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Finding maximal pairs with bounded gap

Gerth Stølting Brodal∗ Rune B. Lyngsø∗

Christian N. S. Pedersen∗ Jens Stoye†

Abstract

A pair in a string is the occurrence of the same substring twice. A pair
is maximal if the two occurrences of the substring cannot be extended to
the left and right without making them different. The gap of a pair is
the number of characters between the two occurrences of the substring.
In this paper we present methods for finding all maximal pairs under
various constraints on the gap. In a string of length n we can find all
maximal pairs with gap in an upper and lower bounded interval in time
O(n log n + z) where z is the number of reported pairs. If the upper
bound is removed the time reduces to O(n+z). Since a tandem repeat is
a pair where the gap is zero, our methods can be seen as a generalization
of finding tandem repeats. The running time of our methods equals the
running time of well known methods for finding tandem repeats.

1 Introduction

A pair in a string is the occurrence of the same substring twice. A pair is left-
maximal (right-maximal) if the characters to the immediate left (right) of the
two occurrences of the substring are different. A pair is maximal if it is both
left- and right-maximal. The gap of a pair is the number of characters between
the two occurrences of the substring. For example, the two occurrences of the
substring ma in the string maximal form a maximal pair of ma with gap two.

Gusfield [10, Section 7.12.3] describes how to report all maximal pairs in
a string using the suffix tree of the string in time O(n + z) and space O(n),
where n is the length of the string and z is the number of reported pairs.
Since there is no restriction on the gap of the maximal pairs reported by this
algorithm, many of them probably describe occurrences of substrings that are
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overlapping or far apart in the string. In many applications in computational
biology this is unfortunate, so several papers address the problem of finding
occurrences of similar substrings not too far apart [14, 18, 24].

In the first part of this paper we describe how to find all maximal pairs in a
string with gap in an upper and lower bounded interval in time O(n log n+ z)
and space O(n). The interval of allowed gaps can be chosen such that we
report a maximal pair only if the gap is between constants c1 and c2, but
more generally, it can be chosen such that we report a maximal pair of α only
if the gap is between g1(|α|) and g2(|α|), where g1 and g2 are functions that
can be computed in constant time. This, for example, makes it possible to
find all maximal pairs with gap between zero and some fraction of the length
of the repeated substring. In the second part of this paper we describe how
removing the upper bound g2(|α|) on allowed gaps, and only require the gap
of a reported pair of α to be at least g1(|α|), makes it possible to reduce the
running time to O(n + z). The methods we present all use the suffix tree as
the fundamental data structure combined with efficient methods for merging
search trees and heap-ordered trees.

The problem of finding occurrences of repeated substrings in a string is
well studied. Most of the work has been concerned with efficient methods for
finding occurrences of contiguously repeated substrings. An occurrence of a
substring of the form αα is called an occurrence of a square or a tandem repeat.
Most well-known methods for finding the occurrences of all tandem repeats in
a string require time O(n log n+ z), where n is the length of the string and z
is the number of reported occurrences of tandem repeats [4, 2, 19, 16, 25].
Work has also been done on just detecting whether or not a string contains a
tandem repeat [20, 5]. Recently, extending on the idea presented in [5], two
methods have been presented that find a compact representation of all tandem
repeats in a string in time O(n) [15, 11]. Other papers consider the problem of
finding occurrences of contiguous repeats of substrings that are within some
Hamming- or edit-distance of each other [17].

In biological sequence analysis searching for tandem repeats is used to
reveal structural and functional information [10, pp. 139–142], but searching
for exact tandem repeats can be too restrictive because of sequencing and
other experimental errors. By searching for maximal pairs with small gaps
(maybe depending on the length of the substring) it could be possible to
compensate for these errors. On the other hand, finding maximal pairs with a
gap within an interval can be seen as a generalization of finding occurrences of
tandem repeats. Stoye and Gusfield [25] say that an occurrence of the tandem
repeat αα is a branching occurrence of the tandem repeat αα if and only if the
characters to the immediate right of the two occurrences of α are different, and
they explain how to deduce the occurrence of all tandem repeats in a string
from the occurrences of branching tandem repeats in time proportional to the
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number of tandem repeats. Since a branching occurrence of a tandem repeat
is just a right-maximal pair with gap zero, the methods presented in this paper
can be used to find all tandem repeats in time O(n log n+z). This matches the
time bounds of previous published methods for this problem [4, 2, 19, 16, 25].

The rest of this paper is organized in two parts which can be read inde-
pendently. In Section 2 we present the preliminaries necessary to read either
of the two parts; we define pairs and suffix trees and describe how in general
to find pairs using the suffix tree. In the first part, Section 3, we present
the methods to find all maximal pairs in a string with gap in an upper and
lower bounded interval. This part also presents facts about efficient merging
of search trees which are essential to the formulation of the methods. In the
second part, Section 4, we present the methods to find all maximal pairs in a
string with gap in a lower bounded interval. This part also includes the presen-
tation of two novel data structures, the heap-tree and the colored heap-tree,
which are essential to the formulation of the methods. Finally, in Section 5
we summarize our work and discuss open problems.

2 Preliminaries

Throughout this paper S will denote a string of length n over a finite alpha-
bet Σ. We will use S[i], for i = 1, 2, . . . , n, to denote the ith character of S,
and use S[i .. j] as notation for the substring S[i]S[i + 1] · · · S[j] of S. To be
able to refer to the characters to the left and right of every character in S with-
out worrying about the first and last character, we define S[0] and S[n+ 1] to
be two distinct characters not appearing anywhere else in S.

In order to formulate methods for finding repetitive structures in S, we
need a proper definition of such structures. An obvious definition is to find all
pairs of identical substrings in S. This, however, leads to a lot of redundant
output, e.g. in the string that consists of n identical characters there are Θ(n3)
such pairs. To limit the redundancy without sacrificing any meaningful struc-
tures Gusfield [10] defines maximal pairs.

Definition 1 (Pair) We say that (i, j, |α|) is a pair of α in S formed by i

and j if and only if 1 ≤ i < j ≤ n − |α| + 1 and α = S[i .. i + |α| − 1] =
S[j .. j + |α| − 1]. The pair is left-maximal (right-maximal) if the characters
to the immediate left (right) of two occurrences of α are different, i.e. left-
maximal if S[i−1] 6= S[j−1] and right-maximal if S[i+ |α|] 6= S[j+ |α|]. The
pair is maximal if it is right- and left-maximal. The gap of a pair (i, j, |α|) is
the number of characters j − i− |α| between the two occurrences of α in S.

It follows from the definition that a string of length n in the worst case con-
tains Θ(n2) right-maximal pairs. The string an contains the worst case number
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Figure 1: An occurrence of a pair (i, j, |α|) with gap j − i− |α|.

of right-maximal pairs but only Θ(n) maximal pairs. The string (aab)n/3 how-
ever contains Θ(n2) maximal pairs. This shows that the worst case number of
maximal pairs and right-maximal pairs in a string are asymptotically equal.

Figure 1 illustrates the occurrence of a pair. In some applications it might
be interesting only to find pairs that obey certain restrictions on the gap, e.g.
to filter out pairs of substrings that are overlapping or far apart and thus
to reduce the number of pairs to report. Using the “smaller-half trick”, see
Section 3.1, and Lemma 1 it is easy to prove that a string of length n in the
worst case contains Θ(n log n) right-maximal pairs with gap in an interval of
constant size.

In this paper we present methods for finding all right-maximal and maximal
pairs (i, j, |α|) in S with gap in a bounded interval. These methods all use
the suffix tree of S as the fundamental data structure. We briefly review the
suffix tree and refer to [10] for a more comprehensive treatment.

Definition 2 (Suffix tree) The suffix tree T (S) of the string S is the com-
pressed trie of all suffixes of S. Each leaf in T (S) represents a suffix S[i .. n]
of S and is annotated with the index i. We refer to the set of indices stored
at the leaves in the subtree rooted at node v as the leaf-list of v and denote
it LL(v). Each edge in T (S) is labelled with a nonempty substring of S such
that the path from the root to the leaf annotated with index i spells the suffix
S[i .. n]. We refer to the substring of S spelled by the path from the root to
node v as the path-label of v and denote it L(v).

The suffix tree T (S) can be constructed in time O(n) [29, 21, 27, 6]. It
follows from the definition that all internal nodes in T (S) have out-degree
between two and |Σ|. We can turn the suffix tree T (S) into the binary suffix
tree TB(S) by replacing every node v in T (S) with out-degree d > 2 by a
binary tree with d− 1 internal nodes and d− 2 internal edges in which the d
leaves are the d children of node v. We label each new internal edge with the
empty string such that the d − 1 nodes replacing node v all have the same
path-label as node v has in T (S). Since T (S) has n leaves, constructing the
binary suffix tree TB(S) requires adding at most n− 2 new nodes. Since each
new node can be added in constant time, the binary suffix tree TB(S) can be
constructed in time O(n).
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The binary suffix tree is an essential component of our methods. Defini-
tion 2 implies that there is a node v in T (S) with path-label α if and only if α
is the longest common prefix of S[i .. n] and S[j .. n] for some 1 ≤ i < j ≤ n.
In other words, there is a node v with path-label α if and only if (i, j, |α|) is
a right-maximal pair in S. Since S[i + |α|] 6= S[j + |α|] the indices i and j

cannot be elements in the leaf-list of the same child of v. Using the binary
suffix tree TB(S) we can thus formulate the following lemma.

Lemma 1 There is a right-maximal pair (i, j, |α|) in S if and only if there is a
node v in the binary suffix tree TB(S) with path-label α and distinct children w1

and w2 where i ∈ LL(w1) and j ∈ LL(w2).

Lemma 1 gives an approach to find all right-maximal pairs in S; for every
internal node v in the binary suffix tree TB(S) consider the leaf-lists at its two
children w1 and w2, and for every element (i, j) in LL(w1)×LL(w2) report a
right-maximal pair (i, j, |α|) if i < j and (j, i, |α|) if j < i. To find all maximal
pairs in S the problem remains to filter out all right-maximal pairs that are
not left-maximal.

3 Pairs with upper and lower bounded gap

We want to find all maximal pairs (i, j, |α|) in S with gap between g1(|α|)
and g2(|α|), i.e. g1(|α|) ≤ j − i− |α| ≤ g2(|α|), where g1 and g2 are functions
that can be computed in constant time. An obvious approach is to generate all
maximal pairs in S and only report those with gap between g1(|α|) and g2(|α|),
but as shown above there might be asymptotically fewer maximal pairs in S

with gap between g1(|α|) and g2(|α|) than maximal pairs in S in total. We
therefore want to find all maximal pairs (i, j, |α|) in S with gap between g1(|α|)
and g2(|α|) without generating and considering all maximal pairs in S. A step
towards finding all maximal pairs with gap between g1(|α|) and g2(|α|) is to
find all right-maximal pairs with gap between g1(|α|) and g2(|α|).

Figure 2 shows that if one occurrence of α in a pair with gap between g1(|α|)
and g2(|α|) is at position p, then the other occurrence of α must be at a
position q in one of the two intervals L(p, |α|) = [ p − |α| − g2(|α|) .. p − |α| −
g1(|α|) ] or R(p, |α|) = [ p + |α| + g1(|α|) .. p + |α| + g2(|α|) ]. Together with
Lemma 1 this gives an approach to find all right-maximal pairs in S with gap
between g1(|α|) and g2(|α|); from every internal node v in the binary suffix
tree TB(S) with path-label α and children w1 and w2, we report for every p

in LL(w1) the pairs (p, q, |α|) for all q in LL(w2) ∩ R(p, |α|) and the pairs
(q, p, |α|) for all q in LL(w2) ∩ L(p, |α|).

To report right-maximal pairs efficiently using this procedure, we must
be able to find for every p in LL(w1), without looking at all the elements in

5



��������������������
p

α

L(p, |α|) R(p, |α|)

|α|+ g2(|α|) |α|+ g2(|α|)

|α|+ g1(|α|) |α|+ g1(|α|)

Figure 2: If (p, q, |α|) (respectively (q, p, |α|)) is a pair with gap between g1(|α|)
and g2(|α|), then one occurrence of α is at position p and the other occurrence
is at a position q in the interval R(p, |α|) (respectively L(p, |α|)) of positions.

LL(w2), the proper elements q in LL(w2) to report it against. It turns out
that search trees make this possible. In this paper we use AVL trees, but
other types of search trees, e.g. (a, b)-trees [12] or red-black trees [9], can also
be used as long as they obey Lemmas 2 and 3 stated below. Before we can
formulate algorithms we review some useful facts about AVL trees.

3.1 Data Structures

An AVL tree T is a balanced search tree that stores an ordered set of elements.
AVL trees were introduced in [1], but are explained in almost every textbook
on data structures. We say that an element e is in T , or e ∈ T , if it is stored
at a node in T . For short notation we use e to denote both the element and
the node at which it is stored in T . We can keep links between the nodes in T
in such a way that we in constant time from the node e can find the nodes
next(e) and prev(e) storing the next and previous element in increasing order.
We use |T | to denote the size of T , i.e. the number of elements stored in T .

Efficient merging of two AVL trees is essential to our methods. Hwang
and Lin [13] show how to merge two sorted lists using the optimal number
of comparisons. Brown and Tarjan [3] show how to implement merging of
two height-balanced search trees, e.g. AVL trees, in time proportional to the
optimal number of comparisons. Their result is summarized in Lemma 2,
which immediately implies Lemma 3.

Lemma 2 Two AVL trees of size at most n and m can be merged in time
O(log

(
n+m
n

)
).

Lemma 3 Given a sorted list of elements e1, e2, . . . , en and an AVL tree T

of size at most m, m ≥ n, we can find qi = min
{
x ∈ T

∣∣ x ≥ ei
}

for all
i = 1, 2, . . . , n in time O(log

(
n+m
n

)
).

Proof. Construct the AVL tree of the elements e1, e2, . . . , en in time O(n).
Merge this AVL tree with T according to Lemma 2, except that whenever
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the merge-algorithm would insert one of the elements e1, e2, . . . , en into T ,
we change the merge-algorithm to report the neighbor of the element in T

instead. This modification does not increase the running time. 2

The “smaller-half trick” is essential to several methods for finding tandem
repeats [4, 2, 25]. It says that the sum over all nodes v in an arbitrary binary
tree of size n of terms that are O(n1), where n1 ≤ n2 are the numbers of leaves
in the subtrees rooted at the two children of v, is O(n log n). Our methods
rely on a stronger version of the “smaller-half trick” hinted at in [22, Ex. 35]
and used in [23, Chap. 5, p. 84]; we summarize it in the following lemma.

Lemma 4 Let T be an arbitrary binary tree with n leaves. The sum over all
internal nodes v in T of terms that are O(log

(
n1+n2

n1

)
), where n1 and n2 are the

numbers of leaves in the subtrees rooted at the two children of v, is O(n log n).

Proof. As the terms are O(log
(
n1+n2

n1

)
) we can find constants, a and b, such

that the terms are upper bounded by a+b log
(
n1+n2

n1

)
. We will by induction in

the number of leaves of the binary tree prove that the sum is upper bounded
by (2n − 1)a + b log n!. As log n! = O(n log n) the lemma follows.

If T is a leaf then the upper bound holds vacuously. Now assume induc-
tively that the upper bound holds for all trees with at most n−1 leaves. Let T
be a tree with n leaves where the number of leaves in the subtrees rooted at the
two children of the root are n1 < n and n2 < n. According to the induction hy-
pothesis the sum over all nodes in these two subtrees, i.e. the sum over all nodes
of T except the root, is bounded by (2n1−1)a+b log n1!+(2n2−1)a+b log n2!
and thus the entire sum is bounded by

(2n1 − 1)a+b log n1! + (2n2 − 1)a+ b log n2! + a+ b log

(
n1 + n2

n1

)
= (2(n1 + n2)− 1)a+ b log n1! + b log n2! +

b log(n1 + n2)!− b log n1!− b log n2!

= (2n− 1)a+ b log n!

which proves the lemma. 2

3.2 Algorithms

We first describe an algorithm that finds all right-maximal pairs in S with
bounded gap using AVL trees to keep track of the elements in the leaf-lists
during a traversal of the binary suffix tree TB(S). We then extend it to find
all maximal pairs in S with bounded gap using an additional AVL tree to
filter out efficiently all right-maximal pairs that are not left-maximal. Both
algorithms run in time O(n log n+ z) and space O(n), where z is the number
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of reported pairs. In the following we assume, unless stated otherwise, that v
is a node in the binary suffix tree TB(S) with path-label α and children w1

and w2 named such that |LL(w1)| ≤ |LL(w2)|. We say that w1 is the small
child of v and that w2 is the big child of v.

3.2.1 Right-maximal pairs with upper and lower bounded gap

To find all right-maximal pairs in S with gap between g1(|α|) and g2(|α|) we
consider every node v in the binary suffix tree TB(S) in a bottom-up fashion,
e.g. during a depth-first traversal. At every node v we use AVL trees storing
the leaf-lists LL(w1) and LL(w2) at its two children to report the proper right-
maximal pairs of its path-label α. The details are given in Algorithm 1 and
explained below.

At every node v in TB(S) we construct an AVL tree, the leaf-list tree T ,
that stores the elements in LL(v). If v is a leaf then we construct T directly
in Step 1. If v is an internal node then LL(v) is the union of the disjoint
leaf-lists LL(w1) and LL(w2) which by assumption are stored in the already
constructed T1 and T2, so we construct T by merging T1 and T2, |T1| ≤
|T2|, using Lemma 2. Before constructing T in Step 2c we use T1 and T2

to report right-maximal pairs from node v by reporting every p in LL(w1)
against every q in LL(w2) ∩ L(p, |α|) and LL(w2) ∩R(p, |α|). This is done in
two steps. In Step 2a we find for every p in LL(w1) the minimum element qr(p)
in LL(w2) ∩ R(p, |α|) and the minimum element ql(p) in LL(w2) ∩ L(p, |α|)
by searching in T2 using Lemma 3. In Step 2b we report pairs (p, q, |α|) and
(q, p, |α|) for every p in LL(w1) and increasing q’s in LL(w2) starting with
qr(p) and ql(p) respectively, until the gap violates the upper or lower bound.

To argue that Algorithm 1 finds all right-maximal pairs with gap between
g1(|α|) and g2(|α|) it is enough to argue that we for every p in LL(w1) report
all right-maximal pairs (p, q, |α|) and (q, p, |α|) with gap between g1(|α|) and
g2(|α|). The rest follows because we at every node v in TB(S) consider ev-
ery p in LL(w1). Consider the call Report(qr(p), p + |α|+ g2(|α|)) in Step 2b.
From the implementation of Report follows that this call reports p against
every q in LL(w2) ∩ [qr(p) .. p + |α| + g2(|α|)]. By construction of qr(p) and
definition of R(p, |α|) follows that LL(w2) ∩ [qr(p) .. p + |α|+ g2(|α|)] is equal
to LL(w2) ∩ R(p, |α|), so the call reports all pairs (p, q, |α|) with gap be-
tween g1(|α|) and g2(|α|). Similarly we can argue that the call Report(ql(p), p−
|α| − g1(|α|)) reports all pairs (q, p, |α|) with gap between g1(|α|) and g2(|α|).

Now consider the running time of Algorithm 1. Building the binary suffix
tree TB(S) and creating an AVL tree of size one at each leaf in Step 1 takes
time O(n). At every internal node in TB(S) we do Step 2. Since |T1| ≤
|T2| searching in Step 2a and merging in Step 2c takes time O(log

(|T1|+|T2|
|T1|

)
)

by Lemmas 3 and 2 respectively. Reporting of pairs in Step 2b takes time
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Algorithm 1 Find all right-maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree TB(S) and create at each leaf
an AVL tree of size one that stores the index at the leaf.

2. Reporting and merging: When the AVL trees T1 and T2, |T1| ≤ |T2|, at
the two children w1 and w2 of node v with path-label α are available,
we do the following:

(a) Let {p1, p2, . . . , ps} be the elements in T1 in sorted order. For each
element p in T1 we find

qr(p) = min
{
x ∈ T2

∣∣ x ≥ p+ |α| + g1(|α|)
}

ql(p) = min
{
x ∈ T2

∣∣ x ≥ p− |α| − g2(|α|)
}

by searching in T2 with the sorted lists {pi + |α| + g1(|α|) | i =
1, 2, . . . , s} and {pi−|α|− g2(|α|) | i = 1, 2, . . . , s} using Lemma 3.

(b) For each element p in T1 we do Report(qr(p), p+ |α|+ g2(|α|)) and
Report(ql(p), p − |α| − g1(|α|)) where Report is the following proce-
dure.

def Report(from , to) :
q = from
while q ≤ to :

report pair (p, q, |α|) if p < q, and (q, p, |α|) otherwise
q = next(q)

(c) Build the leaf-list tree T at node v by merging T1 and T2 using
Lemma 2.

proportional to |T1|, because we consider every p in LL(w1), plus the number
of reported pairs. Summing this over all nodes gives by Lemma 4 that the total
running time is O(n log n+ z), where z is the number of reported pairs. Since
constructing and keeping TB(S) requires space O(n), and since no element at
any time is in more than one leaf-list tree, Algorithm 1 requires space O(n).

Theorem 1 Algorithm 1 finds all right-maximal pairs (i, j, |α|) in a string S
with gap between g1(|α|) and g2(|α|) in space O(n) and time O(n log n + z),
where z is the number of reported pairs and n is the length of S.
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3.2.2 Maximal pairs with upper and lower bounded gap

We now turn towards finding all maximal pairs in S with gap between g1(|α|)
and g2(|α|). Our approach to find all maximal pairs in S with gap be-
tween g1(|α|) and g2(|α|) is to extend Algorithm 1 to filter out all right-
maximal pairs that are not left-maximal. A simple solution is to extend the
procedure Report to check if S[p − 1] 6= S[q − 1] before reporting the pair
(p, q, |α|) or (q, p, |α|) in Step 2b. This solution takes time proportional to the
number of inspected right-maximal pairs, and not time proportional to the
number of reported maximal pairs. Even though the maximum number of
right-maximal pairs and maximal pairs in strings of a given length are asymp-
totically equal, many strings contain significantly fewer maximal pairs than
right-maximal pairs. We therefore want to filter out all right-maximal pairs
that are not left-maximal without inspecting all right-maximal pairs. In the
remainder of this section we describe one way to do this.

Consider the reporting step in Algorithm 1 and assume that we are about
to report from a node v with children w1 and w2. The leaf-list trees T1 and T2,
|T1| ≤ |T2|, are available and they make it possible to access the elements
in LL(w1) = {p1, p2, . . . , ps} and LL(w2) = {q1, q2, . . . , qt} in sorted order.
We divide the sorted leaf-list LL(w2) into blocks of contiguous elements such
that the elements qi−1 and qi are in the same block if and only if S[qi−1−1] =
S[qi−1]. We say that we divide the sorted leaf-list into blocks of elements with
equal left-characters. To filter out all right-maximal pairs that are not left-
maximal we must avoid to report p in LL(w1) against any element q in LL(w2)
in a block of elements with left-character S[p− 1]. This gives the overall idea
of the extended algorithm; we extend the reporting step in Algorithm 1 such
that whenever we are about to report p in LL(w1) against q in LL(w2) where
S[p− 1] = S[q − 1] we skip all elements in the current block containing q and
continue reporting p against the first element q′ in the following block, which
by the definition of blocks satisfies that S[p− 1] 6= S[q′ − 1].

To implement this extended reporting step efficiently we must be able to
skip all elements in a block without inspecting each of them. We achieve this
by constructing an additional AVL tree, the block-start tree, that keeps track
of the blocks in the leaf-list. At each node v during the traversal of TB(S)
we thus construct two AVL trees; the leaf-list tree T that stores the elements
in LL(v), and the block-start tree B that keeps track of the blocks in the sorted
leaf-list by storing all the elements in LL(v) that start a block. We keep links
from the block-start tree to the leaf-list tree such that we in constant time can
go from an element in the block-start tree to the corresponding element in the
leaf-list tree. Figure 3 illustrates the leaf-list tree, the block-start tree and the
links between them. Before we present the extended algorithm and explain
how to use the block-start tree to efficiently skip all elements in a block, we
first describe how to construct the leaf-list tree T and block-start tree B at
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Figure 3: The data structure constructed at each node v in TB(S). The leaf-
list tree T stores all elements in LL(v). The block-start tree B stores all
elements in LL(v) that start a block in the sorted leaf-list. We keep links
from the elements in the block-start tree to the corresponding elements in the
leaf-list tree.

node v from the leaf-list trees, T1 and T2, and block-start trees, B1 and B2,
at its two children w1 and w2.

Since LL(v) is the union of the disjoint leaf-lists LL(w1) and LL(w2)
stored in T1 and T2 respectively, we can construct the leaf-list tree T by
merging T1 and T2 using Lemma 2. It is more involved to construct the
block-start tree B. The reason is that an element pi that starts a block in
LL(w1) or an element qj that starts a block in LL(w2) does not necessarily
start a block in LL(v) and vice versa, so we cannot construct B by merg-
ing B1 and B2. Let {e1, e2, . . . , es+t} be the elements in LL(v) in sorted
order. By definition the block-start tree B contains all elements ek in LL(v)
where S[ek−1−1] 6= S[ek−1]. We construct B by modifying B2. We choose to
modify B2, and not B1, because |LL(w1)| ≤ |LL(w2)|, which by the “smaller-
half trick” allows us to consider all elements in LL(w1) without spending too
much time in total. To modify B2 to become B we must identify all the
elements that are in B but not in B2 and vice versa.

Lemma 5 If ek is in B but not in B2 then ek ∈ LL(w1) or ek−1 ∈ LL(w1).

Proof. Assume that ek is in B and that ek and ek−1 both are in LL(w2).
In LL(w2) the elements ek and ek−1 are neighboring elements qj and qj−1.
Since ek starts a block in LL(v) then S[qj − 1] = S[ek − 1] 6= S[ek−1 − 1] =
S[qj−1 − 1]. This shows that qj = ek is in B2 and the lemma follows. 2

Let NEW be the set of elements ek in B where ek or ek−1 are in LL(w1).
It follows from Lemma 5 that this set contains at least all elements in B that
are not in B2. It is easy to see that we can construct NEW in sorted order
while merging T1 and T2; whenever an element ek from T1, i.e. LL(w1), is
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placed in T , i.e. LL(v), we include it, and/or the next element ek+1 placed
in T , in NEW if they start a block in LL(v).

If we insert the elements in NEW we are halfway done modifying B2 to
become B. We still need to identify and remove the elements that should be
removed from B2, that is, the elements that are in B2 but not in B.

Lemma 6 An element qj in B2 is not in B if and only if the largest element ek
in NEW smaller than qj in B2 has the same left-character as qj .

Proof. If qj is in B2 but does not start a block in LL(v), then it must be in
a block started by some element ek with the same left-character as qj. This
block cannot contain qj−1 because qj being in B2 implies that S[qj − 1] 6=
S[qj−1 − 1]. We thus have the ordering qj−1 < ek < qj. This implies that ek
is the largest element in NEW smaller than qj. If ek is the largest element
in NEW smaller than qj, then no block starts in LL(v) between ek and qj, i.e.
all elements e in LL(v) where ek < e < qj satisfy that S[e− 1] = S[ek − 1], so
if S[ek − 1] = S[qj − 1] then qj does not start a block in LL(v). 2

By searching in B2 with the sorted list NEW using Lemma 3 it is straight-
forward to find all pairs of elements (ek, qj), where ek is the largest element
in NEW smaller than qj in B2. If the left-characters of ek and qj in such a
pair are equal, i.e. S[ek − 1] = S[qj − 1], then by Lemma 6 the element qj is
not in B and must therefore be removed from B2. It follows from the proof
of Lemma 6 that if this is the case then qj−1 < ek < qj , so we can, without
destroying the order among the nodes in B2, remove qj from B2 and insert ek
instead, simply by replacing the element qj with the element ek at the node
storing qj in B2.

We can now summarize the three steps it takes to modify B2 to become B.
In Step 1 we construct the sorted set NEW that contains all elements in B

that are not in B2. This is done while merging T1 and T2 using Lemma 2.
In Step 2 we remove the elements from B2 that are not in B. The elements
in B2 being removed and the elements from NEW replacing them are identified
using Lemmas 3 and 6. In Step 3 we merge the remaining elements in NEW
into the modified B2 using Lemma 2. Adding links from the new elements
in B to the corresponding elements in T can be done while replacing and
merging in Steps 2 and 3. Since |NEW | ≤ 2 |T1| and |B2| ≤ |T2|, the time
it takes to construct B is dominated by the the time it takes merge a sorted
list of size 2 |T1| into an AVL tree of size |T2|. By Lemma 2 this is within a
constant factor of the time it takes to merge T1 and T2, so the time is takes to
construct B is dominated by the time it takes to construct the leaf-list tree T .

Now that we know how to construct the leaf-list tree T and block-start
tree B at node v from the leaf-list trees, T1 and T2, and block-start trees, B1

and B2, at its two children w1 and w2, we can proceed with the implementation
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Algorithm 2 Find all maximal pairs in string S with bounded gap.

1. Initializing: Build the binary suffix tree TB(S) and create at each leaf
two AVL trees of size one, the leaf-list and the block-start tree, both
storing the index at the leaf.

2. Reporting and merging: When the leaf-list trees T1 and T2, |T1| ≤ |T2|,
and the block-start trees B1 and B2 at the two children w1 and w2 of
node v with path-label α are available, we do the following:

(a) Let {p1, p2, . . . , ps} be the elements in T1 in sorted order. For each
element p in T1 we find

qr(p) = min
{
x ∈ T2

∣∣ x ≥ p+ |α| + g1(|α|)
}

ql(p) = min
{
x ∈ T2

∣∣ x ≥ p− |α| − g2(|α|)
}

br(p) = min
{
x ∈ B2

∣∣ x ≥ p+ |α|+ g1(|α|)
}

bl(p) = min
{
x ∈ B2

∣∣ x ≥ p− |α| − g2(|α|)
}

by searching in T2 andB2 with the sorted lists {pi+|α|+g1(|α|) | i =
1, 2, . . . , s} and {pi−|α|− g2(|α|) | i = 1, 2, . . . , s} using Lemma 3.

(b) For each element p in T1 we do ReportMax(qr(p), br(p), p +
|α| + g2(|α|)) and ReportMax(ql(p), bl(p), p − |α| − g1(|α|)) where
ReportMax is the following procedure.

def ReportMax(from T , from B , to):
q = from T
b = from B
while q ≤ to:

if S[q − 1] 6= S[p− 1]:
report pair (p, q, |α|) if p < q, and (q, p, |α|) otherwise
q = next(q)

else:
while b ≤ q:

b = next(b)
q = b

(c) Build the leaf-list tree T at node v by merging T1 and T2 using
Lemma 2. Build the block-start tree B at node v by modifying B2

as described in the text.
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of the extended reporting step. The details are shown in Algorithm 2. This
algorithm is similar to Algorithm 1 except that we at every node v in TB(S)
construct two AVL trees; the leaf-list tree T that stores the elements in LL(v),
and the block-start tree B that keeps track of the blocks in LL(v) by storing
the subset of elements that start a block. If v is a leaf, we construct T and B
directly. If v is an internal node, we construct T by merging the leaf-list
trees T1 and T2 at its two children w1 and w2, and we construct B by modifying
the block-start tree B2 as explained above.

Before constructing T and B we report all maximal pairs from node v

with gap between g1(|α|) and g2(|α|) by reporting every p in LL(w1) against
every q in LL(w2)∩L(p, |α|) and LL(w2)∩R(p, |α|) where S[p−1] 6= S[q−1].
This is done in two steps. In Step 2a we find for every p in LL(w1) the
minimum elements ql(p) and qr(p), as well as the minimum elements bl(p)
and br(p) that start a block, in LL(w2) ∩ L(p, |α|) and LL(w2) ∩ R(p, |α|)
respectively. This is done by searching in T2 and B2 using Lemma 3. In
Step 2b we report pairs (p, q, |α|) and (q, p, |α|) for every p in LL(w1) and
increasing q’s in LL(w2) starting with qr(p) and ql(p) respectively, until the
gap violates the upper or lower bound. Whenever we are about to report p
against q where S[p − 1] = S[q − 1], we instead use the block-start tree B2

to skip all elements in the block containing q and continue with reporting p
against the first element in the following block.

To argue that Algorithm 2 finds all maximal pairs with gap between g1(|α|)
and g2(|α|) it is enough to argue that we for every p in LL(w1) report all max-
imal pairs (p, q, |α|) and (q, p, |α|) with gap between g1(|α|) and g2(|α|). The
rest follows because we at every node in TB(S) consider every p in LL(w1).
Consider the call ReportMax(qr(p), br(p), p+|α|+g2(|α|)) in Step 2b. From the
implementation of ReportMax follows that unless we skip elements by increas-
ing b then we consider every q in LL(w2)∩R(p, |α|). The test S[q−1] 6= S[p−1]
before reporting a pair ensures that we only report maximal pairs and when-
ever S[q − 1] = S[p− 1] we increase b until b = min{x ∈ B2 | x > q}. This is,
by construction of B2 and br(p), the element that starts the block following
the block containing q, so all elements q′, q < q′ < b, we skip by setting q

to b satisfy that S[p − 1] = S[q − 1] = S[q′ − 1]. We thus conclude that
ReportMax(qr(p), br(p), p + |α| + g2(|α|)) reports p against exactly those q in
LL(w2) ∩R(p, |α|) where S[p− 1] 6= S[q − 1], i.e. it reports all maximal pairs
(p, q, |α|) at node v with gap between g1(|α|) and g2(|α|). Similarly, the call
ReportMax(ql(p), bl(p), p − |α| − g1(|α|)) reports all maximal pairs (q, p, |α|)
with gap between g1(|α|) and g2(|α|).

Now consider the running time of Algorithm 2. We first argue that the call
ReportMax(qr(p), br(p), p+ |α|+g2(|α|)) takes constant time plus time propor-
tional to the number of reported pairs (p, q, |α|). To do this all we have to show
is that the time used to skip blocks, i.e. the number of times we increase b, is
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proportional to the number of reported pairs. By construction br(p) ≥ qr(p),
so the number of times we increase b is bounded by the number of blocks in
LL(w2) ∩ R(p, |α|). Since neighboring blocks contain elements with different
left-characters, we report p against an element from at least every second block
in LL(w2)∩R(p, |α|). The number of times we increase b is thus proportional to
the number of reported pairs. The call ReportMax(ql(p), bl(p), p−|α|−g1(|α|))
also takes constant time plus time proportional to the number of reported pairs
(q, p, |α|). We thus have that Step 2b takes time proportional to |T1| plus the
number of reported pairs. Everything else we do at node v, i.e. searching in T2

and B2 and constructing the leaf-list tree T and block-start tree B, takes time
O(log

(|T1|+|T2|
|T1|

)
). Summing this over all nodes gives by Lemma 4 that the

total running time of the algorithm is O(n log n + z) where z is the number
of reported pairs. Since constructing and keeping TB(S) requires space O(n),
and since no element at any time is in more than one leaf-list tree, and maybe
one block-start tree, Algorithm 2 requires space O(n).

Theorem 2 Algorithm 2 finds all maximal pairs (i, j, |α|) in a string S with
gap between g1(|α|) and g2(|α|) in space O(n) and time O(n log n+z), where z
is the number of reported pairs and n is the length of S.

We observe that Algorithm 2 never uses the block-start tree B1 at the
small child w1. This observation can be used to ensure that only one block-
start tree exists during the execution of the algorithm. If we implement the
traversal of TB(S) as a depth-first traversal in which we at each node v first
recursively traverse the subtree rooted at the small child w1, then we do not
need to store the block-start tree returned by this recursive traversal while
recursively traversing the subtree rooted at the big child w2. This implies
that only one block-start tree exists at all times during the recursive traversal
of TB(S). The drawback is that we at each node v need to know in advance
which child is the small child, but this knowledge can be obtained in linear
time by annotating each node with the size of the subtree it roots.

4 Pairs with lower bounded gap

If we relax the constraint on the gap and only want to find all maximal pairs
in S with gap at least g(|α|), where g is a function that can be computed
in constant time, then a straightforward solution is to use Algorithm 2 with
g1(|α|) = g(|α|) and g2(|α|) = n. This obviously finds all maximal pairs with
gap at least g1(|α|) = g(|α|) in time O(n log n + z). However, the missing
upper bound on the gap, i.e. the trivial upper bound g2(|α|) = n, makes it
possible to reduce the running time to O(n+z) since reporting from each node
during the traversal of the binary suffix tree is simplified.
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The reporting of pairs from node v with children w1 and w2 is simplified,
because the lack of an upper bound on the gap implies that we do not have
to search LL(w2) for the first element to report against the current element
in LL(w1). Instead we can start by reporting the current element in LL(w1)
against the biggest (and smallest) element in LL(w2) and then continue re-
porting it against decreasing (and increasing) elements from LL(w2) until
the gap becomes smaller than g(|α|). Unfortunately this simplification alone
does not reduce the asymptotic running time because inspecting every element
in LL(w1) and keeping track of the leaf-lists in AVL trees alone requires time
Θ(n log n). To reduce the running time we must thus avoid to inspect every
element in LL(w1) and find another way to store the leaf-lists. We achieve
this by using the data structures presented below to store the leaf-lists during
the traversal of the binary suffix tree.

4.1 Data structures

A heap-ordered tree is a tree in which each node stores an element and has a
key. Every node other than the root satisfies that its key is greater than or
equal to the key at its parent. Heap-ordered trees have been widely studied
and are the basic structure of many priority queues [30, 7, 28, 8]. In this section
we utilize heap-ordered trees to construct two data structures, the heap-tree
and the colored heap-tree, that are useful in our application of finding pairs
with lower bounded gap but might also have applications elsewhere.

A heap-tree stores a collection of elements with comparable keys and sup-
ports the following operations.

Init(e, k): Return a heap-tree of size one that stores element e with key k.

Find(H,x): Return all elements e stored in the heap-tree H with key k ≤ x.

Min(H): Return the element e stored in H with minimum key.

Meld(H,H ′): Return a heap-tree that stores all elements in H and H ′ with
unchanged keys.

A colored heap-tree stores a collection of colored elements with comparable
keys. We use color (e) to denote the color of element e. A colored heap-tree
supports the same operations as a heap-tree except that it allows us to find
all elements not having a particular color. The operations are as follows.

ColorInit(e, k): Return a colored heap-tree of size one that stores ele-
ment e with key k.

ColorFind(H,x, c): Return all elements e stored in the colored heap-tree H
with key k ≤ x and color (e) 6= c.
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ColorMin(H): Return the element e stored in H with minimum key.

ColorSec(H): Return the element e stored in H with minimum key such
that color (e) 6= color(ColorMin(H)).

ColorMeld(H,H ′): Return a colored heap-tree that stores all elements in H

and H ′ with unchanged keys.

In the following we will describe how to implement heap-trees and colored
heap-trees using heap-ordered trees such that Init, Min, ColorInit, ColorMin
and ColorSec take constant time, Find and ColorFind take time proportional
to the number of returned elements, and Meld and ColorMeld take amortized
constant time. This means that we can meld n (colored) heap-trees of size one
into a single (colored) heap-tree of size n by an arbitrary sequence of n − 1
meld operations in time O(n) in the worst case.

4.1.1 Heap-trees

We implement heap-trees as binary heap-ordered trees as illustrated in Fig-
ure 4. At every node in the heap-ordered tree we store an element from the
collection of elements we want to store. The key of a node is the key of the
element it stores. We use v.elm to refer to the element stored at node v, v.key
to refer to the key of node v, and v.right and v.left to refer to the two children
of node v. Besides the heap-order we maintain the invariant that the root of
the heap-ordered tree has no left-child.

We define the backbone of a heap-tree as the path in the heap-ordered
tree that starts at the root and continues via nodes reachable from the root
via a sequence of right-children. We define the length of the backbone as the
number of edges on the path it describes. Consider the heap-trees H and H ′

in Figure 4; the backbone of H is the path r, v1, . . . , vs of length s and the
backbone of H ′ is the path r′, v′1, . . . , v

′
t of length t. We say that the node

on the backbone farthest from the root is at the bottom of the backbone.
We keep track of the nodes on the backbone of a heap-tree using a stack, the
backbone-stack, in which the root is at the bottom and the node farthest from
the root is at the top. The backbone-stack makes it easy to access the nodes
on the backbone from the bottom and up towards the root.

We now turn to the implementation of Init, Min, Find and Meld. Init(e, k)
is straightforward. We construct a single node v where v.elm = e, v.key = k

and v.right = v.left = null and a backbone-stack of size one that contains
node v. Min(H) is also straightforward. The heap-order implies that root r
of H stores the element with minimum key, i.e. Min(H) = r.elm .

We implement Find(H,x) as a recursive traversal of H starting at the root.
At each node v we compare v.key to x. If v.key ≤ x, we report v.elm and
continue recursively with the two children of v. If v.key > x, then by the
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Figure 4: The implementation of heap-trees as binary heap-ordered trees. The
figure shows two heap-trees H and H ′. The nodes on the backbone of the two
heap-trees are shaded.

heap-order all keys at nodes in the subtree rooted at v are greater than x, so
we return from v without reporting. Clearly this traversal reports all elements
stored at nodes v with v.key ≤ x, i.e. all elements stored with key k ≤ x. Since
each node has at most two children, we make, for each reported element, at
most two additional comparisons against x corresponding to the at most two
recursive calls from which we return without reporting. The running time of
the traversal is thus proportional to the number of reported elements.

We implement Meld(H,H ′) in two steps. Figure 5 illustrates the melding
of the heap-trees H and H ′ from Figure 4. We assume that r.key ≤ r′.key . In
Step 1 we merge the backbones of H and H ′ together such that the heap-order
is satisfied in the resulting tree. The merged backbone is constructed from the
bottom and up towards the root by popping nodes from the backbone-stacks
of H and H ′. Step 1 results in a heap-tree with a backbone of length s +
t + 1. Since r.key ≤ r′.key , a prefix of the merged backbone consists of
nodes r, v1, v2, . . . , vi solely from the backbone of H. In Step 2 we shorten the
merged backbone. Since the root r′ of H ′ has no left-child, the node r′ on the
merged backbone has no left-child either, so by moving the right-child of r′

to this empty spot, making it the left-child of r′, we shorten the length of the
merged backbone to i+ 1.

The two steps of Meld(H,H ′) clearly construct a heap-ordered tree that
stores all elements in H and H ′ with unchanged keys. Since r.key ≤ r′.key ,
the root of the constructed heap-ordered tree is the root of H and therefore
has no left-child. The constructed heap-ordered tree is thus a heap-tree as
wanted. The backbone of the new heap-tree is the path r, v1, . . . , vi, r

′. We
observe that the backbone-stack of H after Step 1 contains exactly the nodes
r, v1, . . . vi. We can thus construct the backbone-stack of the new heap-tree
by pushing r′ onto what remains of the backbone-stack of H after Step 1.

18



v2

vi

r′

v′1
vi+1

v′t−1

v′t

vs

vs−1

vs−2

v1

r

v1

v2

vi

v′1
vi+1

v′t−1

r′

v′t

vs

vs−1

vs−2

r

Figure 5: The two steps of melding the heap-trees H and H ′ shown in Figure 4.
The heap-tree to the left is the result of merging the backbones. The heap-tree
to the right is the result of shortening the backbone by moving the right-child
of r′ in the merged backbone to the left-child. The nodes on the backbone of
the two heap-trees are marked.

Now consider the running time of Meld(H,H ′). Step 1 takes time propor-
tional to the total number of nodes popped from the two backbone-stacks.
Since i + 1 nodes remains on the backbone-stack of H, Step 1 takes time
(s+ 1) + (t+ 1)− (i+ 1) = s+ t− i+ 1. Step 2 and construction of the new
backbone-stack takes constant time, so, except for a constant factor, melding
two heap-trees with backbones of length s and t takes time T (s, t) = s+t−i+1.
In our application of finding pairs we are more interested in bounding the total
time required to do a sequence of melds rather than bounding the time of each
individual meld. We therefore turn to amortized analysis [26].

On a forest F of heap-trees we define the potential function Φ(F ) to be the
sum of the lengths of the backbones of the heap-trees in the forest. Melding two
heap-trees with backbones of length s and t, as illustrated in Figure 5, changes
the potential of the forest with ∆Φ = i+1−(s+t). The amortized running time
of melding the two heap-trees is thus T (s, t)+∆Φ = (s+t−i+1)+(i−s−t+1) =
2, so starting with n heap-trees of size one, i.e. a forest F0 with potential
Φ(F0) = 0, and doing a sequence of n−1 meld operations until the forest Fn−1

consists of a single heap-tree, takes time O(n) in the worst case.

4.1.2 Colored heap-trees

We implement colored heap-trees as colored heap-ordered trees in much the
same way as we implemented heap-trees as uncolored heap-ordered trees. The
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implementation only differs in two ways. First, a node in the colored heap-
ordered tree stores a set of elements instead of just a single element. Secondly,
a node, including the root, can have several left-children. The elements stored
at a node, and the references to the left-children of a node, are kept in uncol-
ored heap-trees. More precisely, a node v in the colored heap-ordered tree has
the following attributes.

v.elms : A heap-tree that stores the elements at node v. Find(v.elms , x) re-
turns all elements stored at node v with key less than or equal to x.
All elements stored at node v have identical colors. We say that this
color is the color of node v and denote it by color (v).

v.key : The key of node v. We set the key of a node to be the minimum key
of an element stored at the node, i.e. the key of node v is the key of
the element stored at the root of v.elms .

v.right : A reference to the right-child of node v.

v.lefts : A heap-tree that stores the references to the left-children of node v.
A reference is stored with a key equal to the key of the referenced
left-child, so Find(v.lefts , x) returns the references to all left-children
of node v with key less than or equal to x.

As for a heap-tree we define the backbone of a colored heap-tree as the
path that starts at the root and continues via nodes reachable from the root
via a sequence of right-children. We use a stack, the backbone-stack, to keep
track of the nodes on the backbone. In addition to the heap-order, saying
that the key of every node other than the root is greater than or equal to the
key of its parent, we maintain the following three invariants about the color
of the nodes and the relation between the elements stored at a node and its
left-children.

I1: Every node v other than the root r has a color different from its parent.

I2: Every node v satisfies that |Find(v.elms , x)| ≥ |Find(v.lefts , x)| for any x.

I3: The root r satisfies that |Find(r.elms , x)| ≥ |Find(r.lefts , x)| + 1 for any
x ≥ Min(r.elms).

We can now turn to the implementation of the operations on colored heap-
trees. ColorInit(e, k) is straightforward. We simply construct a single node v
where v.key = k, v.elms = Init(e, k) and v.right = v.lefts = null and a
backbone-stack that contains node v. ColorMin(H) is also straightforward.
The heap-order implies that the element with minimum key is stored in the
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heap-tree r.elms at the root r of H, so ColorMin(H) = Min(r.elms). The heap-
order and I1 imply that ColorSec(H) is the element stored with minimum key
at a child of r. The element stored with minimum key at the right-child is
Min(r.right) and the element stored with minimum key at a left-child must
by the heap-order of r.lefts be the element stored with minimum key at the
left-child referenced by the root of r.lefts , i.e. Min(Root(r.lefts).elm). Both
ColorMin(H) and ColorSec(H) can thus be found in constant time.

We implement ColorFind(H,x, c) as a recursive traversal of H starting at
the root. More precisely, we implement ColorFind(H,x, c) as ReportFrom(r)
where r is the root of H and ReportFrom is the following recursive procedure.

def ReportFrom(v):
if key(v) ≤ x:

if color (v) 6= c:
E = Find(v.elms , x)
for e in E:

report e
ReportFrom(v.right)
W = Find(v.lefts , x)
for w in W :

ReportFrom(w)

The correctness of this implementation is easy to establish. The heap-order
ensures that all nodes v with v.key ≤ x are visited during the traversal. The
definition of v.key implies that any element e with key k ≤ x is stored at a
node v with v.key ≤ x, i.e. among the elements returned by Find(v.elms , x) for
some node v visited during the traversal. Together with the test color (v) 6= c

this implies that all elements e with key k ≤ x and color different from c are
reported by ColorFind(H,x, c).

Now consider the running time of ColorFind(H,x, c). Since Find(v.elms , x)
and Find(v.lefts , x) both take time proportional to the number of returned
elements, it follows that the running time is dominated by the number of re-
cursive calls plus the number of reported elements. To argue that the running
time of ColorFind(H,x, c) is proportional to the number of reported elements
we therefore argue that the number of reported elements dominates the num-
ber of recursive calls. We only make recursive calls from a node v if v.key ≤ x.
Let v be such a node and consider two cases. If color (v) 6= c, then we report
at least one element, namely the element with key v.key , and by I2 and I3 we
report at least as many elements as the number of left-children we call from v,
so except for a constant term that we can charge for visiting node v, the num-
ber of reported elements at v accounts for the call to v and all calls from v.
If color (v) = c, then we do not report any elements at v, but I1 ensures that
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we reported elements at its parent (unless v is the root) and that we will be
reporting elements at all left-children we call from v. The call to v is thus
already accounted for by the elements reported at its parent, and except for
a constant term that we can charge for visiting node v, all calls from v will
be accounted for by elements reported at the children of v. We conclude that
the number of reported elements dominates the number of recursive calls, so
ColorFind(H,x, c) takes time proportional to the number of reported elements.

We implement ColorMeld(H,H ′) similar to Meld(H,H ′) except that we
must ensure that the constructed colored heap-tree obeys the three invariants.
Let H and H ′ be colored heap-trees with roots r and r′, r.key ≤ r′.key ,
respectively. We implement ColorMeld(H,H ′) as the following three steps.

1. Merge. We merge the backbones of H and H ′ together such that the re-
sulting heap-ordered tree stores all elements in H and H ′ with unchanged
keys. The merging is done by popping nodes from the backbone-stacks
of H and H ′ until the backbone-stack of H ′ is empty

2. Solve conflicts. A node w on the merged backbone with the same color
as its parent v is a violation of invariant I1. We solve conflicts between
neighboring nodes v and w of equal color by melding the elements and
left-children of the two nodes and removing node w. We say that parent v
swallows the child w.

v.elms = Meld(v.elms , w.elms)
v.lefts = Meld(v.lefts , w.lefts)
v.right = w.right

3. Shorten backbone. Let v be the node on the merged backbone corre-
sponding to r′ or the node that swallowed r′ in Step 2. We shorten the
backbone by moving the right-child of v to the set of left-children of v.

v.lefts = Meld(v.lefts , Init(v.right , v.right .key))
v.right = null

The main difference from the implementation of Meld(H,H ′) is Step 2 where
the invariant I1 is restored along the merged backbone. To establish the
correctness of the implementation of ColorMeld(H,H ′) we consider each of the
three steps in more details.

In Step 1 we merge the backbones of H and H ′ together such that the
resulting tree is a heap-ordered tree that stores all elements in H and H ′ with
unchanged keys. Since the merging does not change the left-children or the
elements of any node and since H and H ′ both obey I2 and I3, the constructed
heap-ordered tree also obeys I2 and I3. The merged backbone can however
contain neighboring nodes of equal color. These conflicts are a violation of I1.
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In Step 2 we restore I1. We solve all conflicts on the merged backbone be-
tween neighboring nodes v and w of equal color by letting the parent v swallow
the child w as illustrated in Figure 6. We observe that since H and H ′ both
obey I1 a conflict must involve a node from both of them. This implies that
a conflict can only occur in the part of the merged backbone made of nodes
popped off the backbone-stacks in Step 1. We also observe that solving a con-
flict does not induce a new conflict. Combined with the previous observation
this implies that the number of conflicts is bounded by the number of nodes
popped off the backbone-stacks in Step 1. Finally, we observe that solving a
conflict does not induce violations of I2 and I3, so after solving all conflicts
on the merged backbone we have a colored heap-tree that stores all elements
in H and H ′ with unchanged keys.

In Step 3 we shorten the merged backbone. This is done by moving the
right-child of r′ to its left-children, or in case r′ has been swallowed by a node v
in Step 2, by moving the right-child of v to its left-children. To argue that this
does not induce violations of I2 and I3 we start by making two observations.
First, we observe that moving the right-child of a node that obeys I3 to its set
of left-children results in a node that obeys I2. Secondly, we observe that if a
node that obeys I2 (or I3) swallows a node that obeys I2 it results in a node
that still obeys I2 (or I3).

Since r′ is the root of H ′, it obeys I3 before Step 2. We consider two
cases. First, if r′ is not swallowed in Step 2, the first observation immediately
implies that it obeys I2 after Step 3. Secondly, if r′ is swallowed by a node v
in Step 2, we might as well think of Step 2 and Step 3 as occurring in the
opposite order as this does not affect the resulting tree. Hence, first we move
the right-child of r′ to its set of left-children, which by the first observation
results in a node that obeys I2, then we let node v swallow this node, which
by the second observation does not affect the invariants obeyed by v.

We conclude that our implementation of ColorMeld(H,H ′) constructs a
colored heap-tree that obeys all three invariants and stores all elements in H

and H ′ with unchanged keys. It is easy to see that the backbone-stack of
the colored heap-tree constructed by ColorMeld(H,H ′) is what remains on the
backbone-stack of H after popping of nodes in Step 1 with the node r′ pushed
onto it, unless the node r′ is swallowed in Step 2.

Now consider the time it takes to meld n colored heap-trees of size one
together by a sequence of n− 1 melds. If we ignore the time it takes to meld
the heap-trees storing elements and references to left-children when solving
conflicts in Step 2 and shortening the backbone in Step 3, then we can bound
the time it takes to do the sequence of melds by O(n) exactly as we did in
the previous section. It is easy to see that melding n colored heap-trees of
size one involves melding at most n heap-trees of size one storing elements,
and at most n heap-trees of size one storing references to left-children. Since
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Figure 6: This figure illustrates how a conflict on the merged backbone is
solved. If color (v) = color (w) then I1 is violated. The invariant is restored
by letting node v swallow node w, i.e. melding the elements and left-children
at the two nodes and removing node w. Since color (u) 6= color (w) = color (v)
and color (u′) 6= color (v), solving a conflict does not induce another conflict.

melding n heap-trees of size one takes time O(n), we have that melding the
heap-trees storing elements and references to left-children also takes time O(n),
so melding n colored heap-trees of size one takes time O(n) in the worst case.

4.2 Algorithms

In the following we present two algorithms to find pairs with lower bounded
gap. First we describe a simple algorithm to find all right-maximal pairs with
lower bounded gap using heap-trees, then we extend it to find all maximal
pairs with lower bounded gap using colored heap-trees. Both algorithms run
in time O(n+ z) where z is the number of reported pairs.

4.2.1 Right-maximal pairs with lower bounded gap

We find all right-maximal pairs in S with gap at least g(|α|) by for each node v
in the binary suffix tree TB(S) to consider the leaf-lists at its two children w1

and w2. The pair (p, q, |α|), p ∈ LL(w1) and q ∈ LL(w2), is right-maximal
and has gap at least g(|α|) if and only if q ≥ p + |α| + g(|α|). If we let pmin
denote the minimum element in LL(w1) this implies that every q in

Q = {q ∈ LL(w2) | q ≥ pmin + |α|+ g(|α|)}

forms a right-maximal pair (p, q, |α) with gap at least g(|α|) with every p in

Pq = {p ∈ LL(w1) | p ≤ q − g(|α|) − |α|}.

By construction Pq contains pmin and we have that (p, q, |α|) is a right-maximal
pair with gap at least g(|α|) if and only if q ∈ Q and p ∈ Pq. We can
construct Q and Pq using heap-trees. Let Hi and H̄i be heap-trees that
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Algorithm 3 Find all right-maximal pairs in S with lower bounded gap.

1. Initializing: Build the binary suffix tree TB(S). Create at each leaf two
heap-trees of size one, H ordered by “≤” and H̄ ordered by “≥”, that
both store the index at the leaf.

2. Reporting and melding: When the heap-trees H1 and H̄1 at the left-child
of node v, and the heap-trees H2 and H̄2 at the right-child of node v
are available we report pairs of α, the path-label of v, and construct the
heap-trees H and H̄ as follows

1 Q = Find(H̄2,Min(H1) + |α|+ g(|α|))
2 for q in Q:
3 Pq = Find(H1, q − g(|α|) − |α|)
4 for p in Pq:
5 report pair (p, q, |α|)

6 P = Find(H̄1,Min(H2) + |α|+ g(|α|))
7 for p in P :
8 Qp = Find(H2, p− g(|α|) − |α|)
9 for q in Qp:

10 report pair (q, p, |α|)

11 H = Meld(H1,H2)
12 H̄ = Meld(H̄1, H̄2)

store the elements in LL(wi) ordered by “≤” and “≥” respectively. By
definition of the operations Min and Find we have that pmin = Min(H1),
Q = Find(H̄2, pmin + |α|+ g(|α|) and Pq = Find(H1, q − g(|α|) − |α|).

This leads to the formulation of Algorithm 3 in which we at every node v
in TB(S) construct two heap-trees, H and H̄, that store the elements in LL(v)
ordered by “≤” and “≥” respectively. If v is a leaf, we construct H and H̄

directly by creating two heap-trees of size one each storing the index at the leaf.
If v is an internal node, we construct H and H̄ by melding the corresponding
heap-trees at the two children (lines 11–12). Before constructing H and H̄ at
node v, we report right-maximal pairs of its path-label (lines 1–10).

To argue that Algorithm 3 finds all right-maximal pairs in S with gap at
least g(|α|) it is enough to argue that we at each node v in TB(S) report all
pairs (p, q, |α|) and (q, p, |α|), p ∈ LL(w1) and q ∈ LL(w2), with gap at least
g(|α|). The rest follows because we consider every node in TB(S). Let v be a
node in TB(S) at which the heap-trees H1, H̄1 and H2, H̄2 at its two children
are available. As explained above (p, q, |α|) is a right-maximal pair with gap
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at least g(|α|) if and only if q ∈ Q and p ∈ Pq, which exactly are the pairs
reported in lines 1–5. Symmetrically we can argue that (q, p, |α|) is a right-
maximal pair with gap at least g(|α|) if and only if p ∈ P and q ∈ Qp, which
exactly are the pairs reported in lines 6–10.

Now consider the running time of the algorithm. We first note that con-
structing two heap-trees of size one at each of the n leaves in TB(S) and
melding them together according to the structure of TB(S) takes time O(n)
because each of the n− 1 meld operation takes amortized constant time. We
then note that the reporting of pairs at each node, lines 1–10, takes time pro-
portional to the number of reported pairs because the find operation takes
time proportional to the number of returned elements and the set Pq (and Qp)
is non-empty for every element q in Q (and p in P ). Finally we remember that
constructing the binary suffix tree TB(S) takes time O(n). Now consider the
space needed by the algorithm. The binary suffix tree requires space O(n).
The heap-trees also requires space O(n) because no element at any time is
stored in more than one heap-tree. Finally, since no leaf-list contains more
than n elements, storing the elements returned by the find operations during
the reporting requires no more than space O(n). In summary we formulate
the following theorem.

Theorem 3 Algorithm 3 finds all right-maximal pairs (i, j, |α|) in a string S
with gap at least g(|α|) in space O(n) and time O(n+z), where z is the number
of reported pairs and n is the length of S.

4.2.2 Maximal pairs with lower bounded gap

Essential to the above algorithm is that we in time proportional to its size
can construct the set Q that contains all elements q in LL(w2) that form a
right-maximal pair (pmin, q, |α|) with gap at least g(|α|). Unfortunately the
left-characters S[q−1] and S[pmin−1] can be equal, so Q can contain elements
that do not form a maximal pair with any element in LL(w1). Since we aim
for the reporting of pairs to take time proportional to the number of reported
pairs, this implies that we cannot afford to consider every element in Q if we
only want to report maximal pairs.

Fortunately we can efficiently construct the subset of LL(w2) that con-
tains all the elements that form at least one maximal pair. An element q
in LL(w2) forms a maximal pair if and only if there is an element p in LL(w1)
such that q ≥ p + |α| + g(|α|) and S[q − 1] 6= S[p − 1]. We can construct
this subset of LL(w2) using colored heap-trees. We define the color of an el-
ement to be its left-character, i.e. the color of p in LL(w1) and q in LL(w2)
is S[p−1] and S[q − 1] respectively. Let Hi and H̄i be colored heap-trees that
store the elements in LL(wi) ordered by “≤” and “≥” respectively. Using
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pmin = ColorMin(H1) and psec = ColorSec(H1) we can characterize the ele-
ments in LL(w2) that form at least one maximal pair with gap at least g(|α|)
by considering two cases.

First, if q ≥ psec + |α| + g(|α|) then (pmin, q, |α|) and (psec, q, |α|) both
have gap at least g(|α|) and since S[pmin − 1] 6= S[psec − 1] at least one of
them is maximal, so every q ≥ psec + |α| + g(|α|) forms a maximal pair with
gap at least g(|α|). If # is a character not appearing anywhere in S, i.e. no
element in LL(w2) has color #, this is the same as saying that every q in
Q′ = ColorFind(H̄2, psec + |α| + g(|α|),#) forms a maximal pair with gap at
least g(|α|). Secondly, if q < psec+ |α|+ g(|α|) forms a maximal pair (p, q, |α|)
with gap at least g(|α|) then pmin ≤ p < psec. This implies that S[p − 1] =
S[pmin − 1], so (pmin, q, |α|) is also maximal and has gap at least g(|α|). We
thus have that q < psec + |α| + g(|α|) forms a maximal pairs with gap at
least g(|α|) if and only if (pmin, q, |α|) is maximal and has gap at least g(|α|),
i.e. if and only if S[q−1] 6= S[pmin−1] and q ≥ pmin+|α|+g(|α|). This implies
that the set Q′′ = ColorFind(H̄2, pmin+ |α|+g(|α|), S[pmin−1]) contains every
q < psec + |α|+ g(|α|) that forms a maximal pair with gap at least g(|α|).

By construction of Q′ and Q′′ the set Q′ ∪ Q′′ contains all elements in
LL(w2) that form a maximal pair with gap at least g(|α|). More precisely,
every q in Q′ ∪ Q′′ forms a maximal pair (p, q, |α|) with gap at least g(|α|)
with every p ≤ q−g(|α|)−|α| in LL(w1) where S[p−1] 6= S[q−1], i.e. every p
in Pq = ColorFind(H1, q − g(|α|) − |α|, S[q − 1]) which by construction is non-
empty. We can construct Q′∪Q′′ efficiently. Every element in Q′′ greater than
psec + |α|+ g(|α|) is also in Q′, so we can construct Q′ ∪Q′′ by concatenating
Q′ and what remains of Q′′ after removing all elements greater than psec +
|α| + g(|α|) from it. This together with the complexity of ColorFind implies
that we can construct Q′∪Q′′ in time proportional to |Q′|+ |Q′′| ≤ 2|Q′∪Q′′|.

This leads to the formulation of Algorithm 4. The algorithm is similar to
Algorithm 3 except that we maintain colored heap-trees during the traversal
of the binary suffix tree. At every node we report maximal pairs of its path-
label. In lines 1–7 we report all maximal pairs (p, q, |α|) by constructing and
considering the elements in Pq for every q in Q′ ∪ Q′′. In lines 8–15 we anal-
ogously report all maximal pairs (q, p, |α|). The correctness of the algorithm
follows immediately from the above discussion. Since the operations on col-
ored heap-trees have the same complexities as the corresponding operations
on heap-tress, the running time and space requirement of the algorithm is ex-
actly as analyzed for Algorithm 3. In summary we can formulate the following
theorem.

Theorem 4 Algorithm 4 finds all maximal pairs (i, j, |α|) in a string S with
gap at least g(|α|) in space O(n) and time O(n+ z), where z is the number of
reported pairs and n is the length of S.
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Algorithm 4 Find all maximal pairs in S with lower bounded gap.

1. Initializing: Build the binary suffix tree TB(S). Create at each leaf two
colored heap-trees of size one, H ordered by “≤” and H̄ ordered by
“≥”, that both store the index at the leaf with color corresponding to
its left-character.

2. Reporting and melding: When the colored heap-trees H1 and H̄1 at the
left-child of node v, and the colored heap-trees H2 and H̄2 at the right-
child of node v are available we report pairs of α, the path-label of v, and
construct the colored heap-trees H and H̄ as follows (remember that #
is a character not appearing anywhere in S)

1 pmin, psec = ColorMin(H1),ColorSec(H1)
2 Q′ = ColorFind(H̄2, psec + |α|+ g(|α|),#)
3 Q′′ = ColorFind(H̄2, pmin + |α|+ g(|α|), S[pmin − 1])
4 for q in Q′ ∪Q′′:
5 Pq = ColorFind(H1, q − g(|α|) − |α|, S[q − 1])
6 for p in Pq:
7 report pair (p, q, |α|)

8 qmin, qsec = ColorMin(H2),ColorSec(H2)
9 P ′ = ColorFind(H̄1, qsec + |α|+ g(|α|),#)

10 P ′′ = ColorFind(H̄1, qmin + |α|+ g(|α|), S[qmin − 1])
11 for p in P ′ ∪ P ′′:
12 Qp = ColorFind(H2, p− g(|α|) − |α|, S[p − 1])
13 for q in Qp:
14 report pair (q, p, |α|)

15 H = ColorMeld(H1,H2)
16 H̄ = ColorMeld(H̄1, H̄2)

5 Conclusion

We have presented efficient and flexible methods to find all maximal pairs
(i, j, |α|) in a string under various constraints on the gap j− i−|α|. If the gap
is required to be between g1(|α|) and g2(|α|), the running time is O(n log n+z)
where n is the length of the string and z is the number of reported pairs. If
the gap is only required to be at least g1(|α|), the running time reduces to
O(n+ z). In both cases we use space O(n).

In some cases it might be interesting only to find maximal pairs (i, j, |α|)
fulfilling additional requirements on |α|, e.g. to filter out pairs of short sub-
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strings. This is straightforward to do using our methods by only reporting
from the nodes in the binary suffix tree whose path-label α fulfills the require-
ments on |α|. In other cases it might be of interest just to find the vocabulary
of substrings that occur in maximal pairs. This is also straightforward to do
using our methods by just reporting the path-label α of a node if we can report
one or more maximal pairs from the node.

Instead of just looking for maximal pairs, it could be interesting to look
for an array of occurrences of the same substring in which the gap between
consecutive occurrences is bounded by some constants. This problem requires
a suitable definition of a maximal array. One definition and approach is pre-
sented in [24]. Another definition inspired by the definition of a maximal pair
could be to require that every pair of occurrences in the array is a maximal
pair. This definition seems very restrictive. A more relaxed definition could
be to only require that we cannot extend all the occurrences in the array to
the left or to the right without destroying at least one pair of occurrences in
the array.
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