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A Fully Abstract Presheaf Semantics of
SCCS with Finite Delay

Thomas T. Hildebrandt

BRICS!
Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

We present a presheaf model for the observatioimfofite as well
as finite computations. We apply it to givadanotationalsemantics of
SCCS with finite delay, in which the meanings of recursion are given by
final coalgebras and meanings of finite delayibijial algebras of the
process equations for delay. This can be viewed as a first step in repre-
sentingfairnessin presheaf semantics. We give a concrete representa-
tion of the presheaf model as a categorgenferalised synchronisation
treesand show that it is coreflective in a categorygeheralised transi-
tion systemswhich are a special case of the general transition systems
of Hennessy and Stirling. The open map bisimulation is shown to co-
incide with theextended bisimulatioof Hennessy and Stirling. Finally
we formulate Milners operational semantics of SCCS with finite delay
in terms of generalised transition systems and prove that the presheaf
semantics igully abstractwith respect to extended bisimulation.

*The results of this paper appear in Proceedings of CTCS’99, ENTCS.
tThis work was initiated during a stay at LFCS, University of Edinburgh, Scotland.
fBasic Research in Computer Science,

Centre of the Danish National Research Foundation.



Introduction

When reasoning about and describing the behaviour of concurrent agents it is
often the case that some infinite computations are considerfair and con-
sequently ruled out as beingadmissible An economical way of studying

this situation was proposed by Milner in [18] showing how to express a fair
parallel composition in his calculus SCC8yfichronousCCS) by adding a
finite, but unboundedelay operator. Syntactically the finite delay of an agent

t is writtenet. The agentt can perform an unbounded numberleéctions

et 5 et (delays) buimust eventuallperform an actiont - ¢’ if ¢t can per-
form an actiont % t' or stopif ¢ cannot perform any actions. In other words,
its actions are the same as for (the possibly infinite defay) rec z.(1: x+t),
except that infinite unfolding of the recursion is not allowed.

To deal with agents in which only some infinite computations are admissi-
ble, one must readdress the issue of how to represent the behaviour of agents
and so when two agents behave equally, i.e. they denote the same process.
The approach used for CCS and SCCS, taking two agents to be equivalent if
their derivation trees are strong bisimilar [16], will identify agents that only
differ on whether some infinite computations are admissible or not, in partic-
ular et is identified withét for any termt. Moreover, (by definition) botlat
anddt should be solutions to the equation

= (1:z+1) (1)

(up to equivalence) so process equations will not have unique solutions as it
Is the case in CCS and SCCS (with guarded recursion).

In [18], Milner proposes a behavioural preorder cafiedification, which
is designed such that (1) it induces an equivalence which distinguishes the two
notions of delay and coincides with strong bisimulation for “standard” agents,
(2) recursive processes deastfixed points of the associated process equa-
tions and (3) the equivalence is a congruence with respect to all the operators
of the language (under an assumption of guarded recursion). This approach
works reasonably, but is not completely satisfactory. As pointed out by Aczel
in [1], the fortification equivalence makes some non desirable identifications
of agents due to the fact that infinite computations are treated totally sepa-
rately from finite computations. For example, the two agéfis0 + 60) and
€(a:0+ 00) (whereO is the agent without any actions) are identified by the



fortification equivalence. Both agents get assigned the derivation tree

1 af/l: .1 7 ?
Nl

for which the admissible infinite action sequences of the agents underlying
the nodes are the same: For a black node, the underlying agent is either the
original agent or the agen0, for which 1 is theonly admissible infinite ac-

tion sequence. The underlying agent of a white node is the dgemhich

has no action sequences at all. So, the isomorphism between the deriva-
tion trees of the two agents is a bisimulation satisfying that the underlying
agents of any two related nodes have the saatef admissible infinite ac-

tion sequences. This implies the fortification equivalence. However, for a
true branching equivalence, the two agents should not be equivalent. The
first agent can delay infinitelyemainingable to perform an a-action at any
time, while the second agent must reach a state in which it cannot perform an
a-action. Aczel [1] proposes a final-coalgebra semantics, which gives a bisim-
ulation closely related to thextendedisimulation introduced by Hennessy
and Stirling in [8] forgeneral transition systemsThis bisimulation indeed
distinguishes the two agents given above.

The background of the present paper is the work on presenting models for
concurrency categorically as initiated by Winskel and Nielsen [23] and devel-
oped further in the work on bisimulation from open maps [12] and presheaf
models for concurrency [3, 6, 9, 22]. Our goal is twofold: We want to extend
the categorical approach (in which the issue of infinite computations and fair-
ness has been absent so far) to models for infinite computations and we want
to give a denotational semantics to SCCS with finite delay which captures a
behavioural equivalence similar to the extended bisimulation of [8]. As we
will see, these two goals can indeed be met.

One of the forces of describing models for concurrency within the lan-
guage of category theory is that different models suitable for different pur-
poses, can be formally related to each other. E.g. in [23] the category of
synchronisation trees suitable for giving denotational semantics to CCS-like
process calculi is shown to be a coreflective subcategory of the category of
transition systems suited for operational semantics. Another force was added
by the notion obisimulation from open mapstroduced in [12], from which
one gets an abstract behavioural equivalence by choospaghacategory
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i.e. a subcategory of the model at issue identifying tfservable com-
putations The open maps approach increased its worth through the further
development [3, 6, 5, 22] of theresheafmodels for concurrency proposed

in [12]. Here onestartswith a path categor® and then takes the categdty

of presheaves ovét as model, justified categorically by being the free col-
imit completion ofP [6]. Now any presheaf mod@® comes with acanonical
notion of bisimulation, takind® as the path category. In [6, 22, 3] it is shown
that presheaf models themselves can be related within a category in which
arrows are (connected) colimit preserving functors. Such functors preserve
the canonical bisimulation and general techniques for their construction are
provided.

Perhaps the simplest example of a presheaf model is obtained from the
categoryFin of all finite sequences of actions from a sétt ordered by
the usual prefix ordering. The categdﬁ?\ is equivalent to the category of
(Act) labelled synchronisation trees and the typical constructions of a CCS-
like language can be expressed as functors preserving the canonical equiv-
alence [12, 6]. In this light, it was natural to approach a generalisation of
the categorical mgdels to models for infinite computations by studying the
presheaf categonyf, wherelnf = Fin U Act® is the path category obtained
by adding allinfinite sequences of actions to the categbiry. With the help
of a simpleGrothendieck topologye get indeed a suitable model for infi-
nite computations from the category séperated presheav§b4] over Inf.

A careful generalisation of the models of synchronisation trees and transition
systems lifts the relationship between the “standard” finitary models to the in-
finitary models and gives a concrete representation of the presheaf model for
infinite computations as generalised synchronisation trees, coreflective in a
category of generalised transition systems. The generalised transition systems
are defined as instances of the general transition systems of [8] and it turns
out that the extended bisimulation defined in [8] coincides with the abstract
bisimulation obtained from open maps. We show how to give an operational
semantics of SCCS with finite delay in the generalised transition systems cap-
turing exactly the definition of inadmissible computations given in terms of
waiting subcomputationsin [17]. We then give a denotational semantics in the
presheaf model which we prove to bguationally fully abstracivith respect

to extendedisimulation.

In all of the steps above we greatly benefit from the categorical presenta-
tion. Unbounded non-determinissirepresented simply by (infinite) coprod-
ucts. By utilizing the general techniques from [3] we get very simple defi-
nitions of the denotations for prefixing and synchronous product, for which



congruence properties follow almost for free. As meanings of recursion we
takefinal coalgebrascorresponding tgreatestixed points and the finite de-

lay operator is simply obtained as an initial algebra correspondindeast
fixed point of the process equation (1) given above. Finally, the categorical
relationships between the different models and the general theory of bisim-
ulation from open maps reduce the problem of relating the two semantics to
finding an open map within the category of generalised transition systems.

A number of papers [1, 11, 7, 8, 21] have already proposed denotational
semantics for SCCS with finite delay and models for non-deterministic pro-
cesses with infinite computations. As mentioned above, the approach we take
is closely related to the work in [1] and [8]. However, the admissible infi-
nite computations in [1] appear to be identified in a rather syntax dependent
way as opposed to simply arising from the use of final coalgebras in giving
meanings to recursion. The semantics given in [11] is also shown to be fully
abstract, but with respect to thartification equivalence, so it makes the non-
intuitive identifications described above. Moreover, it only covmyanded
non-determinisnas obtained from terms in which only a binary sum is al-
lowed. The semantics given in [7] focuses on the fortification equivalence
too. Also, for all the models given in [11, 7, 21] the order relation between
elements is designed such that meanings of recursion can be giveagby
fixed points using @&verseordering on infinite observations.

The structure of the paper is as follows. In Sec. 1 we give some prelimi-
nary definitions and recall the categorical concepts used in the paper. In Sec. 2
we recall the calculus SCCS [18], the finite delay operator and how to derive
a fair parallel [17]. In Sec. 3 we introduce respectively the new presheaf
model and the transition system models for infinite computations. Section 4
is devoted to the bisimulation obtained from open maps and its relationship to
the extended bisimulation of [8]. In Sec. 5 we formulate Milner’s operational
semantics of SCCS with finite delay in terms of the generalised transition sys-
tems introduced in Sec. 3 and in Sec. 6 we give the presheaf semantics and
the full abstraction result. Comments on future work is given in Sec. 7. The
appendixes contain details on Grothendieck topologies and the proof of full
abstraction.

1 Preliminaries

Notation 1.1 For a setS, let S* denote the set of finite, (possibly empty)
sequences and™ the set of finite non-empty sequences. $4tdenote the
set of infinite sequences and deffife = ST U S¥, i.e. the set of non-empty



finite or infinite sequences. We will let roman letters range over elements and
greek letters range over sequences. |egtdenote the length af. If j € w
and|a| > j + 1, leta(j) = apa; . .. o, i.€. the firstj actions ofa. For «, o

such thata| < w we writeaa’ for the composition of the two sequences. If

B e S andfg < ain S* U S*, we will write 3 <; « for 3 is finite and below

.

Assume a fixed sedct of actions. We will consider finite or possibly infinite
sequences of actions frodrt ordered by the standard prefix order. In partic-
ular we will let Fin andInf refer to the two partial order categoridst™ and
Act®™ (i.e. Act™ U Act*) obtained in this way. They will play the key role as
path categorie®f presheaf models for the observation of respectively finite
and possibly infinite computations.

1.1 Presheaf Models, Bisimulation from Open Maps and
Transition Systems

Presheaf categories were suggested in [12] as abstract models for concurrency,
equipped with a canonical notion of bisimulation equivalence.

The basic idea is to start from a (partial order) catedddefining theob-
servable computatiorw path shapesf interest. The categoly of presheaves
overP is then taken as the category of processes with such path shapes. The
categoryP is thefree colimit completiorof P, i.e. the category obtained (up
to equivalence) by freely adding all colimitsio It has as objects all functors
X : P°® — Set (whereSet is the category of all small sets and functions be-
tween them) and as arrows natural transformations between such. Any functor
F: P — Qfor Q a cocomplete category (i.e. a category having all colimits),
can be extended freely (as a left Kan extension [13]) to a (colimit preserving)
functor Fi: P — Q making the diagram

pC %) /P\

N

Q

commute. The functopp: P — P is the well knownYoneda embedding
mappingp of P to the preshed?[—, p|. This extension will be used in Sec. 6,
in the special case whef@is a presheaf category.

Notation 1.2 If ¢ < p in a partial order categoryP, let [¢, p] denote the
unique arrow inP and [p, q] the unique arrow inP°?. We will employ the
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standard notation [14], writinge - [¢, p] for the elementX ([p, q])z, i.e. the
restriction ofz to the pathy.

The categorical presentation of models for concurrency comes with a gen-
eral notion ofbisimulation from open mapstroduced in [12]. Given a model
M, the idea is to identify gath categoryP — M as a subcategory é&fl. A
mapf: X — Y in M is then said to b&-open(or just open if the path cate-
gory is clear from the context) if whenever for two path objeet§ of P and
morphismm, p, ¢ such that the diagram

p

P—X

m| P lf

Q=Y

commutes, there exists a morphidm@ — X as indicated by the dotted line,
making the two triangles commute. Intuitively this says that at any pointin the
simulation described by, any path extension iH simulates a corresponding
extension inX, i.e. f is like a functional bisimulation. Two objecfs andY

is said to beP-bisimilar if they are related by a span Bfopen maps, f,

i.e. X<f—12i>Y.

¢ From the embeddinyp: P — P, we get acanonical path category
and thus a canonical notion of bisimulation from open maps for any presheaf
categoryP.

In [12], focus was put omooted presheaves, i.e. presheaves such that
X (L) is the singleton set ifL is an initial element of the path category.
In particular, it was remarked that the category of rooted presheaves over
Act* is equivalent to the categol§T of synchronisation treegwith label
set Act) and Act*-bisimulation was shown to coincide with the usual HM-
bisimulation [18] on labelled transition systems.

Definition 1.3 ([23]) Atransition systeni’ (with label setAct) is a quadru-
ple (Sr,ir, —r, Act), whereSr is a set ofstatesir € St is theinitial state
and—,C Srx Act x Sy is atransition relation As usual we write 2 s’ for
(s, a,s’) €—r. For atransitiont €—r, letdo(t), co(t), act(t) refer to re-
spectively the domain, codomain and action.dfet Comp(T) = {¢ €—F|
VO < j < |¢|.co(pj—1) = do(¢;)}, i.e. the set of non-empty (finite or in-
finite) computations of and letCompy;,(T) = Comp(T)N —7, i.e. the
finite computations. Defin®un(T) = {¢ € Comp(T) | do(¢o) = ir},
Runin(T) = Run(T)N —4 and Run,;(T') = Run(T)N —%.
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Transition systems (with label setct) form the objects of a category
TS, with arrows being simulations. A simulation framto 7" is a mapping
o: Sy — Sy of states, such that

° O'(’iT) = i and
e 5 5 s implies thato (s) 57 o(s').

Say a transition system reachablef any state is reachable from the initial
state.

A synchronisation trees a transition system for which the transition re-
lation is acyclic and any state is reachable from the initial state by a unique
sequence of transitions. The synchronisation trees (with label@gtnduces
a full subcategonpT of TS.

The equivalence between rooted presheavé/ﬁﬂand synchronisation trees
is given formally in [24]. Given a rooted preshe&fin @, its corresponding
synchronisation tre€!(X) = (Sx,ix, —x, Act) under the equivalence is
constructed as follow3. The set of states is defined IS = {(o, ) |

a € Act* andz € X(«)}, i.e. the disjoint union of all the sets of elements.
The initial state (the root) is given bix = (L, *), where L is the empty
sequence idct* andx the unique element of (_L). There will be a transition
(a, ) 5 (aa, ') iff 2/ [0, aa] = 2, i.e. if 2’ € X(aa), z € X(a), anda’
restricts tar.

Note thatAct* is equivalent to the category obtained frawf by adding a
bottom element (the empty sequence). In generBlisfa partial order, |e® |
denote the partial order obtained by adding a new bottom element. It is then
easy to see, thﬂ is equivalent to the category of rooted presheaves Pver
soin partlcuIaIFm is equwalent to the categoBy. Let|—|: P — P, bethe
functor mapplng a presheaf mto its corresponding rooted presheaiPin
Let [—]: PL — P be the converse mapping, discarding the root(sﬂlﬁs
restricted to rooted presheaves this gives the equivalence mentioned above and
the open maps between rooted presheavé%:inia the equivalence are ex-
actly thesurjectiveopen maps iP. Instead of considering rooted presheaves
of a category with bottom, one can thus work with full presheaf categories
(not necessarily having a bottom element) and surjective open maps.

By composing the Yoneda embedding with | we get an embedding
YVe: P — ﬁ, thestrict extension o))s, mapping the bottom element i,

1The category freely generated by the synchronisation tree corresponding to a pPésheaf
is equivalent to theategory of elemen{d4] of X.
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to the empty presheaf. In fa@t Y5 is the free connected colimit completion
of P. (A connected colimit is a colimit of a non-empty connected diagram).
The following proposition [4, 22, 3] is one of the most important results about
open map bisimulation in presheaf models.

Proposition 1.4 Let F': P — Q be a connected colimit preserving functor.
ThenF preserves surjective open maps, i.enif X — Y is surjective open
in P thenF(m): F(X) — F(Y) is surjective open ifQ.

1.2 Initial Algebras and Final Coalgebras

Below we recall the categorical analogues of pre- and post-fixed points [2].

Definition 1.5 Let F': P — P be an endofunctor on a categoR A co-

algebrafor F' is a pair (p, m) of an object and a morphism &f such that
m: p — F(p). Dually, analgebrdor F'is a pair (p, m) such thatn: F(p) —

p. The co-algebras of' form the objects of a categofy,a,, With arrows
f: (p,m) — (q,n) being arrowsf : p — ¢ of P such that

p—=F(p)
f lF(f)
q4—= F(q)
commutes. Dually, algebras féf form the objects of a categoR,.

Initial and final objects irFa;; andF.a; are the categorical analogues of
minimal and maximal fixed points df.

Lemma 1.6 LetF': P — P be an endofunctor on a categd?y If (p, m) is an
initial algebrafor F', i.e. an initial object in the category df-algebras, then
m: F(p) — pisanisomorphism. Moreover(f, n) is another initial algebra
for F', ¢ is isomorphic tgp. The dual statement holds féinal co-algebrasif

F has an initial algebra, lef.F’ denote the (unique upto isomorphism) initial
algebra. Similarly, let F' denote the final co-algebra @f if it exists.

The following lemma is the main technique in proving existence of final
co-algebras.

Lemma 1.7 Let P be a category with terminal object and F': P — P an
endofunctor orP. If thewP-chain

T+ F(M+F(T)+ ...« F(T)+ ...
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has a limiting cong P, {p,: P — F"(T)},en) and F preserves this limit,
I.e.

(F(P),{!: F(P) = T}U{F(pa): F(P) = F""(T)}new)

is a limiting cone too, then the unique mediating (iso)morphismpP —
F(P) is afinal coalgebra.

The above lemma is the dual of the following lemma for construction of
initial algebras, as found in e.g. [2].

Lemma 1.8 Let P be a category with initial object. and F': P — P an
endofunctor orP. If thew-chain

L= F)—= F*(L)—...— F"(1) — ...

has a colimitP and F' preserves this colimit, then the unique mediating
(iso)morphismmn: F(P) — P is an initial algebra.

Since limits are computed pointwise in a presheaf cate@oﬂye terminal
object inP is the presheafl : P?? — Set that yields the one element set
(the terminal object irbet) for any objectp in P. Dually, the initial object
1: P°? — Set is the empty presheaf, yielding the empty set for all objects
in P.

2 SCCS, Finite Delay and Fair Parallel

In this section we recall Milners calculus SCCS [18kghchronou€CS and

the definition of a fair parallel composition via a finite delay operator [17].
Assume a destinguished elemént Act such that(Act, e, 1) is an Abelian
monoid with1 being the identity. Thdasicoperators of SCCS are action
prefixing, synchronous product, non-deterministic choice and restriction. For-
mally, the terms are given by

ti=a:t | t1 X 19 | Zielti | t[A,

wherea € Act, A C Act and[ is an index set. With the basic operators we
can build processes with only finite behaviour. As usual, we will writer

an empty sum, omit the summation sign for a unary sum and writet, for

a binary sum.
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a I a (-] E [)’ )
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t5 ¢ (@ e A) tlrecz.t/z] 5 ¢
— a , o .
tA 5 ¢]A recx.t — t/

Fig. 1. Operational semantics of SCCS

To be able to define processes with possibly infinite runs, we add a recur-
sion operator, extending the grammar by

to=...|z|recz.t,

wherez is a process variable amec z. binds the variable in . We will let
T refer to the set of closed terms of the calculus SCCS.

The rules given in Fig. 1 defines the operational semantics of SCCS, from
which we get aerivation transition systerfor any closed term as defined
below.

Definition 2.1 Lett be a term in7. Then thederivation transition system
for ¢ is the (reachable) transition systeint) = (5, t, —, Act), whereS =
{t' e T |t ="'}, ie. all states reachable fromby the relation— defined
by the rules in Fig. 1 and»;=— NS x Act x S.

Note that in the synchronous product, both processes must perform an action,
and the resulting action is the monoid product of the two individual actions.
Recursion acts by unfolding amplec .t/ x] is the usual substitution eéc .t
for the free variable: in t.

An important derived operator introduced in [18] is thelayoperators.
For a process, definedt = recz.(1:z + t). In the standard semanticg, is
the (unique up to bisimulation) fixed point of the process equation

x~ (lix+1t). (3)

As an economical way to be able to express that some infinite runs are
inadmissible, Milner introduces in [17]fanite, but unbounded delaperator
e (expectation). Its immediate actions are the same as for the derived delay
operator, which can be described by the rules given in Fig. 2.

11



a,

t—t
a

(Wait) and

(Fulfill).
et — et

Fig. 2: Derivation Rules for Finite Delay

However, infinite waiting is ruled out as inadmissible. In other words,
fulfillment of the delay is always expected. The idea is that finite delay is
the only operator giving rise to inadmissible infinite runs. Recursion will
as usual give rise to admissible infinite runs. This is sufficient to capture
weak fairnes®f anasynchronougarallel composition. For processeand
t’, the fair asynchronous parallel composition [17]taindt’ is defined by
t|[t' = (et x t') + (t x et’). The composition is asynchronous in the sense that
one process can delay while the other progress; it is fair in the sense that no
process can delay this way forever.

We will let SCCS andT7. refer to respectively the calculus SCCS extended
with the finite delay operatarand the set of terms of the extended calculus.

In the next section we will introduce two closely related categorical mod-
els, suitable for giving respectively denotational and operational semantics in
whichinadmissibilityof infinite computations can be expressed.

3 Observing Infinite Computations

We approach a categorical model for infinite compuations by studying the
presheaf model obtained by adding infinite paths to the path catégary
resulting in the categoriyif. This fits with the spirit of [8], where experiments
on systems are allowed to consistiofinite computations. Categorically, it
can be seen as a completion of the path category with all directed colimits.

3.1 A Presheaf Model for Infinite Computations

To get a better understanding of preshea¥ednf” — Set in Inf, one can

try first to construct a synchronisation tree, as described in Sec. 1.1, for the
finite part of X, i.e. the restriction ofX to Fin. Fora € Act?, an element

z € X(a) will then specify a unique infinite path in the tree. To be more
precise, ifa € Act” andz € X(a) then we will say that: is alimit point

of the infinite path given by the elements[3, o] for § <; «, i.e. the re-
strictions ofx to finite observations. We wish to represent that an infinite

12



path isadmissibleby the presenceof such a limit point, and that it igad-
missibleby theabsenceof a limit point. With this interpretation, the model

is a bit too general; it allows an infinite path to have two or even more limit
points, not representing anything more than if it had only one limit point. We
take the subcategory of presheaves with atmost one limit point for any infinite
sequence as our model. This category is not as ad hoc as it might seem. Ac-
tually, it comes about as the categorysafparated presheaveser Inf with
respect to a simple Grothendieck topology fief, which is often referred to

as the sup topology. (In the standard terminology, the infinite paths and limit
points are respectiveiypatching familieand (unigueamalgations.

Definition 3.1 LetSp(ﬁﬁ‘) denote theseparated presheayeghich is the full

subcategory ofnf induced by the presheavéssatisfying that for alk;, 2’ €
X(a), a € Act”

e (SeparatedyV <; a.z-[3,a] =2'-[3,a]) =z =2

Moreover we can recover the categdilry (i.e. of synchronlsatlon trees)
within Inf, as being equivalent to the catechh(lnf) of sheavesver Inf
for the same topology. In our case, a separated presheaf is a sheaf if it has
exactlyone limit point for any infinite path. Thus, a sheaf will correspond
to a synchronisation tree in whi@ny infinite path is admissible, i.e. lanit
closedsynchronisation tree. But this is just the standard interpretation made
explicit.

Proposition 3.2 The categoryF/ﬁn Is equivalent to the categorsvh(ﬁﬁ‘), of
sheaves ovdnf with respect to the sup topology.

Sheaves, separated presheaves and presheaves are known to be closely
related and rich in structure [14, 25]. We will especially make use of the
fact, that they are related by a sequence of reflections, i.e. the inclusions
Sh(ﬁ?) — Sp(ﬁl\f) and Sp(ﬁ?) < Inf both have left adjoints (reflectors).

In our case the reflections are particulary simple. The refletptotn/? —
Sp(lnf) acts by unlfylng limit pomts that specify the same infinite path. The
reflector fromSp(Inf) to Sh(lnf) acts by completing with limit points of all
infinte sequences.

We also have that the objects bif under the Yoneda embedding are
sheaves. In fact the Grothendieck topology we use iscdr@nicaltopol-
ogy for Inf [14], which simply means that it is the largest topology with this
property. Together with Prop. 3.2, this gives a formal relationship between

13



the path categorinf, the presheaf moddlin of finite observations and the
modelsSp(Inf) andInf of possibly infinite observations as summarized in the
diagram below.

(4)

Note that this also implies (a general fact) that the cate@qw/rﬁ‘) has
all limits and colimits. In particular, it shows that limits are computed as
in Inf and similarly for colimits, except for being followed by the reflector,
identifying redundant limit points. As indicated in the diagram, we will let
fin 4 inf refer to the reflection betweefin and Sp(ﬁw\f) obtained via the
equivalecence betweé]h(ﬂ\\f) andFin.

For more details on Grothendieck topologies, sheaves and separated presheaves
see [14]. The special, and simpler case for a Grothendieck topology on a par-
tially ordered set is given in the appendix, together with the definition of the
Grothendieck topology relevant for this paper.

3.2 Generalised Transition Systems

A generalised transition systems is a transition system in whicadhessible
infinite computations are represented explicitly. More precisely, we take a
generalised transition system to be a transition system together with a set
C C Comp(T) such thatC = C*, whereC* C Comp(T) be the least set
includingC' such that

C1: (composition) ifp, ¢’ € C* andp¢’ € Comp(T') thengg' € C°,
C2: (pre- and suffix) ifp¢’ € C* and¢ is finite theng, ¢’ € C'* and
C3: (finite) Compy:,,(T') C C°.

The two first conditions ensure that the definition fits with thageheral
transition systems [8]. The last condition restricts attention to the special
case where any finite computation is admissible. It is easy to show that if
every state is reachable, the set of admissible computations is determined by
a unique set of infinite runs as stated in the lemma below.
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Lemma 3.3 Let 7" be a reachable transition system a6dC Comp(T). If
C = C* then there exists a unique s&tC Run(T)\Runs;,(T) such that
C=A.

Definition 3.4 A generalised transition system (gts)(with label setAct)

is a five-tuple(Sg, Admg,iq, —a, Act), such thatl’ = (Sg, ia, —a, Act)

is a transition system (with label setct) and Admg C Comp(T), the
set of admissible computationsatisfies thatddmg = Admg®. If G =
(Sg, Admg, ic, —q, Act) is a generalised transition system |gtn(G) =
(Sa,ia, —a, Act), i.e. the underlying transition system. Generalised tran-
sition systems (with label setct) forms the objects of a categoTS. A
morphism fronGG to G’ is given by a map: Sg — S such that

b U(ZG) = iG’!
e 5 51 ' implies thato(s) %7 o(s') and
e 0, (Admg) C Admgy,

whereo, is the map from— to —2 mapping a sequencg €— to the
sequence’, such thati¢| = |¢’| and for alli < |¢|, if ¢; = (s,a,s’) then

¢, = (o(s),a,0(s")). Ageneralised synchronisation tree (gstp gener-
alised transition system for which the underlying transition system is a syn-
chronisation tree. Generalised synchronisation trees (with labelseX in-
duces a full subcategoiyST of the categor:TS.

Lemma 3.5 Leto: Sg — Sg be a map between the state sets of two gener-
alised transition systems andG’. Then the following conditions are equiv-
alent

1. 0: G — G’ is a morphism of generalised transition systems,

2. L] O'(iG) = iG’ and
e 0. (Admg) C Admg,

3. e o: fin(G) — fin(G") is a morphism of transition systems and
o 0,(Admc\Compsin(G)) C Admey,

In particular, the morphisms &TS restrict to morphisms of the underly-
ing transition systems, so the m@p extends to a functofin: GTS — TS.
In fact fin: GTS — TS is a reflector for the inclusion ofS into GTS that
maps a plain transition system to the correspondimg closedgeneralised
transition system (callestandardin [8]).
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Proposition 3.6 The functorfin: GTS — TS defined on objects in Def.3.4
(and leaving morphisms unchanged) is a left adjoint to the inclugign TS —
GTS which maps a transition systeih = (Sr, iz, —r, Act) to the (limit
closed) generalised transition systéfy., ir, —r, Comp(T), Act) and leaves
morphisms unchanged.

In [23] it is shown that the categoi§T is a coreflective subcategory of
the categoryrl'S of transition systems; the inclusiél — TS is shown to
have a right adjointinf: TS — ST which acts on objects bynfoldingthe
transition system. This coreflection generalises to one between be@sden
and a categor¢TS.

Proposition 3.7 The inclusion functo6ST — GTS has aright adjoingunf: GTS —
GST such that the diagram

GST <2 GTs

unf

ST«——TS
commutes, wheren f is the unfolding of transition systems defined in [23].
In fact we have that all four squares in the diagram

gunf

GSTC_ T _,GTS

S

STECT T

commutes. .

We will now generalise the equivalence betwd@mandST mentioned
in Sec.1 to an equivalence betweﬁp(l/rﬁ‘) and GST, giving the promised
concrete representation of the presheav&i(ﬁﬁ). There is an immediate
embedding: Inf — GST of Inf into the category of generalised synchro-
nistation trees (and so the category of generalised transition systems), which
maps a finite (or infinite) sequence to the tree with exactly the one correspond-
ing, finite (or/igfinite, admissible) branch. This givesanonicalfunctor [12]
from GTS to Inf, that maps a generalised transition systéno the presheaf
GTS[e(—), G]. Itis not difficult to check that this will always giveseparated
presheaf.
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Lemma 3.8 Let G be a generalised transition system andinf < GST —
GTS the embedding described above. TH&RS[e(—), G] is a presheaf in

Sp(ﬁrf).
Restricted to generalised synchronisation trees the canonical functor can equiv-

alently be defined as the functor mappido GST[e(—), G|, which gives us
one direction of the equivalence.

Theorem 3.9 The categorie&ST and Sp(ﬂm\f) are equivalent. In one direc-
tion the equivalence is given by the (canonical) funspar GST — Sp(ﬂm\f)
that maps a gs to the seperated preshe@6T[e(—), G]. In the other di-
rection the equivalence is given by a functir Sp(m) — GST general-
ising the functor€!: Fin — ST defined in Sec. 1. FoX in Sp(l/rﬁf), let
(S,i,—, Act) = El(finX), i.e. the synchronisation tree corresponding to the
finite part of X. We then defin€l(X) = (5,4, —, Adm, Act), where

Adm = {¢ €-*| Ja € Act*Tz € |X](@).Vj € w.do(¢;) = (a(j),z - [a(§),a])}".

Note that, restricted to synchronisation trees, the funcfors inf are
just (up to isomorphism) the concrete representation of the reflection between
Fin andSp(Inf) given in Diagram (4).

4 Extended Bisimulation from Open Maps

As described in Sec.1, we geta canonical notion of bisimulation from open
maps in the presheaf categdnj From Diagram (4) it foIIows that the no-
tion of Inf-bisimulation restricts to the subcategori‘éh(lnf) and Sp(lnf)
of sheaves and seperated presheaves. Since the cateQoan be viewed
as a subcategory of the category of generalised transition systems as shown
in the previous section, we also get a notionlffbisimulation for gener-
alised transition systems. We show that this bisimulation coincides with the
extendedbisimulation defined for general transition systems in [8]. Since
Inf-bisimulation for generalised synchronisation trees coincides witinthe
bisimulation inSp(ﬁm\f) this gives a concrete representation of the canonical
bisimulation inSp(ﬁ]\f) as well.

First let us give a characterisation of tm-open maps oGTS, general-
ising the “zig-zag” morphisms in [12].

Proposition 4.1 LetT = (S, i, —, Adm, Act) andU = (Sy, iy, —v, Admy, Act)
be generalised transition systems and7 — U. Theno is Fin-open if and
only if for all reachable states of T’
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o if o(s) 2y s thens % s; ando(s,) = ) for some state; € S,
ando is Inf-open if and only if moreover

o if ¢ € Admy and¢’ = o(s) Sy s By sh Sy ... By s, X
then there exist® € Adm such thatp = s =5 s; 3 s = ... 3
sp %' andforallj € w,o(s;) = s

Now we give the definition of extended bisimulation from [8] reformu-
lated as a relation between two generalised transition systems (and exploting
conditionC3).

Definition 4.2 ([8]) Let T"andT” be generalised transition systems. THén
and 7" are extended bisimilaif there exists a relatiolR C Sy x Sy such
that (ir, i7v) € Randif (s, s’) € R then

El. if there exists a computatioh€ Admr S.t. g = s, then there exists a
computationy’ € Admy s.t. |¢| = |¢/| and ¢, = s" and for0 < j <

@], act(¢;) = act(¢;) and(¢;, ¢) € R,

E2. ifthere exists a computatiatt € Admy s.t. ¢ = s', then there exists a
computationy € Admy S.t.|¢| = |¢'| and¢p, = s and for0 < j < |¢|,

act(¢;) = act(¢}) and(¢;, ¢}) € R,

Note that (by conditiorC3) extended bisimulation specialises to the stan-
dard HM-bisimulation on transition systems if only sequengeand ¢’ of

length one is considered Bl andE2. Also note that (by the conditiorGl
andC2) one could equivalently have formulated the bisimulation considering
only sequences being infinite or of length one. From these considerations and
Prop. 4.1 it follows that extended bisimulation coincides Withbisimulation

for generalised transition systems.

Proposition 4.3 LetG andG’ be generalised transition systems. Thieand
G’ are Inf-bisimilar if and only ifG and G’ are extended bisimilar.

It is an easy fact thdnf-bisimulation inGST under the equivalence coin-
cides withinf-bisimulation inSp(Inf), so we get the following corollary.

Corollary 4.4 Let X and X’ be presheaves iﬁp(ﬁ\f). ThenX and X' are
Inf-bisimilar if and only if€1(X) and£1(X") are extended bisimilar.

Remark that from the coreflection given in the previous section and Lem.
6 in [12] it follows that two generalised transition systems lafebisimilar
if and only if their unfoldings as generalised synchronisation treesnére
bisimilar.
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. t5 ¢
(Wait) and —

1
€nt — €nt1t €n

(Fulfill).

Fig. 3: Derivation rules for annotated finite delay

5 Operational Semantics

In this section we will express Milner's operational semantics of SCCS with
finite delay [17] in terms of generalised transition system. First the two rules
in Fig.2 are added to the rules of Fig.1. Next the inadmissible infinite compu-
tations are identified via the notions of waiting computations, subagents and
subcomputations. Put briefly: A computation— t; — t; — ... of an
agentt, is waiting if t; = et for all ; and every transition is inferresblely

from the (Wait) rule for finite delay. Agents: ¢, rec x.t, ¥;c;t; andet have

only themselves as subagetitd has the subagents ofand¢; x ¢, has the
subagents of, andt,. Any computation of an agertis then inferred from
computations of the subagents, which are referred to as subcomputations. A
computation is defined to be admissible if it is finite or has no sequel (i.e.
suffix) with an infinite waiting subcompuation.

To define a derivation transition system in which we can distinguish ad-
missible from inadmissible infinite runs we thus need to record if the (Wait)
rule was used to infer an action of a subagent. Consequently, we will annotate
terms of the formet with a numbem € w written ¢,¢, which indicates for
how long they have been delaying. In the followifigwill generally refer
to the set of annotated closed terms of SECRSote that any function with
domain7 can be regarded as a function with domdjnby discarding the
annotations. For simpliticy we will ledyt andet refer to the same agent. The
derivation rules of Fig.2 is then replaced by the rules in Fig.3.

Thepositionof a subagent is formalised as follows.

Definition 5.1 DefinePos = {1,2}*, a set ofpositions and letnil € Pos
denote the empty sequence (the top position). Any#t@nrii, define a partial
functiont: Pos — 7, given inductively (in the length of the position and the
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structure oft) by

(+ ift=a:t',t=recx.t',t = X;crt; Ort = et’ for somet’,

t(nil) = < t'(nal) ift =t'A,
| undef otherwise
(tz(p) |ftEt1 th,
tiip) = < t'(ip) ift =¢']A,
(undef otherwise

For p € Pos andt an annotated term, we will say thatp) is waiting if
t(p) = e,t’ for some term’ andn > 1.

Now, we can define when an infinite computation is inadmissible.

Definition 5.2 An infinite computatiot, =3 t; = ¢, =3 ... derivable by
the rules in Fig.1 and Fig.3 isnadmissibleif and only if there exisj € w
and a positiorp € {1, 2}* such thatvj’ > j, t;(p) is waiting. We say that a
computation isadmissibldf it is not inadmissible.

It is not difficult to verify that a computation is inadmissible by the definition
above if and only if it has a suffix with a waiting subagent which continues
to wait forever, so the definition of admissibility coincides with that of [17]
which we briefly gave in the beginning of the section.

The derivation transition systems for termsJimare generalised transition
systems with the set of admissible computations given by Def. 5.2 above.

Definition 5.3 Lett be a term in7.. Then thederivation transition systeffor

tis the reachablgeneralisedransition systen®.(t) = (S, t, —, Adm, Act),
whereS = {t' | t =" t'}, =-y=— N C S x Act x S is the relation de-
fined by the rules in Fig.1 and Fig.3 restricted to statesSinand Adm C
Comp((S,t,—, Act)) is the set of admissible computations as defined in
Def. 5.2.

Remark 5.4 Though it is not important for the present paper, note that we
do not need to recoréxactlyhow many steps a delay has waited, just if has
waited zero, one or more than one step continuously. This means that we
could replace the first rule in Fig.3 by the rutgt EN €min{n+1,2}t @nd only
allow the number$, 1 and2 in annotations. The latter set of rules has the
benefit of not giving rise to infinite graphs just because of the presence of a
finite delay, which e.g. could be relevant in connection with model checking.
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6 Presheaf Semantics

In this section we will see that the category of seperated preshS@x(&?)
is well suited to give denotational semantics to SECS

6.1 Semantics of Basic Operators

The denotation of sum is simply given by the coproducstm(ﬁ\f). The
denotations of the remaining basic operators, restriction, action prefix, and
synchronous product, can be obtained from the underlying functions on se-
quences using the free extension), described in Sec. 1, in the case where
Q = Sp(inf).

For A C Act, therestriction on sequences-) [A: Inf — Inf, maps a
sequence to the (possible empty) sequenege< « being the longest prefix
of ain A*, i.e. the sequenc® < « such that ifa = o’aa” thena ¢ A.

Fora € Act, theaction prefix on sequences Inf; — Inf maps a (possi-
bly empty) sequence to aa.

Thesynchronous product on sequengesinf x Inf — Inf is the extension
of the monoid product to sequences, i.e.dop € Inf, v @ G = =, wherey is
the unique sequence such thgt= min{|al, | 5|} andy; = «; e j;.

It is easy to see that the above mappings are monotone, and thus functors
between partial order categgries. By (implicitly) cgmposing with the em-
beddings)y¢ : Inf, < Sp(Inf) andY,¢: Inf — Sp(Inf), we get functors

(=)IA: Inf — Sp(Inf), a: Inf, — Sp(Inf) ande: Inf x Inf — Sp(inf). Ap-
plying the extensioif—), we get the following denotations of basic operators.
Basic operators:For closed terms, ¢ andt;, define

YierlZ[ti], (5)
sp(a o [Z[1])), (6)
sp(Z [H](‘low)f[[t']]), (7)
Z[t]A (8)

[[ zeltz

| =
I[a:t]
]
]

It x

[t

whereq,: Inf; — Sp(ﬁﬁ‘) is precomposed with the lifting functor| : Inf <
Inf, defined in Sec. 1 anel: Inf x Inf — Sp(Inf) is precomposed with the

(connected colimit-preserving [6]) functar: Inf x Inf — Inf x Inf defined
(on objects) byw(X,Y)(a, 8) = X(a) x Y(B). The semantic functions are
extended in the obvious way to termwith free variables in a sét, yielding
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functors

Z[tly: [ Sp(inf) — Sp(inf).

ey

Since the functors are build up from connected colimit preserving functors it
follows that they themselves preserve connected colimits.

The first three definitions (5)-(7) above only give the denotation up to iso-
morphism. It is helpful, e.g. in showing correspondence with the operational
semantics, to give an explicit semantj¢gsuch thaff¢t] = Z[t]. We will just
give the action on objects. The tagsn X .S and x are used to indicate clearly
how an element came about, which we will use in App. B.

[tIA]a = {e | « € A> ande € [t]a}. 9)

[Sicrti]a = {(sum i, (a,€)) | i € I ande € [t;]a}. (10)
e if o= ad,

la:t]e = {@ otherwise (1)

where we choose to represént | : Inf < In/fz explicitly by

LXJaz{{*} ifa=1, 12)

Xa otherwise

[t1 % to]a = {(B,e1) x (7,€2) | (13)
B,7 € Inf.3 @y = aande; € [t1]5 ande, € [ta]7}-

6.2 Semantics of Recursion

Forrecursionwe need to take care. In a “standard” semantics one would take
least fi/x\ed points, i.e. initial algebras as the meanings of recursion. However
in Sp(Inf), this would not reflect that it is admissible to unfold a recursion in-
finitely. An explicit example that illustrates this is given below, showing that
the initial algebra of the functor corresponding to the delay equation given in
Sec. 2 will be the proper denotation fifite delay and not the delay opera-
tor derived using recursion. The solution is to tdkel co-algebras as the
meanings of recursion.

22



Infinite recursion: For a ternm with one free variable;, define
Z[rec z.t] = vI][t],

i.e. (the object of) a final co-algebra of the endofuncft] : Sp(ﬁﬁ‘) —
Sp(ﬁﬁ‘). For this to be well defined, we must show existence of final co-
algebras for all functors. We will use Lem. 1.7 given in Sec. 1 to construct
final co-algebras for all relevant endofunctors as limitse@tchains. The def-
inition is then extended to processes with more than one variable in the usual
way as a limit with parameters [13]. From the explicit definitions given in
Eqg. (9)-(13) we can show that all basic operators presef¥dimits. ¢ From

the general fact that limits commute with limits [13] we get that recursion
preservesu®P-limits as well, i.e. ifrecz.t has free variables thefjrec z.¢]
preserves P-limits.

Lemma 6.1 Lett be a (possibly open) term of SCCS with free variabl@s.in
If

Z[t]y: ][] Sp(inf) — Sp(inf)
eV
(is well defined and) preserves?-limits then
Z[tiAly: [] Sp(inf) — Sp(inf)
zeVy

(is well defined and) preserves?-limits, and similarly for sum, prefix, syn-
chronous product and recursion.

As for the basic operators, we can give an explicit denotation of recursion
[recz.t] = Z[recx.t]. First we choose an explicit representation of a final
presheafl by defininingTa = {x}. Now we use the explicit definition of
limits in the categonpet to define

[recz.t]o = {(eo,€1,... ,€p,...) € H[[t]]”(T)a | [1]"(T)a€ni1 = €n},
new
(14)
wherer: [t](T) — T is the natural transformation given by(e) = = for

anye € [t](T)a. We have projections,,: [recz.t] — [t]*(T) and by uni-
versality we get an (explicit) isomorphispp: [rec z.t] — [t]([rec z.t]), such
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that

[rec z.t] —— [¢]"+(T) (15)

pt
l [t] ()

[t]([rec z.t])

commutes for any. € w. Note that, in general if has free variable¥ w {z}
thenp; andm, are natural transformations.

We have now given semantics to all operators in SE©&ept for finite
delay. It is worth remarking, that already at this stage it is clear that this
semantics will not (in general) correspond to the operational semantics given
in Sec. 5. A simple example showing this is provided by the (disastrous)
termrecz.z. According to the operational semantics, this term denotes the
process that cannot perfom any actions, which is also the process denoted by
the empty sund. It is not diffucult to compute the appropriate limit finding
thatZ[recz.z] = T, i.e. (the) final object irinf, which in no sensible way
can be equated to the denotation of the empty sum, which isitired object
in Inf. (Note that this is indeed the result if one constructs the initial algebra
instead).

However, as we will see below, we get the desired correspondence if we
restrict the language to only alloguardedrecursion.

6.3 Semantics of Finite Delay

As mentioned above, the denotation of finite delay comes about asitiaé
algebra of the functor corresponding to the delay equation.
Finite delay: For a closed term, define

Z[et] = pZ[1:x +¢],

i.e. (the object of) an initial algebra of the endofuncft : z+¢] : Sp(l/rﬁf) —
Sp(l/n\f). This initial algebra exists by Lem. 1.8 since the denotation of prefix-
ing preserves connected colimits and the denotation of sum all colimits. The
definition is extended to open terms (in whicls not free) as a colimit with
parameters.

¢ From the explicit definition of colimits iBet, we find that we can take

[et]a = {(del n, (&, €)) | n € w, @ = 1"’ ande € [[t]]a’} (16)
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as explicit definition of finite delay on objects (again the #agis used to
indicate clearly that the element arise from the denotation of a finite delay).
For 3 < a, define[et] ([«, 5]) b

, ) (deln, (3, e-[8,a7)) if =17,
(del n, () e)) 16,01 = {(del m, (L, *)) if 6=1"form <n,

forn € w, a = 1"/ ande € [[t]|.

To guarantee that the denotation of recursion is still well-defined, we need
to check that the denotations of finite delay presertelimits. This can be
done from the explicit definition given above.

Lemma 6.2 Lett be a (possibly open) term of SCOSith free variables in
V. If

Z[tly: ][] Sp(inf) — Sp(inf)

eV

(is well defined and) preservesP-limits then

et]y: J] Sp(inf) — Sp(inf)

eV

(is well defined and) preserves?-limits.

This completes the definition of our denotational semantics of SGCS
the category of seperated preshedyptinf).

6.4 Extended Bisimulation Congruence

¢ From the fact that the denotations@ﬁ) of all basic operators are built from
connected colimit preserving functors, it foIIows that they preserve open maps
in Inf. Using the fact that the inclusion Sfp(lnf) in Inf is full, together with
proposition 5 in [12] we get that this holds Sp(lnf) as well. Itis easy to

show from the explicit definition that the denotations of finite delay preserve
open maps as well (alternatively one could use the same technique as used
in [6] for showing that denotations of recursions (given by initial algebras)
preserve open maps).

Proposition 6.3 Extended bisimulation is a congruence with respect to all
basic operators of SCC&s well as finite delay.
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However, when it comes t@cursionwe meet a problem: What is the “right”
notion of bisimulation (from open maps) for denotations of open terms, i.e.
functors between presheaf categories? In [6] the notion of open maps is
extended to open natural transformations, being natural transformations for
which all components are open maps. This is shown to be sufficient to gar-
entee that open map bisimulation is a congruence with respect to the denota-
tions of recursion (given binitial algebras) in a CCS-like calculus. In [22, 3]

is suggested a slightly stronger notion of open maps between (connected) col-
imit preserving functors between presheaf categories which themself can be
regarded as objects of a presheaf category and thus comes with a canonical
notion of open maps. The second notion requires all functors to be (con-
nected) colimit preserving functors, which is not known to be the case in our
setting (because of the use of final co-algebras). The notion of open natural
transformations could be used, but we have not yet been able to show that it
is sufficient to give the desired congruence property.

6.5 Full Abstraction

Using the representation theorem in Sec. 3 we can express the denotational
semantics given above in terms of generalised synchronisation trees, defining
D.(t) = EI([t]). This allows us to relate the denotational semantics directly
to the operational semantics given in Sec. 5 within the cateGdy. First
of all we will restrict attention to terms with onlyuarded recursionRecall
from e.g. [18] that a recursiorec z.t is guarded, if all free occurences of
in ¢ is guarded, that is, within a subtemn ¢’ of ¢t for some actioru € Act.
Let 7, refer to the set of all closed, possibly annotated terms of SQG&
only guarded recursion. We will say that a tetnm 7, is standardif for all
subterms,,t’ it holds thatn = 0. We will then show, that if we quotient by
open map bisimulation, the denotational semantics for standard teffpgsin
in factequationally fully abstracivith respect to extended bisimulation. This
means that for any two standard tertasdt’ of 7,, the presheavds] and[t']
are bisimilar if and only if the generalised transition systémg) andO.(t')
arising from the operational semantics are extended bisimilar. As remarked
in Sec. 6.2 above, we cannot obtain this result for all terms of SCCS

The proof (see App. B for a more detailed proof outline) goes by showing
that there exists almf-open morphism of generalised transition systems from
D.(t) to O.(t) for any termt in 7,,.

Proposition 6.4 Lett be a standard term iff,. Then there exists adnf-open
morphism of generalised transition systems D.(t) — O.(t).
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¢ From the proposition above and Prop. 4.3 and Cor. 4.4 in Sec. 4 we can
now deduce the desired result.

Theorem 6.5 Let t and ¢’ be terms in7,. Then[t] and [¢'] are open map
bisimilar if and only ifO.(t) and O(t') are extended bisimilar.

7 Conclusion and Future Work

This paper has two main contributions. The first is a generalisation of the
categorical models for concurrency as developed in [23, 12, 3], providing
both a generalised transition system and a presheaf modgeifiioite com-
putations, suitable for agents with a notionfairnessor inadmissiblenfi-
nite computations. The generalised transition systems are instances of those
proposed in [8] and thextended bisimulatiogiven there is shown to co-
incide with the abstract bisimulation from span of open maps in our model.
The second main contribution is that we give both an operational semantics
and a denotational semantics for SCCS with finite delay, representing the no-
tion of inadmissible infinitecomputationgprecisely as given in [17] allowing
behaviours to be discriminated up éatended bisimulationThis notion of
bisimulation is a strictly finer, and as argued in the present paper and in [1],
more intuitive, equivalence than the one obtained from the fortification pre-
order in [17], which except for [1] has been the basis for previous semantics
of SCCS with finite delay [7, 11, 10]. Benefitting from the categorical pre-
sentation, our semantics appears to give a conceptually simpler treatment of
infinite computations than the one in [1].

A number of questions remains to be explored. An obvious question is
if one could generalise the finite delay tdaar recursionas in [10]. Work
is in progress on a notion of open maps between denotations of open terms
stronger than the one in [6], for which open map bisimulation is a congruence
with respect to recursion. We get a characteristic HML-like path logic [12] for
extended bisimulation from the open maps approach, which should be com-
pared to the characteristic logic given in [8]. Here comes the question about
decidability of extended bisimulation. If one restricts attention to agents for
which products and restrictions are disallowed within recursions and change
the operational semantics according to the remark in Sec. 5 all agents will
be assignedinite (generalised) transition systems. It would be interesting
to explore if there is any relationship between the present approach and the
more traditional domain theoretical approach to fairness and countable non-
determinism as in e.g. [20]. Finally, we hope to be able to extend the presheaf
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model for (finitary) dataflow given in [9] to infinite computations along the
lines of the present paper, giving a model of dataflow in which fairness, maybe
evenfair merge[19], can be expressed.

Acknowledgements:Thanks to Glynn Winskel, Marcelo Fiore and Prakash
Panangaden for helpful and encouraging discussions.
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A Grothendieck topology for a partial order

Here we give the definitions from [14] of@rothendieck topologfor a cate-
gory P and thesuptopology, specialised to the case whBris a partial order.
Let P be a partial order ang € P. Definepl= {p' € P | p' < p}. A sieveS
onpisthen aseb C pl, i.e. a downwards closed set belpw

Definition A.1 (Grothendieck topology for a partial order) A Grothendieck
topology for a partial ordeP, is a functionJ which assigns to each objegt
of P a setJ(p) of sieves om, in such a way that

C1: (maximal sieveple J(p),
C2: (stability) if S € J(p) andq < p theng] NS € J(q),

C3: (transitivity) if S € J(p) and R is any sieve o such thatg] NR €
J(g) forall ¢ € S, thenR € J(p).

Assume/J is a topology for a partial ordeP. We will now describe when
a presheafX: P°®» — Set in P is a sheaf with respect td. Assumep is
an element of? andS € J(p), i.e. asieve covering. A matching family
for S of elements ofX is a function that assigns to each elemerg S an
elementr, € X(q) such thatc, -[r,q] = z, for anyr < ¢. Given such a
matching family, an element € X (p) is anamalgation if z -[¢, p] = =, for
allg € S. ThenX is respectively @eparated presheadr asheafwith respect
to J if for any objectp € P, any matching family for any siev& € J(p) has
respectivelyat most oner a unigueamalgation.

Definition A.2 (separated presheaves and sheavedjor a partial order P
and a Grothendieck topology on P, let Sp;(P) and Sh;(P) be the full
subcategories o® induced by respectively tleeparated presheavasd the
sheavesvith respect to/. If the topology./ is clear from the context, we will
just write respectivelgp(P) andSh(P).
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For a sequence in Inf (as defined in Sec. 1), a sieve ans simply a
prefix closed set of sequences belewWe only use thesuptopology oninf,
which to each sequeneeassigns the sdtS | S is a sieve o and| | S = a},

l.e. of all sieves that hawe as supremum. It is easy to check that this satisfy
the conditions in Def. A.1, and that it works for any partial order. This topol-
ogy is in fact thecanonicaltopology forinf, being the largest topology such
that)).sa is a sheaf for anyx.

Definition A.3 (sup topology for Inf) For the partial orderinf, thesup topol-
ogy J is given byJ(a) = {al, {8 | 5 < a}}, fora € Inf

Note that if« is finite thenJ(«) contains just, i.e. the maximal sieve
ona.

B Proof of Full Abstraction

We will here give a more detailed proof outline for Prop. 6.4 of Sec. 6.5 as
repeated below. Recall thd] refer to the set of all closed terms of SCCS
with only guarded recursion and that a term is standard if for all subterms
e u’, n = 0. Let 7, refer to the set of, possible open, terms of SE@&h

only guarded recursion.

Proposition B.1 (Prop. 6.4 of Sec. 6.5) ett be a standard term iff,. Then
there exists ainf-open morphism of generalised transition systéinsD, (t) —
O ().

We will need some preliminary definitions. Foa term in SCC§ FV (t)
will denote the set of free variables in As in [17] > we definegd(t), the
guard-deptliof ¢t by

o gd(z) = gd(a:t) =0,
o gd(Zicrt;) = sup{gd(t;) +1]i €I},

e gd(ty X to) = max{gd(t;) + 1, ¢d(t2) + 1}, and
o gd(recz.t) = gd(tlA) = gd(et) = gd(t) + 1.

This is a well defined ordinal, but not necessarily a finite humber because
sums can be infinite. As in [17] the following is a key propertyydffor use
in inductive proofs in the guard depth of terms with only guarded induction.

2However, we use the convention from [15] that- 1 is the successor o.
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Lemma B.2 If z is guarded irt thengd(t[t'/z]) = gd(t).
Proof. By a straightforward structural induction. O
For a termt in 7. we definesd(t), thesubagent deptbf ¢ by
o sd(a:t) = sd(Xiert;) = sd(recx.t) = sd(et) = 0,
e sd(t; X ta) =1+ max{sd(t1), sd(t2)}, and
o sd(tlA) =1+ sd(t).

This is simply the maximal depth of a subagent and thus always finite.
Foragstl’ = (S, i, —, Adm, Act) ands € S we definethe gst above in
T by Tsq = (Ssa, S, —>sq, Admygy, Act), where

o Sqo={s|s—"5Y},
o —. = N (Ssq x Act x Ssq) and
o Admy, = Adm N —.

For any termt in 7¢, letD (t) = (S, (L, *), =+, Admg), Act). Recall that
Say = {(a,€) | a € Infande € [[t]|(e)} and=x is the unique element of
[l (L). Let Oc(t) = (o), t, —, Admy,, Act). Note that ift’ is a closed
term andt is a term with one free variable, say then[t[t'/x]] = [¢]([¢']).
Fort a term in7, ands = (a,e) € Sy definethe height ofs by h(s) =
|a| € w. Note that ifh(s) = nthen(L, x) =" s.

We are now ready to define the underlying maps of stateS;) — S,
for the morphism&;: D (t) — O(t).

Definition B.3 LetSy = {(s,t) | s € Sy andt € 7,}. Definef: Sy — 7,
by well founded recursion as follows (writinfgy(s) for f(s,t))

o fi(L,x)=t,

o fatlaa,e) = fi(a,e),

o fom (o (sum i, 5)) = fi(s),

o fuxts(a, 51X 82) = fi,(s1) X fr(s2),

o frecat(5) = fifecatsa) (ELpr)s) i h(s) >0,
o fua(s) = fi(s)A it h(s) >0,
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o fo..(1", (del ', (L, %)) = €nin't,
° fent(lnla, (del n’,s)) = fi(s) if |a] > 0.

wherep; : [rec z.t] — [t]([rec x.t]) is the isomorphism defined in Sec.6.2 and
the well founded order 087 is the lexicographical order given k1, t;) <
(Sg,tg) if h(Sl) < h(Sg) or h(sl) = h(SQ) andgd(tl) < gd(tg)

It is not difficult to check from the definitions in Sec. 6 thais only applied
to states inS;;) on the right hand side of the defining equations above.

¢From the mag: Sy — 7, we get a collection of mapsf;: Squ) — 7Ty |
t € T,} that are nicely related to each other.

LemmaB.4 Let{f;: Sawy — T, | t € T,} be the collection of maps given
above. Then there exists a collection of isomorphisms of generalised synchro-
nisation tree{oy s De(t),, — De(fi(s)) | t € T, ands € Sy} such that if

s —7 §'iInD(t) then

(fi(s) =t) = fils)) = fo (Ut,s(sl))7 (17)

Proof. (Sketch) We proceed by induction in the height of the statésrst we
defineo, ,: Dc(t),, — De(fi(s)) fort € T,ands = (L, *) € Sy, i.e. for all
roots. TherD(t),, = D.(t) and f;(s) = t so we can define; ; = 1p ). We
then definer ,: D.(t),, — De(fi(s)) fort € T,, s € Sy andh(s) = 1 by
transfinite induction iyd(t). For the induction step, assume 7, s € Sy
andh(s) = n+1. Thenthere exists a uniqug such thas,, —; sandh(s,) =
n. Fors —; s defineo,s(s") = 0y, (s.),01.0, (s) (01,5, (8")). It is not difficult
to verify that this indeed defines an isomorphism fronft), to D.(f:(s)).
Assumingf,(s) = t' and f,(s,) = " we get by inductionfy (o, (s)) =t
andf(s') = fu (Ut,sn(sl)) = fv (O-tllyo't,sn(s) (Ut,sn(sl))) = fv (Ut,s(sl))- O

¢ From the lemma below it follows that the maps just defined are the un-
derlying maps ofin-open morphisms fronfin(D.(t)) to fin(O(t)).

Lemma B.5 Let{f;: Sqy) — T, | t € T,} be the collection of maps given in
Def. B.3 above. If;(so) = to for s € Sy then

(381 S Sd(t)‘SO i),g S1 andft(Sl) = tl) if and Only |ft0 N t1 (18)

where—; is the transition relation given by the operational semantics in Fig. 1
and Fig.3.
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Proof. We first show by transfinite induction mi(¢) that
(3s1 € Say-(L, %) =¢ sy andfi(s1) = t;) ifand only ift = ¢; .

Then (18) follows forsy, € Sy and f;(so) = to by using (17) of Lem. B.4.
O

Corollary B.6 The mapg; as given above defines foe 7, amapf,: Saz) —
S?(t) which is the underlying map offén-open morphism fronfiin(D.(t)) to
fin(Oc(t)).

To show that the mapg define maps aofeneralisedransition systems we
show that they preserve admissible computations. For an infinite admissible
computationp of D.(t) we can always find a non-empty prefix of the image
of ¢ underf;, in which all initially waiting subagents are fullfilled.

Lemma B.7 Lett be a term in7, and ¢ € AdmgyN —* an infinite ad-
missible computation db.(t). Assumep,, = (sp, an, Snt1) fOr n € w and
fi(sn) = t,. Then there exists > 0 such that

Vp € Pos,Im < n.t,,(p) is notwaiting.

Proof. Easy induction irsd(t,) using Lem. B.4. O

It follows by a simple mathematical induction thAtpreserves admissi-
bility.

LemmaB.8 Lett be a term in7,. Thenf,  (Admgay)) C Adm,w, where
fi IS the extension of; to computations as given in Def. 3.4.

We can now conclude from Lem. 3.5, Cor. B.6 and Lem. B.8 jhate-
fines a morphism of generalised transition systems.

Proposition B.9 Lett¢ be a term in7,. Thenf,: S, — Sa) is the under-
lying map of states of a morphism of generalised transition systems which we
will refer to asF;: D.(t) — O(t).

To show that;: D, (t) — O,(t) is aninf-openmorphism we neet to check the
two zig-zag conditions of Prop. 4.1 in Sec. 4. As already mentioned above, the
first condition follows directly from Lem. B.5. To show the second condition,

it suffices to show thaf;: S, — Sa) reflectsadmissible computations,

i.e. thatAdmfd(t) - Admd(t), WhereAdmfd(t) = ft;ol(Admo(t)> = {(b S
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Comp(De(t)) | fioo(®) € Admyy}. The proof goes by structural induction
in ¢t and for the casé = rec z.t" we will add a termT to the calculus SCGS
The operational semantics is extended by adding the rule

— (a € Act).
T—=T

As denotation ofT we take the explicit terminal element Sfp(ﬁ\f), le.
[Tl = {*}. The mapfr: Syt)y — Ser) and isosor: D(T),, —

BN

D.(fr(s)) for s € Sy extending Def. B.3 and Lem. B.4 are defined in the
obvious way, i.e.ft(s) = T forall s € Syr) andor (o) (ad/, x) = (o, *).
We then use the following property of the mafpsn connection with substi-
tution.

Lemma B.10 Lett be aterm off ? such thatF'V' (t) = {z}. If m: [t'] — [t"]
is a morphism such that

Vs € Saq),Vp € Pos,Vn > 1
(T for (EL(m)s)p = eu” = T fr (s)p = €,1)
then

Vs € Saq /a)), V0 € Pos,Vn > 1
(Elu”'ft[t”/x] (EU[tIm)s)p = exu” = . fyjpr ) (s)p = Enul)

Proof. Assume thatn: [¢'] — [¢"] is a morphism such that

Vs € Syu),Vp € Pos,Vn > 1
(Fu". frr (EL(m)s)p = eu” = T fy (s)p = e,)

By well founded induction we prove fos € Sy /) @andt € 77 with
FV(t) = {x} that

Vp € Pos,¥n > 1(3u". fypr 2 (EL[t]m)s)p = e,u” = I fyp 12 (s)p = e,0)

The well founded order is, as in Def. B.3, given byi,t1) < (so,t2) if
h(Sl) < h(Sg) or h(Sl) = h(Sg) andgd(tl) < gd(tg) (|

We only use the lemma in two special cases, giving the two corollaries
below.
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Corollary B.11 Lett be atermin7 such thatF'V () = {=} andm: [t'] —
[T] the unigue morphism into the terminal presheaf. Then

V¢ € Comp(O.(t[t'/z])),
fo7 21 (EL([tIM) @) is inadmissible=- fyy/.)(¢) is inadmissible.

For ¢ a standard term iff,° such thatF'V (t) = {z} we definet® = z and
t"t ="t /x].

Corollary B.12 Lett be a standard term iff? such thatF'V'(¢) = {z} and
let p;: [recz.t] — [t[recx.t/x]] be the isomorphism given in Sec. 6.2. Then
Vn € w,V¢ € Comp(O.(t"[rec z.t/x])),

fnt1frecat/a) o (EL[E]" Pty ) oo ®) IS INADMiSSIDIE=> fin[recs.t/a)  (#) IS INAdmMissible.

Proof. By definition frec,.¢(s) = fijreca.t/z] (EL(pe)s) if h(s) > 0 and since

t is a standard term we haw® € Pos, fireca.t/a)(L, ¥)p = €,u = n = 0,

so we get thal's € Syifeca.t/a)) VP € PosVn > 1, fyreca.t/a] (Sl(,ot)s)p =
€t = frect(8)p = €,u @and the desired result follows from Lem. B.10 and
Def. 5.2, by noting that" ™ [rec z.t/z] = t"[t[recx.t/z]/z| and[t]" = [t"].

a

Lemma B.13 Lett be a term in7,” such thatF'V () = {z}. Then

vt e T,U {ThHAdmy .y © Admawy = Admy 00y © AdMagre /)
implies

Vt' e T,U{T}Vn € w,

Admy g,y © Admay = Admiy ggnp ) S AdMagniy /o))

Proof. By an easy induction in. O

Proposition B.14 Let ¢ be a standard term iy, such thatF'V () C {z}.
Then for allt’ in 7, U {T}, Admy .y © Adma) implies Admy ;000 €
Admd(t[t//z]) .
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Proof. (Sketch) By structural induction i using Lem. B.12, Lem. B.11 and
Lem B.13 above in the case for recursion. O

If we taket to be a closed term in the proposition above and .= T
thent[t'/x]) = t so we get thay,  reflects admissibility, which was what we

wanted to show.

Corollary B.15 Lett be a standard term ifi,. ThenAdmy ;) © Admy.
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