
B
R

IC
S

R
S

-96-46
A

ndreev
&

S
oloviev:

A
D

ecision
A

lgorithm
forLinearIsom

orphism
ofTypes

BRICS
Basic Research in Computer Science

A Decision Algorithm for
Linear Isomorphism of Types
with Complexity Cn(log2(n))

Alexander E. Andreev
Sergei Soloviev

BRICS Report Series RS-96-46

ISSN 0909-0878 November 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/
ftp://ftp.brics.dk/pub/BRICS
This document in subdirectoryRS/96/46/

A Decision Algorithm for Linear
Isomorphism of Types with Complexity

Cn(log2(n)).

Alexander E. Andreev
Department of Mechanics and Mathematics,

Moscow State University,
Moscow, 119899, Russia;

e-mail: andreev@matis.math.msu.su

Sergei Soloviev∗
Computer Science Department,

Durham University, U.K.,
e-mail: Sergei.Soloviev@durham.ac.uk

November 1996

Abstract
It is known that ordinary isomorphisms (associativity and com-

mutativity of “times”, isomorphisms for “times” unit and currying)
provide a complete axiomatisation for linear isomorphism of types.
One of the reasons to consider linear isomorphism of types instead of
ordinary isomorphism was that better complexity could be expected.
Meanwhile, no upper bounds reasonably close to linear were obtained.
We describe an algorithm deciding if two types are linearly isomorphic
with complexity Cn(log2(n)).

∗The main part of this research was done while both authors were visiting the Computer
Science Department of the University of Aarhus; the visits were funded by BRICS, a
Centre of the Danish National Research Foundation, and the European CLICS grant (for
the second author). The final version of this paper was done by S. Soloviev while employed
by Durham University and funded by British ESPRC grant (on leave from S. Petersburg
Institute for Informatics RAN).

1

1 Introduction

The problem of characterisation of isomorphism of types that holds in all
models of certain system of typed lambda calculus is closely connected with
mathematical semantics of datatypes [1], [2]. The problem allows many
equivalent re-formulations, for example, a description of isomorphic objects
in free closed categories of different classes: Cartesian Closed (CC) Cate-
gories, Symmetric Monoidal Closed (SMC) Categories, Biclosed Categories
etc. A presentation of a free Closed Category is given by certain system
of propositional calculus (with deductions as morphisms). Another (maybe,
more familiar to computer scientists) is provided by lambda calculus.

To define the notion of isomorphism of types in a system of typed lambda
calculus one needs a) the presence of functional types A → B; b) a compo-
sition, for two terms of types A→ B and B → C their composition is to be
a term of the type A → C; c) the terms id : A → A representing identity
maps for every type A (usually, λx : A.x); d)an equivalence relation on terms
(which respects the composition).

Of course, these conditions look too abstract for the familiar systems of
lambda calculus, but we just use an opportunity to present the problem in a
more general setting. These conditions satisfied, one defines two types A,B
to be isomorphic iff there are terms t : A → B and s : B → A such that
the composite t · s is equivalent to id : B → B and the composite s · t to
id : A→ A.

Suppose two typesA,B are given and one would decide if they are isomor-
phic. The direct attempt based on the definition above will lead, in general,
to the consideration of an infinite set of lambda terms living in the types
A → B and B → A. Usually, one is looking for the algorithms based on
transformations of types without any explicit reference to lambda terms.

A complete axiomatization and decision algorithm for isomorphism of
objects in free CC Categories was obtained in [3]. That result provided
automatically a complete axiomatization and decision algorithm for the iso-
morphism of types in the First Order Typed Lambda Calculus with terminal
object and surjective pairing. The precise formulation is the following:

Let ∼ be the equivalence relation on types generated by the following ax-
ioms

2

1. A ∼ A;

2. A ∧B ∼ B ∧ A ;

3. A ∧ (B ∧ C) ∼ (A ∧B) ∧ C ;

4. A ∧ I ∼ A ;

5. I → A ∼ A ;

6. A ∧B → C ∼ A→ (B → C);

7. A→ I ∼ I

8. A→ B ∧ C ∼ (A→ B) ∧ (A→ C)

and rules

A ∼ B

C[A/X] ∼ D[B/X]
(subst)

A ∼ B
B ∼ A(sym)

A ∼ B B ∼ C

A ∼ C
(trans)

(here [A/X] denotes substitution of A for type variable X).
The types A and B are isomorphic (in the above-mentioned calculus) iff

A ∼ B.
(In [3] a model-theoretic proof was given. A direct proof for typed

lambda calculus was published in [4], where the applications to Computer
Science were also discussed. Di Cosmo developed the method from [4] to
obtain similar results for the Second Order Typed Lambda Calculus.)

Some weaker variants of isomorphism of types are of practical interest,
the linear isomorphism of types in particular, because one can expect that
the complexity will be reasonably low.

The linear isomorphism of types corresponds to the isomorphism of ob-
jects in free SMC category, and can also be described as the isomorphism of
types in the system of lambda calculus which corresponds to intuitionistic
multiplicative linear logic. (A description of this system can be found in
[5], [6], [7], [8].)

In [7] it was shown that the subsystem of the axiom system above, con-
sisting of the axioms 1)-6) (where ∧ is understood as “times” and → as

3

linear implication) with the same rules, defines an equivalence relation on
types that coincides with the relation of linear isomorphism of types.

Of course, the use of linear logic or linear terms does not imply linear
complexity of corresponding algorithms.

The deciding algorithms for the isomorphism in the First Order Typed
Lambda Calculus with terminal object and surjective pairing used a reduc-
tion to some normal forms, which were, in general, subexponetially longer
than the original types. In case of linear isomorphism there is no growth
of the length. The main problem is (recursive) ordering of factors in the
subformulas of the form A1 ∧∧An. More or less obvious algorithms have
quadratic complexity. We propose an algorithm with complexity C·nlog2(n).

2 The Algorithm

In this section we shall denote by ∼ the eqivalence relation on types defined
by axioms (1)-(5) and the rules above. ∧ can be understood as “times” ,
→ as linear implication, and I is the unit of ∧. The algorithm is based on
the fact [7] that two types A,B are linearly isomorphic iff A ∼ B for this
relation.

2.1 Regular Formulas

When low complexity bounds are considered, the form of presentation of
information is quite important. Usually the types are presented by formulas
of intuitionistic linear logic, i.e., by propositional formulas with two binary
connectives ∧ and→ (and constant I). We shall use a kind of prefix notation
(not exactly polish notation, because we prefer to have “∧” with a varying
number of arguments; that does no harm because of the associativity axiom
3)). So, the formulas are defined inductively in the following way:

1. the symbols X1, ..., Xn, ...(type variables) and the constant I are for-
mulas;

2. if A,B are formulas then (→ AB) is a formula;

3. if the A1...An are formulas (n > 1), then the (∧A1...An) is a formula.

4

Below we shall also use list notation in formulas with the agreement that
the expressions like (∧Γ), (→ Γ) when Γ contains just one member should be
understood as that member itself (∧ and → should be omitted).

The syntactic axioms 1)-6) above that characterize the linear isomorphism
of types can be replaced for this presentation by the following axioms:

(i) A ∼ A (refl);

(ii) (∧A1...An) ∼ (∧Aσ(1)...Aσ(n)) (com) where σ is a permutation of the
set {1,...,n} (n > 1);

(iii) (∧Γ(∧∆)Σ) ∼ (∧Γ∆Σ) (as) (with Γ,∆,Σ being lists of formulas of
appropriate length);

(iv) (∧ΓI∆) ∼ (∧Γ∆) (un) (with Γ∆ non-empty);

(v) (→ IB) ∼ B (un′)

(vi) → A(→ BC) ∼→ (∧AB)C(cur).

The rules for ∼ in this syntax are still (subst), (sym), (trans).
We shall write ⇒k iff A∼B is derivable from an instance of the axiom

labelled by k by single application of (subst), i.e., by replacement of an
occurrence of a left side of this axiom in A by the right side of the same
axiom.

We shall write A∼kB iff A∼B is derivable from the axiom labelled by k
only (obviously, A∼kB iff there exists a chain A = A1, A2, ..., An = B such
that Ai⇒kAi+1 or Ai+1⇒kAi).

We shall write A∼→B if it is derivable from reflexivity (refl) and axioms
(un), (un′) and (cur) and A∼comB, if only (refl), (com) were used.

Now regular formulas, regular ∧-formulas and regular →-formulas are
defined in the following way.

Definition 2.1

1. the symbols X1, ..., Xn, ...(type variables) and the constant I are regular
formulas;

5

2. if A is a regular formula different from I and B is a regular ∧-formula,
variable or I then → AB is a regular →-formula;

3. if each of A1, ..., An (n > 1) is a variable or regular →-formula, then
(∧A1...An) is a regular ∧-formula;

4. regular ∧-formulas and regular →-formulas are regular formulas.

Let A be a (sub)formula. We shall call its 1-extension any (sub)formula of
the form (→ ΓA∆), or (∧ΓA∆) with Γ and/or ∆ non-empty.

Remark 2.2 (i) A regular formula is ∧- or →-regular, except the case when
it is a variable or the constant I. (ii) All subformulas of a regular formula are
regular formulas. (iii) All regular ∧- subformulas of a regular formula A are
maximal in the following sense: their 1-extensions (in A) are→-subformulas
(not ∧-subformulas). (iv) All regular →- subformulas of a regular formula
A are maximal in the following sense: their 1-extensions (in A) are →-
subformulas (not →-subformulas)

Lemma 2.3 For every formula A, there is a unique regular formula B such
that A∼→B.

Proof. Consider the system of formula-reductions ⇒as,⇒un,⇒un′ ,⇒cur

(an occurrence of the left side of corresponding axiom is to be replaced by
the right side). By straightforward induction on the structure of formulas
one shows that a formula is in normal form iff it is regular. Now (trivial
check) a) the system is Church-Rosser’s and b) terminating (since each step
decreases the number of →,∧ or I).

Denote by R(A) the regular formula corresponding to A.

Lemma 2.4 If A⇒kB where k is (as), (un), (un′), (cur), then R(A) = R(B).
If A⇒kB where k is (com), then R(A)∼comR(B).

Proof by induction on the length of reduction sequence from A to R(A)
in the system of reductions described above.

As an immediate consequence of the two lemmas, we have

Lemma 2.5 A ∼ B iff R(A)∼comR(B).

Let us call the length l(A) of the formula A the number of occurrences of
variables, I , ∧ and → in A.

Lemma 2.6 If A∼comB then l(A) = l(B).

6

2.2 Computational Model

Our computational model is random access machine. The cell size is
O(log(n)), where n is the length of the formulas that are considered. The
addresses of cells are 1, 2,

For our goals we have to use a special presentation of formulas. As it
is easily seen, with every occurrence of ∧,→, variable or I in a formula A
a unique subformula of A is connected. This occurrence will be called the
main symbol of a subformula.

Initially, let us represent each occurrence of ∧,→, variable or I (and
corresponding subformula) in a more standard way, using the quadruples,
described below. (We do not need to represent brackets.) It is supposed
that each such quadruple is encoded in a certain way and occupies one cell
of RAM. The address of a subformula is understood as the address in RAM-
memory of its main symbol.

The quadruple, representing a symbol, is defined in the following way:

Definition 2.7

• the first member is the symbol itself (one may think, that it is repre-
sented numerically in some way);

• the second member is 0 for I or a variable and the address of the left-
most subformula, if the symbol is ∧ or →;

• the third member is 0 for I or a variable and the address of the last
subformula, if the symbol is ∧ or → ;

• the fourth member is the address of the next subformula in the 1-
extension of the subformula, corresponding to the considered symbol.
If there is no next subformula, it is 0.

The formula is presented in RAM-memory by collection of quadruples
representing its symbols (except brackets). Let [v] denote the address of the
cell corresponding to an occurrence v.

Example 2.8 Consider the formula →1 a →2 bc (i.e., a →1 (b →2 c) in
standard notation). Its presentation is

{→, [a], [→2], 0, }; {a, 0, 0, [→2]}; {→, [b], [c], 0}; {b, 0, 0, [c]};{c, 0, 0, 0}.

7

If we put the quadruiples in the nodes of the syntactic tree of our formula
(direction of pointers shown by arrows), we’ll have

{→, [a], [→2], 0, }
�

�
�	

@
@
@R

{a, 0, 0, [→2]}→ {→, [b], [c], 0}
�

�
�	

@
@
@R{b, 0, 0, [c]}→ {c, 0, 0, 0}

Here [→1] would be the address of the first, and [→2] is the address of the
third quadruple.

The length l(A) of a (sub)formula is the number of cells in this presenta-
tion.

It is supposed that the cells, occupied by different formulas, are always
disjoint.

Elementary operations are comparisons of quadriples and their members
and standard arithmetical and control operations of RAM. Input information
of the algorithms considered below consists of the addresses of the main
symbols of processed formulas.

The following lemma is obvious.

Lemma 2.9 Syntactical identity of two formulas A,B can be checked in time
O(min(l(A), l(B))).

Lemma 2.10 There is an algorithm transforming the presentation of an
arbitrary formula A in the presentation of R(A) with an upper time bound
C(l(A)) for some constant C.

Proof proceeds by induction on the structure of A and is standard, with
one modification due to our use of multiple ∧.

When the formula ∧A1...An is considered, the algorithm should check if
n = 2 or n > 2 (obviously, in constant number of steps).

If n = 2 then induction proceeds in ordinary way, if n > 2 then the induc-
tive hypothesis (and the algorithm) should be applied to A1 and ∧A2...An,
and then in constant number of steps one can “assemble” the presentation
of the regular form of the formula ∧A1...An. (One does not change registers,
only pointers.)

8

Definition 2.11 Let us call by extended presentation of a formula it presen-
tation where each quadriple is extended to the quintiple, with the fifth symbol
being the length of the subformula, whose main symbol is represented by the
quadriple.

Lemma 2.12 There is an algorithm transforming the presentation of a for-
mula into its extended presentation in less than C(l(A)) steps for some con-
stant C.

Proof. Consider the following trip. Start in the root of the tree, and
go from node to node according to the following procedure: a) if there is
a leftmost subformula (node) not yet visited, go there; b) if it was already
visited, go to the next subformula the in 1-extension; c) if in case b) the node
corresponds to the last subformula, go to the node, representing the main
symbol of the 1-extension (one can keep “return address”), or stop, if you
come to the root.

Obviously, each node is visited exactly twice, and (with a constant number
of extra-operations in each node) one can keep count the number of symbols
visited before coming to each node.

Then, if in the first visit this number is written in the 5-th position, one
can replace it by the difference at the second visit, which will be the length
of the subtree corresponding to the subformula.

2.3 Strongly Regular Formulas

Let us define inductively a relation ≤ on regular formulas. (A < B is under-
stood as A ≤ B and not A∼comB.) Remember that if A ∼com B, they have
the same length.

Definition 2.13

• If l(A) < l(B) then A < B. If l(A) = l(B), then:

• For variables and constant I,

I < a1 < ... < an <

• If A is a regular ∧-formula and B is a regular→-formula, then A < B;

9

• If A and B are the regular →-formulas,

A = (→ A1A2), B = (→ B1B2),

and
A1 < B1

or
A1 ∼com B1, A2 ≤ B2

then A ≤ B;

• If A and B are regular ∧-formulas,

A = (∧A1A2...An), B = (∧B1B2...Bn),

and there exist bijections ϕ and ψ

ϕ{1, 2, ...,m} → {1, 2, ...,m},

ψ{1, 2, ..., r} → {1, 2, ..., r}
and the number k,

1 ≤ k ≤ min(m, r),

such that

Aϕ1 ≤ Aϕ2 ≤ ... ≤ Aϕm, Bψ1 ≤ Bψ2 ≤ ... ≤ Bψr

Aϕ1 ∼com Bψ1 Aϕ2 ∼com Bψ2 , ..., Aϕk−1 ∼com Bψk−1 , Aϕk < Bψk

then A < B.

Lemma 2.14 For every regular formula A,B, always A ≤ B or B ≤ A. If
A ≤ B and B ≤ A, then A ∼com B. (That is, the relation ≤ is linear order
on ∼com-equivalence classes of regular formulas.)

Proof by induction on l(A), taking into account that both A ≤ B and
B ≤ A can hold only if A and B are both of the same type (variables,
constants, ∧- or →-formulas), and have equal length.

Now we are in the position to define strongly regular formulas.

10

Definition 2.15 A regular formula is strongly regular iff in each its subfor-
mula of the form ∧A1...An there is A1 ≤ ... ≤ An.

Lemma 2.16 For every regular formula A there exists exactly one strongly
regular formula S(A) in the ∼com-equivalence class of A.

Proof. An S(A) can be obtained by ordering ∧-subformulas of A, that
is, using ∧com. By induction on the structure of A (using definition of ≤) we
show uniqueness.

As an immediate consequence of this lemma and lemma 2.5, we have the
following theorem:

Theorem 1 A ∼ B ⇐⇒ S(R(A)) = S(R(B)).

3 Complexity

Lemma 3.1 There is an algorithm deciding if A ≤ B or B ≤ A for strongly
regular formulas A,B in time bound by Cn, where n = min(l(A), l(B)).

Proof by induction on n, taking into account that syntactic identity of
two regular formulas can be checked in time proportional to (the minimum
of) their lengths (2.9).

Theorem 2 The complexity of construction of the strongly regular form for
any regular formula A is at most

O(1)l(A) log2(l(A)).

Proof. The formula is taken in its extended presentation. The addresses
of the tuples, representing symbols, do not change (only pointers do).

We prove our theorem by induction on the formula length. If the formula
is a variable of I , then the bound is, evidently, true.

Assume that there exist some constants C0, C1 such that for any formula
with l(A) ≤ T one can construct (the extended presentation of) its strongly
regular form in time at most

C0T log2 T − C1.

11

Consider A with the length equal to T + 1. Of course, 1 ≤ T . Let L(A)
denote complexity of constructiong the strongly regular form of A.

Case. A =→ BD.
We have to convert to strongly regular forms the subformulas B,D. The

process has the following steps:

• conversion of B to the strongly regular form;

• computing of the address of the first symbol of D;

• conversion of D to the strongly regular form.

As we immediately see, there exists a constant C2, such that

L(A) ≤ L(B) + L(D) + C2.

By induction hypothesis,

L(A) ≤ C0l(B)log2(l(B))− C1 + C0l(D)log2(l(D))− C1 + C2

≤ C0l(A)log2(l(A))− 2C1 + C2.

If C1 > C2, then we have

L(A) ≤ C0l(A)log2(l(A))− C1.

Case. A = (∧A1...Am).
Let Q(i) denote the following triple: (numi, leni, adri), where

• numi = i;

• leni = l(Ai);

• adri is the address of the main symbol of the formula Ai.

At the first step we compute the number m and the array

Q = Q(1)Q(2)...Q(m),

at the same time converting each Ai to the strongly regular form. The
complexity of this process is at most

C3 +
m∑
i=1

(C0l(Ai)log2(l(Ai))− C1 + C3).

12

At the second step we make sorting of the array Q. After this sorting we
have on the i-th place the sequence Q(φ(i)), where φ is a bijection

φ : {1, ...,m} → {1, ...,m},

such that
i ≤ j ⇒ lenQ(φ(i)) ≤ lenQ(φ(j)).

Complexity of such sorting is at most

C4mlog(m).

At the third step we compute the number r and the sequence of integers

s0, ..., sr

such that
1 = s0 < s1 < ... < sr = m,

lenQ(φ(si)) = lenQ(φ(si)+1) = ... = lenQ(φ(si+1−1)),

lenQ(φ(si+1−1)) < lenQ(φ(si+1)),

i = 0, 1, ..., r− 1.

Complexity of this step is at most

C5m,

for some constant C5.
At the fourth step we are sorting each array

Q(φ(si))Q(φ(si) + 1) . . . Q(φ(si+1 − 1)),

if it is nontrivial, i.e.,
si+1 − si > 1.

The order of the new array should correspond to our ordering of formulas of
the same length. Complexity of this sorting is at most

C6lenQ(φ(si))log(si+1 − si)

for some constant C6, because the comparison of two strongly regular formu-
las of equal length has complexity O(n)(3.1).

13

After this step we have an array

Q(ψ(1))...Q(ψ(m)),

such that
i ≤ j ⇒ Anumψ(i) ≤ Anumψ(j).

At the fifth step we have to make permutation of the subformulas in the new
order. The complexity of this step is at most

C7m

for some constant C7. At this step we change only pointers (address labels)
in the tuples, representing the main symbols of A1, ..., Am, but do not move
any tuples. (If we would move the subformulas, the bound would not be
true.)

Let l∗(A) =
∑
i,l(Ai)≤(1/2)l(A) l(Ai). We have

r−1∑
i=0

lenQ(φ(si))log(si+1 − si) ≤ l∗(A)log(m),

since in our formula there may be at most one subformula with more than
half of the whole formula length. This fact implies also

mlog(m) ≤ l∗(A)log(m).

In accordance with the bounds (...) we have, that

L(A) ≤ C3 +
m∑
i=1

(C0l(Ai)log2(l(Ai))− C1 + C3) + C8l
∗(A)log(m),

for some constant C8.
Suppose that

2C3 ≤ C1.

Then we have

L(A) ≤
m∑
i=1

C0l(Ai)log2l(Ai)− C1 + C8l
∗(A)log(m) ≤

C0(l∗(A)log2 l(A)
2

+ (l(A)− l∗(A))log2l(A))−

14

−C1 + C8l
∗(A)log(m) ≤

≤ C0(l∗(A)(log2l(A)− logl(A)) + (l(A)− l∗(A))log2l(A))−
−C1 + C8l

∗(A)log(m) =

C0l(A)log2l(A)− C0l
∗(A)log(l(A))−C1 + C8l

∗(A)log(m).

Now, we can suppose that
C8 ≤ C0,

and then
L(A) ≤ C0l(A)log2l(A)− C1,

so that, with the choice of constants as above, our theorem is true. In other
words, C0, C1 should be chosen in such a way, that they make the conditions
(...) true.

Acknowledgements
We would like to thank Michael Rittri and Roberto Di Cosmo for many

stimulating discussions of the matter, and Glynn Winskel and Uffe Engberg
for helpful attention to our work while at BRICS.

References

[1] M. Rittri. Retrieving library functions by unifying types modulo linear
isomorphism. Proceedings of Conference on Lisp and Functional Pro-
gramming, 1992.

[2] R. DiCosmo. Isomorphism of Types: from λ-calculus to information
retrieval and language design. Birkhauser, 1995.

[3] S.V. Soloviev. The category of finite sets and cartesian closed categories.
Zapiski Nauchnych Seminarov Leningradskogo Otdelenya Matematiches-
kogo Instituta im.V.A.Steklova AN SSSR, 105:174-194, 1981 (English
translation in: Journal of Soviet Mathematics, 22(3):1387-1400, 1983).

[4] K. Bruce, R. Di Cosmo and G. Longo. Provable isomorphism of types.
Preprint LIENS-90-14, Ecole Normale Superieure, Paris, 1990

[5] G.E. Mints. Closed categories and Proof Theory.J.Soviet Math., 15:45-
62, 1981.

15

[6] G.-Y. Girard, Y. Lafont. Linear logic and lazy computation. In: Proc.
TAPSOFT 87 (Pisa), v.2, p.52-66, Lecture Notes in Comp. Sci. v. 250 ,
1987.

[7] S.V. Soloviev. A complete axiom system for isomorphism of types in
closed categories. Lecture Notes in Artificial Intelligence, v. 698 (1993),
380-392.

[8] P.H. Benton, G.M. Bierman, V.C.V. de Paiva and J.M.E. Hyland. A
term calculus for Intuitionistic Linear Logic. In Proceedings of Typed
Lambda calculus and Applications, Lecture Notes in Comp. Sci. v. 664,
1993.

16

Recent Publications in the BRICS Report Series

RS-96-46 Alexander E. Andreev and Sergei Soloviev.A Deciding
Algorithm for Linear Isomorphism of Types with Complex-
ityCn(log2(n)). November 1996. 16 pp.

RS-96-45 Ivan B. Damg̊ard, Torben P. Pedersen, and Birgit Pfitz-
mann. Statistical Secrecy and Multi-Bit Commitments.
November 1996. 30 pp.

RS-96-44 Glynn Winskel. A Presheaf Semantics of Value-Passing
Processes. November 1996. 23 pp. Extended and revised
version of paper appearing in Montanari and Sassone,
editors, Concurrency Theory: 7th International Confer-
ence, CONCUR '96 Proceedings, LNCS 1119, 1996, pages
98–114.

RS-96-43 Anna Inǵolfsdóttir. Weak Semantics Based on Lighted
Button Pressing Experiments: An Alternative Characteri-
zation of the Readiness Semantics. November 1996. 36 pp.
An extended abstract to appear in the proceedings of the
10th Annual International Conference of the European
Association for Computer Science Logic, CSL '96.

RS-96-42 Gerth Stølting Brodal and Sven Skyum.The Complexity
of Computing thek-ary Composition of a Binary Associa-
tive Operator. November 1996. 15 pp.

RS-96-41 Stefan Dziembowski. The Fixpoint Bounded-Variable
Queries are PSPACE-Complete. November 1996. 16 pp.
Presented at the10th Annual International Conference
of the European Association for Computer Science Logic,
CSL '96.

RS-96-40 Gerth Stølting Brodal, Shiva Chaudhuri, and Jaikumar
Radhakrishnan. The Randomized Complexity of Main-
taining the Minimum. November 1996. 20 pp. To appear
in a special issue ofNordic Journal of Computing de-
voted to the proceedings of SWAT '96. Appears in Karl-
son and Lingas, editors,Algorithm Theory: 5th Scandi-
navian Workshop, SWAT '96 Proceedings, LNCS 1097,
1996, pages 4–15.

