
B
R

IC
S

R
S

-96-39
Ḧuttel&

S
hukla:

O
n

the
C

om
plexity

ofB
ehaviouralE

quivalences
and

P
reorders

BRICS
Basic Research in Computer Science

On the Complexity of Deciding
Behavioural Equivalences and
Preorders
A Survey

Hans Hüttel
Sandeep Shukla

BRICS Report Series RS-96-39

ISSN 0909-0878 October 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/
ftp://ftp.brics.dk/pub/BRICS

On the Complexity of Deciding
Behavioural Equivalences and

Preorders

A Survey

Hans Hüttel∗ Sandeep Shukla †

October 1996

Abstract

This paper gives an overview of the computational complexity of all the
equivalences in the linear/branching time hierarchy [vG90a] and the pre-
orders in the corresponding hierarchy of preorders. We consider finite state
or regular processes as well as infinite-state BPA [BK84b] processes.

A distinction, which turns out to be important in the finite-state pro-
cesses, is that of simulation-like equivalences/preorders vs. trace-like equiv-
alences and preorders. Here we survey various known complexity results for
these relations. For regular processes, all simulation-like equivalences and
preorders are decidable in polynomial time whereas all trace-like equivalences
and preorders are PSPACE-Complete. We also consider interesting special
classes of regular processes such as deterministic, determinate, unary, locally
unary, and tree-like processes and survey the known complexity results in
these special cases.

For infinite-state processes the results are quite different. For the class of
context-free processes or BPA processes any preorder or equivalence beyond
bisimulation is undecidable but bisimulation equivalence is polynomial time
decidable for normed BPA processes and is known to be elementarily decid-
able in the general case. For the class of BPP processes, all preorders and
equivalences apart from bisimilarity are undecidable. However, bisimilarity
is decidable in this case and is known to be decidable in polynomial time for
normed BPP processes.

∗BRICS at Aalborg University, Fredrik Bajersvej 9220 Aalborg Ø, Denmark, e-mail:
hans@cs.auc.dk
†Department of Computer Science, University at Albany – State University of New

York, Albany NY 12222, USA, email: sandeep@cs.albany.edu

1

1 Introduction

Within concurrency theory, a number of preorders and equivalence relations
between processes have been considered in various approaches to the seman-
tics of concurrency and automatic verification.

In this paper, we shall consider the equivalences that have come out
of the study of interleaving semantics in the context of process calculi in
the tradition of CCS [Mil80] and CSP [Hoa84]. Most of these preorders and
equivalences first arose in the literature of comparative concurrency semantics
[vG90a, BIM90, GV92]. In this particular area of concurrency semantics,
the main emphasis is on full abstraction and various notions of equivalences
have been found to be fully abstract for different language constructs. For
example, bisimulation equivalence is used in CCS [Mil80, Mil89] to identify
processes which are equivalent under a particular semantic notion [Par81,
Mil89]. However, in [BIM90], bisimulation has been shown not to be fully
abstract and the notion of ready simulation has been defined. In [GV92], a
new notion of 2-nested simulation equivalence has been defined and shown
to be fully abstract for languages with a general format called the tyft/tyxt.

Within the area of computer-aided verification, there has been a signifi-
cant amount of work devoted to using these relations to prove the correctness
of concurrent systems [BCM+92]. The correctness criterion is then that the
implementation is equivalent to the specification. Also, establishing that
a given simulation relation holds has been used as a partial procedure for
proving some safety properties [LV91].

In [vG90a] van Glabbeek proposed the linear/branching time spectrum
as a unifying framework for classifying all known equivalences in the area of
comparative concurrency semantics. We shall follow this classification here.
Figure 1 [vG90a] illustrates the classification as a hierarchy with the help of
a Hasse diagram. The arrows in the diagram imply strict inclusion. Hence
if there is an arrow from a relation R to another relation Q, that means R is
less discriminating than Q. In other words, if two processes are related by R
then they must be related by Q but the converse is not true in general. The
least discriminating equivalences are at the bottom of the diagram.

The coarsest equivalences are trace equivalence and completed trace equiv-
alence (=language equivalence). Directly above them we have the test-
ing/failures equivalences, and at the top of the diagram is bisimulation equiv-
alence.

As all equivalences save bisimilarity are defined as the symmetric clo-
sure of a preorder, there is a similar hierarchy for the behavioural preorders,
illustrated in Figure 2.

Motivated by the importance of these relations in automated verification,

2

Bisimulation equivalence

?
2-nested simulation equivalence

?
Ready simulation equivalence

?

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

�
�

�
��	

Simulation equivalence
�
�

�
�

�
�

�
�
�

�
�

�
�
�	

Possible-futures equivalence
J
J
Ĵ

�
�

�
�

�
�

��+
2-bounded-tr-bisimulation

?

Readiness equivalence

Ready trace equivalence

�

J
J
J
JĴ

Failures trace equivalence
J
J
J
JĴ

�

Failures equivalence

?
Completed trace equivalence

?
Trace equivalence

Figure 1: The linear-time/branching time hierarchy of equivalences.

several researchers have studied the decision problems for these relations
[KS90, PT87, HT94, SRHS96, BP94, And93, And94, ABGS91, CS91, MS95,
Hut91, HT90]. A main distinction has turned out to be that of finite-state
processes versus infinite-state processes. It is well-known that all behavioural
relations in the van Glabbeek hierarchy are decidable for finite-state pro-
cesses, and the main concern is therefore that of the computational complex-
ity of the decision procedures. On the other hand, for sufficiently rich classes
of infinite-state processes, no non-trivial behavioural equivalence is decidable.
However, in recent years, it has been shown that some behavioural equiva-
lences are indeed decidable for certain interesting classes of infinite-state
processes and recently, a number of complexity results have been established
for these classes of processes.

Apart from a short survey by Moller and Smolka [MS95] on the complexity
of bisimulation equivalence, there has not been any attempt to present all
these results in a unifying framework. The fact that these relations are widely

3

2-nested simulation preorder���)

?
Ready simulation preorder

?

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

�
�

�
��	

Simulation preorder
�
�

�
�

�
�

�
�
�

�
�

�
�
�	

Possible-futures preorder
J
J
Ĵ

2-bounded-tr-bisimulation preorder

?

Readiness preorder

Ready trace preorder

�

J
J
J
JĴ

Failures trace preorder
J
J
J
JĴ

�

Failures preorder

?
Completed trace preorder

?
Trace preorder

Figure 2: The linear-time/branching time hierarchy of preorders.

used by the computer aided verification community to establish correctness
warrants a survey of the complexity results for these relations. The present
paper gives an overview of the results and attempts to unify the results within
a particular point of view. Here, we shall only consider the so-called strong
equivalences, i.e. notions of equivalence that do not distinguish between
observable and non-observable actions.

In this paper a further distinction between simulation-like equivalences
(preorders, respectively) and trace-like equivalences (preorders) turns out to
be important. A common characteristic of simulation-like equivalences is
that they are defined using the notion of simulation w.r.t. single actions
– more precisely, the simulation-like equivalences are bisimilarity, n-nested
simulation equivalence, ready-simulation equivalence and simulation equiva-
lence. All other equivalences are trace-like, in that their definitions at some
point call upon the notion of a sequence of visible actions, i.e. a trace.

In the case of finite-state processes, all simulation-like equivalences are in

4

P, whereas the trace-like equivalences are PSPACE-complete. In the case of
infinite-state processes, the picture is different. All equivalences other than
bisimulation equivalence are undecidable for the classes BPA and BPP. In the
case of bisimulation, the equivalence is in P for so-called normed BPA pro-
cesses and elementarily decidable for arbitrary BPA processes. Bisimulation
is also known to be in P for normed BPP processes.

2 Labelled transition systems

The common model of the behaviour of concurrent systems within interleav-
ing semantics is that of a labelled transition system, which describes the
state change of a processes and the actions that they can perform at any
given instant. The idea of using labelled transition systems for this purpose
originates with Milner [Mil80].

Definition 2.1 A labelled transition system (Pr,Act,→)is a triple where
Pr is the set of states, Act is the set of actions and → is the transition
relation satisfying

→⊆ Pr × Act× Pr

Instead of writing (p, a, q) ∈→ one usually writes p a−→ q and interprets
this as ‘from state p we can perform an a-action leading to the state q’.
Sometimes we consider the reflexive, transitive closure of→, writing p w−→ p′

if w = a1 · · · an ∈ Act∗ it is the case that p a1−→ p1 · · · an−→ pn = p′ for some
intermediate states p1, . . . , pn.

We shall use the predicates ‘p a−→’ denoting ‘∃q : p a−→ q’, ‘p 6 a−→ ’
denoting ‘¬∃q : p a−→ q’ and p 6−→ for ∀a ∈ Act : p 6 a−→ .

3 Finite-state processes

In this section we examine the complexity of deciding behavioural relation
for finite transition systems. When discussing the complexity of deciding
an equivalence or preorder w.r.t the finite transition system (Pr,Act,→),
we shall always assume that the complexity is a function of the size of the
transition system, n = |Pr| + | → |, i.e. the sum of the sizes of the state
space and the transition relation.

5

3.1 Regular processes

The class of regular processes was first investigated by Milner [Mil84], who
showed that a labelled transition system is finite iff it can be described by
means of a regular process.

Regular process expressions [Mil84] are given by the abstract syntax

p ::= a | X | p1 + p2 | ap | 0

Here a ranges over a set Act of atomic actions, and X over a set V ar of vari-
ables. The symbol + is the non-deterministic choice, ap2 represents prefixing
the process p1 with the action a and 0 denotes the empty (inactive) process.

We say that a process expression is guarded iff every variable occurrence
in p occurs within a prefix, i.e. in a subexpression a.q of p. Regular processes
are defined by a finite set ∆ of guarded equations

∆ = {Xi
def= pi | 1 ≤ i ≤ k}

where theXi are distinct process variables, and the pi are guarded expressions
with free variables in V ar(∆) = {X1, . . . , Xk}. One variable (generallyX1) is
singled out as the root. We shall only consider processes defined by guarded
equations.

In what follows we shall feel free to write ∆1R∆2 for binary relations R;
this should be read as stating that the roots of ∆1 and ∆2 are related by R.

The operational semantics of a regular process expression, given a finite
system of process equations ∆, is given by the labelled transition system
(Pr,Act,→)where Pr is the set of regular process expressions and → is
defined as the least relation satisfying the proof rules given below.

p
a−→ p′

p+ q
a−→ p′

q
a−→ q′

p+ q
a−→ q′

a.p
a−→ p a ∈ Act p

a−→ p′

X
a−→ p′

X
def= p ∈ ∆

We shall usually omit the subscript ∆, when obvious from the context.
A process expression together with an associated transition relation is called
a process.

We shall mostly consider systems of process equations in normal form:

Definition 3.1 [Mil84] A system of regular process equations is in normal
form if each equation is of the form Xi

def=
∑
aijXij +

∑
bik.0.

6

Theorem 3.1 [Mil80] Let ∼ denote bisimulation equivalence. For any sys-
tem of guarded regular process equations ∆ there is a system of process equa-
tions ∆′ in normal form such that ∆ ∼ ∆′. Moreover, ∆′ can be found
effectively.

As bisimulation equivalence is at the top of the van Glabbeek hierarchy,
we see that the transformation into normal form preserves all equivalences.
Moreover, it is easy to see that the transformation of a system of equations
∆ into normal form can be accomplished in time polynomial to the size of
∆. It is therefore enough to consider systems of regular process equations in
normal form.

3.2 Simulation-like equivalences and preorders

We shall call the class of equivalences and preorders that have a simulation-
style definition or whose definition employs a fixed.depth recursive applica-
tion of such a definitional structure (e.g.,n-nested simulation) simulation-
like equivalences. The simulation-like equivalences are bisimulation equiv-
alence, simulation, ready-simulation, n-nested simulation, m

2 -nested simula-
tion, complete-simulation preorders and equivalences.

All simulation-like relations share a common characteristic, namely that
they define how a transition by a process must be simulated by another pro-
cess, in order for the processes to be related. All simulation-like preorders
(save bisimulation) are then defined as the largest sets of pairs satisfying their
appropriate simulation condition. This indicates that the simulation-like pre-
orders in the preorder hierarchy are definable as fixed-points of functionals
over the complete lattice of relations, and the computation of relations then
reduces to computing maximal fixed points of certain functionals. We there-
fore start this section by outline give some basic definitions and results from
lattice theory.

3.2.1 Functions over complete lattices and their fixed points

Definition 3.2 A partial order (D,v) is called a complete lattice if for any
set of points Y < D there exists a least upper bound supY and a greatest
lower bound inf Y w.r.t. v.

Proposition 3.1 Any complete lattice (D,v) has a least element ⊥, i.e. a
point ⊥ such that ⊥ v x for all x ∈ D, and a largest element, i.e. a point >
such that x v > for all x ∈ D.

7

It is easy to see that, given any transition system (Pr,Act,→), the family
of binary relations on processes constitutes a complete lattice (2Pr×Pr,⊆)
with respect to the inclusion ordering. If Y ⊆ 2Pr×Pr then inf Y =

⋂{y | y ∈
Y } and sup Y =

⋃{y |y ∈ Y }. The least element of (2Pr×Pr,⊆) is the empty
relation ∅, and the largest element is the total relation Pr × Pr.

Definition 3.3 Let (D,v) be a partial order. An endofunction f : D → D
is said to be monotonic if whenever x, y ∈ D and x v y then fx v fy.

The following two standard results of basic lattice theory form the basis
of the theory of simulation-like equivalences and of their various decision
procedures. The results, due to Tarski, are also central to the semantics of
the modal mu-calculus (see Section 3.3.2.)

Theorem 3.2 [Tar55] Let (D,v) be a complete lattice and let f : D → D
be a monotonic endofunction. Then f has a least fixed-point fix f given by

fix f = inf{x | fx v x}

and a largest fixed-point FIX f given by

FIX f = sup{x | x v fx}

In the case of continuous and co-continuous functions over complete lat-
tices, another characterization of these fixed-points is possible. A function is
said to be continuous (resp. co-continuous) if it preserves least upper (resp.
greatest lower) bounds of totally ordered subsets1

Definition 3.4 Let (D,v) be a complere lattice. A monotonic endofunction
f : D → D is said to be continuous if for any totally ordered subset Y ⊆ D
we have that

f(sup Y) = sup{fx | x ∈ Y }
f is said to be co-continuous if

f(inf Y) = inf{fx | x ∈ Y }

Theorem 3.3 [Tar55] Let (D,v) be a complete lattice and let f : D → D be
a monotonic endofunction. If f is continuous, then f has a least fixed-point
fix f given by

fix f = sup{fn⊥ | n ≥ 0}
If f is co-continuous, then f has a largest fixed-point given by

FIXf = inf{fn> | n ≥ 0}
1(aka chains.)

8

This latter result allows an iterative characterization of these fixed-points
and forms the concrete basis for several equivalence-checking algorithms. In
what follows, we shall express any simulation-like preorders as maximal fixed-
points of an associated endofunction. In the case of finite-state processes,
these endofunctions are all co-continuous.

3.2.2 Simulation equivalence and the simulation preorder

Intuitively, the simulation preorder relates two processes, if any transition
by the former process can be simulated by the latter in such a way that the
resulting processes are still related. The notion of simulation equivalence is
then simply the equivalence closure of the simulation preorder.

Definition 3.5 A relation R between processes is a simulation iff whenever
pRq then for each a ∈ Act p a−→ p′ ⇒ ∃q : q a−→ q′ ∧ p′Rq′. A process p is
simulated by a process q, notation p⊂→q, iff there is a simulation relation R
with pRq. Two processes p and q are simulation equivalent, notation p←→q,
iff p⊂→q and q⊂→p.

3.2.3 Bisimulation equivalence

The notion of bisimulation equivalence was first proposed by Park [Par81] and
later used by Milner [Mil89]. Bisimulation equivalence is the only equivalence
in the linear-branching time hierarchy not defined as the equivalence closure
of some corresponding preorder.

Definition 3.6 Given a labelled transition system (Pr,Act,→), a relation
R is a bisimulation relation if whenever pRq then

• If p a−→ p′ then ∃q′ : q a−→ q′ with p′Rq′

• If q a−→ q′ then ∃p′ : p a−→ p′ with p′Rq′

.

3.2.4 m
2 -nested simulations

The hierarchy of m
2 -nested simulations was proposed by Liu in [Liu92]. This

hierarchy generalizes that of the hierarchy of n-nested simulations described
in the next section. The central notion is that of nesting a simulation within
another; the matching condition now requires that one matches transitions
within (the inverse of) a simulation.

9

Definition 3.7 [Liu92] Let (Pr,Act,→)be a labelled transition system, < ⊆
Pr× Pr be a binary relation. Then S is said to be a simulation nested in <
if S is a simulation and S ⊆ <−1 A process P is said to be simulated in <
by another process Q just in case (P,Q) is contained in some simulation S
nested in <. We write PN (<)Q in this case.

The following results from [Liu92] motivate the above definition.

Theorem 3.4 [Liu92] N (<) is itself a simulation nested in <, in fact the
maximal one. If < s preorder then so is N (<)

Lemma 3.1 [Liu92] N is monotonic, that is, for any two relations <1 and
<2, if <1 ⊆ <2, then N (<1) ⊆ N (<2).

Hence by Theorem 3.2 N has a largest fixed point.

Theorem 3.5 [Liu92] Any post-fixed point of N is a bisimulation.

One can apply the nesting operator N repeatedly to obtain a hierarchy
of finer and finer equivalences and preorders.

Definition 3.8 [Liu92] Let (Pr,Act,→)be a labelled transition system. We
define a series of relations ⊂→

m
2 ⊆ Pr × Pr and ←→

m
2 (m ≥ 0) as follows:

1. ⊂→
0 = Pr × Pr.

2. ⊂→
1
2 = {(P,Q) | ∀a ∈ Act.P a−→⇒ Q

a−→}
3. ⊂→

m
2 +1 = N (⊂→

m
2), for m ≥ 0.

And for m ≥ 0, ←→
m
2 = ⊂→

m
2 ∩ (⊂→

m
2)−1.

As mentioned earlier, this hierarchy contains the hierarchies of n-nested
equivalences and preorders. Further, ⊂→

3
2 coincides with the ready-simulation

preorder[BIM90] (a.k.a. the 2
3 -bisimulation of [LS89]!)

3.2.5 n-nested simulation equivalences and preorders

The notion of n-nested simulation equivalence was introduced by Groote and
Vaandrager [GV89] in their study of the tyft/tyxt-format for structured oper-
ational semantics because 2-nested simulation equivalence is the completed
trace congruence for this format.

10

b

b

b

b

b

b

b

b

..

?

?

�
�
�
��/

?HHHHj

?

?

C
C
CW

@
@
@R

@
@
@@R

�

�
�
�
��/

⊂→
1

←→11

⊂→
2

Pr × Pr

⊂→
1
2

←→
1
2

⊂→
3
2

←→
3
2

∼

Figure 3: The hierarchy of m
2 -nested equivalences and preorders

Definition 3.9 For all n ∈ N, n-nested simulation, written ⊂→
n, is induc-

tively defined by

• p⊂→0q for all processes p and q,

• p⊂→n+1q iff there is a simulation relation R ⊆ (⊂→
n)−1 with pRq.

Two processes p and q are n-nested simulation equivalent, written p←→nq, iff
p⊂→

nq and q⊂→
np.

Note that 1-nested simulation is just simulation and that therefore 1-nested
simulation equivalence is simulation equivalence.

11

3.2.6 Ready-simulation or 2/3-bisimulation

The notion of ready simulation (or 2/3-bisimulation) originated in work by
Bloom, Istrail and Meyer [BIM90] and Larsen and Skou [LS89]. It is the com-
pleted trace and the trace congruence induced by the GSOS-format [BIM90].
The matching condition of the preorder definition now states that two pro-
cesses are related, if the transitions of the former process can be matched by
the latter with the resulting processes staying within the relation and that
the two processes have the same sets of initial actions.

Definition 3.10 A relation R between processes is a ready simulation iff
it is a simulation and whenever pRq then for each a ∈ Act we have p

a−→
if q a−→. We say that q ready simulates p, written p⊂→rq, iff there is a
ready simulation R with pRq. Two processes p and q are ready simulation
equivalent, written p←→rq, iff p⊂→rq and q⊂→rp.

3.3 Complexity results

We shall now we discuss the complexity results for simulation-like equiva-
lences and focus on how these results can be obtained. The main result is
that

Theorem 3.6 All simulation-like equivalences of the linear-branching time
hierarchy are polynomial time decidable for finite state transition systems.

There are (at least) four different ways of obtaining this result, namely
by means of approximation techniques, characteristic formulae, Horn clauses
and characteristic games.

A lot of attention has been devoted to establishing good complexity
bounds for the bisimulation equivalence problem, as bisimilarity has become
widely used for verification purpose. In 1991, Alvarez showed that this par-
ticular equivalence problem is P-complete.

Theorem 3.7 [ABGS91] The bisimulation equivalence problem for finite-
state processes is P-complete.

3.3.1 Approximation techniques

Because of Theorem 3.2, for any simulation-like relation pRq the decision
problem ‘pRq ?’ amounts to deciding whether or not (p, q) is a member of
the largest fixed-point of a suitable functional, namely the functional inherent
in the definition of the relation.

12

Example 3.1 (Ready simulation) The ready simulation functional Fr : 2Pr×Pr →
2Pr×Pr is defined as follows: (p, q) ∈ Fr(R) if for any a ∈ Act, whenever
p

a−→ p′ then there exists a q′ such that (p′, q′) ∈ R. It is easily seen that
Fr is monotonic and that R is a ready simulation iff R ⊆ Fr(R). Thus, by
Theorem 3.2, we have that

p⊂→rq ⇐⇒ (p, q) ∈ FIX Fr
and also that

⊂→r =
ω⋂
i=0
Fri(Pr × Pr)

2

The above example is easily generalizable to all simulation-like preorders;
the value of the underlying functional F(R) is simply the set of pairs (p, q)
that have matching transitions (in the sense of the corresponding definition)
to processes that fall within R. Membership of a simulation-like relation then
amounts to membership of a post-fixed-point of F , i.e. as membership of the
largest fixed-point.

A possible decision procedure for any simulation-like relation now consists
in computing the largest fixed point of F . Theorem 3.2 immediately gives
an iterative refinement strategy that consists in computing the successive
approximations of the largest fixed point.

The pragmatic problem is one of finding a computationally efficient strat-
egy for computing the ith approximant F i(Pr × Pr). For example, the
polynomial-time algorithm for bisimulation equivalence by Kanellakis and
Smolka [KS90] computes the largest bisimulation by means of a bottom-up
partition refinement strategy using an algorithm due to Paige and Tarjan.
The polynomial-time algorithms for simulation equivalence and ready simu-
lation equivalence by Huynh and Tian [HT94] employs a different strategy
for computing the largest fixed-point. The Bloom and Paige algorithm in
[BP94] for ready simulation uses yet another variant of the approximation
approach.

3.3.2 Characteristic formulae

Another approach to equivalence checking appeals to model checking by con-
structing characteristic formulae. Following Hennessy and Milner [HM85],
properties of labelled transition systems are usually described by means of
modal logic. The modal mu-calculus extends the basic Hennessy-Milner logic
with recursive definitions. Here, we shall only consider the nu-calculus, which
allows maximal recursive definitions and has the syntax

13

F ::= tt | ff | [a]F | 〈a〉F | F1 ∨ F2 | ¬F1 | X

Here X ranges over some set of recursion variables Rvar. Nu-calculus-
formulae are given by means of declarations; a declaration ∆ is a family of
recursion equations of the form

∆ = {Xi
def= Fi | 1 ≤ i ≤ k}

The semantics of a nu-calculus declaration is defined relative to a labelled
transition system (Pr,Act,→) and to an assignment of the occurring recur-
sion variables; the semantics of a formula F is the set of states satisfying the
formula F . Given some ρ : Rvar→ 2Pr, the semantics is defined inductively
by

[[tt]]ρ = Pr

[[ff]]ρ = ∅
[[[a]F]]ρ = {p | ∃p′ : p a−→ p′, p′ ∈ [[Fρ]]}
[[〈a〉F]]ρ = {p | p a−→ p′ ⇒ p′ ∈ [[F]]ρ}

[[F1 ∧ F2]] = [[F1]]ρ∩ [[F1]]ρ
[[X]]ρ = ρ(X)

[[¬F]]ρ = Pr \ [[F]]

and by the condition that the semantics of any recursion variable Xi is the
largest set of processes S such that [[Xi]]ρ[Xi 7→ S] = [[Fi]]ρ[Xi 7→ S]. The
existence of this set is guaranteed by Theorem 3.2, provided all recursion
variables occur within the scope of an even number of negation signs on any
right-hand side of a defining equation.

A characteristic formula for the relation R and the state p is then a mu-
calculus formula Fp such that qRp iff q satisfies Fp. Thus, this approach
reduces the equivalence problem to that of model checking. So, as the se-
mantics of formulae involve fixed-points, the characteristic formula approach
again (albeit somewhat indirectly) decides membership of a relation by means
of computing fixed-points.

Example 3.2 (Ready simulation) Given a finite labelled transition system
(Pr,Act,→), the characteristic formulae for the ready simulation preorder

14

for all states are collectively given by the declaration

{Xp
def=

∨
{(a,q) | p a−→q}

〈a〉Xq ∧
∨

{b | p 6 b−→ }

[b]ff | p ∈ Pr}

The first conjuncts of the right-hand side for Xp in the above declaration
describe that any process satisfying Xp must be able to perform the same
transitions as p in such a way that the resulting processes are again related.
The final conjunct describes the requirement that any process satisfying Xp

cannot have other initial actions than those of p. Taken together, these are
precisely the requirements of the definition of ready simulation. 2

In [CS91, And93] it was shown how one can construct characteristic for-
mulae for a number of equivalences and preorders within the nu-calculus. As
the model checking problem for the nu-calculus is decidable in time O(n ·m),
where m is the size of the declaration and n is the size of the transition
system, and as the declaration constructed essentially describes the transi-
tions of the transition system and therefore is of size O(n), this shows that
the simulation-like equivalences considered in [CS91, And93] are polynomial-
time decidable.

3.3.3 Horn clauses

A third approach, which is closely related to the characteristic formula ap-
proach, builds on the approach used in giving polynomial-time algorithms
for the rest of the simulation-like relations first presented in [SRHS96]. The
simulation-like relations can be reduced to the satisfiability problem for
weakly negative Horn formulas [Sch78], known as the NHORNSAT prob-
lem. Since there the NHORNSAT problem is decidable in linear time [DG84,
AI91], this shows that all simulation-like equivalences are decidable in poly-
nomial time.

Given a type of simulation relation R, the method in [SRHS96] entails
a top-down construction of a propositional formula f in CNF. The variables
in the formula f are Xp,q where p and q are states in the two transition
systems. Intuitively, Xp,q is true iff p and q are related by R. The clauses in
the formula f are of the following three types.

1. A single positive literal Xp,q . When we want (p, q) to be in the simula-
tion relation we construct this type of clause.

2. A single negated literal Xp,q. Such a clause is constructed when (p, q)
cannot be in any simulation relation of the given type.

15

3. Implication clauses of the form Xp,q ⇒
∨
i,j Xi,j. A clause of this form

is constructed when, for (p, q) to be in the simulation relation, one of
the (i, j)’s must also be in the simulation relation.

The details of the construction of the clauses depends on the actual prop-
erties that must be satisfied by R. The effectiveness of the reduction relies
on the property that if we generate a clause of the form Xs,t, then it is guar-
anteed that no relation satisfying the properties of that particular relation
can contain the pair (s, t).

The resulting CNF formulae are so-called weakly negative Horn formulas2

[Sch78]. The satisfiability problem for such formulae is called NHORNSAT.
It is easy to show that NHORNSAT is decidable in linear time [DG84, AI91].
Moreover, from [AI91], it is easy to construct an algorithm for NHORNSAT
which is incremental or on-line. As the size of the formula is O(n2) where n
is the size of the transition systems, we get

Theorem 3.8 Let (Pr,Act,→)be a labelled transition system of size n. Any
simulation-like equivalence relation on n is decidable in time O(| → |2).

Example 3.3 (Ready simulation) We give a polynomial time algorithm that
takes (Pr,Act,→)and two states s, t ∈ Pr as input and outputs an instance
h of NHORNSAT such that h is satisfiable if and only if s⊂→rt . In the
instance h the number of variables is ≤ |Pr|2 and the size of the instance is
O(| → |2).

The algorithm is given in Figure 4. The algorithm relies on three auxiliary
functions that together code up the conditions of the definition of ready
simulation. δr(a, q, p) is the set of all states that are reachable from state q
by executing an a action and have the same initial actions as p.

δr(a, q, p′) = {q′|q a−→ q′ ∧ init(p′) = init(q′)}

Whenever we consider the pair (p, q), we want to represent the conditions
for their inclusion in a ready simulation relation. Given a transition p a−→ p′

there must be a transition q a−→ q′ for which (p′, q′) is in the ready simulation
relation. C computes clauses expressing this fact.

C(pi, a, p
′
i, qj) =

∨
q
′
j∈δr(a,qj,p

′
i)

Xp
′
i,q
′
j

if δr(a, qj, p
′
i) 6= ∅ elsefalse

Finally, we need to keep track of the variable occurrences in a newly
created condition clause as these correspond to the pairs of processes that
need to be included in a ready simulation. This is expressed using V .

2A weakly negative clause is a clause which contains at most one negative literal.

16

Let C be the set of clauses initially empty. Let V be the set of variables initially empty.

1. If (init(s) 6= init(t)) then return an unsatisfiable formula of the form Xs,t ∧Xs,t
and terminate.

2. C := C ∪ {Xs1,t1}; V := {Xs1,t1}

3. pi := s1; qj := t1 ;

4. Do until V is empty.

(a) V := V − {Xpi,qj}
(b) For each t ∈ D1

such that t = (pi, a, p
′

i)
for some a ∈ Act
C := C ∪ {Xpi,qj ∨ C(pi, a, p

′

i, qj)
V := V ∪ V(pi, a, p

′

i, qj)

5. Let Xp,q be the one element in V . Then pi := p and qj := q; go to step 3.

6. Output C.

Figure 4: Algorithm for reducing an instance of the ready simulation problem
to an instance of NHORNSAT

V(pi, a, p
′
i, qj) = {Xp

′
i,q
′
j
| q′j ∈ δr(a, qj, p

′
i)}ifδr(a, qj, p

′
i) 6= ∅else∅

The constructed NHORNSAT instance h has the property that given
any satisfying truth-assignment v, the relationR defined by R = {(p, q)|v(Xp,q) =
1} is a ready simulation. Conversely, if s⊂→rt then sRt for some ready simu-
lation and we can define a truth-assignment v by v(Xp,q) = 1 iff (p, q) ∈ R.
This truth assignment satisfies h.

2

Notice the similarity to the corresponding characteristic formula for ready
simulation given in Example 3.2.

3.3.4 Game-theoretic characterizations

The fourth and final approach to obtaining complexity bounds gives a game-
theoretic characterization of behavioural relations.

17

In [Sti93], Colin Stirling introduced the notion of a characteristic game
for bisimulation equivalence. In [SHR95, SHR96] a general class of games,
called the Stirling class of games, was defined and shown to characterize all
equivalences and preorders in the linear/branching time hierarchy.

A game in the Stirling class has two players. One player is called the
prover and the other is called the disprover. The game starts in a position
〈s, t〉 ∈ Σ. A play of the game is a finite or infinite length sequence of the form
〈s1

0, s
2
0〉, ..., 〈s1

i , s
2
i 〉, The disprover wants to show that there is a difference

between the two transition systems. The prover wants to show that such a
distinction is not possible.

A partial play in a game is a prefix of a play of the game. Let πj be a
partial play 〈s1

0, s
2
0〉, ..., 〈s1

j, s
2
j〉. The next pair 〈s1

j+1, s
2
j+1〉 is determined by

the following move rule:

• The disprover picks a triple 〈i, x, u〉 such that i ∈ M and x ∈ Ri and
sij

x−→i u. and u = sij+1. (Note that →i denotes an extended step in
the transition system Ti).

• Let the choice of the disprover in the move be 〈i, x, u〉 and let i′ 6= i.
Then the prover picks a pair 〈y, u′〉 such that (x, y) ∈ mi′ and si′j

y−→i′ u′

and u′ = si
′
j+1.

This constitutes a round of the game. If in a round, after the disprover
has made its move, the prover can also make a move according to the moves
described above, then we say that the prover has a matching move in that
round.

The game continues until one of the players wins. The prover wins the
game if either in the last position of the play, no player can move, or there is
no further allowable move by the disprover. The prover also wins, if in the
play a position is repeated. In both cases, the disprover has failed to expose
a distinction between the transition systems.

The disprover wins, if in the last position of the play is not a winning
position which means the disprover has been able to force the prover to a
non winning position of the game or if in the last position, the disprover has
an allowable move but the prover does not have a matching move.

A strategy for a player is a set of rules which tells how to make a move
depending on the partial play and the previous moves of the opponent so far.
A strategy is said to be history-free if it only depends on the most recent
move. A strategy is a winning strategy for a player if, for any strategy by the
opponent, the strategy always causes the player to win.

A game G in the Stirling class is called a characteristic game for a re-
lation R between two finite-state processes, if the following condition holds:

18

Whenever the game G be played on two transition systems T1 and T2 with
start position 〈s, t〉, then the prover has a history-free winning strategy if
and only if sRt.

The following was shown in [SHR96]:

Theorem 3.9 All equivalences in the linear-branching time hierarchy have
characteristic games.

Example 3.4 (A characteristic game for ready simulation) Rsim −
game is a game in the Stirling class with the following parameters: R1 =
R2 = A, m1,m2 = ι, Γ = {〈s, t〉 | s ∈ S1, t ∈ S2 ∧ init(s) = init(t)},
Σ = {〈s1, s2〉}, M = {1}, r =| S1 | ∗ | S2 | +1.
2

For certain games in the Stirling class, the problem whether the prover
has a winning strategy is directly reducible to the NHORNSAT problem.
Hence, for any behavioural relation R, whose characteristic game is in this
subclass, the decision problem forR is reducible to the NHORNSAT problem.
This immediately leads to a polynomial time algorithm for the problem of
checking that relation, provided one can create an instance of the game from
the instance of the relational problem in polynomial time. For all the games
in the Stirling class, such a transformation to the game instance can be
shown to done in polynomial time, provided that the winning positions can
be decided in polynomial time. Hence, we get a sufficiency condition as to
under what condition a behavioural relation between finite state processes is
polynomial time decidable.

Theorem 3.10 Whenever a game G in the Stirling class satisfies the fol-
lowing conditions:

• The game languages R1 and R2 are finite and explicitly enumerated.
For example, in ready simulation game R1 = R2 = A, where A is the
set of action symbols.

• The representation of the set of winning positions is either by an explicit
listing or such that determining if a position of the game is a winning
position is polynomial time decidable.

then it is polynomial-time decidable whether the prover has a winning strategy
for G.

An immediate corollary is

19

Corollary 3.1 Any behavioural relation between two finite state transition
systems, whose characteristic game satisfies the conditions listed above, is
decidable in polynomial time.

It can be shown that all simulation-like equivalences satisfy the conditions
of Theorem 3.10, and this again shows Theorem 3.6.

3.4 Trace-like equivalences and preorders

The trace-like equivalences and preorders are defined in terms of the be-
haviours of the processes on unbounded sequences of actions (traces). The
trace-like equivalences are trace equivalence, completed trace equivalence, failure-
trace equivalence, ready-trace equivalence, failure equivalence , readiness equiv-
alence, n-bounded bisimulation equivalences.

One can give characteristic characterizations of all trace-like equivalences
(cf. the previous section) and show that the existence of a winning strategy
can be decided in PSPACE for any such game; this shows the following:

Theorem 3.11 All trace-like equivalences for finite-state processes are in
PSPACE.

However, we can say much more. The main result of this section is that

Theorem 3.12 All trace-like equivalences for finite-state processes are PSPACE-
complete.

3.4.1 Completed trace equivalence

Given an arbitrary labelled transition system (Pr,Act,→), we can define the
notion of completed traces as follows:

Definition 3.11 Let a labelled transition system (Pr,Act,→)be given. The
set of completed traces of a state p ∈ Pr is defined by

ctraces(p) = {w ∈ Act∗ | p w−→ p′ wherep′ 6−→ }

Two states p and q are completed trace equivalent, written ∼ctr, if ctraces(p) =
ctraces(q).

Thus completed trace equivalence is in all essential the well-known lan-
guage equivalence from automata theory. The following result is well-known
and be found in e.g. [KS90]:

20

Theorem 3.13 The completed trace equivalence problem is PSPACE-complete
for the class of finite transition systems.

Completed trace equivalence can be seen as the equivalence closure of the
completed trace preorder:

Definition 3.12 Given a labelled transition system the completed trace pre-
order vctr is defined as follows: p vctr q if ctraces(p) ⊆ ctraces(q).

The following is immediate:

Theorem 3.14 The completed trace preorder problem is PSPACE-complete
for the class of finite transition systems.

Proof: By Theorem 3.11, we see that the completed trace preorder problem
is in PSPACE. Showing that the preorder problem is PSPACE-hard follows
from the fact that

p+ q ∼ctr qiffp vctr p
which immediately shows that the equivalence problem is polynomial-time
reducible to the corresponding equivalence problem. In fact, for all trace-like
preorders, + acts as a least upper bound operator, so the above reduction
applies to any trace-like preorder. 2

3.4.2 Trace equivalence

The notion of trace equivalence considers arbitrary traces.

Definition 3.13 Let a labelled transition system (Pr,Act,→)be given. The
set of traces of a state p ∈ Pr is defined by

traces(p) = {w ∈ Act∗ | p w−→ p′}

Two states p and q are trace equivalent, written ∼tr, if traces(p) = traces(q).

The following was shown by Kanellakis and Smolka [KS90]:

Theorem 3.15 [KS90] Trace equivalence is PSPACE-complete for finite la-
belled transition systems.

Definition 3.14 Given a labelled transition system the trace preorder vctr
is defined as follows: p vtr q if traces(p) = traces(q).

Theorem 3.16 The trace preorder problem is PSPACE-complete for the
class of finite transition systems.

Proof: Along the same lines as the proof of Theorem 3.14. 2

21

3.5 n-bounded-tr-bisimulation

We next consider n–bounded-tr-bisimulation. This equivalence is a gen-
eralisation of trace equivalence and possible futures equivalence, in that 1-
bounded-tr-bisimulation corresponds to trace equivalence and 2-bounded-tr-
bisimulation is the possible futures equivalence of [RB81].

Definition 3.15 We define n-bounded-tr-bisimulation, written ∼ntr, induc-
tively as follows.

• p ∼0
tr q for all processes p and q,

• p ∼n+1
tr q iff

– if p w−→ p′ then ∃q′ such that q w−→ q′ and p′ ∼ntr q′ and

– if q w−→ q′ then ∃p′ such that p w−→ p′ and p′ ∼ntr q′.

This notion of equivalence also arises naturally as the consecutive approx-
imations of bisimulation equivalence [Mil80, Mil89].

Kanellakis and Smolka have shown that the n-bounded-tr-bisimulation
problem is PSPACE-complete for finite transition systems.

Theorem 3.17 [KS90] For alle n > 0, the n-bounded-tr-bisimulation prob-
lem is PSPACE-complete for finite transition systems.

For finitely branching transition graphs, and therefore for finite processes,
the limit of the n-bounded-tr-bisimulations for n→ ω is bisimulation equiv-
alence:

Theorem 3.18 [Mil89] For any finitely branching labelled transition graph
we have

∼ =
ω⋂
n=0
∼ntr

3.6 Failures, readiness, failure-trace and ready-trace
equivalences

Failures equivalence was suggested by Hoare etal in [BHR84, Hoa84]; for
finite transition systems it coincides with the notion of testing equivalence
proposed by Hennessy and de Nicola.

The notion of readiness equivalence can be seen as the dual of failures
equivalence and was originally put forward by Bergstra, Klop, and Olderog
[BKO88]

22

Definition 3.16 For any process p, define

failures(p) = {(w,X) | ∃p′ : p w−→ p′, ∀a ∈ X : p′ 6 a−→ },

readies(p) = {(w,X) | ∃p′ : p w−→ p′, p′
a−→⇐⇒ a ∈ X}.

Processes p and q are failures equivalent, written p∼fq, iff failures(p) =
failures(q). Processes p and q are readiness equivalent, written p ∼r q, iff
readies(p) = readies(q).

These equivalences could also be defined via the associated preorders:

Definition 3.17 Processes p and q are related by the failures preorder, writ-
ten pvfq, iff failures(p) ⊆ failures(q). Processes p and q are related by the
readiness preorder, written p vr q, iff readies(p) ⊆ readies(q).

To show that the equivalences defined in this section are PSPACE-hard, we
shall employ a class of processes introduced by Huynh and Tian [HT90],
called locally unary processes, for which failures equivalence and readiness
equivalence coincide with completed trace equivalence.

Definition 3.18 [HT90] A process p is locally unary iff for each p′ with
p

w−→ p′ there is at most one a ∈ Act such that p′ a−→.

Lemma 3.2 [HT90] If p and q are locally unary normed processes then

p ∼r q iff p ∼f q iff traces(p) = traces(q).

The idea is now, given a ∆ to construct a locally unary ∆′ contain-
ing the variables of ∆ such that traces(X) = traces(Y) in ∆ if and only
if traces(X) = traces(Y) in ∆′. The following construction accomplishes
this. The idea is simply to precede any action by a # that indicates that a
nondeterministic choice has been made.

Definition 3.19 Given a system of regular process equations ∆ let ∆′ have
the action set Act ∪ {#} (where # is a new action) and process variables
V ar. For every process equation in ∆

Xi
def=
∑

ajp +
∑

bk.0

create the new equation

Xi
def=

∑
#.aj.p+

∑
#.bk.0

in the new system ∆′.

23

It is obvious that ∆′ is a system of regular process equations iff ∆ and
that the construction of ∆′ can be accomplished in polynomial time w.r.t the
size of ∆.

We immediately see that the resulting process is locally unary.

Proposition 3.2 ∆′ is locally unary.

The following is now obvious from the definition of ∆′.

Proposition 3.3 For X ∈ V ar we have X a−→∆ p′ iff X
#−→ a−→∆′ p

′.

We therefore also see that

Proposition 3.4 Let ∆ be a system of equation in normal form. For X ∈
V ar b1b2...bn ∈ traces(X) relative to ∆ iff #b1#b2...#bn ∈ traces(X) relative
to ∆′.

Theorem 3.19 [HT90] Failure and ready equivalence are PSPACE-hard for
locally unary regular processes.

Proof: From Proposition 3.4 we get a polynomial-time reduction from lan-
guage equivalence to language equivalence for locally unary normed processes
and the theorem now follows from Lemma 3.2. 2

The above ideas can also be used to prove that failure trace and ready
trace equivalence are PSPACE-hard. For finite transition systems, failure
trace equivalence [vG90a] coincides with the notion of refusal testing [Phi87].

Definition 3.20 The refusal relation A−→ for A ⊆ Act is defined for any
processes p, q by p A−→ q iff p = q and whenever a ∈ A, p 6 a−→ . The failure
trace relations u−→ for u ∈ (Act ∪ P(Act))∗ are defined as the reflexive and
transitive closure of the refusal and transition relations. Define

failure-traces(p) = {u ∈ (Act ∪ P(Act))∗ | ∃p′ : p u−→ p′}.

Two processes p and q are failure-trace equivalent, written p ∼ftr q iff failure-traces(p) =
failure-traces(q).

Lemma 3.3 If p and q are locally normed unary processes then p ∼ftr q iff
traces(p) = traces(q).

Corollary 3.2 The failure trace equivalence problem is PSPACE-hard for
locally unary regular processes.

24

The definition of ready trace equivalence, that we shall use here, is the char-
acterisation given by van Glabbeek [vG90a].

Definition 3.21 Define

ready-trace(p) = {A0a1A1 . . . anAn |

∃p0, . . . , pn : p = p0
a1−→ p1 · · · an−→ pn, pi

a−→⇐⇒ a ∈ Ai, 0 ≤ i ≤ n}.
Two processes p and q are ready trace equivalent, written p ∼rtr q, iff
ready-trace(p) = ready-trace(q).

Lemma 3.4 If p and q are locally unary processes then p ∼rtr q iff L(p) =
L(q).

Corollary 3.3 The ready trace equivalence problem is PSPACE-complete for
finite transition systems.

3.6.1 Subclasses of regular processes

What happens if one considers only certain classes of finite-state transition
systems ? This section summarizes the known results.

Tree processes

A regular process is called a tree process if its associated transition system
can be unfolded into a finite tree, or equivalently, if its definition does not
use recursion. Huynh and Tian showed that for tree processes, bisimulation
is in NC, the class of problems decidable by non-uniform boolean circuits
[HT90]. Hence, the bisimulation algorithm for tree processes is seen to be
efficiently parallelizable.

Unary and locally unary processes

The proof of P-completeness of bisimulation due to Alvarez et al. consists
of providing a log-space-reduction from the Alternating Monotone Fanin
2, Fanout 2 Circuit Value problem (AM2CVP) which is a well known P-
complete problem [GHR95]. Given an instance of AM2CVP, the reduction
constructs two unary processes such that the two processes are bisimilar
if and only if the AM2CVP instance has output 1. As the processes con-
structed are tree processes, we immediately get that bisimulation equivalence
for unary tree processes is P-complete.

25

Deterministic processes

A process is called deterministic if its associated transition system (Pr,Act,→
) is deterministic in the sense that for any p ∈ Pr and a ∈ Act there is at
most one p′ such that p

a−→ p′. One should note that for deterministic
processes, trace equivalence and bisimulation equivalence coincide [Eng85]
(where ∼ denotes strong bisimulation equivalence):

Proposition 3.5 If p and q are deterministic processes, then Tr(p) = Tr(q)
iff p ∼ q.

Proof: {(p, q) | Tr(p) = Tr(q)} is a bisimulation. 2

Consequently, in the deterministic case the linear/branching time hierar-
chy collapses, and in this case all equivalences are in P.

More can be said, though. For deterministic transition systems, the bisim-
ulation equivalence problem is in NC. By the above proposition, all equiv-
alences are in NC for deterministic transition systems. In [HT94], it was
proved that all these relations are in NL, which also implies that they are in
NC.

4 Infinite transition systems

All equivalences are undecidable for sufficiently rich classes of labelled transi-
tion systems. For instance, it is well-known that bisimulation equivalence is
undecidable for the full CCS calculus. In this section we shall briefly consider
two extensions of the class of regular processes which have a decidable equiv-
alence problem and survey the known decidability results. For a survey of
known decidability results and their underlying proof techniques, the reader
is referred to [HiM94].

4.1 Basic Process Algebra

The class of BPA (Basic Process Algebra) was defined by Bergstra and Klop
in [BK84b]. The abstract syntax of BPA is given by

p ::= a | p1 · p2 | p1 + p2 | X

Again, a ranges over a set Act of atomic actions, and X over a set V ar of
variables. As before, the symbol + is the non-deterministic choice while p1·2
represents the sequential composition of p1 and p2 (one usually omits the ‘·’).

26

We say that a process expression is guarded iff every variable occurrence in
p occurs in a subexpression aq of p. As in the case of regular processes, BPA
processes are defined by a declaration, a finite set ∆ of guarded equations

∆ = {Xi
def= pi | 1 ≤ i ≤ k}

– only now the pi are guarded BPA expressions with free variables in
V ar(∆) = {X1, . . . , Xk}. The definition conventions of regular processes
still apply.

The operational semantics of a BPA process expression, given a finite
system of guarded equations ∆, is given by a labelled transition system
(Pr,Act,→)where Pr is the set of processes with variables being the vari-
ables of ∆ and the transition relation → defined by the following rules (ε
denotes the empty process with the convention that εq is q):

p
a−→ p′

p + q
a−→ p′

q
a−→ q′

p+ q
a−→ q′

p
a−→ p′

pq
a−→ p′q

a
a−→ ε a ∈ Act

p
a−→ p′

X
a−→ p′

X
def= p ∈ ∆

BPA processes are also known as context-free processes, as it can be shown
(cf. section 3.4.2) that a language L over the alphabet A is context-free iff
L = traces(X1) for some BPA process ∆ with root X1 and action set A.

Definition 4.1 The norm of a process p is defined by

|p| = min {length(w) | p w−→ ε}.

A finite set ∆ of guarded equations is normed if for all X ∈ V ar it holds that
|X| is finite. A BPA process is called normed, if it has been generated via a
normed set of guarded equations.

Note that the class of normed BPA processes does not include all the
regular processes (such as X def= aX). Still, it is a very rich family, including
processes with infinitely many states.

Theorem 4.1 Bisimulation equivalence is decidable for BPA processes.

27

This result was originally first obtained for normed processes [BBK87]
and can most easily be obtained via a finite representation theorem [Cau88].
This theorem states that the maximal bisimulation of any normed BPA tran-
sition graph is the congruence closure (under sequential composition) of a
bisimulation base, a finite relation whose congruence closure has a decidable
membership problem. The existence of a search procedure for such a bisimu-
lation base is established by means of unique factorization theorem; Hirshfeld
et al. have shown that this search can be done in time polynomial w.r.t. the
size of the BPA process declaration.

Theorem 4.2 [HJM94] Bisimulation equivalence is decidable in time poly-
nomial in the size of ∆ for any normed BPA process.

The general result can be shown using a more general notion of bisimu-
lation base, which only requires semi-decidability of the congruence closure
of the bisimulation base. The original decision procedure for bisimilarity
for BPA processes relied on the conjunction of two semi-decision procedures
[CHS92], one searching for a bisimulation base and another searching for a
bisimulation error. It has recently been shown by Burkart, Caucal and Stef-
fen [BCS95] that the search for a bisimulation base can be bounded, giving
an elementary complexity bound.

Theorem 4.3 Bisimulation equivalence is decidable in elementary time in
the size of ∆ for any BPA process.

However, no other equivalence or preorder is decidable, as was shown by
Huynh and Tian and Groote and Hüttel.

Theorem 4.4 [GH94, HT90] All other equivalences and corresponding pre-
orders of the linear-branching time hierarchy are undecidable.

The undecidability proofs for the preorders all proceed by reductions from
the trace inclusion problem for simple grammars, which was shown undecid-
able by Friedman in [Fri76]. The undecidability of the corresponding equiv-
alences proceed either by reductions from the preorder problem, using the
fact that + acts as a least upper bound operator w.r.t. to the preorder (cf.
the proof of Theorem 3.14) or by reductions from the language equivalence
problem for context-free grammars.

In the deterministic case, however, the linear/branching time hierar-
chy collapses so all equivalences are in P in the normed case [Cau89] and
elementary-time decidable in the general case [BCS95]. But as determinis-
tic BPA processes correspond exactly to the class of simple grammars, all
preorder problems remain undecidable.

28

p
a−→ p′

p ‖ q a−→ p′ ‖ q
q

a−→ q′

p ‖ q a−→ p ‖ q′

Table 1: Additional transition rules for the merge operator

4.2 Basic Parallel Processes

Another extension of the class of regular processes is the class of BPP (Basic
Parallel Processes), first considered by Christensen [Chr94]. In the case of
BPP, the non-communicating parallel (merge) operator has been added to
the syntax. The class of BPP processes can be shown to correspond to the
class of communication-free Petri nets [HiM94].

The abstract syntax of BPP is given by

p ::= a | p1 ‖ p2 | p1 + p2 | X

As for BPA, processes are defined by declarations of the form {Xi
def=

pi | 1 ≤ i ≤ k}, where the pi now are BPP process terms. The operationel
semantics of BPP extends the semantics of regular processes with rules for
the parallel operator; the transition rules are found in Table 4.2.

The following result was shown by Hirshfeld, Jerrum and Moller [HJM96]
by appealing to a finite characterization theorem similar to that applied to
the BPA case of the previous section.

Theorem 4.5 Bisimilarity is in P for normed BPP processes.

It is also known that bisimilarity is decidable for the full BPP calculus
[CHM93]; however, at the time of writing, the complexity bound for the
bisimulation problem in this case remains an open problem.

References

[ABGS91] C. Alvarez, J.L Balcazar, J. Gabarro, and M Santha, Paral-
lel complexity in the design and analysis of concurrent systems,
PARLE91, Lecture Notes in Computer Science 505 Springer-
Verlag, 1991.

[AI91] G. Ausiello and G. F. Italiano, On-line algorithms for polyno-
mially solvable satisfiability problems, Journal of Logic Program-
ming 10 (1991), 69–90.

29

[Abr87] S. Abramsky. Observational equivalence as a testing equivalence.
Theoretical Computer Science, 53:225–241, 1987.

[And93] H. R. Andersen, Verification of technical properties of concurrent
systems, Tech. Report DAIMI PB-445, Computer Science Depart-
ment, Aarhus University, Aarhus University, Denmark, 1993.

[And94] H. R. Andersen, Model checking and boolean graphs, Theoretical
Computer Science 126 (1994), no. 1, 3–30.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang, Symbolic model checking: 1020 states and beyond, Infor-
mation and Computation 98 (1992), no. 2, 142–170.

[BK84b] J.A. Bergstra and J.W. Klop Process algebra for synchronous
communication Information and Computation, 60:109–137, 1984.

[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability
of bisimulation equivalence for processes generating context-free
languages. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven,
editors, Proceedings PARLE conference, Eindhoven, Vol. II (Par-
allel Languages), volume 259 of Lecture Notes in Computer Sci-
ence, pages 94–113. Springer-Verlag, 1987.

[BCS95] O. Burkart, D. Caucal, B. Steffen. An Elementary Bisimulation
Decision Procedure for Arbitrary Context-Free Processes In Jiŕı
Wiedermann and Petr Hájek, editors: Proceedings of Mathemat-
ical Foundations of Computer Science 1995, 20th International
Symposium Volume 969 of Lecture Notes in Computer Science,
Springer-Verlag 1995.

[BKO88] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Readies and failures
in the algebra of communicating processes. SIAM J. on Comput.,
17:1134–1177, 1988.

[BIM90] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be
traced. Technical Report 90-1150, Department of Computer Sci-
ence, Cornell University, Ithaca, New York, August 1990.

[BHR84] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of com-
municating sequential processes. JACM, 31:560–599, 1984.

[BP94] B. Bloom and R. Paige, Transformational design and implemen-
tation of a new efficient solution to the ready simulation problem,
Draft (1994).

30

[Cau89] D. Caucal. A Fast Algorithm to Decide on Simple Grammars
Equivalence. In H. Djidjev, editor: Proceedings of the Interna-
tional Symposium on Optimal Algorithms Volume 401 of Lecture
Notes in Computer Science, pages 66–85. Springer-Verlag, 1989.

[Cau88] D. Caucal. Graphes canoniques de graphes algébriques. Theoret-
ical Informatics and Applications 24:339–352, 1990.

[CC92] U. Celikkan and R. Cleaveland, Generating diagnostic informa-
tion for behavioural preorders, Proceedings of Computer Aided
Verification: 1992, Lecture Notes in Computer Science 663, 1992,
pp. 370–383.

[CH92] R. Cleveland and M. Hennessy, Testing equivalence as a bisimu-
lation equivalence, Formal Aspects of Computing 3 (1992).

[Chr94] S. Christensen. Decidability and Decomposition in Process Alge-
bras, Ph.D. thesis, University of Edinburgh 1994.

[CHM93] S. Christensen, Y. Hirschfeld, F. Moller. Decomposability, de-
cidability, and axiomatisability for bisimulation equivalence on
basic parallel processes. To appear in Proceedings 8th Annual
Symposium on Logic in Computer Science, Montreal, Canada.
IEEE, 1993. Also published as LFCS Report ECS-LFCS-92-244,
University of Edinburgh, 1992.

[CHS92] S. Christensen, H. Hüttel, C.P. Stirling. Bisimilarity is decidable
for all context-free processes. In R. Cleaveland, editor, Proceed-
ings of CONCUR’92, volume 630 of Lecture Notes in Computer
Science, pages 138–147, 1992.

[CS93] R. Cleveland and B. Steffen, Linear time model checking algo-
rithm for alternation-free modal mu calculus, Formal Methods of
Software Design 2 (1993), 127–147.

[DG84] W.F. Dowling and J.H. Gallier, Linear time algorithm for testing
the satisfiability of propositional horn formulae, Journal of Logic
Programming 3 (1984), 267–284.

[Eng85] J. Engelfriet Determinacy → (observation equivalence = trace
equivalence) Theoretical Computer Science 36:21–25, 1985.

[FM91] J. C. Fernandez and L. Mounier, On the fly verification of
behavioural equivalences and preorders, The 3rd International

31

Workshop on Computer Aided Verification 1991, Lecture Notes
in Computer Science 575, 1991, pp. 181–191.

[Fri76] E.P. Friedman. The inclusion problem for simple languages. The-
oretical Computer Science, 1:297–316, 1976.

[vG90a] R.J. van Glabbeek. The linear time – branching time spectrum.
In J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR
90, Amsterdam, volume 458 of LNCS, pages 278–297. Springer-
Verlag, 1990.

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to paral-
lel computation: P-completeness theory, Oxford University Press,
1995.

[Gro89] J.F. Groote. Transition system specifications with negative
premises. Report CS-R8950, CWI, 1989. An extended abstract
appeared in J.C.M. Baeten and J.W. Klop, editors, Proceedings
CONCUR 90, Amsterdam, LNCS 458, pages 332–341. Springer-
Verlag, 1990.

[Gro92] J.F. Groote. A short proof of the decidibility of bisimulation for
normed BPA-processes. Information Processing Letters, 42:167–
171, 1992.

[GH94] J.G. Groote and H. Hüttel. Undecidable Equivalences for Ba-
sic Process Algebra Information and Computation, 115:354–371,
1994.

[GV89] J.F. Groote and F.W. Vaandrager. Structured operational se-
mantics and bisimulation as a congruence (extended abstract). In
G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Del la Rocca,
editors, Proceedings of ICALP89, volume 372 of LNCS, pages
423–438. Springer-Verlag, 1989. Full version to appear in Infor-
mation and Computation.

[GV92] J.F. Groote and F.W. Vaandrager, Structured operational seman-
tics and bisimulation as a congruence, Information and Compu-
tation 100 (1992), no. 2, 202–260.

[Hen89] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cam-
bridge, Massachusetts, 1988.

32

[HHK95] M. R. Henzinger, T. Henzinger, and P. W. Kopke, Computing
simulations on finite and infinite graphs, Proceedings of IEEE
Conference on Foundations of Computer Science, 1995.

[HJM94] Y. Hirshfeld and M. Jerrum and F. Moller. A Polynomial-Time
Algorithm for Deciding Equivalence of Normed Context-Free Pro-
cesses In Shafi Goldwasser, editor, Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, pages 623–631,
IEEE Computer Society Press, 1994.

[HJM96] Y. Hirshfeld and M. Jerrum and F. Moller. A Polynomial-Time
Algorithm for Deciding Bisimulation Equivalence of Normed Ba-
sic Parallel Processes Mathematical Structures in Computer Sci-
ence, 6:251–259, 1996.

[HiM94] Y. Hirshfeld and F. Moller. Decidability Results in Automata and
Process Theory In G. Birtwistle and F. Moller, editors, Proceed-
ings of Logics for Concurrency: Automata vs Structure. The VIII
Banff Higher Order Workshop, volume 1043 of LNCS, Springer-
Verlag 1994.

[HM85] M. Hennessy and R. Milner, Algebraic Laws for Nondeterminism
and Concurrency, Journal of the ACM, 32(1), 1985, pp. 137–161.

[Hoa84] C. A. R. Hoare, Communicating sequential processes, Prentice
Hall International, 1984.

[HS91] H. Hüttel and C. Stirling. Actions speak louder than words: Prov-
ing bisimilarity for context-free processes. In Proceedings 6th An-
nual Symposium on Logic in Computer Science, Amsterdam, The
Netherlands, pages 376–386. IEEE Computer Society Press, 1991.

[HT90] D.T. Huynh and L. Tian. On deciding readiness and failure equiv-
alences for processes. Technical Report UTDCS-31-90, University
of Texas at Dallas, September 1990.

[HT94] Dung T. Huynh and Lu Tian, On deciding some equivalences for
concurrent processes, Theoretical Informatics and Applications
28 (1994), no. 1, 51–71.

[HU79] J. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

33

[Hut91] H. Hüttel. Dedidability, Behavioural Equivalences and Infinite
Transition Graphs Ph.D. thesis. Report ECS-LFCS-91-191, Uni-
versity of Edinburgh, 1991.

[KH66] A.J. Korenjak and J.E. Hopcroft Simple Deterministic Languages
In Proc. Seventh Annual IEEE Symposium on Switching and Au-
tomata Theory, pages 36–46, 1966.

[Koz83] D. Kozen, Results on the propositional mu-calculus, Theoretical
Computer Science 27 (1983).

[KS90] Paris C Kanellakis and Scott A Smolka, CCS expressions, finite
state processes and three problems of equivalence, Information and
Computation 86 (1990), 43–68.

[Lar88] K. G. Larsen, Efficient local correctness checking, CAV 92, Lec-
ture Notes in Computer Science 663, 1992, pp. 30–43.

[Lar92] K. G. Larsen, Proof Systems for Hennessy Milner Logic with Re-
cursion, CAAP 88, Lecture Notes in Computer Science 299, 1988.

[LS89] K.G. Larsen and A. Skou. Bisimulation through probabilistic
testing. In Proceedings 16th ACM Symposium on Principles of
Programming Languages, Austin, Texas, pages 344–352, 1989.

[Liu92] X. Liu, Specification and Decomposition in Concurrency, PhD
Thesis, Department of Mathematics and Computer Science, Aal-
borg University Center, Denmark, 1992.

[LV91] Nancy Lynch and Frits Vaandrager, Forward and backward sim-
ulation:untimed systems, REX Workshop on Real Time systems,
1991.

[Mil80] Milner, R. A Calculus of Communicating Systems Springer-
Verlag LNCS 92, 1980.

[Mil89] Milner, R. Communication and Concurrency Prentice-Hall In-
ternational 1989.

[Mil84] Milner, R. A Complete Inference System for a Class of Regular
Behaviours Journal of Computer and System Sciences, 28:439-
466, 1984.

34

[OH86] E.-R. Olderog and C.A.R. Hoare. Specification-oriented seman-
tics for communicating processes. Acta Informatica, 23:9–66,
1986.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences.
In P. Deussen, editor, Proceedings 5th GI Conference LNCS 104,
pages 167–183. Springer, 1981.

[Phi87] I.C.C. Philips. Refusal testing. Theoretical Computer Science,
50:241–284, 1987.

[Plo81] Gordon D. Plotkin, A structural approach to operational seman-
tics, Tech. Report DAIMI FN-19, Computer Science Department,
Aarhus University, Aarhus University, Denmark, 1981.

[PT87] Robert Paige and Robert E Tarjan, Three partition refinement
algorithms, SIAM Journal Of Computing 16 (1987), 973–989.

[RB81] W.S. Rounds and S.D. Brookes. Possible futures, acceptances,
refusals and communicating processes. In Proc. 22nd Annual
Symposium on Foundations of Computer Science, pages 140–149,
New York, 1981. IEEE.

[MS95] F. Moller and S.A. Smolka. On the Computational Complexity of
Bisimulation. ACM Computing Surveys, 27:287-289, June 1995.

[Sch78] Thomas J. Schaefer, The complexity of satisfiability problems,
Tenth Annual Symposium on Theory of Computing, 1978.

[SHR95] S. K. Shukla, H. B. Hunt III, and D. J. Rosenkrantz, Hornsat,
model checking, verification, and games, Research Report TR-95-
8, Department of Computer Science, SUNY Albany, 1995.

[SHR96] S. K. Shukla, H. B. Hunt III, and D. J. Rosenkrantz, Hornsat,
model checking, verification and games, In Proceedings of CAV’96
(1996).

[SRHS96] S. K. Shukla, D. J. Rosenkrantz, H. B. Hunt III, and R. E. Stearns
The Polynomial Time Decidability of Simulation Relations for
Finite State Processes: A HORNSAT Based Approach, Presented
at the DIMACS Workshop on Satisfiability Problems March 1996.
To be included in AMS DIMACS special volume.

35

[SHRS96] S. K. Shukla, H. B. Hunt III, D. J. Rosenkrantz, and R. E.
Stearns, On the complexity of relational problems for finite state
processes, In Proceedings of ICALP 1996 (1996).

[SS94] O. Sokolsky and S. A. Smolka, Incremental model checking in the
modal mu-calculus, Proceedings of CAV’94, 1994.

[Ull88] J. D. Ullman, Principles of database and knowledge base systems
: Volume i, Computer Science Press, Rockville, MD, 1988.

[vG90] R.J. van Glabbeek, The linear time - branching time spectrum,
Tech. Report CS-R9029, Computer Science Department, CWI,
Centre for Mathematics and Computer Science, Netherlands,
1990.

[Wal88] D. Walker, Bisimulation and divergence, Proceedings of the Third
Annual Symposium on Logic in Computer Science, 1988, pp. 186–
192.

[CS91] R. Cleveland and B. Steffen. Computing behavioural relations,
logically. In Proceedings of ICALP 91, Springer LNCS, pages
127–138, 1991.

[Ste89] B. U. Steffen. Characteristic formulae for ccs with divergence. In
Proceedings of ICALP 89, LNCS 372, pages 723–733, 1989.

[Sti87] C. Stirling. Modal logics for communicating systems. Theoretical
Computer Science, 49:311–347, 1987.

[Sti93] Colin Stirling. Modal and temporal logics for processes. In Notes
for Summer School in Logic Methods in Concurrency, pages De-
partment of Computer Science, Aarhus University, 1993.

[SW91] C. Stirling and D. Walker. Local model checking in the modal
mu-calculus. Theoretical Computer Science, 89:161–177, 1991.

[Tar55] A. Tarski. A lattice theoretic fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5, 1955.

36

Recent Publications in the BRICS Report Series

RS-96-39 Hans Ḧuttel and Sandeep Shukla. On the Complexity
of Deciding Behavioural Equivalences and Preorders – A
Survey. October 1996. 36 pp.

RS-96-38 Hans Ḧuttel and Josva Kleist. Objects as Mobile Pro-
cesses. October 1996. 23 pp.

RS-96-37 Gerth Stølting Brodal and Chris Okasaki.Optimal Purely
Functional Priority Queues. October 1996. 27 pp. To ap-
pear in Journal of Functional Programming, 6(6), Decem-
ber 1996.

RS-96-36 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir.
On a Question of A. Salomaa: The Equational Theory
of Regular Expressions over a Singleton Alphabet is not
Finitely Based. October 1996. 16 pp.

RS-96-35 Gian Luca Cattani and Glynn Winskel.Presheaf Models
for Concurrency. October 1996. 16 pp. Presented at
the Annual Conference of the European Association for
Computer Science Logic, CSL '96.

RS-96-34 John Hatcliff and Olivier Danvy. A Computational For-
malization for Partial Evaluation (Extended Version). Oc-
tober 1996. To appear inMathematical Structures in Com-
puter Science.

RS-96-33 Jonathan F. Buss, Gudmund Skovbjerg Frandsen, and
Jeffrey Outlaw Shallit. The Computational Complexity of
Some Problemsof Linear Algebra. September 1996. 39 pp.

RS-96-32 P. S. Thiagarajan. Regular Trace Event Structures.
September 1996. 34 pp.

RS-96-31 Ian Stark. Names, Equations, Relations: Practical Ways
to Reason about `new'. September 1996. ii+22 pp.

RS-96-30 Arne Andersson, Peter Bro Miltersen, and Mikkel Tho-
rup. Fusion Trees can be Implemented with AC0 Instruc-
tions only. September 1996. 8 pp.

