of l elements, stores the value of the accu-
mulator in the first position, and copies the top l − 1 elements from the stack to the rest of
the block. The top l − 1 elements are removed from the stack. The value t becomes the tag
for the block.

The instruction push pushes the value of the accumulator on top of the stack.

let mkprj (vs, _, f) i =
(vs, None,
fun(rho, k) → f(rho, Kgetfield (i - 1) :: k))

The instruction Kgetfield i accesses the ith element of the heap-allocated block that the
accumulator points to.

4.7.4 Conditionals

let mkif (vsa, _, fa) (vsb, _, fb) (vsc, _, fc) =
(vsa @ vsb @ vsc, None,
fun(rho, k) →
let l1 = new_label() in
let l2 = new_label() in
fa(rho, Kbranchifnot l1

:: fb(rho, Kbranch l2
:: Klabel l1
:: fc(rho, Klabel l2 :: k))))

The instruction Kbranchifnot l jumps to the label l if the accumulator holds the truth-value
false.

The instruction Kbranch l jumps unconditionally to the label l.

The pseudo-instruction Klabel l inserts a label in the list of symbolic instructions.

4.7.5 Free variables

let mkvar x =
([x], Some x,
fun(rho, k) →
match lookup rho x with
ARG i → Kacc i :: k

| ENV i → Kenvacc (i + 1) :: k)

The instruction Kacc i loads the accumulator with the ith element on the stack.

The instruction Kenvacc i loads the accumulator with the ith element in the (run-time) envi-
ronment pointed to by the register env. A (run-time) environment is really a closure whose
first element contains a code pointer.

110 Run-time code generation

In the current implementation, (compile-time) environments are lists of pairs associating
variables with their position. Is is straightforward to replace this naive representation with
a more efficient one.

4.7.6 Abstractions

For conciseness, here we only show the low-level first-order constructor of λ-abstractions
and how it can be used in defining the higher-order uncurried constructor.

let mklam1 x (vsb, _, fb) =
let free_variables = remove x vsb in
(free_variables, None,
fun(rho, k) →
let l1 = new_label() in
let rec savefv ys rho’ ts =
match ys with
[] → (Kclosure(l1, List.length free_variables)

:: k @ Klabel l1 :: fb(installArg rho’ x, [Kreturn 1]))
| [v] →

begin match lookup rho v with
ARG i → (Kacc (i + ts)

:: savefv [] (installEnv rho’ v) ts)
| ENV i → (Kenvacc (i + 1)

:: savefv [] (installEnv rho’ v) ts)
end

| v::vs →
begin match lookup rho v with

ARG i → (Kacc (i + ts)
:: Kpush
:: savefv vs (installEnv rho’ v) (ts + 1))

| ENV i → (Kenvacc (i + 1)
:: Kpush
:: savefv vs (installEnv rho’ v) (ts + 1))

end
in savefv free_variables rho 0)

let mklam f = let x = gensym() in mklam1 x (f (mkvar x))

The instruction Kclosure (c, i) generates a closure with code pointer c and with an environ-
ment given by the topmost i elements on the stack.

The instruction Kreturn n removes n arguments from the stack and then pops a saved re-
turn address and a saved environment off the stack.

The code for the body of the λ-abstraction immediately follows the current continuation.

4.7 Implementation of byte-code combinators 111

4.7.7 Applications

For conciseness, we only show the unoptimizing constructor here. It uses an auxiliary func-
tion that generates the correct type of call depending on whether the call is in tail position or
not.

let apply_before k =
match k with
Kreturn n :: k’ → Kappterm(1, n + 1) :: k’

| Kappterm(i, j) :: k’ → Kappterm(i + 1, j + 1) :: k’
| _ → Kapply 1 :: k

let mkapp (vsa, fa) (vsb, fb) =
(vsa @ vsb,
fun(rho, k) →
fb(rho, (Kpush

:: fa(installTmp rho, apply_before k))))

The instruction Kappterm (i, j) performs a tail call with i arguments and where the current
stack frame contains j elements.

The instruction Kapply i performs an ordinary non-tail call with i arguments.

4.7.8 Let expressions

let mklet ((vsa, _, fa) as v) f =
let x = gensym() in
let (vsb, varb, fb) = f (mkvar x) in
if varb = Some x then
v

else
(vsa @ (List.filter (fun y → not(x = y)) vsb), None,
fun(rho, k) →
fa(rho, (Kpush

:: fb(installArg rho x,
pop_before(1, k)))))

4.7.9 Imperative features

let mkseq (vsa, _, fa) (vsb, _, fb) =
(vsa @ vsb, None,
fun(rho, k) → fa(rho, fb(rho, k)))

let mkref (vs, _, f) =
(vs, None,
fun (rho, k) →
f(rho, Kmakeblock (1,0) :: k))

let mkget (vs, _, f) =

112 Run-time code generation

(vs, None,
fun (rho, k) →
f(rho, Kgetfield 0 :: k))

let mkset (vsa, _, fa) (vsb, _, fb) =
(vsa @ vsb, None,
fun (rho, k) →
fb(rho, Kpush

:: fa(installTmp rho,
Ksetfield 0 :: k)))

The instruction Ksetfield i stores the value in the topmost stack entry in the i’th position
in the heap-allocated block that the accumulator points to.

4.7.10 Primitive operations

For conciseness, we only illustrate the case for addition here.

let mkadd (vsa, _, fa) (vsb, _, fb) =
(vsa @ vsb, None,
fun (rho, k) →
fb(rho, Kpush

:: fa(installTmp rho,
Kaddint :: k)))

4.8 Conclusions and issues

We have designed a library of byte-code combinators for OCaml byte code. We have il-
lustrated their use in semantics-directed compilation, as the code-generating primitives of
generating extensions, and in run-time specialization, as the code-generating primitives of
type-directed partial evaluation.

Chapter 5

Goal-directed evaluation

Goal-directed evaluation, as embodied in Icon and Snobol, is built on the notions of back-
tracking and of generating successive results, and therefore it has always been something
of a challenge to specify and implement. In this chapter, we address this challenge using
computational monads and partial evaluation.

We consider a subset of Icon and we specify it with a monadic semantics and a list
monad. We then consider a spectrum of monads that also fit the bill, and we relate them
to each other. For example, we derive a continuation monad as a Church encoding of the list
monad. The resulting semantics coincides with Gudeman’s continuation semantics of Icon.

We then compile Icon programs by specializing their interpreter (i.e., by using the first
Futamura projection), using type-directed partial evaluation. Through various back ends,
including a run-time code generator, we generate ML code, C code, and OCaml byte code.
Binding-time analysis and partial evaluation of the continuation-based interpreter automati-
cally give rise to C programs that coincide with the result of Proebsting’s optimized compiler.

Note. This chapter is based on joint work with Olivier Danvy and Bernd
Grobauer presented at SAIG 2001 [37] and to appear in New Generation Com-
puting [38].

Thanks are due to the anonymous referees for comments and to Andrzej Filinski
for discussions.

5.1 Introduction

Goal-directed languages combine expressions that can yield multiple results through back-
tracking. Results are generated one at a time: an expression can either succeed and generate
a result, or fail. If an expression fails, control is passed to a previous expression to generate
the next result, if any. If so, control is passed back to the original expression in order to try
whether it can succeed this time. Goal-directed programming specifies the order in which
subexpressions are retried, thus providing the programmer with a succint and powerful
control-flow mechanism. A well-known goal-directed language is Icon [69].

113

114 Goal-directed evaluation

Backtracking as a language feature complicates both semantics and implementation.
Gudeman [71] gives a continuation semantics of a goal-directed language; continuations
have also been used in implementations of languages with control structures similar to those
of goal-directed evaluation, such as Prolog [19, 75, 139]. Proebsting and Townsend, the im-
plementors of an Icon compiler in Java, observe that continuations can be compiled into effi-
cient code [4, 74], but nevertheless dismiss them because “[they] are notoriously difficult to
understand, and few target languages directly support them” [114, p.38]. Instead, their com-
piler is based on a translation scheme proposed by Proebsting [113], which is based on the
four-port model used for describing control flow in Prolog [17]. Icon expressions are trans-
lated to a flow-chart language with conditional, direct and indirect jumps using templates; a
subsequent optimization which, amongst other things, reorders code and performs branch
chaining, is necessary to produce compact code. The reference implemention of Icon [70]
compiles Icon into byte code; this byte code is then executed by an interpreter that controls
the control flow by keeping a stack of expression frames.

In this chapter, we present a unified approach to goal-directed evaluation:

(1) We consider a spectrum of semantics for a small goal-directed language. We relate
them to each other by deriving semantics such as Gudeman’s [71] as instantiations of
one generic semantics based on computational monads [104]. This unified approach
enables us to show the equivalence of different semantics simply and systematically.
Furthermore, we are able to show strong conceptual links between different semantics:
Continuation semantics can be derived from semantics based on lists or on streams of
results by Church-encoding the lists or the streams, respectively.

(2) We link semantics and implementation through semantics-directed compilation using
partial evaluation [24, 83]. In particular, binding-time analysis guides us to extract tem-
plates from the specialized interpreters. These templates are similar to Proebsting’s,
and through partial evaluation, they give rise to similar flow-chart programs, demon-
strating that templates are not just a good idea—they are intrinsic to the semantics of
Icon and can be provably derived.

The rest of this chapter is structured as follows: In Section 5.2 we first describe syntax and
monadic semantics of a small subset of Icon; we then instantiate the semantics with various
monads, relate the resulting semantics to each other, and present an equivalence proof for
two of them. In Section 5.3 we describe semantics-directed compilation for a goal-directed
language. Section 5.4 concludes.

5.2 Semantics of a subset of Icon

An intuitive explanation of goal-directed evaluation can be given in terms of lists and list-
manipulating functions. Consequently, after introducing the subset of Icon treated in this
paper, we define a monadic semantics in terms of the list monad. We then show that also a
stream monad and two different continuation monads can be used, and we give an example
of how to prove equivalence of the resulting monads using a monad morphism.

5.2 Semantics of a subset of Icon 115

5.2.1 A subset of the Icon programming language

We consider the following subset of Icon:

E ::= i | E1 + E2 | E1 to E2 | E1 <= E2 | if E1 then E2 else E3

Intuitively, an Icon term either fails or succeeds with a value. If it succeeds, then subse-
quently it can be resumed, in which case it will again either succeed or fail. This process
ends when the expression fails. Informally, i succeeds with the value i; E1 + E2 succeeds
with the sum of the sub-expressions; E1 to E2 (called a generator) succeeds with the value
of E1 and each subsequent resumption yields the rest of the integers up to the value of E 2,
at which point it fails; E1 <= E2 succeeds with the value of E2 if it is larger than the value
E1, otherwise it fails; if E1 then E2 else E3 produces the results of E2 if E1 succeeds,
otherwise it produces the results of E3.

Generators can be nested. For example, the Icon term 4 to (5 to 7) generates the result
of the expressions 4 to 5, 4 to 6, and 4 to 7 and concatenates the results.

In a functional language such as Scheme, ML or Haskell, we can achieve the effect of Icon
terms using the functions map and concat. For example, if we define

fun to i j = if i ≤ j then i::(to (i+1) j) else nil

in ML, then evaluating concat (map (to 4) (to 5 7)) yields [4, 5, 4, 5, 6, 4, 5,

6, 7] which is the list of the integers produced by the Icon term 4 to (5 to 7).

5.2.2 Monads and semantics

Computational monads were introduced to structure denotational semantics [104]. The ba-
sic idea is to parameterize a semantics over a monad; many language extensions, such as
adding a store or exceptions, can then be carried out by simply instantiating the semantics
with a suitable monad. Further, correspondence proofs between semantics arising from in-
stantiation with different monads can be conducted in a modular way, using the concept of
a monad morphism [137].

Monads can also be used to structure functional programs [138]. In terms of program-
ming languages, a monad M is described by a unary type constructor M and three operations
unitM, mapM and joinM with types as displayed in Figure 5.1. For these operations, the so-
called monad laws have to hold.

In Section 5.2.4 we give a denotational semantics of the goal-directed language de-
scribed in Section 5.2.1. Anticipating semantics-directed compilation by partial evaluation,
we describe the semantics in terms of ML, in effect defining an interpreter. The semantics
[[·]]M : Exp → int M is parameterized over a monad M, where α M represents a sequence of
values of type α.

116 Goal-directed evaluation

unitM : α → αM

mapM : (α → β) → α M → β M

joinM : (α M)M → αM

Figure 5.1: Monad operators and their types

Standard monad operations:

unitL x = [x]

mapL f [] = []
mapL f (x :: xs) = (f x) :: (mapL f xs)

joinL [] = []
joinL (l :: ls) = l @ (joinL ls)

Special operations for sequences:

emptyL = []

if emptyL [] ys zs = ys
if emptyL (x :: xs) ys zs = zs

append L xs ys = xs @ ys

Figure 5.2: The list monad

5.2.3 A monad of sequences

In order to handle sequences, some structure is needed in addition to the three generic
monad operations displayed in Figure 5.1. We add three operations:

emptyM : α M

if emptyM : α M → β M → β M → β M

appendM : α M → α M → αM

Here, emptyM stands for the empty sequence; if empty M is a discriminator function that,
given a sequence and two additional inputs, returns the first input if the sequence is empty,
and returns the second input otherwise; append M appends two sequences.

A straightforward instance of a monad of sequences is the list monad L, which is dis-
played in Figure 5.2; for lists, “join” is sometimes also called “flatten” or, in ML, “concat”.

5.2.4 A monadic semantics

A monadic semantics of the goal-directed language described in Section 5.2.1. is given in
Figure 5.3. We explain the semantics in terms of the list monad. A literal i is interpreted as

5.2 Semantics of a subset of Icon 117

[[·]]M : Exp → int M

[[i]]M = unitM i

[[E1 toE2]]M = bind2M (λxy.toM x y) [[E1]]M [[E2]]M
[[E1 +E2]]M = bind2M (λxy.unitM (x + y)) [[E1]]M [[E2]]M

[[E1 <=E2]]M = bind2M (λxy.leqM x y) [[E1]]M [[E2]]M
[[ifE0 thenE1

elseE2]]M = if emptyM [[E0]]M [[E1]]M [[E2]]M

where
bind2M f xs ys = joinM (mapM (λx.joinM (mapM (f x) ys)) xs)

leqM i j = if i ≤ j then unitM j else emptyM

toM i j = if i > j then emptyM

else appendM (unitM i) (toM (i + 1) j)

Figure 5.3: Monadic semantics for a subset of Icon

an expression that yields exactly one result; consequently, i is mapped into the singleton list
[i] using unit . The semantics of to, + and <= are given in terms of bind2 and a function of
type int → int → int list. The type of function bind2 L is

(α → β → γ list) → α list → β list → γ list,

i.e., it takes two lists containing values of type α and β, and a function mapping α × β into
a list of values of type γ. The effect of the definition of bind2 L f xs ys is (1) to map f x over
ys for each x in xs and (2) to flatten the resulting list of lists. Both steps can be found in
the example at the end of Section 5.2.1 of how the effect of goal-directed evaluation can be
achieved in ML using lists.

5.2.5 A spectrum of semantics

In the following, we describe four possible instantiations of the semantics given in Figure 5.3.
Because a semantics corresponds directly to an interpreter, we thus create four different in-
terpreters.

A list-based interpreter

Instantiating the semantics with the list monad from Figure 5.2 yields a list-based interpreter.
In an eager language such as ML, a list-based interpreter always computes all results. Such
behavior may not be desirable in a situation where only the first result is of interest (or,
for that matter, whether there exists a result): Consider for example the conditional, which
examines whether a given expression yields at least one result or fails. An alternative is to
use laziness.

118 Goal-directed evaluation

Standard monad operations:

unitC x = λk.k x

mapC f xs = λk.xs (λx.k (f x))
joinC ls = λk.ls (λx.x k)

Special operations for sequences:

emptyC = λk.λl.l

if emptyC xs ys zs = λk.λl.xs (λ .λ .ys k l) (zs k l)
appendC xs ys = λk.(xs k) ◦ (ys k)

Figure 5.4: The continuation monad

A stream-based interpreter

Implementing the list monad from Figure 5.2 in a lazy language results in a monad of (finite)
lazy lists; the corresponding interpreter generates one result at a time. In an eager language,
this effect can be achieved by explicitly implementing a data type of streams, i.e., finite lists
built lazily: a thunk is used to delay computation.

α stream ≡ End | More of (α × (111 → α stream))

The definition of the corresponding monad operations is straightforward.

A continuation-based interpreter

Gudeman [71] gives a continuation-based semantics of a goal-directed language. We can
derive this semantics by instantiating our monadic semantics with the continuation monad
C as defined in Figure 5.4. The type-constructor αC of the continuation monad is defined as
(α → R) → R, where R is called the answer type of the continuation.

A conceptual link between the list monad and the continuation monad with answer type
β list → β list can be made through a Church encoding [20] of the higher-order representation
of lists proposed by Hughes [81]. Hughes observed that when constructing the partially
applied concatenation function λys .xs @ ys rather than the list xs , lists can be appended in
constant time. In the resulting representation, the empty list corresponds to the function that
appends no elements, i.e., the identity, whereas the function that appends a single element
is represented by a partially applied cons function:

nil = λys .ys
cons x = λys .x :: ys

Church-encoding a data type means abstracting over selector functions, in this case “ :: ”:

nil = λsc.λys .ys
cons x = λsc.λys .sc x ys

5.2 Semantics of a subset of Icon 119

[[·]]C : Exp → (int → β → β) → β → β

[[i]]C = λk.k i

[[E1 toE2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.toC i j k))
[[E1 +E2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.k (i + j)))

[[E1 <=E2]]C = λk.[[E1]]C (λi.[[E2]]C (λj.leqC i j k))
[[ifE0 thenE1

elseE2]]C2 = λk.λl.[[E0]]C2 (λ .λ .[[E1]]C2 k l) ([[E2]]C2 k l)

where
leqC i j = λk.if i ≤ j then (k j) else (λl.l)
toC i j = λk.if i > j then (λl.l)

else (k i) ◦ (toC (i + 1) j k)

Figure 5.5: A continuation semantics

The resulting representation of lists can be typed as

(α → β → β) → β → β,

which indeed corresponds to α C with answer type β → β. Notice that nil and cons for
this list representation yield emptyC and unitC, respectively. Similarly, the remaining monad
operations correspond to the usual list operations.

Figure 5.5 displays the definition of [[·]]C where all monad operations have been inlined
and the resulting expressions β-reduced.

An interpreter with explicit success and failure continuations

A tail-recursive implementation of a continuation-based interpreter for Icon uses explicit
success and failure continuations. The result of interpreting an Icon expression then has
type

(int → (111 → α) → α) → (111 → α) → α,

where the first argument is the success continuation and the second argument the failure
continuation. Note that the success continuation takes a failure continuation as a second
argument. This failure continuation determines the resumption behavior of the Icon term:
the success continuation may later on apply its failure continuation to generate more results.
The corresponding continuation monad C2 has the same standard monad operations as the
continuation monad displayed in Figure 5.4, and the sequence operations

emptyC2
= λk.λf.f ()

if emptyC2
xs ys zs = λk.λf.xs (λ .λ .zs k f) (λ().ys k f)

appendC2
xs ys = λk.λf.(xs k)(λ().ys k f)

Just as the continuation monad from Figure 5.4 can be conceptually linked to the list monad,
the present continuation monad can be linked to the stream monad by a Church encoding of

120 Goal-directed evaluation

[[·]]C2 : Exp → (int → (111 → α) → α) → (111 → α) → α

[[i]]C2 = λk.k i

[[E1 toE2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.toC2 i j k))
[[E1 +E2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.k (i + j)))

[[E1 <=E2]]C2 = λk.[[E1]]C2 (λi.[[E2]]C2 (λj.leqC2
i j k))

[[ifE0 thenE1

elseE2]]C2 = λk.λf.[[E0]]C2 (λ .λ .[[E1]]C2 k f) (λ().[[E2]]C2 k f)

where
leqC2

i j = λk.λf.if i ≤ j then k j f else f ()
toC2 i j = λk.λf.if i > j then f ()

else (k i) (λ().toC2 (i + 1) j k f)

Figure 5.6: A semantics with success and failure continuations

the data type of streams:

end = λsm.λse.se()
more x xs = λsm.λse.sm x xs

The fact that the second component in a stream is a thunk suggests one to give the selector
function sm the type int → (111 → α) → β; the resulting type for end and more x xs is then

(int → (111 → α) → β) → (111 → β) → β.

Choosing α as the result type of the selector functions yields the type of a continuation
monad with answer type (111 → α) → α.

The interpreter defined by the semantics [[·]]C2 is the starting point of the semantics-
directed compilation described in Section 5.3. Figure 5.6 displays the definition of [[·]]C2 where
all monad operations have been inlined and the resulting expressions β-reduced. Because
the basic monad operations of C2 are the same as those of C, the semantics based on C2 and
C only differ in the definitions of leq , to , and in how if is handled.

5.2.6 Correctness

So far, we have related the various semantics presented in Section 5.2.5 only conceptually.
Because the four different interpreters presented in Section 5.2.5 were created by instantiat-
ing one parameterized semantics with different monads, a formal correspondence proof can
be conducted in a modular way building on the concept of a monad morphism [137].

Definition 8 (Monad morphism) If M and N are two monads, then h : α M → α N is a monad

5.2 Semantics of a subset of Icon 121

morphism if it preserves the monad operations1 , i.e.,

h ◦ unitM = unitN

h ◦ mapM f = mapN f ◦ h

h ◦ joinM = joinN ◦ h ◦ mapM h

h emptyM = emptyN

h ◦ if emptyM = λxs .λys .λzs .if emptyN(h xs)(h ys)(h zs)
h ◦ appendM = λxs .λys .appendN(h xs)(h ys)

The following lemma shows that the semantics resulting from two different monad instanti-
ations can be related by defining a monad morphism between the two sequence monads in
question.

Lemma 11 Let M and N be monads of sequences as specified in Section 5.2.3. If h is a monad
morphism from M to N, then (h [[E]]M) = [[E]]N for every Icon expression E.

Proof. By induction over the structure of E. A lemma to the effect that h (toM i j) = toN i j is
shown by induction over i − j for i ≥ j.

We use Lemma 11 to show that the list-based interpreter and the continuation-based inter-
preter from Section 5.2.5 always yield comparable results:

Proposition 1 Let show : αC → α L be defined as

show f = f (λx.λxs.append L (unitL x) xs) emptyL.

Then (show [[E]]C) = [[E]]L for all Icon expressions E.

Proof. We show that (1) h : α L → α C, which is defined as

h [] = emptyC

h (x :: xs) = appendC (unitC x) (h xs)

is a monad morphism from L to C, and (2) the function (show ◦ h) is the identity function on
lists. The proposition then follows immediately with Lemma 11.

5.2.7 Summary

Taking an intuitive list-based semantics for a subset of Icon as our starting point, we have
defined a stream-based semantics and two continuation semantics. Because our inital se-
mantics is defined as the instantiation of a monadic semantics with a list monad, the other
semantics can be defined through a stream monad and two different continuation monads,
respectively. The modularity of the monadic semantics allows us to relate the semantics to
each other by relating the corresponding monads, both conceptually and formally. To the

1We strengthen the definition of a monad morphism somewhat by considering a sequence-preserving
monomorphism that also preserves the monad operations specific to the monad of sequences.

122 Goal-directed evaluation

structure Icon = struct
datatype icon = LIT of int

| TO of icon * icon
| PLUS of icon * icon
| LEQ of icon * icon
| IF of icon * icon * icon

end

Figure 5.7: The abstract syntax of Icon terms

best of our knowledge, the conceptual link between list-based monads and continuation
monads via Church encoding has not been observed before.

It is known that continuations can be compiled into efficient code relatively easily [4, 74];
in the following section we show that partial evaluation is sufficient to generate efficient
code from the the continuation semantics derived in the final paragraph of Section 5.2.5.

5.3 Semantics-directed compilation

The goal of partial evaluation is to specialize a source program p : S × D → R of two
arguments to a fixed “static” argument s : S. The result is a residual program ps : D → R

that must yield the same result when applied to a “dynamic” argument d as the original
program applied to both the static and the dynamic arguments, i.e., [[ps(d)]] = [[p(s, d)]].

Our interest in partial evaluation is due to its use in semantics-directed compilation:
when the source program p is an interpreter and the static argument s is a term in the do-
main of p then ps is a compiled version of s represented in the implementation language
of p. It is often possible to implement an interpreter in a functional language based on the
denotational semantics.

Our starting point is a functional interpreter implementing the denotational semantics
in Figure 5.6. The source language of the interpreter is shown in Figure 5.7. In Section 5.3.1
we present the Icon interpreter written in ML. In Section 5.3.1, 5.3.2, and 5.3.3 we use type-
directed partial evaluation to specialize this interpreter to Icon terms yielding ML code, C
code, and OCaml byte code as output. Other partial-evaluation techniques could be applied
to yield essentially the same results.

5.3.1 Type-directed partial evaluation

We have used type-directed partial evaluation to compile Icon programs into ML. This is
a standard exercise in semantics-directed compilation using type-directed partial evalua-
tion [44].

Type-directed partial evaluation is an approach to off-line specialization of higher-order
programs [34]. It uses a normalization function to map the (value of the) trivially specialized
program λd.p(s, d) into the (text of the) target program ps.

5.3 Semantics-directed compilation 123

signature PRIMITIVES = sig
type tunit
type tint
type tbool
type res

val qint : int → tint
val add : tint * tint → tint
val leq : tint * tint → tbool
val cond : tbool * (tunit → res) * (tunit → res) → res
val fix : ((tint → res) → tint → res) → tint → res

end

Figure 5.8: Signature of primitive operations

The input to type-directed partial evaluation is a binding-time separated program in
which static and dynamic primitives are separated. When implemented in ML, the source
program is conveniently wrapped in a functor parameterized over a structure of dynamic
primitives. The functor can be instantiated with evaluating primitives (for running the
source program) and with residualizing primitives (for specializing the source program).

Specializing Icon terms using type-directed partial evaluation

In our case the dynamic primitives operations are addition (add), integer comparison (leq),
a fixed-point operator (fix), a conditional functional (cond), and a quoting function (qint)
lifting static integers into the dynamic domain. The signature of primitives is shown in
Figure 5.8. For the residualizing primitives we let the partial evaluator produce functions
that generate ML programs with meaningful variable names [34].

The parameterized interpreter is shown in Figure 5.9. The main function eval takes an
Icon term and two continuations, k : tint → (tunit → res) → res and f : tunit → res,
and yields a result of type res. We intend to specialize the interpreter to a static Icon term
and keeping the continuation parameters k and f dynamic. Consequently, residual programs
are parameterized over two continuations. (If the continuations were also considered static
then the residual programs would simply be the list of the generated integers.)

The output of type-directed partial evaluation is the text of the residual program. The
residual program is in long βη normal form, that is, it does not contain any β-redexes and it
is fully η-expanded with respect to its type.

Example 21 The following is the result of specializing the interpreter with respect to the Icon
term 10 + (4 to 7).

fn k ⇒ fn f ⇒
fix (fn loop0 ⇒

fn i0 ⇒

124 Goal-directed evaluation

functor MakeInterp(P : PRIMITIVES) = struct
fun loop (i, j) k f =

P.fix
(fn walk ⇒

fn i ⇒
P.cond (P.leq (i, j),

fn _ ⇒
k i (fn _ ⇒

walk (P.add (i, P.qint 1))),
f))

i

fun select (i, j) k f =
P.cond (P.leq (i, j), fn _ ⇒ k j f, f)

fun sum (i, j) k = k (P.add (i, j))

fun eval (LIT i) k = k (P.qint i)
| eval (TO(e1, e2)) k =
eval e1 (fn i ⇒ eval e2 (fn j ⇒ loop (i, j) k))

| eval (PLUS(e1, e2)) k =
eval e1 (fn i ⇒ eval e2 (fn j ⇒ sum (i, j) k))

| eval (LEQ(e1, e2)) k =
eval e1 (fn i ⇒ eval e2 (fn j ⇒ select (i, j) k))

| eval (IF(e1, e2, e3)) k =
fn f ⇒

eval e1
(fn _ ⇒ fn _ ⇒ eval e2 k f)
(fn _ ⇒ eval e3 k f)

end

Figure 5.9: Parameterized interpreter

cond (leq (i0, qint 7),
fn () ⇒ k (add (qint 10, i0))

(fn () ⇒ loop0 (add (i0, qint 1))),
fn () ⇒ f ()))

(qint 4)

Avoiding code duplication

The result of specializing the interpreter in Figure 5.9 may be exponentially large. This is
due to the continuation parameter k being duplicated in the clause for IF. For example,
specializing the interpreter to the Icon term 100 + (if 1 < 2 then 3 else 4) yields the
following residual program in which the context add(100, ·) occurs twice.

5.3 Semantics-directed compilation 125

fn k ⇒ fn f ⇒
cond (leq (qint 1, qint 2),

fn () ⇒ k (add (qint 100, qint 3)) (fn () ⇒ f ()),
fn () ⇒ k (add (qint 100, qint 4)) (fn () ⇒ f ()))

Code duplication is a well-known problem in partial evaluation [83]. The equally well-
known solution is to bind the continuation in the residual program, just before it is used. We
introduce a new primitive save of two arguments, k and g, which applies g to two “copies”
of the continuation k.

signature PRIMITIVES = sig
...
type succ = tint → (tunit → res) → res
val save : succ → (succ * succ → res) → res

end

The final clause of the interpreter is modified to save the continuation parameter before
it proceeds, as follows.

fun eval (LIT i) k = k (P.qint i)
...

| eval (IF(e1, e2, e3)) k =
fn f ⇒

save k
(fn (k0, k1) ⇒ eval e1

(fn _ ⇒ fn _ ⇒ eval e2 k0 f)
(fn _ ⇒ eval e3 k1 f))

Specializing this new interpreter to the Icon term from above yields the following resid-
ual program in which the context add(100, ·) occurs only once.

fn k ⇒ fn f ⇒
save (fn v0 ⇒

fn resume0 ⇒
k (add (qint 100, v0)) (fn () ⇒ resume0 ()))

(fn (k0_0, k1_0) ⇒
cond (leq (qint 1, qint 2),

fn () ⇒ k0_0 (qint 3) (fn () ⇒ f ()),
fn () ⇒ k1_0 (qint 4) (fn () ⇒ f ())))

Two copies of continuation parameter k are bound to k0 0 and k1 0 before the continuation
is used (twice, in the body of the second lambda). In order just to prevent code duplication,
passing one “copy” of the continuation parameter is actually enough. But the translation
into C introduced in Section 5.3.2 uses the two differently named variables, in this case k0_0

and k1_0, to determine the IF-branch inside which a continuation is applied.

126 Goal-directed evaluation

5.3.2 Generating C programs

Residual programs are not only in long βη normal form. Their type

(tint → (tunit → res) → res) → (tunit → res) → res

imposes further restrictions: A residual program must take two arguments, a success con-
tinuation k : tint → (tunit → res) → res and a failure continuation f : tunit → res, and
it must produce a value of type res. When we also consider the types of the primitives that
may occur in residual programs we see that values of type res can only be a result of

• applying the success continuation k to an integer n and function of type tunit → res;

• applying the failure continuation f;

• applying the primitive cond to a boolean and two functions of type tunit → res;

• applying the primitive fix to a function of two arguments, loopn : tint → res and
in : tint, and an integer;

• (inside a function passed to fix) applying the function loopn to an integer;

• applying the primitive save to two arguments, the first being a function of two argu-
ments, vn : tint and resumen : tunit → res, and the second being a function of a
pair of arguments, k0

n and k1
n, each of type tint → (tunit → res) → res;

• (inside the first function passed to save) applying the function resumen; or

• (inside the second function passed to save) applying one of the functions k0
n or k1

n to
an integer and a function of type tunit → res.

A similar analysis applies to values of type tint: they can only arise from evaluating an
integer n, a variable in, or a variable vn or from applying add to two argument of type tint.
As a result, we observe that the residual programs of specializing the Icon interpreter using
type-directed partial evaluation are restricted to the grammar in Figure 5.10. (The restriction
that the variables loopn, in, vn, and resumen each must occur inside a function that binds
them cannot be expressed using a context-free grammar. This is not a problem for our de-
velopment.) We have expressed the grammar as an ML datatype and used this datatype to
represent the output from type-directed partial evaluation. Thus, we have essentially used
the type system of ML as a theorem prover to show the following lemma.

Lemma 12 The residual program generated from applying type-directed partial evaluation to the
interpreter in Figure 5.9 can be generated by the grammar in Figure 5.10.

The idea of generating grammars for residual programs has been studied by, e.g.,
Malmkjær [98] and is used in the run-time specializer Tempo to generate code templates [25].

The simple structure of output programs allows them to be viewed as programs of a
flow-chart language. We choose C as a concrete example of such a language. Figure 5.11 and
5.12 show the translation from residual programs to C programs.

5.3 Semantics-directed compilation 127

I ::= fn k ⇒ fn f ⇒ S

S ::= k E (fn () ⇒ S)

| f ()

| cond (E, fn () ⇒ S, fn () ⇒ S)

| fix (fn loopn ⇒ fn in ⇒ S) E

| loopn E

| save (fn vn ⇒ fn resumen ⇒ S) (fn (k0
n, k1

n) ⇒ S)

| resumen ()

| ki
n E (fn () ⇒ S), where i ∈ {0, 1}

E ::= qint n | in | vn | add (E, E) | leq (E, E)

Figure 5.10: Grammar of residual programs

The translation replaces function calls with jumps. Except for the call to resumen (which
only occurs as the result of compiling if-statements), the name of a function uniquely deter-
mines the corresponding label to jump to. Jumps to resumen can end up in two different
places corresponding to the two copies of the continuation. We use a boolean variable gaten

to distinguish between the two possible destinations. Calls to loopn and kn pass arguments.
The names of the formal parameters are known (in and vn, respectively) and therefore argu-
ments are passed by assigning the variable before the jump.

In each translation of a conditional a new label l must be generated. The entire translated
term must be wrapped in a context that defines the labels succ and fail (corresponding
to the initial continuations). The statements following the label succ are allowed to jump
to resume. The translation in Figure 5.11 and 5.12 generates a C program that successively
prints the produced integers one by one. A lemma to the effect that the translation from
residual ML programs into C is semantics preserving would require giving semantics to C
and to the subset of ML presented in Figure 5.10 and then showing equivalence.

Example 22 Consider again the Icon term 10 + (4 to 7) from Example 21. It is translated
into the following C program.

i0 = 4;

loop0: if (i0<=7) goto L0;

goto fail;

L0: value = 10 + i0;

goto succ;

resume: i0 = i0 + 1;

goto loop0;

succ: printf("%d ", value);

goto resume;

fail: printf("\n");

exit(0);

The C target programs corresponds to the target programs of Proebsting’s optimized
template-based compiler [113]. In effect, we are automatically generating flow-chart pro-
grams from the denotation of an Icon term.

128 Goal-directed evaluation

|fn k => fn f => S|I =




|S|S
succ: printf("%d ", value);

goto resume;

fail: printf("\n");

exit(0);

|k E (fn () => S)|S =




value = |E|E;
goto succ;

resume: |S|S
|f ()|S =

{
goto fail;

|cond (E, fn () => S, fn () => S′)|S =




if (|E|E) goto l;

|S′|S
l: |S|S

|fix (fn loopn => fn in => S) E|S =

{
in = |E|E;

loopn: |S|S

|loopn E|S =

{
in = |E|E;
goto loopn;∣∣∣∣save (fn vn => fn resumen => S)

(fn (k0
n, k1

n) => S′)

∣∣∣∣
S

=

{
|S′|S

succn: |S|S

|resumen ()|S =

{
if (gaten) goto resume1

n;

goto resume0
n;

|ki
n E (fn () => S)|S =




gaten = i;

vn = |E|E;
goto succn;

resumei
n: |S|S

Figure 5.11: Translating residual programs into C (Statements)

5.3 Semantics-directed compilation 129

|qint n|E = n

|in|E = in

|vn|E = vn

|add (E, E′)|E = |E|E + |E′|E
|leq (E, E′)|E = |E|E <= |E′|E

Figure 5.12: Translating residual programs into C (Expressions)

5.3.3 Generating byte code

In the previous two sections we have developed two compilers for Icon terms, one that
generates ML programs and one that generates flow-chart programs. In this section we
unify the two by composing the first compiler with the OCaml byte-code combinators from
Chapter 4 and by composing the second compiler with a hand-written compiler from flow
charts into OCaml byte code.

Run-time code generation in OCaml

Run-time code generation for OCaml works by a deforested composition of traditional type-
directed partial evaluation with a compiler into OCaml byte code. Deforestation is a stan-
dard improvement in run-time code generation [25, 94, 127]. As such, it removes the need
to manipulate the text of residual programs at specialization time. As a result, instead of
generating ML terms, run-time code generation allows type-directed partial evaluation to
directly generate executable OCaml byte code.

Specializing the Icon interpreter from Figure 5.9 to the Icon term 10 + (4 to 7) using
run-time code generation yields a residual program of about 110 byte-code instructions in
which functions are implemented as closures and calls are implemented as tail-calls. (Com-
piling the residual ML program using the OCaml compiler yields about 90 byte-code in-
structions.)

Compiling flow charts into OCaml byte code

We have modified the translation in Figure 5.11 and 5.12 to produce OCaml byte-code in-
structions instead of C programs. The result is an embedding of Icon into OCaml.

Using this compiler, 10 + (4 to 7) yields 36 byte-code instructions in which functions
are implemented as labelled blocks and calls are implemented as an assignment (if an argu-
ment is passed) followed by a jump. This style of target code was promoted by Steele in the
first compiler for Scheme [129].

5.3.4 Summary

Translating the continuation-based denotational semantics into an interpreter written in ML
and using type-directed partial evaluation enables a standard semantics-directed compila-

130 Goal-directed evaluation

tion from Icon terms into ML. A further compilation of residual programs into C yields
flow-chart programs corresponding to those produced by Proebsting’s Icon compiler [113].

5.4 Conclusions and issues

Observing that the list monad provides the kind of backtracking embodied in Icon, we have
specified a semantics of Icon that is parameterized by this monad. We have then considered
alternative monads and proven that they also provide a fitting semantics for Icon. Inlining
the continuation monad, in particular, yields Gudeman’s continuation semantics [71].

Using partial evaluation, we have then specialized these interpreters with respect to Icon
programs, thereby compiling these programs using the first Futamura projection. We used a
combination of type-directed partial evaluation and code generation, either to ML, to C, or to
OCaml byte code. Generating code for C, in particular, yields results similar to Proebsting’s
compiler [113].

Gudeman [71] shows that a continuation semantics can also deal with additional control
structures and state; we do not expect any difficulties with scaling up the code-generation
accordingly. The monad of lists, on the other hand, does not offer enough structure to deal,
e.g., with state. It should be possible, however, to create a rich enough monad by combining
the list monad with other monads such as the state monad [60, 91].

It is our observation that the traditional (in partial evaluation) generalization of the suc-
cess continuation avoids the code duplication that Proebsting presents as problematic in his
own compiler. We are also studying the results of defunctionalizing the continuations, à la
Reynolds [116], to obtain stack-based specifications and the corresponding run-time archi-
tectures.

Chapter 6

Conclusions and perspectives

Higher-order programming languages are built on the principles of abstraction and param-
eterization. As such, they provide an expressive power that is needed to write generic pro-
grams, which by their very nature are parameterized. In this dissertation, we have applied
higher-order techniques in several areas of program generation.

Interpreters and compilers for domain-specific languages have been implemented by
embedding their functionality into existing meta-languages. Recent work also embed type
systems for simple types into higher-order polymorphically typed meta-languages using
phantom types. We have shown (Chapter 2) that such an embedding is sound and complete
for an idealized higher-order meta-language. To our knowledge, the only embedding of a
higher-order object language into Haskell is the type-preserving implementation of type-
directed partial evaluation that we have presented in Chapter 3. Other embedded object
languages are first order. Time will tell whether there are further applications of higher-
order embedded languages.

Partial evaluation has been used to specialize generic software components to specific
areas of application. Thus, partial evaluation supports re-using software in several different
applications. Type-directed partial evaluation, in particular, is an approach to specializing
higher-order typed programs. We have derived a statically typed implementation of type-
directed partial evaluation (Chapter 3), thus making it work in the context of statically typed
languages such as Haskell and Standard ML. We have also shown how use the type infer-
encer for these languages as a theorem prover to show that type-directed partial evaluation
preserves types and yields normal forms.

Traditional partial evaluation generates residual programs as text which must be com-
piled before they can be executed. However, adaptive software may want to specialize com-
ponents on the fly. Stand-alone compilers are typically too expensive to operate at run time.
Run-time code generation techniques enable quick compilation of specialized programs. We
have presented (Chapter 4) a collection of byte-code combinators that enables run-time code
generation for OCaml byte code. We have successfully applied them semantics-directed
compilation using handwritten generating extensions. We have also applied successfully ap-
plied them to run-time specialization using type-directed partial evaluation. We have used
them in an application of type-directed partial evaluation to specialize the term rewriter of a

131

132 Conclusions and perspectives

large theorem prover. Although the performance results where not as convincing as hoped
for, they did indicate directions of research in the area of type-directed partial evaluation.
First, the input to type-directed partial evaluation is essentially a binding-time annotated
program. To make type-directed partial evaluation useful in practice, we believe it should
be composed with an (almost) automatic binding-time analysis. Second, naively inserting
let-expressions exercises a cost for call-by-value type-directed partial evaluation as well as
for the residual programs. A possible solution is to reduce the number of let-expression
in a post-processing phase. The challenge is then to specify such a phase in the context of
run-time code generation.

Our final contribution is in semantics-directed compilation for a goal-directed language
(Chapter 5). Existing compilers for these languages use ad hoc “template-base” compilation
techniques. Instead, we have specialized a continuation-passing style interpreter for a goal-
directed language yielding ML programs as output. We have then observed that the residual
programs are flow-chart programs. Thus, by composing the output of partial evaluation
with various back-ends we have compiled goal-directed programs into efficient C code and
OCaml byte code.

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

[2] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruc-
tion of a reduction-free normalization proof. In David H. Pitt and David E. Ryde-
heard, editors, Category Theory and Computer Science, number 953 in Lecture Notes in
Computer Science, pages 182–199. Springer-Verlag, 1995.

[3] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normal-
isation for a polymorphic system. In Clarke [21].

[4] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New
York, 1992.

[5] Vincent Balat and Olivier Danvy. Strong normalization by type-directed partial eval-
uation and run-time code generation. In Xavier Leroy and Atsushi Ohori, editors,
Proceedings of the Second International Workshop on Types in Compilation, number 1473 in
Lecture Notes in Computer Science, pages 240–252, Kyoto, Japan, March 1998.

[6] Henk Barendregt. The Lambda Calculus — Its Syntax and Semantics. North-Holland,
1984.

[7] David B. Bartley and John C. Jensen. The implementation of PC Scheme. In William L.
Scherlis and John H. Williams, editors, Proceedings of the 1986 ACM Conference on Lisp
and Functional Programming, pages 86–93, Cambridge, Massachusetts, August 1986.
ACM Press.

[8] Alan Bawden. Quasiquotation in Lisp. In Danvy [35], pages 4–12.

[9] Ulrich Berger. Program extraction from normalization proofs. In M. Bezem and J. F.
Groote, editors, Typed Lambda Calculi and Applications, number 664 in Lecture Notes in
Computer Science, pages 91–106, Utrecht, The Netherlands, March 1993.

[10] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normalization by evalua-
tion. In Bernhard Möller and John V. Tucker, editors, Prospects for hardware foundations
(NADA), number 1546 in Lecture Notes in Computer Science, pages 117–137. Springer-
Verlag, 1998.

133

134 BIBLIOGRAPHY

[11] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for
typed λ-calculus. In Proceedings of the Sixth Annual IEEE Symposium on Logic in Com-
puter Science, pages 203–211, Amsterdam, The Netherlands, July 1991. IEEE Computer
Society Press.

[12] Andrew A. Berlin and Daniel Weise. Compiling scientific code using partial evalua-
tion. IEEE Computer, 23(12):25–37, December 1990.

[13] Anders Bondorf. Compiling laziness by partial evaluation. In Simon L. Peyton Jones,
Guy Hutton, and Carsten K. Holst, editors, Functional Programming, Glasgow 1990,
Workshops in Computing, pages 9–22, Glasgow, Scotland, 1990. Springer-Verlag.

[14] Anders Bondorf and Jens Palsberg. Compiling actions by partial evaluation. In
Arvind, editor, Proceedings of the Sixth ACM Conference on Functional Programming and
Computer Architecture, pages 308–317, Copenhagen, Denmark, June 1993. ACM Press.

[15] Anders Bondorf and Jens Palsberg. Generating action compilers by partial evaluation.
Journal of Functional Programming, 6(2):269–298, 1996.

[16] William H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

[17] Lawrence Byrd. Understanding the control of Prolog programs. Technical Report 151,
University of Edinburgh, 1980.

[18] William E. Carlson, Paul Hudak, and Mark P. Jones. An experiment using Haskell to
prototype ‘geometric region servers’ for navy command and control. Technical Report
1031, Yale University, New Haven, Connecticut, November 1993.

[19] Mats Carlsson. On implementing Prolog in functional programming. New Generation
Computing, 2(4):347–359, 1984.

[20] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, 1941.

[21] Edmund M. Clarke, editor. Proceedings of the Eleventh Annual IEEE Symposium on Logic
in Computer Science, New Brunswick, New Jersey, July 1996. IEEE Computer Society
Press.

[22] C. Consel and S.C. Khoo. Semantics-directed generation of a Prolog compiler. In Jan
Maluszyński and Martin Wirsing, editors, Third International Symposium on Program-
ming Language Implementation and Logic Programming, number 528 in Lecture Notes in
Computer Science, pages 135–146, Passau, Germany, August 1991. Springer-Verlag.

[23] Charles Consel and Olivier Danvy. Static and dynamic semantics processing. In
Robert (Corky) Cartwright, editor, Proceedings of the Eighteenth Annual ACM Sympo-
sium on Principles of Programming Languages, pages 14–24, Orlando, Florida, January
1991. ACM Press.

BIBLIOGRAPHY 135

[24] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In Susan L.
Graham, editor, Proceedings of the Twentieth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 493–501, Charleston, South Carolina, January 1993. ACM
Press.

[25] Charles Consel and François Noël. A general approach for run-time specialization and
its application to C. In Steele [128], pages 145–156.

[26] Catarina Coquand. From semantics to rules: A machine assisted analysis. In Egon
Börger, Yuri Gurevich, and Karl Meinke, editors, Proceedings of CSL’93, number 832 in
Lecture Notes in Computer Science, pages 91–105. Springer-Verlag, 1993.

[27] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normaliza-
tion proofs. Mathematical Structures in Computer Science, 7:75–94, 1997.

[28] Djordje Čubrić, Peter Dybjer, and Philip Scott. Normalization and the Yoneda embed-
ding. Mathematical Structures in Computer Science, 8:153–192, 1998.

[29] Ron K. Cytron, editor. Proceedings of the ACM SIGPLAN’97 Conference on Program-
ming Languages Design and Implementation, SIGPLAN Notices, Vol. 32, No 5, Las Vegas,
Nevada, June 1997. ACM Press.

[30] Olivier Danvy. Type-directed partial evaluation. In Steele [128], pages 242–257.

[31] Olivier Danvy. A user’s guide to type-directed partial evaluation. Unpublished
manuscript, 1996.

[32] Olivier Danvy. Functional unparsing. Journal of Functional Programming, 8(6):621–625,
1998.

[33] Olivier Danvy. Online type-directed partial evaluation. In Masahiko Sato and Yoshi-
hito Toyama, editors, Proceedings of the Third Fuji International Symposium on Functional
and Logic Programming, pages 271–295, Kyoto, Japan, April 1998. World Scientific. Ex-
tended version available as the technical report BRICS RS-97-53.

[34] Olivier Danvy. Type-directed partial evaluation. In John Hatcliff, Torben Æ. Mo-
gensen, and Peter Thiemann, editors, Partial Evaluation – Practice and Theory; Proceed-
ings of the 1998 DIKU Summer School, number 1706 in Lecture Notes in Computer Sci-
ence, pages 367–411, Copenhagen, Denmark, July 1998. Springer-Verlag.

[35] Olivier Danvy, editor. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, number NS–99–1 in BRICS Note Series, San Antonio,
Texas, January 1999.

[36] Olivier Danvy and Peter Dybjer, editors. Preliminary Proceedings of the 1998 APPSEM
Workshop on Normalization by Evaluation, NBE ’98, (Chalmers, Sweden, May 8–9, 1998),
number NS–98–1 in BRICS Note Series, Department of Computer Science, University
of Aarhus, May 1998.

136 BIBLIOGRAPHY

[37] Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A unifying approach to goal-
directed evaluation. In Walid Taha, editor, Proceedings of the Second Workshop on Se-
mantics, Applications, and Implementation of Program Generation (SAIG 2001), number
2196 in Lecture Notes in Computer Science, Florence, Italy, September 2001. Springer-
Verlag. An extended version appears in Vol. 20, No. 1 of New Generation Computing,
Nov. 2001.

[38] Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A unifying approach to goal-
directed evaluation. New Generation Computing, 20(1), 2001. A preliminary version is
available in the proceedings of SAIG 2001.

[39] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. The essence of eta-expansion in
partial evaluation. Lisp and Symbolic Computation, 8(3):209–227, 1995.

[40] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion does The Trick.
ACM Transactions on Programming Languages and Systems, 8(6):730–751, 1996.

[41] Olivier Danvy and Morten Rhiger. Compiling actions by partial evaluation, revisited.
Technical Report BRICS RS–98–13, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, June 1998.

[42] Olivier Danvy and Morten Rhiger. A simple take on typed abstract syntax in Haskell-
like languages. In Herbert Kuchen and Kazunori Ueda, editors, Proceedings of the
Fifth International Symposium on Functional and Logic Programming, number 2024 in Lec-
ture Notes in Computer Science, pages 343–358, Tokyo, Japan, March 2001. Springer-
Verlag. Extended version available as the technical report BRICS RS-00-34.

[43] Olivier Danvy, Kristoffer Høgsbro Rose, and Morten Rhiger. Normalization by eval-
uation with typed abstract syntax. Journal of Functional Programming, 11(6):673–680,
2001. Extended version available as the technical report BRICS RS-01-16.

[44] Olivier Danvy and René Vestergaard. Semantics-based compiling: A case study in
type-directed partial evaluation. In Herbert Kuchen and Doaitse Swierstra, editors,
Eighth International Symposium on Programming Language Implementation and Logic Pro-
gramming, number 1140 in Lecture Notes in Computer Science, pages 182–197, Aachen,
Germany, September 1996. Springer-Verlag. Extended version available as the techni-
cal report BRICS RS-96-13.

[45] Rowan Davies. A temporal-logic approach to binding-time analysis. In Clarke [21],
pages 184–195.

[46] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In Steele
[128], pages 258–283.

[47] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Techni-
cal report CMU–CS–99–153, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 1999. To appear in the Journal of the ACM.

BIBLIOGRAPHY 137

[48] N. G. de Bruijn. Lambda calculus notation with nameless dummies. A tool for auto-
matic formula manipulation with application to the Church-Rosser theorem. Indaga-
tiones Mathematicae, 34:381–392, 1972.

[49] Jöelle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive recursion for
higher-order abstract syntax. In P. de Groote and J. R. Hindley, editors, Proceedings of
the 3rd International Conference on Typed Lambda Calculi and Applications, number 1210
in Lecture Notes in Computer Science, pages 147–163, Nancy, France, April 1997.

[50] Premkumar Devanbu and Jeff Poulin, editors. Proceedings of the Fifth International Con-
ference on Software Reuse, Victoria, British Columbia, June 1998. IEEE Computer Society
Press.

[51] R. Kent Dybvig. Chez Scheme User’s Guide. Cadence Research Systems, 1998.

[52] Belmina Dzafic. Formalizing program transformations. Master’s thesis, DAIMI, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark, December
1998.

[53] Conal Elliott. Modeling interactive 3D and multimedia animation with an embedded
language. In Chris Ramming, editor, First Conference on Domain-Specific Languages,
pages 285–296, Santa Barbara, California, October 1997.

[54] Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded languages. In
Walid Taha, editor, Proceedings of the International Workshop on Semantics, Applications,
and Implementation of Program Generation, number 1924 in Lecture Notes in Computer
Science, pages 9–27, Montréal, Canada, September 2000.

[55] Dawson R. Engler. VCODE: a retargetable, extensible, very fast dynamic code genera-
tion system. In PLDI’96 [111], pages 160–170.

[56] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language for high-
level, efficient, and machine-independent dynamic code generation. In Steele [128],
pages 131–144.

[57] Dawson R. Engler and Todd A. Proebsting. DCG: An efficient, retargetable dynamic
code generation system. In Conference on Architectural Support for Programming Lan-
guage and Operating Systems (ASPLOS VI), pages 263–272. ACM Press, Oct 1994.

[58] Andrei P. Ershov. On the essence of compilation. In E. J. Neuhold, editor, Formal
Description of Programming Concepts, pages 391–420. North-Holland, 1978.

[59] Joseph H. Fasel, Paul Hudak, Simon Peyton Jones, and Philip Wadler. Haskell special
issue. SIGPLAN Notices, 27(5), May 1992.

[60] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor, Proceedings of
the Twenty-Sixth Annual ACM Symposium on Principles of Programming Languages, San
Antonio, Texas, January 1999. ACM Press.

138 BIBLIOGRAPHY

[61] Andrzej Filinski. A semantic account of type-directed partial evaluation. In Gopalan
Nadathur, editor, International Conference on Principles and Practice of Declarative Pro-
gramming, number 1702 in Lecture Notes in Computer Science, pages 378–395, Paris,
France, September 1999. Springer-Verlag.

[62] Andrzej Filinski. Normalization by evaluation for the computational lambda-calculus.
In Samson Abramsky, editor, Typed Lambda Calculi and Applications, Krakow, Poland,
May 2001.

[63] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling hell from
heaven and heaven from hell. In Peter Lee, editor, Proceedings of the 1999 ACM SIG-
PLAN International Conference on Functional Programming, pages 114–125, Paris, France,
September 1999. ACM Press.

[64] Daniel Fridlender and Mia Indrika. Do we need dependent types? Journal of Functional
Programming, 10(4):409–415, March 2001.

[65] Yoshihiko Futamura. Partial evaluation of computation process – an approach to
a compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.
Reprinted from Systems, Computers, Controls 2(5), 1971.

[66] Yoshihiko Futamura. Partial evaluation of computation process, revisited. Higher-
Order and Symbolic Computation, 12(4):377–380, 1999.

[67] Carsten K. Gomard and Neil D. Jones. Compiler generation by partial evaluation. In
G. X. Ritter, editor, Information Processing ’89. Proceedings of the IFIP 11th World Computer
Congress, pages 1139–1144. IFIP, North-Holland, 1989.

[68] Brian Grant, Markus Mock, Matthai Phillipose, Craig Chambers, and Susan J. Eggers.
DyC: An expressive annotation-directed dynamic compiler for c. Technical Report
UW-CSE-97-03-03, University of Washington, May 1997.

[69] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language. Prentice
Hall, Inc., 1983.

[70] Ralph E. Griswold and Madge T. Griswold. The Implementation of the Icon Programming
Language. Princeton University Press, 1986.

[71] David A. Gudeman. Denotational semantics of a goal-directed language. ACM Trans-
actions on Programming Languages and Systems, 1992.

[72] Jason Hickey. Nuprl-light: An implementation framework for higher-order logics. In
William McCune, editor, 14th International Conference on Automated Deduction, number
1249 in Lecture Notes in Artificial Intelligence, pages 395–399. Springer-Verlag, 1997.

[73] Jason J. Hickey and Aleksey Nogin. Fast tactic-based theorem proving. In J. Harrison
and M. Aagaard, editors, Theorem Proving in Higher Order Logics: 13th International

BIBLIOGRAPHY 139

Conference, TPHOLs 2000, volume 1869 of Lecture Notes in Computer Science, pages 252–
266. Springer-Verlag, 2000.

[74] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the pres-
ence of first-class continuations. In Bernard Lang, editor, Proceedings of the ACM SIG-
PLAN’90 Conference on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 25, No 6, pages 66–77, White Plains, New York, June 1990. ACM Press.

[75] Ralf Hinze. Prological features in a functional setting—axioms and implementations.
In Masahiko Sato and Yoshihito Toyama, editors, Third Fuji International Symposium on
Functional and Logic Programming (FLOPS’98), pages 98–122, Kyoto, Japan, April 1998.
World Scientific.

[76] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Giuseppe
Longo, editor, Proceedings of the Fourteenth Annual IEEE Symposium on Logic in Computer
Science, Trento, Italy, July 1999. IEEE Computer Society Press.

[77] Luke Hornof and Trevor Jim. Certifying compilation and run-time code generation.
Higher-Order and Symbolic Computation, 12(5):337–375, 1999.

[78] Paul Hudak. Modular domain specific languages and tools. In Devanbu and Poulin
[50], pages 134–142.

[79] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore music notation
– an algebra of music. Journal of Functional Programming, 6(3):465–483, 1996.

[80] Gérard Huet. Résolution d’équations dans les langages d’ordre 1, 2, ..., ω. Thèse d’État,
Université de Paris VII, Paris, France, 1976.

[81] John Hughes. A novel representation of lists and its application to the function “re-
verse”. Information Processing Letters, 22(3):141–144, 1986.

[82] Steven C. Johnson. Yacc – Yet another compiler compiler. In UNIX Programmer’s Man-
ual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New York, NY, USA, 1979.

[83] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall International Series in Computer Science. Prentice-
Hall, 1993. Available online at http://www.dina.kvl.dk/~sestoft/pebook/pebook.
html.

[84] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-applicable par-
tial evaluator for experiments in compiler generation. Lisp and Symbolic Computation,
2(1):9–50, 1989.

[85] Simon Peyton Jones, Erik Meijer, and Daan Leijen. Scripting COM components in
Haskell. In Devanbu and Poulin [50], pages 224–233.

140 BIBLIOGRAPHY

[86] Jesper Jørgensen. Compiler generation by partial evaluation. Master’s thesis, DIKU,
Computer Science Department, University of Copenhagen, January 1992.

[87] Jesper Jørgensen. Generating a compiler for a lazy language by partial evaluation.
In Andrew W. Appel, editor, Proceedings of the Nineteenth Annual ACM Symposium on
Principles of Programming Languages, pages 258–268, Albuquerque, New Mexico, Jan-
uary 1992. ACM Press.

[88] K.M. Kahn and M. Carlsson. The compilation of Prolog programs without the use of a
Prolog compiler. In International Conference on Fifth Generation Computer Systems, Tokyo,
Japan, pages 348–355. Tokyo: Ohmsha and Amsterdam: North-Holland, 1984.

[89] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5 report on the al-
gorithmic language Scheme. Higher-Order and Symbolic Computation, 11(1):7–105, 1998.
Also appears in ACM SIGPLAN Notices 33(9), September 1998.

[90] Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implementation. Lisp and
Symbolic Computation, 7(4):315–336, 1994.

[91] David J. King and Philip Wadler. Combining Monads. In John Launchbury and
Patrick M. Sansom, editors, Glasgow Workshop on Functional Programming, Workshops
in Computing, Ayr, Scotland, 1992. Springer, Berlin.

[92] Peter J. Landin. The next 700 programming languages. Communications of the ACM,
9(3):157–166, 1966.

[93] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In Thomas Ball,
editor, Proceedings of the 2nd USENIX Conference on Domain-Specific Languages, pages
109–122, 1999.

[94] Mark Leone and Peter Lee. Optimizing ML with run-time code generation. In PLDI’96
[111], pages 137–148.

[95] Xavier Leroy. The ZINC experiment, an economical implementation of the ML lan-
guage. Technical Report 117, INRIA, Le Chesnay, France, February 1990.

[96] Xavier Leroy. The Objective Caml system, release 3.01. INRIA, Rocquencourt, France,
March 2001.

[97] Michael E. Lesk. Lex – A lexical analyzer generator. Technical Report 39, AT&T Bell
Laboratories, Murray Hill, New Jersey, 1975.

[98] Karoline Malmkjær. Abstract Interpretation of Partial-Evaluation Algorithms. PhD thesis,
Department of Computing and Information Sciences, Kansas State University, Man-
hattan, Kansas, March 1993.

[99] Per Martin-Löf. About models for intuitionistic type theories and the notion of defini-
tional equality. In Proceedings of the Third Scandinavian Logic Symposium, volume 82 of
Studies in Logic and the Foundation of Mathematics, pages 81–109. North-Holland, 1975.

BIBLIOGRAPHY 141

[100] Steven McCanne and Van Jacobson. The BSD Packet Filter: A new architecture for
user-level packer capture. In Proceedings of the 1993 Winter USENIX Technical Confer-
ence, San Diego, California, January 1993.

[101] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-calculi
(summary). In Rohit Parikh, editor, Logics of Programs – Proceedings, number 193 in
Lecture Notes in Computer Science, pages 219–224, Brooklyn, June 1985. Springer-
Verlag.

[102] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997.

[103] John C. Mitchell. Type systems for programming languages. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics,
chapter 8, pages 365–458. The MIT Press, 1990.

[104] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the
Fourth Annual IEEE Symposium on Logic in Computer Science, pages 14–23, Pacific Grove,
California, June 1989. IEEE Computer Society Press.

[105] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Languages, volume 34
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1992.

[106] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications, a formal intro-
duction. Wiley Professional Computing. John Wiley and Sons, 1992.

[107] François Noël, Luke Hornof, Charles Consel, and Julia L. Lawall. Automatic, template-
based run-time specialization: Implementation and experimental study. In Purush
Iyer and Young il Choo, editors, Proceedings of the IEEE International Conference on Com-
puter Languages, Chicago, Illinois, May 1998. IEEE Computer Society. Also available as
IRISA report PI-1065.

[108] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s Type
Theory. International Series on Monographs on Computer Science No. 7. Oxford Uni-
versity Press, 1990.

[109] Petite Chez Scheme version 6.0, October 1998. Cadence Research Systems. Available
from http://www.scheme.com.

[110] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Mayer D. Schwartz,
editor, Proceedings of the ACM SIGPLAN’88 Conference on Programming Languages Design
and Implementation, SIGPLAN Notices, Vol. 23, No 7, pages 199–208, Atlanta, Georgia,
June 1988. ACM Press.

[111] Proceedings of the ACM SIGPLAN’96 Conference on Programming Languages Design and
Implementation, SIGPLAN Notices, Vol. 31, No 5. ACM Press, May 1996.

142 BIBLIOGRAPHY

[112] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek. tcc: A system for
fast, flexible, and high-level dynamic code generation. In Cytron [29], pages 109–121.

[113] Todd A. Proebsting. Simple translation of goal-directed evaluation. In Cytron [29],
pages 1–6.

[114] Todd A. Proebsting and Gregg M. Townsend. A new implementation of the Icon lan-
guage. Technical Report 99-13, University of Arizona, Department of Computer Sci-
ence, 1999.

[115] Jonathan Rees. The Scheme of things: The June 1992 meeting. LISP Pointers, V(4):40–
45, October-December 1992.

[116] John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4), 1998. Reprinted from the proceedings of
the 25th ACM National Conference (1972).

[117] John C. Reynolds. Normalization and functor categories. In Danvy and Dybjer [36].

[118] Morten Rhiger. A study in higher-order programming languages. Master’s thesis,
DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark,
December 1997.

[119] Morten Rhiger. Deriving a statically typed type-directed partial evaluator. In Danvy
[35], pages 25–29.

[120] Morten Rhiger. A foundation for embedded languages. Submitted for publication.
Extended version available as a BRICS technical report, July 2001.

[121] Kristoffer Rose. Type-directed partial evaluation using type classes. In Danvy and
Dybjer [36].

[122] Erik Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford University, Stanford,
California, February 1993. Technical report CSL-TR-93-563.

[123] David A. Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, Inc., 1986.

[124] David A. Schmidt. The Structure of Typed Programming Languages. The MIT Press, 1994.

[125] Dana Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Com-
puter Science, 121:411–440, 1993.

[126] Michael Sperber. Self-applicable online partial evaluation. In Olivier Danvy, Robert
Glück, and Peter Thiemann, editors, Partial Evaluation, number 1110 in Lecture Notes
in Computer Science, pages 465–480, Dagstuhl, Germany, February 1996. Springer-
Verlag.

BIBLIOGRAPHY 143

[127] Michael Sperber and Peter Thiemann. Two for the price of one: composing partial
evaluation and compilation. In Cytron [29], pages 215–225.

[128] Guy L. Steele, editor. Proceedings of the Twenty-Third Annual ACM Symposium on Princi-
ples of Programming Languages, St. Petersburg Beach, Florida, January 1996. ACM Press.

[129] Guy L. Steele Jr. Compiler optimization based on viewing LAMBDA as RENAME +
GOTO. In Patrick Henry Winston and Richard Henry Brown, editors, Artificial Intelli-
gence: An MIT Perspective, volume 2. The MIT Press, 1979.

[130] Guy L. Steele Jr. Growing a language. Higher-Order and Symbolic Computation,
12(3):221–236, October 1999.

[131] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory. The MIT Press, 1977.

[132] Eijiro Sumii and Naoki Kobayashi. Online-and-offline partial evaluation: A mixed
approach. In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, Boston, Massachusetts, January 2000. ACM
Press.

[133] Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. Multi-stage programming:
Axiomatization and type safety. In Kim G. Larsen, Sven Skyum, and Glynn Winskel,
editors, Proceedings of the 25th International Colloquium on Automata, Languages, and
Programming, number 1443 in Lecture Notes in Computer Science, pages 918–929.
Springer-Verlag, 1998.

[134] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In
Charles Consel, editor, Proceedings of the ACM SIGPLAN Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, pages 203–217, Amsterdam, The
Netherlands, June 1997. ACM Press.

[135] Peter Thiemann. Cogen in six lines. In R. Kent Dybvig, editor, Proceedings of the
1996 ACM SIGPLAN International Conference on Functional Programming, pages 180–
189, Philadelphia, Pennsylvania, May 1996. ACM Press.

[136] Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73(2):231–248, 1989. Special issue on ESOP’88, the Second European
Symposium on Programming, Nancy, France, March 21-24, 1988.

[137] Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science,
2(4):461–493, December 1992.

[138] Philip Wadler. Monads for functional programming. In Johan Jeuring and Erik Meijer,
editors, Advanced Functional Programming, number 925 in Lecture Notes in Computer
Science, pages 24–52. Springer-Verlag, 1995.

144 BIBLIOGRAPHY

[139] Richard S. Wallace. An easy implementation of pil (PROLOG in LISP). Association for
Computing Machinery Special Interest Group on Artificial Intelligence. SIGART NEWSL.,
(85):29–32, July 1983.

[140] Mitchell Wand. Deriving target code as a representation of continuation semantics.
ACM Transactions on Programming Languages and Systems, 4(3):496–517, 1982.

[141] Mitchell Wand. Semantics-directed machine architecture. In Richard DeMillo, editor,
Proceedings of the Ninth Annual ACM Symposium on Principles of Programming Languages,
pages 234–241. ACM Press, January 1982.

[142] Mitchell Wand. Embedding type structure in semantics. In Mary S. Van Deusen and
Zvi Galil, editors, Proceedings of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 1–6. ACM Press, January 1985.

[143] Daniel Weise, Roland Conybeare, Erik Ruf, and Scott Seligman. Automatic online
partial evaluation. In John Hughes, editor, Proceedings of the Fifth ACM Conference
on Functional Programming and Computer Architecture, number 523 in Lecture Notes in
Computer Science, pages 165–191, Cambridge, Massachusetts, August 1991. Springer-
Verlag.

[144] Glynn Winskel. The Formal Semantics of Programming Languages. Foundation of Com-
puting Series. The MIT Press, 1993.

[145] Zhe Yang. Encoding types in ML-like languages. In Paul Hudak and Christian Quein-
nec, editors, Proceedings of the 1998 ACM SIGPLAN International Conference on Func-
tional Programming, pages 289–300, Baltimore, Maryland, September 1998. ACM Press.
Extended version available as the technical report BRICS RS-98-9.

Recent BRICS Dissertation Series Publications

DS-01-4 Morten Rhiger. Higher-Order Program Generation. August
2001. PhD thesis. xiv+144 pp.

DS-01-3 Thomas S. Hune.Analyzing Real-Time Systems: Theory and
Tools. March 2001. PhD thesis. xii+265 pp.

DS-01-2 Jakob Pagter.Time-Space Trade-Offs. March 2001. PhD thesis.
xii+83 pp.

DS-01-1 Stefan Dziembowski.Multiparty Computations — Information-
Theoretically Secure Against an Adaptive Adversary. January
2001. PhD thesis. 109 pp.

DS-00-7 Marcin Jurdziński. Games for Verification: Algorithmic Issues.
December 2000. PhD thesis. ii+112 pp.

DS-00-6 Jesper G. Henriksen.Logics and Automata for Verification: Ex-
pressiveness and Decidability Issues. May 2000. PhD thesis.
xiv+229 pp.

DS-00-5 Rune B. Lyngsø.Computational Biology. March 2000. PhD
thesis. xii+173 pp.

DS-00-4 Christian N. S. Pedersen.Algorithms in Computational Biology.
March 2000. PhD thesis. xii+210 pp.

DS-00-3 Theis Rauhe. Complexity of Data Structures (Unrevised).
March 2000. PhD thesis. xii+115 pp.

DS-00-2 Anders B. Sandholm.Programming Languages: Design, Anal-
ysis, and Semantics. February 2000. PhD thesis. xiv+233 pp.

DS-00-1 Thomas Troels Hildebrandt. Categorical Models for Concur-
rency: Independence, Fairness and Dataflow. February 2000.
PhD thesis. x+141 pp.

DS-99-1 Gian Luca Cattani. Presheaf Models for Concurrency (Unre-
vised). April 1999. PhD thesis. xiv+255 pp.

DS-98-3 Kim Sunesen.Reasoning about Reactive Systems. December
1998. PhD thesis. xvi+204 pp.

DS-98-2 Søren B. Lassen.Relational Reasoning about Functions and
Nondeterminism. December 1998. PhD thesis. x+126 pp.

DS-98-1 Ole I. Hougaard. The CLP(OIH) Language. February 1998.
PhD thesis. xii+187 pp.

