
B
R

IC
S

R
S

-99-28
T.T.H

ildebrandt:
A

F
ully

A
bstractP

resheafS
em

antics
ofS

C
C

S
w

ith
F

inite
D

elay

BRICS
Basic Research in Computer Science

A Fully Abstract Presheaf Semantics of
SCCS with Finite Delay

Thomas Troels Hildebrandt

BRICS Report Series RS-99-28

ISSN 0909-0878 September 1999

Copyright c© 1999, Thomas Troels Hildebrandt.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/28/

A Fully Abstract Presheaf Semantics of
SCCS with Finite Delay∗

Thomas T. Hildebrandt†

BRICS‡

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

We present a presheaf model for the observation ofinfinite as well
as finite computations. We apply it to give adenotationalsemantics of
SCCS with finite delay, in which the meanings of recursion are given by
final coalgebras and meanings of finite delay byinitial algebras of the
process equations for delay. This can be viewed as a first step in repre-
sentingfairnessin presheaf semantics. We give a concrete representa-
tion of the presheaf model as a category ofgeneralised synchronisation
treesand show that it is coreflective in a category ofgeneralised transi-
tion systems, which are a special case of the general transition systems
of Hennessy and Stirling. The open map bisimulation is shown to co-
incide with theextended bisimulationof Hennessy and Stirling. Finally
we formulate Milners operational semantics of SCCS with finite delay
in terms of generalised transition systems and prove that the presheaf
semantics isfully abstractwith respect to extended bisimulation.

∗The results of this paper appear in Proceedings of CTCS’99, ENTCS.
†This work was initiated during a stay at LFCS, University of Edinburgh, Scotland.
‡Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

Introduction

When reasoning about and describing the behaviour of concurrent agents it is
often the case that some infinite computations are consideredunfair and con-
sequently ruled out as beinginadmissible. An economical way of studying
this situation was proposed by Milner in [18] showing how to express a fair
parallel composition in his calculus SCCS (synchronousCCS) by adding a
finite, but unboundeddelay operator. Syntactically the finite delay of an agent
t is writtenεt. The agentεt can perform an unbounded number of1-actions

εt
1→ εt (delays) butmust eventuallyperform an actionεt

a→ t′ if t can per-
form an actiont

a→ t′ or stopif t cannot perform any actions. In other words,
its actions are the same as for (the possibly infinite delay)δt = rec x.(1 :x+t),
except that infinite unfolding of the recursion is not allowed.

To deal with agents in which only some infinite computations are admissi-
ble, one must readdress the issue of how to represent the behaviour of agents
and so when two agents behave equally, i.e. they denote the same process.
The approach used for CCS and SCCS, taking two agents to be equivalent if
their derivation trees are strong bisimilar [16], will identify agents that only
differ on whether some infinite computations are admissible or not, in partic-
ular εt is identified withδt for any termt. Moreover, (by definition) bothεt
andδt should be solutions to the equation

x ∼= (1 : x+ t) (1)

(up to equivalence) so process equations will not have unique solutions as it
is the case in CCS and SCCS (with guarded recursion).

In [18], Milner proposes a behavioural preorder calledfortification, which
is designed such that (1) it induces an equivalence which distinguishes the two
notions of delay and coincides with strong bisimulation for “standard” agents,
(2) recursive processes areleastfixed points of the associated process equa-
tions and (3) the equivalence is a congruence with respect to all the operators
of the language (under an assumption of guarded recursion). This approach
works reasonably, but is not completely satisfactory. As pointed out by Aczel
in [1], the fortification equivalence makes some non desirable identifications
of agents due to the fact that infinite computations are treated totally sepa-
rately from finite computations. For example, the two agentsδ(a :0 + δ0) and
ε(a : 0 + δ0) (where0 is the agent without any actions) are identified by the

2

fortification equivalence. Both agents get assigned the derivation tree

◦

•1
a

OO

1 ◦ • 1

•1

__@@@@a
OO

1

??~~~~ ◦ • 1

•1

__@@@@a
OO

1

??~~~~

, (2)

for which the admissible infinite action sequences of the agents underlying
the nodes are the same: For a black node, the underlying agent is either the
original agent or the agentδ0, for which1ω is theonlyadmissible infinite ac-
tion sequence. The underlying agent of a white node is the agent0, which
has no action sequences at all. So, the isomorphism between the deriva-
tion trees of the two agents is a bisimulation satisfying that the underlying
agents of any two related nodes have the samesetof admissible infinite ac-
tion sequences. This implies the fortification equivalence. However, for a
true branching equivalence, the two agents should not be equivalent. The
first agent can delay infinitelyremainingable to perform an a-action at any
time, while the second agent must reach a state in which it cannot perform an
a-action. Aczel [1] proposes a final-coalgebra semantics, which gives a bisim-
ulation closely related to theextendedbisimulation introduced by Hennessy
and Stirling in [8] forgeneral transition systems. This bisimulation indeed
distinguishes the two agents given above.

The background of the present paper is the work on presenting models for
concurrency categorically as initiated by Winskel and Nielsen [23] and devel-
oped further in the work on bisimulation from open maps [12] and presheaf
models for concurrency [3, 6, 9, 22]. Our goal is twofold: We want to extend
the categorical approach (in which the issue of infinite computations and fair-
ness has been absent so far) to models for infinite computations and we want
to give a denotational semantics to SCCS with finite delay which captures a
behavioural equivalence similar to the extended bisimulation of [8]. As we
will see, these two goals can indeed be met.

One of the forces of describing models for concurrency within the lan-
guage of category theory is that different models suitable for different pur-
poses, can be formally related to each other. E.g. in [23] the category of
synchronisation trees suitable for giving denotational semantics to CCS-like
process calculi is shown to be a coreflective subcategory of the category of
transition systems suited for operational semantics. Another force was added
by the notion ofbisimulation from open mapsintroduced in [12], from which
one gets an abstract behavioural equivalence by choosing apath category,

3

i.e. a subcategory of the model at issue identifying theobservable com-
putations. The open maps approach increased its worth through the further
development [3, 6, 5, 22] of thepresheafmodels for concurrency proposed
in [12]. Here onestartswith a path categoryP and then takes the categoryP̂
of presheaves overP as model, justified categorically by being the free col-
imit completion ofP [6]. Now any presheaf model̂P comes with acanonical
notion of bisimulation, takingP as the path category. In [6, 22, 3] it is shown
that presheaf models themselves can be related within a category in which
arrows are (connected) colimit preserving functors. Such functors preserve
the canonical bisimulation and general techniques for their construction are
provided.

Perhaps the simplest example of a presheaf model is obtained from the
categoryFin of all finite sequences of actions from a setAct ordered by
the usual prefix ordering. The categorŷFin is equivalent to the category of
(Act) labelled synchronisation trees and the typical constructions of a CCS-
like language can be expressed as functors preserving the canonical equiv-
alence [12, 6]. In this light, it was natural to approach a generalisation of
the categorical models to models for infinite computations by studying the
presheaf categorŷInf, whereInf = Fin ∪ Actω is the path category obtained
by adding allinfinite sequences of actions to the categoryFin. With the help
of a simpleGrothendieck topologywe get indeed a suitable model for infi-
nite computations from the category ofseperated presheaves[14] over Inf.
A careful generalisation of the models of synchronisation trees and transition
systems lifts the relationship between the “standard” finitary models to the in-
finitary models and gives a concrete representation of the presheaf model for
infinite computations as generalised synchronisation trees, coreflective in a
category of generalised transition systems. The generalised transition systems
are defined as instances of the general transition systems of [8] and it turns
out that the extended bisimulation defined in [8] coincides with the abstract
bisimulation obtained from open maps. We show how to give an operational
semantics of SCCS with finite delay in the generalised transition systems cap-
turing exactly the definition of inadmissible computations given in terms of
waiting subcomputations in [17]. We then give a denotational semantics in the
presheaf model which we prove to beequationally fully abstractwith respect
to extendedbisimulation.

In all of the steps above we greatly benefit from the categorical presenta-
tion. Unbounded non-determinismis represented simply by (infinite) coprod-
ucts. By utilizing the general techniques from [3] we get very simple defi-
nitions of the denotations for prefixing and synchronous product, for which

4

congruence properties follow almost for free. As meanings of recursion we
takefinal coalgebras, corresponding togreatestfixed points and the finite de-
lay operator is simply obtained as an initial algebra corresponding to aleast
fixed point of the process equation (1) given above. Finally, the categorical
relationships between the different models and the general theory of bisim-
ulation from open maps reduce the problem of relating the two semantics to
finding an open map within the category of generalised transition systems.

A number of papers [1, 11, 7, 8, 21] have already proposed denotational
semantics for SCCS with finite delay and models for non-deterministic pro-
cesses with infinite computations. As mentioned above, the approach we take
is closely related to the work in [1] and [8]. However, the admissible infi-
nite computations in [1] appear to be identified in a rather syntax dependent
way as opposed to simply arising from the use of final coalgebras in giving
meanings to recursion. The semantics given in [11] is also shown to be fully
abstract, but with respect to thefortificationequivalence, so it makes the non-
intuitive identifications described above. Moreover, it only coversbounded
non-determinismas obtained from terms in which only a binary sum is al-
lowed. The semantics given in [7] focuses on the fortification equivalence
too. Also, for all the models given in [11, 7, 21] the order relation between
elements is designed such that meanings of recursion can be given byleast
fixed points using areverseordering on infinite observations.

The structure of the paper is as follows. In Sec. 1 we give some prelimi-
nary definitions and recall the categorical concepts used in the paper. In Sec. 2
we recall the calculus SCCS [18], the finite delay operator and how to derive
a fair parallel [17]. In Sec. 3 we introduce respectively the new presheaf
model and the transition system models for infinite computations. Section 4
is devoted to the bisimulation obtained from open maps and its relationship to
the extended bisimulation of [8]. In Sec. 5 we formulate Milner’s operational
semantics of SCCS with finite delay in terms of the generalised transition sys-
tems introduced in Sec. 3 and in Sec. 6 we give the presheaf semantics and
the full abstraction result. Comments on future work is given in Sec. 7. The
appendixes contain details on Grothendieck topologies and the proof of full
abstraction.

1 Preliminaries

Notation 1.1 For a setS, let S∗ denote the set of finite, (possibly empty)
sequences andS+ the set of finite non-empty sequences. LetSω denote the
set of infinite sequences and defineS∞ = S+ ∪ Sω, i.e. the set of non-empty

5

finite or infinite sequences. We will let roman letters range over elements and
greek letters range over sequences. Let|α| denote the length ofα. If j ∈ ω
and|α| ≥ j + 1, letα(j) = α0α1 . . . αj, i.e. the firstj actions ofα. For α, α′

such that|α| < ω we writeαα′ for the composition of the two sequences. If
β ∈ S∗ andβ ≤ α in S∗ ∪ Sω, we will writeβ ≤f α for β is finite and below
α.

Assume a fixed setAct of actions. We will consider finite or possibly infinite
sequences of actions fromAct ordered by the standard prefix order. In partic-
ular we will let Fin andInf refer to the two partial order categoriesAct+ and
Act∞ (i.e. Act+ ∪ Actω) obtained in this way. They will play the key role as
path categoriesof presheaf models for the observation of respectively finite
and possibly infinite computations.

1.1 Presheaf Models, Bisimulation from Open Maps and
Transition Systems

Presheaf categories were suggested in [12] as abstract models for concurrency,
equipped with a canonical notion of bisimulation equivalence.

The basic idea is to start from a (partial order) categoryP defining theob-
servable computationsorpath shapesof interest. The categorŷP of presheaves
overP is then taken as the category of processes with such path shapes. The
categorŷP is thefree colimit completionof P, i.e. the category obtained (up
to equivalence) by freely adding all colimits toP. It has as objects all functors
X : Pop → Set (whereSet is the category of all small sets and functions be-
tween them) and as arrows natural transformations between such. Any functor
F : P → Q for Q a cocomplete category (i.e. a category having all colimits),
can be extended freely (as a left Kan extension [13]) to a (colimit preserving)
functorF! : P̂→ Q making the diagram

P

Q

P̂
� � YP //

F
��

????????

F!

��

commute. The functorYP : P ↪→ P̂ is the well knownYoneda embedding
mappingp of P to the presheafP[−, p]. This extension will be used in Sec. 6,
in the special case whereQ is a presheaf category.

Notation 1.2 If q ≤ p in a partial order categoryP, let [q, p] denote the
unique arrow inP and [p, q] the unique arrow inPop. We will employ the

6

standard notation [14], writingx · [q, p] for the elementX([p, q])x, i.e. the
restriction ofx to the pathq.

The categorical presentation of models for concurrency comes with a gen-
eral notion ofbisimulation from open mapsintroduced in [12]. Given a model
M, the idea is to identify apath categoryP ↪→ M as a subcategory ofM. A
mapf : X → Y in M is then said to beP-open(or just open if the path cate-
gory is clear from the context) if whenever for two path objectsP,Q of P and
morphismm, p, q such that the diagram

P
p

//

m
��

X

f

��

Q
q

//

h
??

Y

commutes, there exists a morphismh : Q→ X as indicated by the dotted line,
making the two triangles commute. Intuitively this says that at any point in the
simulation described byf , any path extension inY simulates a corresponding
extension inX, i.e. f is like a functional bisimulation. Two objectsX andY
is said to beP-bisimilar if they are related by a span ofP-open mapsf1, f2,

i.e. X Z
f1

oo
f2

// Y.

¿From the embeddingYP : P ↪→ P̂, we get acanonicalpath category
and thus a canonical notion of bisimulation from open maps for any presheaf
categorŷP.

In [12], focus was put onrooted presheaves, i.e. presheaves such that
X(⊥) is the singleton set if⊥ is an initial element of the path category.
In particular, it was remarked that the category of rooted presheaves over
Act∗ is equivalent to the categoryST of synchronisation trees(with label
setAct) andAct∗-bisimulation was shown to coincide with the usual HM-
bisimulation [18] on labelled transition systems.

Definition 1.3 ([23]) A transition systemT (with label setAct) is a quadru-
ple (ST , iT ,→T , Act), whereST is a set ofstates, iT ∈ ST is theinitial state
and→T⊆ ST×Act×ST is a transition relation. As usual we writes

a→T s
′ for

∃(s, a, s′) ∈→T . For a transitiont ∈→T , let do(t), co(t), act(t) refer to re-
spectively the domain, codomain and action oft. LetComp(T) = {φ ∈→∞T |
∀0 < j < |φ|.co(φj−1) = do(φj)}, i.e. the set of non-empty (finite or in-
finite) computations ofT and letCompfin(T) = Comp(T)∩ →+

T , i.e. the
finite computations. DefineRun(T) = {φ ∈ Comp(T) | do(φ0) = iT},
Runfin(T) = Run(T)∩ →+

T andRuninf(T) = Run(T)∩ →ω
T .

7

Transition systems (with label setAct) form the objects of a category
TS, with arrows being simulations. A simulation fromT to T ′ is a mapping
σ : ST → ST ′ of states, such that

• σ(iT) = iT ′ and

• s a→T s
′ implies thatσ(s)

a→T ′ σ(s′).

Say a transition system isreachableif any state is reachable from the initial
state.

A synchronisation treeis a transition system for which the transition re-
lation is acyclic and any state is reachable from the initial state by a unique
sequence of transitions. The synchronisation trees (with label setAct) induces
a full subcategoryST of TS.

The equivalence between rooted presheaves in̂Act∗ and synchronisation trees
is given formally in [24]. Given a rooted presheafX in Âct∗, its corresponding
synchronisation treeE l(X) = (SX , iX ,→X , Act) under the equivalence is
constructed as follows1. The set of states is defined bySX =

{
(α, x) |

α ∈ Act∗ andx ∈ X(α)}, i.e. the disjoint union of all the sets of elements.
The initial state (the root) is given byiX = (⊥, ∗), where⊥ is the empty
sequence inAct∗ and∗ the unique element ofX(⊥). There will be a transition
(α, x)

a→ (αa, x′) iff x′ ·[α, αa] = x, i.e. if x′ ∈ X(αa), x ∈ X(α), andx′

restricts tox.
Note thatAct∗ is equivalent to the category obtained fromInf by adding a

bottom element (the empty sequence). In general, ifP is a partial order, letP⊥
denote the partial order obtained by adding a new bottom element. It is then
easy to see, that̂P is equivalent to the category of rooted presheaves overP⊥,
so in particular̂Fin is equivalent to the categoryST. Let b−c : P̂ ↪→ P̂⊥ be the
functor mapping a presheaf in̂P to its corresponding rooted presheaf in̂P⊥.
Let d−e : P̂⊥ → P̂ be the converse mapping, discarding the root(s). IfP̂⊥ is
restricted to rooted presheaves this gives the equivalence mentioned above and
the open maps between rooted presheaves inP̂⊥ via the equivalence are ex-
actly thesurjectiveopen maps in̂P. Instead of considering rooted presheaves
of a category with bottom, one can thus work with full presheaf categories
(not necessarily having a bottom element) and surjective open maps.

By composing the Yoneda embedding withd−e we get an embedding
Y◦P : P⊥ ↪→ P̂, thestrict extension ofYP, mapping the bottom element inP⊥

1The category freely generated by the synchronisation tree corresponding to a presheafX
is equivalent to thecategory of elements[14] of X.

8

to the empty presheaf. In fact̂P,Y◦P is the free connected colimit completion
of P⊥. (A connected colimit is a colimit of a non-empty connected diagram).
The following proposition [4, 22, 3] is one of the most important results about
open map bisimulation in presheaf models.

Proposition 1.4 Let F : P̂ → Q̂ be a connected colimit preserving functor.
ThenF preserves surjective open maps, i.e. ifm : X → Y is surjective open
in P̂ thenF (m) : F (X)→ F (Y) is surjective open in̂Q.

1.2 Initial Algebras and Final Coalgebras

Below we recall the categorical analogues of pre- and post-fixed points [2].

Definition 1.5 Let F : P → P be an endofunctor on a categoryP. A co-
algebrafor F is a pair (p,m) of an object and a morphism ofP such that
m : p→ F (p). Dually, analgebrafor F is a pair(p,m) such thatm : F (p)→
p. The co-algebras ofF form the objects of a categoryFcoAlg, with arrows
f : (p,m)→ (q, n) being arrowsf : p→ q of P such that

p m //

f

��

F (p)

F (f)
��

q n // F (q)

commutes. Dually, algebras forF form the objects of a categoryFAlg.

Initial and final objects inFAlg andFcoAlg are the categorical analogues of
minimal and maximal fixed points ofF .

Lemma 1.6 LetF : P→ P be an endofunctor on a categoryP. If (p,m) is an
initial algebrafor F , i.e. an initial object in the category ofF -algebras, then
m : F (p)→ p is an isomorphism. Moreover if(q, n) is another initial algebra
for F , q is isomorphic top. The dual statement holds forfinal co-algebras. If
F has an initial algebra, letµF denote the (unique upto isomorphism) initial
algebra. Similarly, letνF denote the final co-algebra ofF if it exists.

The following lemma is the main technique in proving existence of final
co-algebras.

Lemma 1.7 Let P be a category with terminal object> andF : P → P an
endofunctor onP. If theωop-chain

> ← F (>)← F 2(>)← . . .← F n(>)← . . .

9

has a limiting cone(P, {pn : P → F n(>)}n∈ω) andF preserves this limit,
i.e.

(F (P), {! : F (P)→ >} ∪ {F (pn) : F (P)→ F n+1(>)}n∈ω)

is a limiting cone too, then the unique mediating (iso)morphismm : P →
F (P) is a final coalgebra.

The above lemma is the dual of the following lemma for construction of
initial algebras, as found in e.g. [2].

Lemma 1.8 Let P be a category with initial object⊥ and F : P → P an
endofunctor onP. If theω-chain

⊥ → F (⊥)→ F 2(⊥)→ . . .→ F n(⊥)→ . . .

has a colimitP and F preserves this colimit, then the unique mediating
(iso)morphismm : F (P)→ P is an initial algebra.

Since limits are computed pointwise in a presheaf categoryP̂, the terminal
object in P̂ is the presheaf> : Pop → Set that yields the one element set
(the terminal object inSet) for any objectp in P. Dually, the initial object
⊥ : Pop → Set is the empty presheaf, yielding the empty set for all objectsp
in P.

2 SCCS, Finite Delay and Fair Parallel

In this section we recall Milners calculus SCCS [18] ofsynchronousCCS and
the definition of a fair parallel composition via a finite delay operator [17].
Assume a destinguished element1 ∈ Act such that(Act, •, 1) is an Abelian
monoid with1 being the identity. Thebasicoperators of SCCS are action
prefixing, synchronous product, non-deterministic choice and restriction. For-
mally, the terms are given by

t ::= a : t | t1 × t2 | Σi∈Iti | t�A,

wherea ∈ Act, A ⊆ Act andI is an index set. With the basic operators we
can build processes with only finite behaviour. As usual, we will write0 for
an empty sum, omit the summation sign for a unary sum and writet1 + t2 for
a binary sum.

10

a : t
a→ t

,
tj

a→ t′

Σi∈Iti
a→ t′

(j ∈ I),
t1

a→ t′1 t2
b→ t′2

t1 × t2
a•b→ t′1 × t′2

,

t
a→ t′

t�A a→ t′�A
(a ∈ A),

t[rec x.t/x]
a→ t′

rec x.t
a→ t′

.

Fig. 1: Operational semantics of SCCS

To be able to define processes with possibly infinite runs, we add a recur-
sion operator, extending the grammar by

t ::= . . . | x | rec x.t,

wherex is a process variable andrec x. binds the variablex in t. We will let
T refer to the set of closed terms of the calculus SCCS.

The rules given in Fig. 1 defines the operational semantics of SCCS, from
which we get aderivation transition systemfor any closed termt as defined
below.

Definition 2.1 Let t be a term inT . Then thederivation transition system
for t is the (reachable) transition systemD(t) = (S, t,→t, Act), whereS ={
t′ ∈ T | t →∗ t′

}
, i.e. all states reachable fromt by the relation→ defined

by the rules in Fig. 1 and→t=→ ∩S × Act× S.

Note that in the synchronous product, both processes must perform an action,
and the resulting action is the monoid product of the two individual actions.
Recursion acts by unfolding andt[rec x.t/x] is the usual substitution ofrec x.t
for the free variablex in t.

An important derived operator introduced in [18] is thedelayoperatorδ.
For a processt, defineδt = rec x.(1 :x + t). In the standard semantics,δt is
the (unique up to bisimulation) fixed point of the process equation

x ∼ (1 :x+ t). (3)

As an economical way to be able to express that some infinite runs are
inadmissible, Milner introduces in [17] afinite, but unbounded delayoperator
ε (expectation). Its immediate actions are the same as for the derived delay
operator, which can be described by the rules given in Fig. 2.

11

εt
1→ εt

(Wait) and
t

a→ t′

εt
a→ t′

(Fulfill).

Fig. 2: Derivation Rules for Finite Delay

However, infinite waiting is ruled out as inadmissible. In other words,
fulfillment of the delay is always expected. The idea is that finite delay is
the only operator giving rise to inadmissible infinite runs. Recursion will
as usual give rise to admissible infinite runs. This is sufficient to capture
weak fairnessof anasynchronousparallel composition. For processest and
t′, the fair asynchronous parallel composition [17] oft and t′ is defined by
t||t′ = (εt× t′) + (t× εt′). The composition is asynchronous in the sense that
one process can delay while the other progress; it is fair in the sense that no
process can delay this way forever.

We will let SCCSε andTε refer to respectively the calculus SCCS extended
with the finite delay operatorε and the set of terms of the extended calculus.

In the next section we will introduce two closely related categorical mod-
els, suitable for giving respectively denotational and operational semantics in
which inadmissibilityof infinite computations can be expressed.

3 Observing Infinite Computations

We approach a categorical model for infinite compuations by studying the
presheaf model obtained by adding infinite paths to the path categoryFin,
resulting in the categoryInf. This fits with the spirit of [8], where experiments
on systems are allowed to consist ofinfinite computations. Categorically, it
can be seen as a completion of the path category with all directed colimits.

3.1 A Presheaf Model for Infinite Computations

To get a better understanding of presheavesX : Infop → Set in Înf, one can
try first to construct a synchronisation tree, as described in Sec. 1.1, for the
finite part ofX, i.e. the restriction ofX to Fin. Forα ∈ Actω, an element
x ∈ X(α) will then specify a unique infinite path in the tree. To be more
precise, ifα ∈ Actω andx ∈ X(α) then we will say thatx is a limit point
of the infinite path given by the elementsx ·[β, α] for β ≤f α, i.e. the re-
strictions ofx to finite observations. We wish to represent that an infinite

12

path isadmissibleby thepresenceof such a limit point, and that it isinad-
missibleby theabsenceof a limit point. With this interpretation, the model
is a bit too general; it allows an infinite path to have two or even more limit
points, not representing anything more than if it had only one limit point. We
take the subcategory of presheaves with atmost one limit point for any infinite
sequence as our model. This category is not as ad hoc as it might seem. Ac-
tually, it comes about as the category ofseparated presheavesover Inf with
respect to a simple Grothendieck topology forInf, which is often referred to
as the sup topology. (In the standard terminology, the infinite paths and limit
points are respectivelymatching familiesand (unique)amalgations).

Definition 3.1 Let Sp(Înf) denote theseparated presheaves, which is the full
subcategory of̂Inf induced by the presheavesX satisfying that for allx, x′ ∈
X(α), α ∈ Actω

• (Separated)(∀β ≤f α.x ·[β, α] = x′ ·[β, α])⇒ x = x′.

Moreover, we can recover the categorŷFin (i.e. of synchronisation trees)
within Înf, as being equivalent to the categorySh(Înf) of sheavesover Inf
for the same topology. In our case, a separated presheaf is a sheaf if it has
exactlyone limit point for any infinite path. Thus, a sheaf will correspond
to a synchronisation tree in whichany infinite path is admissible, i.e. alimit
closedsynchronisation tree. But this is just the standard interpretation made
explicit.

Proposition 3.2 The categoryF̂in is equivalent to the categorySh(Înf), of
sheaves overInf with respect to the sup topology.

Sheaves, separated presheaves and presheaves are known to be closely
related and rich in structure [14, 25]. We will especially make use of the
fact, that they are related by a sequence of reflections, i.e. the inclusions
Sh(Înf) ↪→ Sp(Înf) andSp(Înf) ↪→ Înf both have left adjoints (reflectors).
In our case the reflections are particulary simple. The reflectorsp : Înf →
Sp(Înf) acts by unifying limit points that specify the same infinite path. The
reflector fromSp(Înf) to Sh(Înf) acts by completing with limit points of all
infinte sequences.

We also have that the objects ofInf under the Yoneda embedding are
sheaves. In fact the Grothendieck topology we use is thecanonicaltopol-
ogy for Inf [14], which simply means that it is the largest topology with this
property. Together with Prop. 3.2, this gives a formal relationship between

13

the path categoryInf, the presheaf model̂Fin of finite observations and the
modelsSp(Înf) andÎnf of possibly infinite observations as summarized in the
diagram below.

F̂in

Sh(Înf) Sp(Înf) Înf

Inf

� p

⊥
inf

!!BBBBBBBBBB
fin

aaBBBBBBBBBB

� � ⊥ //

oo
� � ⊥ //

oo

?�

OO

��

∼=

OO

(�
YInf

55lllllllllllllllllll

(4)

Note that this also implies (a general fact) that the categorySp(Înf) has
all limits and colimits. In particular, it shows that limits are computed as
in Înf and similarly for colimits, except for being followed by the reflector,
identifying redundant limit points. As indicated in the diagram, we will let
fin a inf refer to the reflection between̂Fin and Sp(Înf) obtained via the
equivalecence betweenSh(Înf) andF̂in.

For more details on Grothendieck topologies, sheaves and separated presheaves
see [14]. The special, and simpler case for a Grothendieck topology on a par-
tially ordered set is given in the appendix, together with the definition of the
Grothendieck topology relevant for this paper.

3.2 Generalised Transition Systems

A generalised transition systems is a transition system in which theadmissible
infinite computations are represented explicitly. More precisely, we take a
generalised transition system to be a transition system together with a set
C ⊆ Comp(T) such thatC = C•, whereC• ⊆ Comp(T) be the least set
includingC such that

C1: (composition) ifφ, φ′ ∈ C• andφφ′ ∈ Comp(T) thenφφ′ ∈ C•,

C2: (pre- and suffix) ifφφ′ ∈ C• andφ is finite thenφ, φ′ ∈ C• and

C3: (finite)Compfin(T) ⊆ C•.

The two first conditions ensure that the definition fits with that ofgeneral
transition systemsin [8]. The last condition restricts attention to the special
case where any finite computation is admissible. It is easy to show that if
every state is reachable, the set of admissible computations is determined by
a unique set of infinite runs as stated in the lemma below.

14

Lemma 3.3 Let T be a reachable transition system andC ⊆ Comp(T). If
C = C• then there exists a unique setA ⊆ Run(T)\Runfin(T) such that
C = A•.

Definition 3.4 A generalised transition system (gts)G (with label setAct)
is a five-tuple(SG, AdmG, iG,→G, Act), such thatT = (SG, iG,→G, Act)
is a transition system (with label setAct) and AdmG ⊆ Comp(T), the
set of admissible computations, satisfies thatAdmG = AdmG

•. If G =
(SG, AdmG, iG,→G, Act) is a generalised transition system letfin(G) =
(SG, iG,→G, Act), i.e. the underlying transition system. Generalised tran-
sition systems (with label setAct) forms the objects of a categoryGTS. A
morphism fromG toG′ is given by a mapσ : SG → SG′ such that

• σ(iG) = iG′ ,

• s a→T s
′ implies thatσ(s)

a→T ′ σ(s′) and

• σ∞(AdmG) ⊆ AdmG′,

whereσ∞ is the map from→∞G to→∞G′ mapping a sequenceφ ∈→∞G to the
sequenceφ′, such that|φ| = |φ′| and for all i < |φ|, if φi = (s, a, s′) then
φ′i =

(
σ(s), a, σ(s′)

)
. A generalised synchronisation tree (gst)is a gener-

alised transition system for which the underlying transition system is a syn-
chronisation tree. Generalised synchronisation trees (with label setAct) in-
duces a full subcategoryGST of the categoryGTS.

Lemma 3.5 Letσ : SG → SG′ be a map between the state sets of two gener-
alised transition systemsG andG′. Then the following conditions are equiv-
alent

1. σ : G→ G′ is a morphism of generalised transition systems,

2. • σ(iG) = iG′ and

• σ∞(AdmG) ⊆ AdmG′ ,

3. • σ : fin(G)→ fin(G′) is a morphism of transition systems and

• σω(AdmG\Compfin(G)) ⊆ AdmG′ ,

In particular, the morphisms ofGTS restrict to morphisms of the underly-
ing transition systems, so the mapfin extends to a functorfin : GTS→ TS.
In fact fin : GTS → TS is a reflector for the inclusion ofTS into GTS that
maps a plain transition system to the correspondinglimit closedgeneralised
transition system (calledstandardin [8]).

15

Proposition 3.6 The functorfin : GTS → TS defined on objects in Def.3.4
(and leaving morphisms unchanged) is a left adjoint to the inclusioninf : TS ↪→
GTS which maps a transition systemT = (ST , iT ,→T , Act) to the (limit
closed) generalised transition system(ST , iT ,→T , Comp(T), Act) and leaves
morphisms unchanged.

In [23] it is shown that the categoryST is a coreflective subcategory of
the categoryTS of transition systems; the inclusionST ↪→ TS is shown to
have a right adjointunf : TS → ST which acts on objects byunfoldingthe
transition system. This coreflection generalises to one between betweenGST
and a categoryGTS.

Proposition 3.7 The inclusion functorGST ↪→ GTS has a right adjointgunf : GTS→
GST such that the diagram

GST GTS

ST TS

gunf
oo

unf
oo

fin

��

fin

��

commutes, whereunf is the unfolding of transition systems defined in [23].

In fact we have that all four squares in the diagram

GST GTS

ST TS

� � > //

gunf
oo

� � > //

unf
oo?�

a

OO

fin

�� ?�

a

OO

fin

��

commutes.
We will now generalise the equivalence between̂Fin andST mentioned

in Sec.1 to an equivalence betweenSp(Înf) and GST, giving the promised
concrete representation of the presheaves inSp(Înf). There is an immediate
embeddinge : Inf ↪→ GST of Inf into the category of generalised synchro-
nistation trees (and so the category of generalised transition systems), which
maps a finite (or infinite) sequence to the tree with exactly the one correspond-
ing, finite (or infinite, admissible) branch. This gives acanonicalfunctor [12]
from GTS to Înf, that maps a generalised transition systemG to the presheaf
GTS[e(−), G]. It is not difficult to check that this will always give aseparated
presheaf.

16

Lemma 3.8 LetG be a generalised transition system ande : Inf ↪→ GST ↪→
GTS the embedding described above. ThenGTS[e(−), G] is a presheaf in
Sp(Înf).

Restricted to generalised synchronisation trees the canonical functor can equiv-
alently be defined as the functor mappingG to GST[e(−), G], which gives us
one direction of the equivalence.

Theorem 3.9 The categoriesGST andSp(Înf) are equivalent. In one direc-
tion the equivalence is given by the (canonical) functorsps : GST→ Sp(Înf)
that maps a gstG to the seperated presheafGST[e(−), G]. In the other di-
rection the equivalence is given by a functorE l : Sp(Înf) → GST general-
ising the functorE l : F̂in → ST defined in Sec. 1. ForX in Sp(Înf), let
(S, i,→, Act) = E l(finX), i.e. the synchronisation tree corresponding to the
finite part ofX. We then defineE l(X) = (S, i,→, Adm,Act), where

Adm = {φ ∈→ω| ∃α ∈ Actω∃x ∈ bXc(α).∀j ∈ ω.do(φj) =
(
α(j), x · [α(j), α]

)
}•.

Note that, restricted to synchronisation trees, the functorsfin, inf are
just (up to isomorphism) the concrete representation of the reflection between
F̂in andSp(Înf) given in Diagram (4).

4 Extended Bisimulation from Open Maps

As described in Sec.1, we get a canonical notion of bisimulation from open
maps in the presheaf categorŷInf. From Diagram (4) it follows that the no-
tion of Inf-bisimulation restricts to the subcategoriesSh(Înf) and Sp(Înf)
of sheaves and seperated presheaves. Since the categoryInf can be viewed
as a subcategory of the category of generalised transition systems as shown
in the previous section, we also get a notion ofInf-bisimulation for gener-
alised transition systems. We show that this bisimulation coincides with the
extendedbisimulation defined for general transition systems in [8]. Since
Inf-bisimulation for generalised synchronisation trees coincides with theInf-
bisimulation inSp(Înf) this gives a concrete representation of the canonical
bisimulation inSp(Înf) as well.

First let us give a characterisation of theInf-open maps ofGTS, general-
ising the “zig-zag” morphisms in [12].

Proposition 4.1 LetT = (S, i,→, Adm,Act) andU = (SU , iU ,→U , AdmU , Act)
be generalised transition systems andσ : T → U . Thenσ is Fin-open if and
only if for all reachable statess of T

17

• if σ(s)
a→U s

′
1 thens

a→ s1 andσ(s1) = s′1 for some states1 ∈ S,

andσ is Inf-open if and only if moreover

• if φ′ ∈ AdmU andφ′ = σ(s)
a1→U s

′
1
a2→U s

′
2
a3→U . . .

an→U s
′
n

an+1→ U . . .
then there existsφ ∈ Adm such thatφ = s

a1→ s1
a2→ s2

a3→ . . .
an→

sn
an+1→ . . . and for all j ∈ ω, σ(sj) = s′j

Now we give the definition of extended bisimulation from [8] reformu-
lated as a relation between two generalised transition systems (and exploting
conditionC3).

Definition 4.2 ([8]) Let T andT ′ be generalised transition systems. ThenT

andT ′ are extended bisimilarif there exists a relationR ⊆ ST × ST ′ such
that (iT , iT ′) ∈ R and if (s, s′) ∈ R then

E1. if there exists a computationφ ∈ AdmT s.t.φ0 = s, then there exists a
computationφ′ ∈ AdmT ′ s.t. |φ| = |φ′| andφ′0 = s′ and for0 ≤ j <

|φ|, act(φj) = act(φ′j) and(φj, φ
′
j) ∈ R,

E2. if there exists a computationφ′ ∈ AdmT ′ s.t.φ′0 = s′, then there exists a
computationφ ∈ AdmT s.t. |φ| = |φ′| andφ0 = s and for0 ≤ j < |φ|,
act(φj) = act(φ′j) and(φj, φ

′
j) ∈ R,

Note that (by conditionC3) extended bisimulation specialises to the stan-
dard HM-bisimulation on transition systems if only sequencesφ andφ′ of
length one is considered inE1 andE2. Also note that (by the conditionsC1
andC2) one could equivalently have formulated the bisimulation considering
only sequences being infinite or of length one. From these considerations and
Prop. 4.1 it follows that extended bisimulation coincides withInf-bisimulation
for generalised transition systems.

Proposition 4.3 LetG andG′ be generalised transition systems. ThenG and
G′ are Inf-bisimilar if and only ifG andG′ are extended bisimilar.

It is an easy fact thatInf-bisimulation inGST under the equivalence coin-
cides withInf-bisimulation inSp(Înf), so we get the following corollary.

Corollary 4.4 LetX andX ′ be presheaves inSp(Înf). ThenX andX ′ are
Inf-bisimilar if and only ifE l(X) andE l(X ′) are extended bisimilar.

Remark that from the coreflection given in the previous section and Lem.
6 in [12] it follows that two generalised transition systems areInf-bisimilar
if and only if their unfoldings as generalised synchronisation trees areInf-
bisimilar.

18

εnt
1→ εn+1t

(Wait) and
t

a→ t′

εnt
a→ t′

(Fulfill) .

Fig. 3: Derivation rules for annotated finite delay

5 Operational Semantics

In this section we will express Milner’s operational semantics of SCCS with
finite delay [17] in terms of generalised transition system. First the two rules
in Fig.2 are added to the rules of Fig.1. Next the inadmissible infinite compu-
tations are identified via the notions of waiting computations, subagents and
subcomputations. Put briefly: A computationt0 → t1 → t2 → . . . of an
agentt0 is waiting if ti = εt for all i and every transition is inferredsolely
from the (Wait) rule for finite delay. Agentsa : t, rec x.t, Σi∈Iti andεt have
only themselves as subagent,t�A has the subagents oft andt1 × t2 has the
subagents oft1 andt2. Any computation of an agentt is then inferred from
computations of the subagents, which are referred to as subcomputations. A
computation is defined to be admissible if it is finite or has no sequel (i.e.
suffix) with an infinite waiting subcompuation.

To define a derivation transition system in which we can distinguish ad-
missible from inadmissible infinite runs we thus need to record if the (Wait)
rule was used to infer an action of a subagent. Consequently, we will annotate
terms of the formεt with a numbern ∈ ω written εnt, which indicates for
how long they have been delaying. In the followingTε will generally refer
to the set of annotated closed terms of SCCSε. Note that any function with
domainT can be regarded as a function with domainTε by discarding the
annotations. For simpliticy we will letε0t andεt refer to the same agent. The
derivation rules of Fig.2 is then replaced by the rules in Fig.3.

Thepositionof a subagent is formalised as follows.

Definition 5.1 DefinePos = {1, 2}∗, a set ofpositions, and letnil ∈ Pos
denote the empty sequence (the top position). Any termt in Tε define a partial
functiont : Pos ⇀ Tε, given inductively (in the length of the position and the

19

structure oft) by

t(nil) =


t if t ≡ a : t′, t ≡ rec x.t′, t ≡ Σi∈Iti or t ≡ εt′ for somet′,

t′(nil) if t ≡ t′�A,
undef otherwise,

t(ip) =


ti(p) if t ≡ t1 × t2,
t′(ip) if t ≡ t′�A,
undef otherwise.

For p ∈ Pos and t an annotated term, we will say thatt(p) is waiting if
t(p) = εnt

′ for some termt′ andn > 1.

Now, we can define when an infinite computation is inadmissible.

Definition 5.2 An infinite computationt0
α0→ t1

α1→ t2
α2→ . . . derivable by

the rules in Fig.1 and Fig.3 isinadmissibleif and only if there existj ∈ ω
and a positionp ∈ {1, 2}∗ such that∀j′ ≥ j, tj′(p) is waiting. We say that a
computation isadmissibleif it is not inadmissible.

It is not difficult to verify that a computation is inadmissible by the definition
above if and only if it has a suffix with a waiting subagent which continues
to wait forever, so the definition of admissibility coincides with that of [17]
which we briefly gave in the beginning of the section.

The derivation transition systems for terms inTε are generalised transition
systems with the set of admissible computations given by Def. 5.2 above.

Definition 5.3 Let t be a term inTε. Then thederivation transition systemfor
t is the reachablegeneralisedtransition systemOε(t) = (S, t,→t, Adm,Act),
whereS = {t′ | t →∗ t′}, →t=→ ∩ ⊆ S × Act × S is the relation de-
fined by the rules in Fig.1 and Fig.3 restricted to states inS, andAdm ⊆
Comp

(
(S, t,→t, Act)

)
is the set of admissible computations as defined in

Def. 5.2.

Remark 5.4 Though it is not important for the present paper, note that we
do not need to recordexactlyhow many steps a delay has waited, just if has
waited zero, one or more than one step continuously. This means that we

could replace the first rule in Fig.3 by the ruleεnt
1→ εmin{n+1,2}t and only

allow the numbers0, 1 and2 in annotations. The latter set of rules has the
benefit of not giving rise to infinite graphs just because of the presence of a
finite delay, which e.g. could be relevant in connection with model checking.

20

6 Presheaf Semantics

In this section we will see that the category of seperated presheavesSp(Înf)
is well suited to give denotational semantics to SCCSε.

6.1 Semantics of Basic Operators

The denotation of sum is simply given by the coproduct inSp(Înf). The
denotations of the remaining basic operators, restriction, action prefix, and
synchronous product, can be obtained from the underlying functions on se-
quences using the free extension(−)! described in Sec. 1, in the case where
Q = Sp(Înf).

ForA ⊆ Act, the restriction on sequences(−)�A : Inf → Inf⊥ maps a
sequenceα to the (possible empty) sequenceα′ ≤ α being the longest prefix
of α in A∗, i.e. the sequenceα′ ≤ α such that ifα = α′aα′′ thena 6∈ A.

Fora ∈ Act, theaction prefix on sequencesa : Inf⊥ → Inf maps a (possi-
bly empty) sequenceα to aα.

Thesynchronous product on sequences, • : Inf×Inf → Inf is the extension
of the monoid product to sequences, i.e. forα, β ∈ Inf, α • β = γ, whereγ is
the unique sequence such that|γ| = min{|α|, |β|} andγi = αi • βi.

It is easy to see that the above mappings are monotone, and thus functors
between partial order categories. By (implicitly) composing with the em-
beddingsY◦Inf⊥

: Inf⊥ ↪→ Sp(Înf) andYInf : Inf ↪→ Sp(Înf), we get functors

(−)�A : Inf → Sp(Înf), a : Inf⊥ → Sp(Înf) and• : Inf × Inf → Sp(Înf). Ap-
plying the extension(−)! we get the following denotations of basic operators.
Basic operators:For closed termst, t′ andti, define

I[[Σi∈Iti]] = Σi∈II[[ti]], (5)

I[[a : t]] = sp(a! ◦ bI[[t]]c), (6)

I[[t× t′]] = sp(I[[t]](•! ◦ w)I[[t′]]), (7)

I[[t�A]] = I[[t]]�A!, (8)

wherea! : Înf⊥ → Sp(Înf) is precomposed with the lifting functorb−c : Înf ↪→
Înf⊥ defined in Sec. 1 and•! : ̂Inf × Inf → Sp(Înf) is precomposed with the
(connected colimit-preserving [6]) functorw : Înf × Înf → ̂Inf × Inf defined
(on objects) byw(X, Y)(α, β) = X(α)× Y (β). The semantic functions are
extended in the obvious way to termst with free variables in a setV, yielding

21

functors

I[[t]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf).

Since the functors are build up from connected colimit preserving functors it
follows that they themselves preserve connected colimits.

The first three definitions (5)-(7) above only give the denotation up to iso-
morphism. It is helpful, e.g. in showing correspondence with the operational
semantics, to give an explicit semantics[[t]] such that[[t]] ∼= I[[t]]. We will just
give the action on objects. The tagssumXS and× are used to indicate clearly
how an element came about, which we will use in App. B.

[[t�A]]α = {e | α ∈ A∞ ande ∈ [[t]]α}. (9)

[[Σi∈Iti]]α =
{

(sum i, (α, e)) | i ∈ I ande ∈ [[ti]]α
}
. (10)

[[a : t]]α =

{
b[[t]]cα′ if α = aα′,

∅ otherwise,
(11)

where we choose to representb−c : Înf ↪→ Înf⊥ explicitly by

bXcα =

{
{∗} if α = ⊥,
Xα otherwise.

(12)

[[t1 × t2]]α = {(β, e1)× (γ, e2) |
β, γ ∈ Inf.β • γ = α ande1 ∈ [[t1]]β ande2 ∈ [[t2]]γ}.

(13)

6.2 Semantics of Recursion

For recursionwe need to take care. In a “standard” semantics one would take
least fixed points, i.e. initial algebras as the meanings of recursion. However
in Sp(Înf), this would not reflect that it is admissible to unfold a recursion in-
finitely. An explicit example that illustrates this is given below, showing that
the initial algebra of the functor corresponding to the delay equation given in
Sec. 2 will be the proper denotation offinite delay and not the delay opera-
tor derived using recursion. The solution is to takefinal co-algebras as the
meanings of recursion.

22

Infinite recursion: For a termt with one free variablex, define

I[[rec x.t]] = νI[[t]],

i.e. (the object of) a final co-algebra of the endofunctorI[[t]] : Sp(Înf) →
Sp(Înf). For this to be well defined, we must show existence of final co-
algebras for all functors. We will use Lem. 1.7 given in Sec. 1 to construct
final co-algebras for all relevant endofunctors as limits ofωop-chains. The def-
inition is then extended to processes with more than one variable in the usual
way as a limit with parameters [13]. From the explicit definitions given in
Eq. (9)-(13) we can show that all basic operators preserveωop-limits. ¿From
the general fact that limits commute with limits [13] we get that recursion
preservesωop-limits as well, i.e. ifrec x.t has free variables thenI[[rec x.t]]
preservesωop-limits.

Lemma 6.1 Let t be a (possibly open) term of SCCS with free variables inV.
If

I[[t]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf)

(is well defined and) preservesωop-limits then

I[[t�A]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf)

(is well defined and) preservesωop-limits, and similarly for sum, prefix, syn-
chronous product and recursion.

As for the basic operators, we can give an explicit denotation of recursion
[[rec x.t]] ∼= I[[rec x.t]]. First we choose an explicit representation of a final
presheaf> by definining>α = {∗}. Now we use the explicit definition of
limits in the categorySet to define

[[rec x.t]]α =
{
〈e0, e1, . . . , en, . . . 〉 ∈

∏
n∈ω

[[t]]n(>)α | [[t]]n(τ)αen+1 = en
}
,

(14)

whereτ : [[t]](>) → > is the natural transformation given byτα(e) = ∗ for
anye ∈ [[t]](>)α. We have projectionsπn : [[rec x.t]] → [[t]]n(>) and by uni-
versality we get an (explicit) isomorphismρt : [[rec x.t]] → [[t]]([[rec x.t]]), such

23

that

[[rec x.t]]

ρt

��

πn+1
// [[t]]n+1(>)

[[t]]([[rec x.t]])

[[t]](πn)

77ooooooooooo

(15)

commutes for anyn ∈ ω. Note that, in general ift has free variablesV] {x}
thenρt andπn are natural transformations.

We have now given semantics to all operators in SCCSε except for finite
delay. It is worth remarking, that already at this stage it is clear that this
semantics will not (in general) correspond to the operational semantics given
in Sec. 5. A simple example showing this is provided by the (disastrous)
term rec x.x. According to the operational semantics, this term denotes the
process that cannot perfom any actions, which is also the process denoted by
the empty sum0. It is not diffucult to compute the appropriate limit finding
thatI[[rec x.x]] ∼= >, i.e. (the) final object in̂Inf, which in no sensible way
can be equated to the denotation of the empty sum, which is theinitial object
in Înf. (Note that this is indeed the result if one constructs the initial algebra
instead).

However, as we will see below, we get the desired correspondence if we
restrict the language to only allowguardedrecursion.

6.3 Semantics of Finite Delay

As mentioned above, the denotation of finite delay comes about as theinitial
algebra of the functor corresponding to the delay equation.
Finite delay: For a closed termt, define

I[[εt]] = µI[[1 :x+ t]],

i.e. (the object of) an initial algebra of the endofunctorI[[1 :x+t]] : Sp(Înf)→
Sp(Înf). This initial algebra exists by Lem. 1.8 since the denotation of prefix-
ing preserves connected colimits and the denotation of sum all colimits. The
definition is extended to open terms (in whicht is not free) as a colimit with
parameters.

¿From the explicit definition of colimits inSet, we find that we can take

[[εt]]α =
{(

del n, (α′, e)
)
| n ∈ ω, α = 1nα′ ande ∈ b[[t]]cα′

}
(16)

24

as explicit definition of finite delay on objects (again the tagdel is used to
indicate clearly that the element arise from the denotation of a finite delay).
Forβ ≤ α, define[[εt]]([α, β]) by

(
del n, (α′, e)

)
·[β, α] =

{(
del n, (β ′, e ·[β ′, α′])

)
if β = 1nβ ′,(

del m, (⊥, ∗)
)

if β = 1m for m < n,

for n ∈ ω, α = 1nα′ ande ∈ b[[t]]cα′.
To guarantee that the denotation of recursion is still well-defined, we need

to check that the denotations of finite delay preserveωop-limits. This can be
done from the explicit definition given above.

Lemma 6.2 Let t be a (possibly open) term of SCCSε with free variables in
V. If

I[[t]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf)

(is well defined and) preservesωop-limits then

I[[εt]]V :
∏
x∈V

Sp(Înf)→ Sp(Înf)

(is well defined and) preservesωop-limits.

This completes the definition of our denotational semantics of SCCSε in
the category of seperated presheavesSp(Înf).

6.4 Extended Bisimulation Congruence

¿From the fact that the denotations (in̂Inf) of all basic operators are built from
connected colimit preserving functors, it follows that they preserve open maps
in Înf. Using the fact that the inclusion ofSp(Înf) in Înf is full, together with
proposition 5 in [12] we get that this holds inSp(Înf) as well. It is easy to
show from the explicit definition that the denotations of finite delay preserve
open maps as well (alternatively one could use the same technique as used
in [6] for showing that denotations of recursions (given by initial algebras)
preserve open maps).

Proposition 6.3 Extended bisimulation is a congruence with respect to all
basic operators of SCCSε as well as finite delay.

25

However, when it comes torecursionwe meet a problem: What is the “right”
notion of bisimulation (from open maps) for denotations of open terms, i.e.
functors between presheaf categories? In [6] the notion of open maps is
extended to open natural transformations, being natural transformations for
which all components are open maps. This is shown to be sufficient to gar-
entee that open map bisimulation is a congruence with respect to the denota-
tions of recursion (given byinitial algebras) in a CCS-like calculus. In [22, 3]
is suggested a slightly stronger notion of open maps between (connected) col-
imit preserving functors between presheaf categories which themself can be
regarded as objects of a presheaf category and thus comes with a canonical
notion of open maps. The second notion requires all functors to be (con-
nected) colimit preserving functors, which is not known to be the case in our
setting (because of the use of final co-algebras). The notion of open natural
transformations could be used, but we have not yet been able to show that it
is sufficient to give the desired congruence property.

6.5 Full Abstraction

Using the representation theorem in Sec. 3 we can express the denotational
semantics given above in terms of generalised synchronisation trees, defining
Dε(t) = E l([[t]]). This allows us to relate the denotational semantics directly
to the operational semantics given in Sec. 5 within the categoryGTS. First
of all we will restrict attention to terms with onlyguarded recursion. Recall
from e.g. [18] that a recursionrec x.t is guarded, if all free occurences ofx
in t is guarded, that is, within a subterma : t′ of t for some actiona ∈ Act.
Let Tg refer to the set of all closed, possibly annotated terms of SCCSε with
only guarded recursion. We will say that a termt in Tg is standardif for all
subtermsent′ it holds thatn = 0. We will then show, that if we quotient by
open map bisimulation, the denotational semantics for standard terms inTg is
in factequationally fully abstractwith respect to extended bisimulation. This
means that for any two standard termst andt′ of Tg, the presheaves[[t]] and[[t′]]
are bisimilar if and only if the generalised transition systemsOε(t) andOε(t′)
arising from the operational semantics are extended bisimilar. As remarked
in Sec. 6.2 above, we cannot obtain this result for all terms of SCCSε.

The proof (see App. B for a more detailed proof outline) goes by showing
that there exists anInf-open morphism of generalised transition systems from
Dε(t) toOε(t) for any termt in Tg.

Proposition 6.4 Let t be a standard term inTg. Then there exists anInf-open
morphism of generalised transition systemsFt : Dε(t)→ Oε(t).

26

¿From the proposition above and Prop. 4.3 and Cor. 4.4 in Sec. 4 we can
now deduce the desired result.

Theorem 6.5 Let t and t′ be terms inTg. Then[[t]] and [[t′]] are open map
bisimilar if and only ifOε(t) andOε(t′) are extended bisimilar.

7 Conclusion and Future Work

This paper has two main contributions. The first is a generalisation of the
categorical models for concurrency as developed in [23, 12, 3], providing
both a generalised transition system and a presheaf model forinfinite com-
putations, suitable for agents with a notion offairnessor inadmissibleinfi-
nite computations. The generalised transition systems are instances of those
proposed in [8] and theextended bisimulationgiven there is shown to co-
incide with the abstract bisimulation from span of open maps in our model.
The second main contribution is that we give both an operational semantics
and a denotational semantics for SCCS with finite delay, representing the no-
tion of inadmissible infinitecomputationsprecisely as given in [17] allowing
behaviours to be discriminated up toextended bisimulation. This notion of
bisimulation is a strictly finer, and as argued in the present paper and in [1],
more intuitive, equivalence than the one obtained from the fortification pre-
order in [17], which except for [1] has been the basis for previous semantics
of SCCS with finite delay [7, 11, 10]. Benefitting from the categorical pre-
sentation, our semantics appears to give a conceptually simpler treatment of
infinite computations than the one in [1].

A number of questions remains to be explored. An obvious question is
if one could generalise the finite delay to afair recursionas in [10]. Work
is in progress on a notion of open maps between denotations of open terms
stronger than the one in [6], for which open map bisimulation is a congruence
with respect to recursion. We get a characteristic HML-like path logic [12] for
extended bisimulation from the open maps approach, which should be com-
pared to the characteristic logic given in [8]. Here comes the question about
decidability of extended bisimulation. If one restricts attention to agents for
which products and restrictions are disallowed within recursions and change
the operational semantics according to the remark in Sec. 5 all agents will
be assignedfinite (generalised) transition systems. It would be interesting
to explore if there is any relationship between the present approach and the
more traditional domain theoretical approach to fairness and countable non-
determinism as in e.g. [20]. Finally, we hope to be able to extend the presheaf

27

model for (finitary) dataflow given in [9] to infinite computations along the
lines of the present paper, giving a model of dataflow in which fairness, maybe
evenfair merge[19], can be expressed.

Acknowledgements:Thanks to Glynn Winskel, Marcelo Fiore and Prakash
Panangaden for helpful and encouraging discussions.

References

[1] P. Aczel. A semantic universe for fairness. Preliminary Draft, 1996.

[2] Barr and Wells.Category Theory for Computing Science. Prentice Hall,
1990.

[3] G. L. Cattani. Presheaf models for concurrency. PhD thesis, Aarhus
University, 1999.

[4] G. L. Cattani, A. J. Power, and G. Winskel. A categorical axiomatics
for bisimulation. InProceedings of the 9th International Conference
on Concurrency Theory, CONCUR ’98, volume 1466 ofLNCS, pages
581–596. Springer-Verlag, 1998.

[5] G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the pi-
calculu. InCTCS’97, volume 1290 ofLNCS, pages 106–126. Springer,
1997.

[6] G. L. Cattani and G. Winskel. Presheaf models for concurrency. In
CSL’96, volume 1258 ofLNCS, pages 58–75. Springer, 1997.

[7] M. Hennessy. Modelling finite delay operators. Technical report, Uni-
versity of Edinburgh, 1983.

[8] M. Hennessy and C. Stirling. The power of the future perfect in program
logics. Information and Control, pages 23–52, 1985.

[9] T. T. Hildebrandt, P. Panangaden, and G. Winskel. A relational model
of non-deterministic dataflow. InCONCUR’98, volume 1466 ofLNCS,
pages 613–628. Springer-Verlag, 1998.

[10] M. Huth and M. Kwiatkowska. The semantics of fair recursion with
divergence. Submitted. Technical report CSR-96-7.

28

[11] M. Huth and M. Kwiatkowska. Finite but unbounded delay in syn-
chronous CCS. In A. Edalat, S. Jourdan, and G. McCusker, editors,
Advanced methods in theory and formal methods of computing: Pro-
ceedings of the third Imperial College workshop April 1996, pages 312–
323. Imperial College Press, 1996.

[12] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps.
LICS ’93 special issue of Information and Computation, 127(2):164–
185, juni 1996. Available as BRICS report, RS-94-7.

[13] S. Mac Lane. Categories for the Working Mathematician. Springer,
1971.

[14] S. Mac Lane and I. Moerdijk.Sheaves in Geometry and Logic: A First
Introduction to Topos Theory. Springer, 1992.

[15] J. Malitz. Introduction to Mathematical Logic. Undergraduate Texts in
Mathematics. Springer-Verlag, 1979.

[16] R. Milner. A calculus of communicating systems, 1980.

[17] R. Milner. A finite delay operator in synchronous ccs. Technical report,
University of Edinburgh, Dept. of Computer Science, Kings Buildings,
1982.

[18] R. Milner. Calculi for synchrony and asynchrony.Theoretical Computer
Science, 25:267–310, 1983.

[19] P. Panangaden. The expressive power of indeterminate primitives in
asynchronous computations. Technical Report SOCS-95.8, School of
CS, McGill, 1995.

[20] G. Plotkin. A powerdomain for countable non-determinism. InAu-
tomata, Languages and Programming (ICALP), Ninth Colloquium, vol-
ume 140 ofLNCS, pages 418–428. Springer-Verlag, 1982.

[21] G. Winskel. Generalised synchronisation trees. Handwritten notes,
1983.

[22] G. Winskel. A linear metalanguage for concurrency. InAMAST ’98,
volume 1548 ofLNCS, pages 42–58. Springer-Verlag, 1998.

[23] G. Winskel and M. Nielsen.Handbook of Logic in Computer Science,
volume IV, chapter Models for concurrency. OUP, 1995.

29

[24] G. Winskel and M. Nielsen. Presheaves as transition systems. In
D. Peled, V. Pratt, and G. Holzmann, editors,POMIV’96, volume 29
of DIMACS. AMS, july 1996.

[25] O. Wyler. Lecture Notes on Topoi and Quasitopoi. World Scientific,
1991.

A Grothendieck topology for a partial order

Here we give the definitions from [14] of aGrothendieck topologyfor a cate-
goryP and thesuptopology, specialised to the case whereP is a partial order.
LetP be a partial order andp ∈ P . Definep↓= {p′ ∈ P | p′ ≤ p}. A sieveS
onp is then a setS ⊆ p↓, i.e. a downwards closed set belowp.

Definition A.1 (Grothendieck topology for a partial order) AGrothendieck
topology for a partial orderP, is a functionJ which assigns to each objectp
of P a setJ(p) of sieves onp, in such a way that

C1: (maximal sieve)p↓∈ J(p),

C2: (stability) if S ∈ J(p) andq ≤ p thenq↓ ∩S ∈ J(q),

C3: (transitivity) if S ∈ J(p) andR is any sieve onp such thatq↓ ∩R ∈
J(q) for all q ∈ S, thenR ∈ J(p).

AssumeJ is a topology for a partial orderP . We will now describe when
a presheafX : Pop → Set in P̂ is a sheaf with respect toJ . Assumep is
an element ofP andS ∈ J(p), i.e. asieve coveringp. A matching family
for S of elements ofX is a function that assigns to each elementq ∈ S an
elementxq ∈ X(q) such thatxq ·[r, q] = xr for any r ≤ q. Given such a
matching family, an elementx ∈ X(p) is anamalgation, if x ·[q, p] = xq for
all q ∈ S. ThenX is respectively aseparated presheafor asheafwith respect
to J if for any objectp ∈ P , any matching family for any sieveS ∈ J(p) has
respectivelyat most oneor a uniqueamalgation.

Definition A.2 (separated presheaves and sheaves)For a partial order P
and a Grothendieck topologyJ on P, let SpJ(P̂) and ShJ(P̂) be the full
subcategories of̂P induced by respectively theseparated presheavesand the
sheaveswith respect toJ . If the topologyJ is clear from the context, we will
just write respectivelySp(P̂) andSh(P̂).

30

For a sequenceα in Inf (as defined in Sec. 1), a sieve onα is simply a
prefix closed set of sequences belowα. We only use thesuptopology onInf,
which to each sequenceα assigns the set{S | S is a sieve onα and

⊔
S = α},

i.e. of all sieves that haveα as supremum. It is easy to check that this satisfy
the conditions in Def. A.1, and that it works for any partial order. This topol-
ogy is in fact thecanonicaltopology forInf, being the largest topology such
thatYInfα is a sheaf for anyα.

Definition A.3 (sup topology for Inf) For the partial orderInf, thesup topol-
ogyJ is given byJ(α) = {α↓, {β | β ≤f α}}, for α ∈ Inf

Note that ifα is finite thenJ(α) contains justα↓, i.e. the maximal sieve
onα.

B Proof of Full Abstraction

We will here give a more detailed proof outline for Prop. 6.4 of Sec. 6.5 as
repeated below. Recall thatTg refer to the set of all closed terms of SCCSε

with only guarded recursion and that a term is standard if for all subterms
εnu

′′, n = 0. Let T og refer to the set of, possible open, terms of SCCSε with
only guarded recursion.

Proposition B.1 (Prop. 6.4 of Sec. 6.5)Let t be a standard term inTg. Then
there exists anInf-open morphism of generalised transition systemsFt : Dε(t)→
Oε(t).

We will need some preliminary definitions. Fort a term in SCCSε, FV (t)
will denote the set of free variables int. As in [17] 2 we definegd(t), the
guard-depthof t by

• gd(x) = gd(a : t) = 0,

• gd(Σi∈Iti) = sup{gd(ti) + 1 | i ∈ I},

• gd(t1 × t2) = max{gd(t1) + 1, gd(t2) + 1}, and

• gd(recx.t) = gd(t�A) = gd(εt) = gd(t) + 1.

This is a well defined ordinal, but not necessarily a finite number because
sums can be infinite. As in [17] the following is a key property ofgd for use
in inductive proofs in the guard depth of terms with only guarded induction.

2However, we use the convention from [15] thatλ+ 1 is the successor ofλ.

31

Lemma B.2 If x is guarded int thengd(t[t′/x]) = gd(t).

Proof. By a straightforward structural induction. 2

For a termt in Tε we definesd(t), thesubagent depthof t by

• sd(a : t) = sd(Σi∈Iti) = sd(rec x.t) = sd(εt) = 0,

• sd(t1 × t2) = 1 + max{sd(t1), sd(t2)}, and

• sd(t�A) = 1 + sd(t).

This is simply the maximal depth of a subagent and thus always finite.
For a gstT = (S, i,→, Adm,Act) ands ∈ S we definethe gst aboves in

T by Ts/ = (Ss/, s,→s/, Adms/, Act), where

• Ss/ = {s′ | s→∗ s′},

• →s/ =→ ∩ (Ss/ ×Act× Ss/) and

• Adms/ = Adm ∩ →∞s/.

For any termt in Tε, letDε(t) = (Sd(t), (⊥, ∗),→t, Admd(t), Act). Recall that
Sd(t) =

{
(α, e) | α ∈ Inf ande ∈ b[[t]]c(α)} and∗ is the unique element of

b[[t]]c(⊥). LetOε(t) = (So(t), t,→, Admo(t), Act). Note that ift′ is a closed
term andt is a term with one free variable, sayx, then[[t[t′/x]]] = [[t]]([[t′]]).
For t a term inTg ands = (α, e) ∈ Sd(t) definethe height ofs by h(s) =
|α| ∈ ω. Note that ifh(s) = n then(⊥, ∗)→n s.

We are now ready to define the underlying maps of statesft : Sd(t) → So(t)
for the morphismsFt : Dε(t)→ Oε(t).

Definition B.3 LetST = {(s, t) | s ∈ Sd(t) andt ∈ Tg}. Definef : ST → Tg
by well founded recursion as follows (writingft(s) for f(s, t))

• ft(⊥, ∗) = t,

• fa:t(aα, e) = ft(α, e),

• fΣi∈I ti

(
α, (sum i, s)

)
= fti(s),

• ft1×t2(α, s1 × s2) = ft1(s1)× ft2(s2),

• frecx.t(s) = ft[rec x.t/x]

(
E l(ρt)s

)
if h(s) > 0,

• ft�A(s) = ft(s)�A if h(s) > 0,

32

• fεnt
(
1n
′
, (del n′, (⊥, ∗))

)
= εn+n′t,

• fεnt
(
1n
′
α, (del n′, s)

)
= ft(s) if |α| > 0.

whereρt : [[rec x.t]]→ [[t]]([[rec x.t]]) is the isomorphism defined in Sec.6.2 and
the well founded order onST is the lexicographical order given by(s1, t1) <
(s2, t2) if h(s1) < h(s2) or h(s1) = h(s2) andgd(t1) < gd(t2).

It is not difficult to check from the definitions in Sec. 6 thatft is only applied
to states inSd(t) on the right hand side of the defining equations above.

¿From the mapf : ST → Tg we get a collection of maps{ft : Sd(t) → Tg |
t ∈ Tg} that are nicely related to each other.

Lemma B.4 Let {ft : Sd(t) → Tg | t ∈ Tg} be the collection of maps given
above. Then there exists a collection of isomorphisms of generalised synchro-
nisation trees{σt,s : Dε(t)s/ → Dε

(
ft(s)

)
| t ∈ Tg ands ∈ Sd(t)} such that if

s→∗t s′ in Dε(t) then

(ft(s) = t′)⇒ ft(s
′) = ft′

(
σt,s(s

′)
)
, (17)

Proof. (Sketch) We proceed by induction in the height of the statess. First we
defineσt,s : Dε(t)s/ → Dε

(
ft(s)

)
for t ∈ Tg ands = (⊥, ∗) ∈ Sd(t), i.e. for all

roots. ThenDε(t)s/ = Dε(t) andft(s) = t so we can defineσt,s = 1Dε(t). We
then defineσt,s : Dε(t)s/ → Dε

(
ft(s)

)
for t ∈ Tg, s ∈ Sd(t) andh(s) = 1 by

transfinite induction ingd(t). For the induction step, assumet ∈ Tg, s ∈ Sd(t)
andh(s) = n+1. Then there exists a uniquesn such thatsn →t s andh(sn) =
n. For s →∗t s′ defineσt,s(s′) = σft(sn),σt,sn (s)(σt,sn(s′)). It is not difficult
to verify that this indeed defines an isomorphism fromDε(t)s/to Dε

(
ft(s)

)
.

Assumingft(s) = t′ andft(sn) = t′′ we get by inductionft′′
(
σt,sn(s)

)
= t′

andft(s′) = ft′′
(
σt,sn(s′)

)
= ft′

(
σt′′,σt,sn(s)(σt,sn(s′))

)
= ft′

(
σt,s(s

′)
)
. 2

¿From the lemma below it follows that the maps just defined are the un-
derlying maps ofFin-open morphisms fromfin(Dε(t)) to fin(Oε(t)).

Lemma B.5 Let{ft : Sd(t) → Tg | t ∈ Tg} be the collection of maps given in
Def. B.3 above. Ifft(s0) = t0 for s0 ∈ Sd(t) then(

∃s1 ∈ Sd(t).s0
a→t s1 andft(s1) = t1

)
if and only ift0

a→ t1 , (18)

where→ is the transition relation given by the operational semantics in Fig. 1
and Fig.3.

33

Proof. We first show by transfinite induction ingd(t) that(
∃s1 ∈ Sd(t).(⊥, ∗)

a→t s1 andft(s1) = t1
)

if and only if t
a→ t1 .

Then (18) follows fors0 ∈ Sd(t) andft(s0) = t0 by using (17) of Lem. B.4.
2

Corollary B.6 The mapsft as given above defines fort ∈ Tg a mapft : Sd(t) →
So(t) which is the underlying map of aFin-open morphism fromfin(Dε(t)) to
fin(Oε(t)).

To show that the mapsft define maps ofgeneralisedtransition systems we
show that they preserve admissible computations. For an infinite admissible
computationφ of Dε(t) we can always find a non-empty prefix of the image
of φ underft, in which all initially waiting subagents are fullfilled.

Lemma B.7 Let t be a term inTg and φ ∈ Admd(t)∩ →ω an infinite ad-
missible computation ofDε(t). Assumeφn = (sn, an, sn+1) for n ∈ ω and
ft(sn) = tn. Then there existsn > 0 such that

∀p ∈ Pos, ∃m ≤ n.tm(p) is notwaiting.

Proof. Easy induction insd(t0) using Lem. B.4. 2

It follows by a simple mathematical induction thatft preserves admissi-
bility.

Lemma B.8 Let t be a term inTg. Thenft∞(Admd(t)) ⊆ Admo(t), where
ft∞ is the extension offt to computations as given in Def. 3.4.

We can now conclude from Lem. 3.5, Cor. B.6 and Lem. B.8 thatft de-
fines a morphism of generalised transition systems.

Proposition B.9 Let t be a term inTg. Thenft : So(t) → Sd(t) is the under-
lying map of states of a morphism of generalised transition systems which we
will refer to asFt : Dε(t)→ Oε(t).

To show thatFt : Dε(t)→ Oε(t) is anInf-openmorphism we neet to check the
two zig-zag conditions of Prop. 4.1 in Sec. 4. As already mentioned above, the
first condition follows directly from Lem. B.5. To show the second condition,
it suffices to show thatft : So(t) → Sd(t) reflectsadmissible computations,
i.e. thatAdmf d(t) ⊆ Admd(t), whereAdmf d(t) = ft

−1
∞ (Admo(t)) = {φ ∈

34

Comp
(
Dε(t)

)
| ft∞(φ) ∈ Admo(t)}. The proof goes by structural induction

in t and for the caset = rec x.t′ we will add a term> to the calculus SCCSε.
The operational semantics is extended by adding the rule

> a→ >
(a ∈ Act).

As denotation of> we take the explicit terminal element ofSp(Înf), i.e.
[[>]]α = {∗}. The mapf> : Sd(>) → So(>) and isosσ>,s : Dε(>)s/ →
Dε(f>(s)) for s ∈ Sd(>) extending Def. B.3 and Lem. B.4 are defined in the
obvious way, i.e.f>(s) = > for all s ∈ So(>) andσ>,(α,∗)(αα′, ∗) = (α′, ∗).
We then use the following property of the mapsft in connection with substi-
tution.

Lemma B.10 Lett be a term ofT og such thatFV (t) = {x}. Ifm : [[t′]]→ [[t′′]]
is a morphism such that

∀s ∈ Sd(t′),∀p ∈ Pos, ∀n > 1(
∃u′′.ft′′(E l(m)s)p = εnu

′′ ⇒ ∃u′.ft′(s)p = εnu
′)

then

∀s ∈ Sd(t[t′/x]),∀p ∈ Pos, ∀n > 1(
∃u′′.ft[t′′/x](E l([[t]]m)s)p = εnu

′′ ⇒ ∃u′.ft[t′/x](s)p = εnu
′)

Proof. Assume thatm : [[t′]]→ [[t′′]] is a morphism such that

∀s ∈ Sd(t′),∀p ∈ Pos, ∀n > 1(
∃u′′.ft′′(E l(m)s)p = εnu

′′ ⇒ ∃u′.ft′(s)p = εnu
′)

By well founded induction we prove fors ∈ Sd(t[t′/x]) and t ∈ T og with
FV (t) = {x} that

∀p ∈ Pos, ∀n > 1
(
∃u′′.ft[t′′/x](E l([[t]]m)s)p = εnu

′′ ⇒ ∃u′.ft[t′/x](s)p = εnu
′)

The well founded order is, as in Def. B.3, given by(s1, t1) < (s2, t2) if
h(s1) < h(s2) or h(s1) = h(s2) andgd(t1) < gd(t2). 2

We only use the lemma in two special cases, giving the two corollaries
below.

35

Corollary B.11 Let t be a term inT og such thatFV (t) = {x} andm : [[t′]]→
[[>]] the unique morphism into the terminal presheaf. Then

∀φ ∈ Comp(Oε(t[t′/x])),

ft[>/x]∞(E l([[t]]m)∞φ) is inadmissible⇒ ft[t′/x]∞(φ) is inadmissible.

For t a standard term inT og such thatFV (t) = {x} we definet0 = x and
tn+1 = tn[t/x].

Corollary B.12 Let t be a standard term inT og such thatFV (t) = {x} and
let ρt : [[rec x.t]] → [[t[rec x.t/x]]] be the isomorphism given in Sec. 6.2. Then
∀n ∈ ω, ∀φ ∈ Comp(Oε(tn[rec x.t/x])),

ftn+1[recx.t/x]∞(E l([[t]]nρt1)∞φ) is inadmissible⇒ ftn[recx.t/x]∞(φ) is inadmissible.

Proof. By definition frec x.t(s) = ft[rec x.t/x]

(
E l(ρt)s

)
if h(s) > 0 and since

t is a standard term we have∀p ∈ Pos, ft[recx.t/x](⊥, ∗)p = εnu ⇒ n = 0,
so we get that∀s ∈ Sd(t[rec x.t/x])∀p ∈ Pos∀n > 1, ft[rec x.t/x]

(
E l(ρt)s

)
p =

εnu ⇒ frec x.t(s)p = εnu and the desired result follows from Lem. B.10 and
Def. 5.2, by noting thattn+1[rec x.t/x] = tn[t[rec x.t/x]/x] and[[t]]n = [[tn]].
2

Lemma B.13 Let t be a term inT og such thatFV (t) = {x}. Then

∀t′ ∈ Tg ∪ {>},Admf d(t′) ⊆ Admd(t′) ⇒ Admf d(t[t′/x]) ⊆ Admd(t[t′/x])

implies

∀t′ ∈ Tg ∪ {>},∀n ∈ ω,
Admf d(t′) ⊆ Admd(t′) ⇒ Admf d(tn[t′/x]) ⊆ Admd(tn[t′/x])

Proof. By an easy induction inn. 2

Proposition B.14 Let t be a standard term inT og such thatFV (t) ⊆ {x}.
Then for allt′ in Tg ∪ {>}, Admf d(t′) ⊆ Admd(t′) impliesAdmf d(t[t′/x]) ⊆
Admd(t[t′/x]).

36

Proof. (Sketch) By structural induction int, using Lem. B.12, Lem. B.11 and
Lem B.13 above in the case for recursion. 2

If we taket to be a closed term in the proposition above and e.g.t′ = >
thent[t′/x]) = t so we get thatft∞ reflects admissibility, which was what we
wanted to show.

Corollary B.15 Let t be a standard term inTg. ThenAdmf d(t) ⊆ Admd(t).

37

Recent BRICS Report Series Publications

RS-99-28 Thomas Troels Hildebrandt.A Fully Abstract Presheaf Seman-
tics of SCCS with Finite Delay. September 1999. 37 pp. To
appear in Category Theory and Computer Science: 8th Interna-
tional Conference, CTCS ’99 Proceedings, ENTCS, 1999.

RS-99-27 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. September 1999. 57 pp. To appear in the November 2000
issue ofTheoretical Computer Science. This revised report su-
persedes the earlier BRICS report RS-98-54.

RS-99-26 Jesper G. Henriksen.An Expressive Extension of TLC. Septem-
ber 1999. 20 pp. To appear in Thiagarajan and Yap, editors,
Fifth Asian Computing Science Conference, ASIAN ’99 Pro-
ceedings, LNCS, 1999.

RS-99-25 Gerth Stølting Brodal and Christian N. S. Pedersen.Finding
Maximal Quasiperiodicities in Strings. September 1999. 20 pp.

RS-99-24 Luca Aceto, Willem Jan Fokkink, and Chris Verhoef.Conser-
vative Extension in Structural Operational Semantics. Septem-
ber 1999. 23 pp. To appear in theBulletin of the EATCS.

RS-99-23 Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On
proving syntactic properties of CPS programs. August 1999.
14 pp. To appear in Gordon and Pitts, editors, 3rd Work-
shop on Higher Order Operational Techniques in Semantics,
HOOTS ’99 Proceedings, ENTCS, 1999.

RS-99-22 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. On the Two-
Variable Fragment of the Equational Theory of the Max-Sum
Algebra of the Natural Numbers. August 1999. 22 pp.

RS-99-21 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. August 1999. 13 pp. Extended
version of an article to appear in Fourth Fuji International
Symposium on Functional and Logic Programming, FLOPS ’99
Proceedings (Tsukuba, Japan, November 11–13, 1999). This
report supersedes the earlier BRICS report RS-98-2.

RS-99-20 Ulrich Kohlenbach. A Note on Spector’s Quantifier-Free Rule
of Extensionality. August 1999. 5 pp. To appear inArchive for
Mathematical Logic.

