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Abstract

We study Basic Process Algebra with interrupt modulo complete trace
equivalence. We show that, unlike in the setting of the more demanding
bisimilarity, a ground complete finite axiomatization exists. We explicitly
give such an axiomatization, and extend it to a finite complete one in the
special case when a single action is present.

Introduction

Mode switching is a desirable feature of programming and verification languages
(see [7, 9, 11, 12, 14]). Actually, interrupts in operating systems and exception
handling in virtual machines fall under this category, and similar behaviour is ex-
plicitly required for control programs and embedded systems.

From the theoretical viewpoint of process algebra, representation of mode
switching translates into the isolation of suitable operators on terms. Baeten and
Bergstra [6] (reprising Bergstra [9]) discuss some of these operators for Basic Pro-
cess Algebra (BPA), enriched with thedeadlock constantδ (a special process, not
doing anything) and theinterrupt anddisrupt operators. For that language, they
construct a complete axiomatization modulo bisimilarity [13, 17], which is finite if
the set of actions is finite. However, that axiomatization is based on the use of four
moreauxiliary operators: hence, it is not immediately clear whether this process
algebra, modulo bisimilarity, is finitely axiomatizableby itself. This fact is not at

∗The work of the authors has been partially supported by the project “The Equational Logic of
Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.
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all immediate, given the many examples [1, 2, 3, 4, 5, 13, 15, 16, 18] where a finite
complete axiomatization does not exist.

In this paper, we deal with the process algebra BPAint, obtained from BPA by
adding the interrupt operator and, as for the relation modeling “indistinguishability
from an external observer”, we choose to work withcomplete trace equivalence
(briefly, c.t.e.) instead of the more demanding bisimilarity. Basically, a sequence
of actions is a complete trace for a closed term, if it “leads the term to termination”;
two terms are c.t.e. if they have exactly the same complete traces.

Since equivalence classes of terms modulo complete trace equivalence can be
described in the language ofregular expressions, it is possible to deal with them
via language-theoretical techniques. This is precisely the way we find the first of
our main results: interrupt is a derived operator for closed terms, modulo c.t.e; that
is, for every closed termt over BPAint, there is a termu over BPA which is c.t.e. to
t. Suchu can be obtained fromt via application of instances of a finite number of
axioms. Therefore, since BPA has a finite ground complete axiomatization modulo
c.t.e. (as will be shown in the paper), BPAint turns out to have one as well. This
theorem is in sharp contrast with the negative result proved in [5], to the effect
that bisimilarity has no finite axiomatization over closed BPAint terms even in the
presence of a single action.

The technical analysis of c.t.e. becomes more complex when we consider terms
including variables. In fact, as in the setting of bisimilarity [5], interrupt isnot a
derived BPA operator modulo complete trace equivalence. This rule has precisely
one exception, modulo c.t.e.:when the set of actions is a singleton. In this special
case, not only we are able to remove every occurrence of the interrupt operator, but
we also can reduce each BPAint term to a BPA term with a very special “shape”; and
in fact, this “shape” is special enough to becharacterizing, i.e., two BPAint terms
are c.t.e. if and only if they can be reduced to the same “specially shaped” term.
Again, this will be achieved syntactically by adding a finite number of axioms to
the ones we had found earlier, which yields a finite complete axiomatization for
BPAint modulo c.t.e. in the presence of a single action. When the set of actions
is not a singleton, we have isolated a collection of valid equations. However, the
details involved in (dis)proving the completeness of that set of equations have so
far defeated us.

The paper is divided as follows. In Section 1 we sketch the framework we are
working with. In Section 2 we prove our results for closed terms. In Section 3
we state and prove our result for general terms with a single action. In Section 4
we introduce some additional sound equations we have found, and give hints and
suggestions for future research in the field.
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1 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based. The interested reader is referred to [6, 10] for
more information.

1.1 The LanguageBPAint

We assume a nonempty alphabetAct of atomic actions, with typical elementsa, b.
The language for processes we shall consider in this paper, henceforth referred to
as BPAint, is obtained by adding the interrupt operator from [6] to Bergstra and
Klop’s BPA [10]. This language is given by the following grammar:

t ::= x | a | t · t | t + t | t � t ,

wherex is a variable drawn from a countably infinite setVar anda is an action.
In the above grammar, we use the symbol� for the interrupt operator. We shall
use the meta-variablest, u, v to range over process terms, and writeVar(t) for the
collection of variables occurring in the termt. Thesizeof a term is the number of
operator symbols in it. A process term isclosedif it does not contain any variables.
As usual, we shall often writetu in lieu of t ·u, and we assume that· binds stronger
than both+ and � , while � binds stronger than+. In this paper we will also
consider the language BPA, which is constructed as BPAint without the interrupt
operator.

A substitution is a mapping from process variables to BPAint terms. A substi-
tutionσ is closed ifσ(x) is a closed term for every variablex. For every termt and
substitutionσ, the term obtained by replacing every occurrence of a variablex in t
with the termσ(x) will be writtenσ(t). Note thatσ(t) is closed, if so isσ. In what
follows, we shall use the notationσ[x 7→ p], whereσ is a closed substitution and
p is a closed BPAint term, to stand for the substitution mappingx to p, and acting
like σ on all of the other variables inVar . If a ∈ Act, we indicate byσa the closed
substitution that replaces every variable witha, i.e.,

σa(x) = a ∀x ∈ Var . (1)

In the remainder of this paper, we leta1 denotea, andam+1 denotea(am).
Moreover, we consider terms modulo associativity and commutativity of+. In
other words, we do not distinguisht+u andu+t, nor(t+u)+v andt+(u+v). This
is justified because+ is associative and commutative with respect to the notion of
equivalence we shall consider over BPAint. (See axioms A1, A2 in Table 2 on
page 7.) In what follows, the symbol= will denote equality modulo associativity
and commutativity of+.
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We say that a termt has+ as head operatorif t = t1 + t2 for some termst1
andt2. For example,a + b has+ as head operator, but(a + b)a does not.

Fork ≥ 1, we use asummation
∑

i∈{1,...,k} ti to denotet1 + · · ·+ tk. It is easy
to see that every BPAint term t has the form

∑
i∈I ti, for some finite, nonempty

index setI, and termsti (i ∈ I) that do not have+ as head operator. The termsti
(i ∈ I) will be referred to as the(syntactic) summandsof t. For example, the term
(a + b)a has only itself as (syntactic) summand.

The operational semantics for the language BPAint is given by the labeled tran-
sition system (

BPAint,
{

a→| a ∈ Act
}

,
{

a→X | a ∈ Act
})

,

where the transition relations
a→ and the unary predicates

a→X are, respectively,
the least subsets of BPAint × BPAint and BPAint satisfying the rules in Table 1.
Intuitively, a transitiont

a→ u means that the system represented by the termt can
perform the actiona, thereby evolving intou. The special symbolX stands for
(successful) termination; therefore the interpretation of the statementt

a→X is that
the process termt can terminate by performinga. Note that, for every closed term
p, there is some actiona for which eitherp

a→ p′ holds for somep′, or p
a→X does.

a
a→X

t
a→X

t + u
a→X

u
a→X

t + u
a→X

t
a→ t′

t + u
a→ t′

u
a→ u′

t + u
a→ u′

t
a→X

t · u a→ u

t
a→ t′

t · u a→ t′ · u
t

a→X
t � u

a→X
t

a→ t′

t � u
a→ t′ � u

u
a→X

t � u
a→ t

u
a→ u′

t � u
a→ u′ · t

Table 1: Transition Rules for BPAint

The transition relations
a→ naturally compose to determine the possible effects

that performing a sequence of actions may have on a BPAint term.

Definition 1.1 For a sequence of actionsa1 · · · ak (k ≥ 0), and BPAint termst, t′,
we writet

a1···ak→ t′ iff there exists a sequence of transitions

t = t0
a1→ t1

a2→ · · · ak→ tk = t′ .
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Similarly, we say thata1 · · · ak (k ≥ 1) is a complete trace of a BPAint term t iff
there exists a termt′ such that

t
a1···ak−1−→ t′ ak→X .

If t
a1···ak−→ t′ holds for some BPAint termt′, or a1 · · · ak is a complete trace oft,

thena1 · · · ak is atraceof t.
Thedepthof a termt, writtendepth(t), is the length of a longest trace it affords.

Observe that such a trace is necessarily a complete trace.
Thenormof a termt, denoted bynorm(t), is the length of its shortest complete

trace; this notion stems from [8].

The depth and the norm of closed terms can also be characterized inductively thus:

depth(a) = 1
depth(p + q) = max{depth(p), depth(q)}

depth(pq) = depth(p) + depth(q)
depth(p � q) = depth(p) + depth(q)

norm(a) = 1
norm(p + q) = min{norm(p),norm(q)}

norm(pq) = norm(p) + norm(q)
norm(p � q) = norm(p) .

Note that the depth and the norm of each closed BPAint term are positive.

Lemma 1.1 [Operational Correspondence] Assume thatt is a BPAint term,σ is a
closed substitution anda is an action. Then the following statements hold:

1. If t
a→X, thenσ(t) a→X.

2. If t
a→ t′, thenσ(t) a→ σ(t′).

3. Assume thatt is a BPA term. Ifσ(t) a→X, then either

(a) t
a→X, or

(b) t = x andσ(x) a→X for some variablex, or

(c) t = x + u andσ(x) a→X for some variablet and termu.

Proof: Statements 1 and 2 are proved by induction on the proof of the relevant
transitions. Statement 3 is proved by induction on the structure of the termt.

The details are lengthy, but straightforward, and we therefore omit them.2
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In this paper, we shall consider the language BPAint modulo complete trace equiv-
alence.

Definition 1.2 Two closed BPAint termsp and q are complete trace equivalent,
denoted byp ∼ q, if they have the same complete traces, i.e., if for every nonempty
wordw ∈ Act+, w is a complete trace forp iff it is a complete trace forq.
The relation∼ will be referred to ascomplete trace equivalence.

It is evident that∼ is an equivalence. There is more:∼ is acongruencewith respect
to all the operators in the signature of BPAint, that is, if t ∼ t′ andu ∼ u′, then
t + u ∼ t′ + u′, tu ∼ t′u′, andt � u ∼ t′ � u′. This will follow from Lemma 2.1,
at the beginning of next section. Observe that complete trace equivalent BPAint

terms have the same norm and depth.
Complete trace equivalence is extended to arbitrary BPAint terms thus:

Definition 1.3 Let t, u be BPAint terms. Thent ∼ u iff σ(t) ∼ σ(u) for every
closed substitutionσ.

For instance, we have that

x � y ∼ (x � y) + yx

because, as our readers can easily check, the termsp � q and(p � q) + qp have
the same set of initial “capabilities”, i.e.,

p � q
a→ r iff (p � q) + qp

a→ r , for eacha andr, and
p � q

a→X iff (p � q) + qp
a→X, for eacha .

It is natural to expect that the interrupt operator cannot be defined in the language
BPA modulo complete trace equivalence. With a single, remarkable exception, this
expectation will be confirmed by Proposition 3.1.

1.2 Equational Logic

An axiom systemis a collection of equationst ≈ u over the language BPAint. An
equationt ≈ u is derivable from an axiom systemE, notationE ` t ≈ u, if it can
be proved from the axioms inE using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under BPAint contexts):

t ≈ t
t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)

t ≈ u t′ ≈ u′

t + t′ ≈ u + u′
t ≈ u t′ ≈ u′

tt′ ≈ uu′
t ≈ u t′ ≈ u′

t � t′ ≈ u � u′ .
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A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x

A4.1 (x + y)z ≈ (xz) + (yz)
A4.2 x(y + z) ≈ (xy) + (xz)

A5 (xy)z ≈ x(yz)

Table 2: Some Axioms for BPAint

Definition 1.4 An equationt ≈ u over the language BPAint is soundwith respect
to ∼ iff t ∼ u. An axiom system is sound with respect to∼ iff so is each of its
equations.

An example of a collection of equations over the language BPAint that are sound
with respect to∼ is given in Table 2. Those equations stem from [10]. Equations
dealing with the interrupt operator in the setting of bisimulation semantics using
auxiliary operators are offered in [6].

2 A ground complete finite axiomatization forBPAint

We start by proving that complete trace equivalence is a congruence over BPAint.
In fact, we give a complete, structural description of the complete traces of BPAint

terms: congruence of complete trace equivalence will be an easy consequence.
First of all, we observe that, given two closed termst, u over BPAint and a

nonempty wordw overAct, thenw is a complete trace fort+u iff w is a complete
trace for eithert or u, while w is a complete trace fortu iff w = xy for some
wordsx, y that are complete traces fort andu, respectively. In fact, there is a
similar characterization for complete traces oft � u, but it’s a bit trickier.

Lemma 2.1 Let t andu be closed terms over BPAint. Let w be a nonempty word
over the alphabetAct. Thenw is a complete trace fort � u iff there exist wordsx,
y, z overAct such that

1. w = xyz,

2. z is nonempty,

3. xz is a complete trace fort, and

4. y is either empty or a complete trace foru.

7



Proof: Supposet � u
w→ X. Then

• eitheru doesnot initiate, so thatt
w→ X, or

• u initiates beforet, so thatu
y→ X, thent

z→ X for some nonempty words
y, z such thatw = yz, or

• u initiates whilet is running, so thatt
x→ t′ for some closed termt′, u

y→ X,
andt′ z→ X for some nonempty wordsx, y, z such thatw = xyz.

The reverse implication is trivial. 2

Lemma 2.1 allows one to give a language-theoretic characterization of closed terms
over BPAint modulo complete trace equivalence. CallCT (t) the set of complete
traces of closed termt: then Lemma 2.1 states that the equalities

CT (t + u) = CT (t) ∪ CT (u) , (2)

CT (tu) = CT (t)CT (u) , and (3)

CT (t � u) = CT (t) ∪
⋃

rs∈CT (t),s 6=ε

{r}CT (u){s} (4)

hold. We recall thatXY = {w : ∃x ∈ X, y ∈ Y : w = xy}.
Corollary 2.1 For terms over BPAint, complete trace equivalence is a congruence.

Proof: Supposet ∼ t′ andu ∼ u′. Let σ be a closed substitution: thenσ(t)
andσ(t′) have the same set of complete traces, and similarly forσ(u) andσ(u′).
By (2), σ(t + u) = σ(t) + σ(u) has the same complete traces asσ(t′ + u′) =
σ(t′) + σ(u′); similarly for σ(tu) andσ(t′u′) because of (3), and forσ(t � u)
andσ(t′ � u′) because of (4). This is true for every closed substitutionσ, thus
t + u ∼ t′ + u′, tu ∼ t′u′, andt � u ∼ t′ � u′. 2

As a consequence of Lemma 2.1 and our previous observations, we obtain the
following equivalences.

Lemma 2.2 For every actiona and closed termst, u, v over BPAint, the following
hold:

1. t + u ∼ u + t;

2. t + (u + v) ∼ (t + u) + v;

3. t + t ∼ t;

8



4. (t + u)v ∼ tv + uv;

5. t(u + v) ∼ tu + tv;

6. (tu)v ∼ t(uv);

7. a � u ∼ a + ua;

8. at � u ∼ a(t � u) + uat;

9. (t + u) � v ∼ (t � v) + (u � v); and

10. t � (u + v) ∼ (t � u) + (t � v).

Proof: We must show that, for any of the formulas above and for any wordw
over Act, w is a complete trace for the left-hand side iff it is for the right-hand
side. Thanks to equations (2), (3), and (4), this is basically an exercise in sentence
rewriting; only the last four identities require a greater amount of caution.

7. Supposew is a complete trace fora � u. By Lemma 2.1, this is the same
as saying thatw = xyz so thatz is nonempty,a

xz→ X and eithery is empty or
u

y→ X. The first part is possible iffx is empty andz = a, thus eitherw = a

or w = ya with u
y→ X; by Lemma 2.1, this is the same as saying thatw is a

complete trace fora + ua. On the other hand, ifa + ua
w→ X, then eitherw = a

or w = ya for somey such thatu
y→ X; in either case,w is a complete trace for

a � u as well.
8. Supposew is a complete trace forat � u. We can writew = xyz with

z nonempty,at
xz→ X, and eithery empty oru

y→ X. Two cases are possible:

eitherx = ax′, or x is empty andz = az′. In the first caset
x′z→ X, and eithery

empty oru
y→ X, so thatx′yz is a complete trace fort � u, andw = ax′yz is a

complete trace fora(t � u); in the second case,w = yaz′ is a complete trace for
uat. On the other hand, letw be a complete trace fora(t � u) + uat: then either
a(t � u) w→ X, so thatw = axyz with t

xz→ X and eithery empty oru
y→ X; or

w = yax with u
y→ X andt

x→ X. In either case,at � u
w→ X.

9. Supposew is a complete trace for(t + u) � v. This is the same as saying
thatw = xyz with z nonempty, eithert

xz→ X or u
xz→ X, and eithery empty or

v
y→ X. This means that eithert � v

w→ X or u � v
w→ X.

10. Supposew is a complete trace fort � (u + v). This is the same as saying
thatw = xyz with z nonempty,t

xz→ X, and eithery is empty oru
y→ X or v

y→ X.
This means that eithert � u

w→ X or t � v
w→ X. 2

We can then state
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Theorem 2.1 Let a be an action and letx, y, z be variables. The following equa-
tions are sound for BPAint modulo complete trace equivalence:

A1 x + y ≈ y + x
A2 x + (y + z) ≈ (x + y) + z
A3 x + x ≈ x
A4.1 (x + y)z ≈ xz + yz
A4.2 x(y + z) ≈ xy + xz
A5 (xy)z ≈ x(yz)
I1.a a � y ≈ a + ya
I2.a ax � y ≈ a(x � y) + yax
I3.1 (x + y) � z ≈ (x � z) + (y � z)
I3.2 x � (y + z) ≈ (x � y) + (x � z)

Proof: Letσ be a closed substitution. Applyσ to both sides of any of the equations
above: then left-hand and right-hand members are complete trace equivalent by
Lemma 2.2. This is true for all closed substitutions, which proves the theorem.2

Observe that, for every actiona, there is one equation of the formI1.a and one
equation of the formI2.a, so that those equations are infinitely many ifAct is
infinite.

We now argue that the interrupt operator can be eliminated from closed terms.
To be able to support our thesis, we do a little digression, and try to find the “sim-
plest possible form” a BPA term can have, modulo complete trace equivalence.

Definition 2.1 A term t over BPA is inprenex normal formif there exists a finite
nonempty setW ⊆ (Act ∪ Var)+ such that

t =
∑
w∈W

w , (5)

where the wordα1 . . . αn is identified with the termα1 · . . . · αn.

In other words, a term is in prenex normal form if the nondeterministic choice
operator only appears at the topmost level.

Lemma 2.3 Let t be a term over BPA. There exists a termu over BPA in prenex
normal form such thatt ∼ u. Moreover, ift is closed, thenu is closed as well.

Proof: By structural induction ont. The thesis is trivially true if eithert = a for
somea ∈ Act, or t = x for somex ∈ Var .

10



If t = t1 + t2 for some termst1, t2, consideru1, u2 in prenex normal form
such thatt1 ∼ u1 andt2 ∼ u2. Put

u =
∑
w∈W

w ,

whereW is the set of all wordsw that appear as summands in eitheru1 or u2.
Observe thatu can be constructed fromu1 + u2 by repeatedly applying the idem-
potence ruleA3. It is immediate to check thatu is in prenex normal form, and that
t ∼ u; moreover, ift is closed, thent1 andt2 are closed, so thatu1 andu2, and
consequentlyu, are closed by inductive hypothesis.

If t = t1t2 for some termst1, t2, consideru1, u2 in prenex normal form such
thatt1 ∼ u1 andt2 ∼ u2. Put

u =
∑
w∈W

w ,

whereW is the set of all wordsw such thatw = w1w2 for two nonempty words
w1, w2 such thatw1 is a summand ofu1 andw2 is a summand ofu2. Observe that
u can be constructed fromu1u2 by repeatedly applying the associativity lawsA4.1
andA4.2, and the idempotence ruleA3. It is straightforward to check thatu is in
prenex normal form, and thatt ∼ u; moreover, ift is closed, thent1 andt2 are
closed, so thatu1 andu2, and consequentlyu, are closed by inductive hypothesis.
2

Lemma 2.3 states that, for every closed termt over BPA, there exists a closed term
ν(t) over BPA in prenex normal form, such thatt ∼ ν(t). We callν(t) theprenex
normal formof the termt. Observe thatν(t) is defined up to the order of its sum-
mands. Observe also that, to constructu from t in the proof of Lemma 2.3, we have
only applied associativity of operators, commutativity and idempotence of nonde-
terministic choice, and distributivity of nondeterministic choice w.r.t. composition:
that is,ν(t) can be constructedsyntacticallyfrom t by means of axioms in Table 2.

Introduction of prenex normal forms allows us to prove

Lemma 2.4 Let t andu be closed terms over BPA. There exists a closed termv
over BPA such thatt � u ∼ v.

Proof: By induction on the size oft. Because of Lemma 2.3, it is not restrictive to
suppose thatt is in prenex normal form.

If t has size 1, thent = a for some actiona. Thent � u = a � u ∼ a + ua.
Suppose now that the thesis is proved every time thatt has at most sizen. Let

t have sizen + 1. If t = t1 + t2, thent � u ∼ t1 � u + t2 � u, with t1 and

11



t2 having size at mostn: by inductive hypothesis,t1 � u ∼ v1 andt2 � u ∼ v2

for suitable closed termsv1, v2 over BPA, so thatt � u ∼ v1 + v2 = v with v
closed term over BPA. Otherwiset has only one summand, so, since it is in prenex
normal form, it must have the formt = at′ for some actiona and closed termt′

having sizen: by inductive hypothesis,t′ � u ∼ v′ for some closed termv′ over
BPA, so thatt � u = at′ � u ∼ a(t′ � u) + uat′ ∼ v, with v = av′ + uat′ being
a closed term over BPA. 2

In turn, Lemma 2.4 paves the way to

Theorem 2.2 Let t be a closed term over BPAint. Thent ∼ u for some closed term
u over BPA.

In other words: for closed terms over BPA modulo complete trace equivalence,
interrupt is a derived operator.

Proof: By induction on the structure oft.
Case 1:t = a. This poses no problem: simply putu = a.
Case 2:t = t1 + t2. By inductive hypothesis, there exist closed termsu1, u2

over BPA such thatt1 ∼ u1 andt2 ∼ u2. Thenu = u1 + u2 is a closed term over
BPA such thatt ∼ u.

Case 3:t = t1t2. By inductive hypothesis, there exist closed termsu1, u2 over
BPA such thatt1 ∼ u1 andt2 ∼ u2. Thenu = u1u2 is a closed term over BPA
such thatt ∼ u.

Case 4:t = t1 � t2. By inductive hypothesis, there exist closed termsu1, u2

over BPA such thatt1 ∼ u1 andt2 ∼ u2. By Lemma 2.4, there exists a closed term
u over BPA such thatu1 � u2 ∼ u. Thent = t1 � t2 ∼ u1 � u2 ∼ u. 2

Observe that, to prove Lemma 2.4 (and thus Theorem 2.2 as well), we use
only leftwise distributivity. This is interesting, because the interrupt operator isnot
associative modulo complete trace equivalence, so that we cannot regroup all of its
instances on a single side. As a counterexample, leta be an action: thena4 is a
complete trace for(a3 � a2) � a, but not fora3 � (a2 � a).

Since every closed term over BPAint is c.t.e. to a closed term over BPA in light
of Theorem 2.2, we can think of reducing the problem of finding a ground com-
plete axiomatization for BPAint, modulo c.t.e., to that of finding a ground complete
axiomatization for BPA, modulo c.t.e. This would be allowed by prenex normal
form, if they werecharacterizingfor closed terms over BPA modulo complete trace
equivalence, that is, if it were true that two closed terms over BPA having the same
complete traces, also have the same prenex normal form.

And this is precisely the content of

12



Lemma 2.5 Let t andu be closed terms over BPA in prenex normal form. Then
t ∼ u iff t andu have the same summands.

Proof: Supposet ∼ u. Let w be a summand oft: then t
w→ X andu

w→ X as
well. Thus one of the summandsw′ of u satisfiesw′ w→ X: but w′ is a closed
term without summands, so the only possibility isw′ = w. This proves that every
summand oft appears inu: by swapping the roles oft andu we find that they have
the same summands.

The reverse implication is trivial. 2

Theorem 2.3 The axioms in Table 2 form a ground complete axiomatization for
BPA.

Proof: Let t andu be two closed terms over BPA such thatt ∼ u, and letν(t) and
ν(u) be their prenex normal forms. By using the axioms in Table 2 we can prove
t ≈ ν(t) andu ≈ ν(u). But two terms in prenex normal form that are complete
trace equivalent, are also equal up to the order of their summands: thus, by using
the axioms in Table 2 we can also proveν(t) ≈ ν(u). This, in turn, allows us to
provet ≈ u. 2

As a consequence of this fact, we obtain the main result of this section.

Theorem 2.4 If |Act| < ∞, then BPAint has a finite ground complete axiomatiza-
tion modulo complete trace equivalence.

Proof: Consider the familyE of equations from Theorem 2.1: if|Act| = n, then
|E| = 2n + 8. Let t andu be closed terms over BPAint such thatt ∼ u: we must
show thatE ` t ≈ u.

As seen in Theorem 2.2, the equations inE allow us to reduce any closed term
over BPAint to a closed term over BPA: in particular, there exist closed termst′, u′

over BPA such thatE ` t ≈ t′ andE ` u ≈ u′. By the soundness ofE, t′ ∼ u′:
since the equations in Table 2 also appear in Theorem 2.1, from Theorem 2.3 we
deduceE ` t′ ≈ u′. ThusE ` t ≈ u as well. 2

3 The case of general terms

Having proved finite complete axiomatizability for c.t.e. over closed terms in the
language BPAint, we want to obtain a similar result for general terms. However,
the technique we used to prove Theorem 2.4 does not work in the broader case,
because, as we announced in Subsection 1.1, interrupt is not a derived operator,
except for a very special case.

13



Proposition 3.1 Let x andy be variables. Then there exists a termt over BPA
such thatt ∼ x � y if and only if |Act| = 1.

Proof: If Act = {a}, then by Lemma 2.3 and Theorem 2.2 the only closed substi-
tutions are,up to complete trace equivalence, those of the form

σ(z) =
∑
k∈K

ak , (6)

whereK is a nonempty finite set of positive integers. Therefore, if|Act| = 1, then
x � y ∼ x + yx. In fact, let

σ(x) =
∑
i∈I

ai and σ(y) =
∑
j∈J

aj ;

then
σ(x + yx) =

∑
i∈I

ai +
∑
j∈J

aj
∑
i∈I

ai ∼
∑
i∈I

ai +
∑

i∈I,j∈J

aj+i

and

σ(x � y) =

(∑
i∈I

ai

)
�


∑

j∈J

aj


 ∼

∑
i∈I,j∈J

ai � aj

both have as complete traces precisely the words of the formai for i ∈ I, and those
of the formaj+i for j ∈ J andi ∈ I.

If Act = {a, b, . . .}, then we prove that no BPA term is c.t.e. tox � y; closed
substitutions of the form (1) will play a key role. Assume, towards a contradiction,
thatx � y ∼ t for some termt over BPA. By complete trace equivalence,σa(t)

a→
X, which, by Lemma 1.1, is possible if and only if eithert

a→ X, or there exists
a variablez such thatz is a summand oft and σa(z) a→ X. But the latter is
the only possibility, because ift

a→ X, thenσa[x 7→ a2](t) a→ X as well, while
σa[x 7→ a2](x � y) = a2 � a has norm 2, contradicting our assumption thatt is
c.t.e. tox � y; moreover, it cannot be justt = z, or σa[y 7→ b](z) would haveba
as a complete trace, which is impossible. Sot = z + u for some termu over BPA;
if it were z 6= x, we would getσa[x 7→ a2](t) = a + σa[x 7→ a2](u) a→ X, which
we know to be a contradiction. Thus, ift ∼ x � y, then necessarilyt ∼ x + u for
some termu over BPA; it is not restrictive to suppose thatu is in prenex normal
form, and that the summandx does not occur inu.

We observe thatu cannot contain actions. In fact, shouldu contain actiona,
let b ∈ Act \ {a}: thenσb(x + u) has a complete trace containinga andσb(x � y)
does not, contradicting our assumption thatt is c.t.e. tox � y. Moreover,u cannot
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contain variables other thanx andy: otherwise, ifσ = σa[x 7→ b, y 7→ b], then
σ(x + u) andσ(x � y) would yield a similar contradiction.

If x = y, then all the summands ofu have the formxn for somen > 1. Let
thenσ(x) = ab; it follows thata2b2 = a(ab)b is a complete trace forσ(x � x) =
ab � ab, but not forσ(x + u). This is a contradiction.

If x 6= y, thenu must contain bothx and y. In fact, consider the closed
substitutionσN,K given by

σN,K(x) = aN ; σN,K(y) = bK ; σ(z) = a ∀z 6∈ {x, y} .

Sincex + u ∼ x � y, bKaN is a complete trace forσN,K(x + u) for all N and
K, which is impossible if eitherx or y does not occur inu. Thusu is actually a
sum of nonempty words over the alphabet{x, y}; since the only complete traces
of σa[y 7→ b](x + u) must bea andba, none of these words can containxx, xy,
or yy as a subword, plusy cannot be a summand ofu. Then the only possibility is
u = yx: however,aba is a complete trace forσb[x 7→ a2](x � y) = a2 � b, but
not forσb[x 7→ a2](x + yx) = a2 + ba2. This is a contradiction as well. 2

Proposition 3.1 puts an end to our hopes of finding an easy solution to the finite
axiomatization problem for general terms over BPAint; at the same time, however,
it opens the way to such a solution in a special case. To better understand the pos-
sibilities left, and possibly use an approach based on normal forms for the special
case, we need a deeper insight on the properties of prenex normal forms.

We start by observing that, ift is a term over BPA andσ is a closed substitution,
then the prenex normal form ofσ(t), say

∑
j∈J tj , is a sum of objects that can be

seen both as closed terms over BPA and as words over actions, such that the word
is the only complete trace for the term. It follows that, ift andu are terms over
BPA such thatt ∼ u, then the “shape” ofν(σ(t)) andν(σ(u)) must be the same for
every closed substitutionσ. The most natural thing to do is to ask oneself whether
this “equality of shape” must be true for the terms themselves.

We recall that thelength of a wordw over an alphabetA is the number|w| of
characters (i.e., elements ofA) occurring inw, while thenumber of occurrencesof
charactera in wordw is the number|w|a of characters inw equal toa. Of course,
|w| =∑a∈A |w|a, and ifw1 = w2, then|w1|a = |w2|a for everya ∈ A.

Proposition 3.2 Let t andu be nonempty words overAct ∪ Var .

1. If |Act| > 1 thent ∼ u iff t = u.

2. If Act = {a} thent ∼ u iff t is a permutation ofu.
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Proof: First of all, we recall that both points are true forclosedterms. This fact
will be used later on in the proof. Also, substitutions of the form (1) will play a
key role.

We now prove point 1 for general terms. Of course, only the “only if” part
needs to be proved. Supposet 6= u: then either|t| 6= |u|, or t = λ1αλ2, u =
λ1βλ3, with λ1, λ2, λ3 ∈ (Act ∪ Var)∗, α, β ∈ Act ∪ Var , α 6= β. In the former
case,σa(t) andσa(u) are closed words of different length. In the latter, if one
betweenα andβ is actiona, andb ∈ Act \ {a}, thenσb(t) 6= σb(u); otherwise,
α andβ are distinct variables, thusσa[β 7→ b](t) 6= σa[β 7→ b](u). Therefore,
if t 6= u, then there exists a closed substitutionσ such thatσ(t) 6∼ σ(u), so that
t 6∼ u.

We are now left with the proof of point 2 for general terms. Letσ be a closed
substitution; lett a term with a single summand, letσ be a closed substitution, and
let w1, w2, . . . , wn ∈ Act ∪ Var such that

t = w1w2 . . . wn .

By Theorem 2.2 and Lemma 2.3, for allj ∈ {1, 2, . . . , n} there exists a finite set
Ij of integers such that

σ(wj) ∼
∑
ij∈Ij

aij

Then, since complete trace equivalence is a congruence and distributivity laws ap-
ply modulo complete trace equivalence,

σ(w) ∼ σ(w1)σ(w2) . . . σ(wn)

∼

∑

i1∈I1

ai1




∑

i2∈I2

ai2


 . . .

(∑
in∈In

ain

)

∼
∑

i1∈I1,i2∈I2,...,in∈In

ai1ai2 . . . ain

=
∑

i1∈I1,i2∈I2,...,in∈In

ai1+i2+...+in

which depends on the nature of thewj ’s, but not on their order. Thus, ift is
a permutation ofu, thenσ(t) ∼ σ(u) whatever the closed substitutionσ, i.e.,
t ∼ u. On the other hand, ift is not a permutation ofu, then either|t| 6= |u|
or there is a variablex such that|t|x 6= |u|x, so that eitherσa(t) 6= σa(u) or
σa[x 7→ a2](t) 6= σa[x 7→ a2](u); and again,t 6∼ u. 2

Proposition 3.2 suggests a strategy for finding an axiomatization for the terms
over BPAint whenAct = {a}.
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Consider an orderingAct ∪ Var = {a, x1, x2, . . . , xn, . . .}. Let w be a word
overAct ∪ Var and letn be the maximum index of a variable occurring inw. We
define thenormal formof w as

ν(w) = a
|w|ax|w|x1

1 x
|w|x2
2 . . . x|w|xn

n . (7)

By Proposition 3.2,w ∼ ν(w).
Let nowt be a term over BPAint: by Proposition 3.1,t is complete trace equiv-

alent to a termt′ over BPA, which, in turn, has a prenex normal form
∑

w∈W w.
We can therefore say that thenormal formof the termt is

ν(t) =
∑
w∈W

ν(w) , (8)

where each summand in normal form is taken once per occurrence. For instance,
the normal form oft = ya+xax+a � x is ν(t) = a+ax+ax2 +ay, while that
of xy + yx is xy. We observe thatν(t) is unique, up to the order of summands,
and thatt ∼ ν(t).

Theorem 3.1 SupposeAct = {a}. Then two termsu, v over BPAint are complete
trace equivalent if and only ifν(t) = ν(u) up to the order of summands.

Proof: Let t andu be two terms over BPAint such thatt ∼ u, and let

ν(t) =
r∑

i=1

pi and ν(u) =
s∑

j=1

qj

be their normal forms. LetN be the maximum index of a variable in either thepi’s
or theqj ’s; then for eachi andj we can write

pi = a
e0,ix

e1,i

1 . . . x
eN,i

N and qj = a
f0,jx

f1,j

1 . . . x
fN,j

N .

Let b be a positive integer greater than all of theek,i’s and thefk,j ’s; consider the
substitutionσ defined by

σ(xk) = abk ∀k ∈ N . (9)

Then, for alli andj, σ(pi) = aαi andσ(qj) = aβj , where

αi =
N∑

k=0

ek,ib
k and βj =

N∑
k=0

fk,jb
k ,
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I0.1 x � y ≈ x � y + x
I0.2 x � y ≈ x � y + yx
I2 xy � z ≈ x(y � z) + (x � z)y
I4 (x � y) � z ≈ (x � y) � z + x � (y � z)
I5 (x � y) � z + x � (z � y) ≈ (x � z) � y + x � (y � z)

Table 3: A list of valid equations for BPAint.

and sinceb is larger than all of theek,i’s and thefk,j ’s, theαi’s are pairwise distinct,
and so are theβj ’s.

Sincet ∼ u, we haveν(t) ∼ ν(u) as well, soσ(ν(t)) ∼ σ(ν(u)). But a word
w = aK is a complete trace forσ(ν(t)) iff K = αi for somei, and similarly,w is
a complete trace forσ(ν(u)) iff K = βj for somej: thus, for everyi there must
exist aj such thatαi = βj , and vice versa. This, in turn, is only possible if for
everyi there existsj such thatpi = qj, and vice versa; since thepi’s are summands
in a normal form, and so are theqj ’s, we conclude thatr = s and thepi’s are a
permutation of theqj ’s, that is,ν(t) = ν(u) up to the order of summands.

The reverse implication is trivial. 2

Theorem 3.2 If |Act| = 1 then BPAint is finitely axiomatizable.

Proof: Consider the setE consisting of the axioms of Theorem 2.1 together with

CC xy ≈ yx
DI x � y ≈ x + yx

(Observe thatCC andDI are sound modulo complete trace equivalence iff|Act| =
1.) Let t andu be terms over BPAint such thatt ∼ u: we must prove thatE ` t ≈ u.

Consider the normal formsν(t) andν(u). Using equationsCC andDI, it is
not hard to prove thatE ` t ≈ ν(t) andE ` u ≈ ν(u). But the normal forms
of two terms over BPA that are equivalent modulo complete trace equivalence are
equal by Theorem 3.1; thus,E ` ν(t) ≈ ν(u). This allows us to conclude that
E ` t ≈ u. 2

4 Other valid equations

In this section, we will list some equations over BPAint, and prove that they are all
valid; plus, we will suggest a kind of “normal forms” for BPAint terms. We use
double quotes, because these, as we shall see, are not characterizing.
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A list of valid equations for BPAint is given in Table 3. We immediately observe
that I0.1 and I0.2 are valid indeed, because, whatevert andu are, any complete
trace fort or ut is also a complete trace fort � u

Proposition 4.1 EquationI2 in Table 3 is sound modulo complete trace equiva-
lence.

Proof: We must show that, for every wordw over the alphabetAct and every
closed termst, u, v over BPAint, tu � v

w→ X if and only if t(u � v) + (t �

v)u w→ X.
Supposetu � v

w→ X: this is the same as saying thatw = xyz with z

nonempty,tu
xz→ X, and eithery is empty orv

y→ X. If t
x→ X andu

z→ X, then

t(u � v) w→ X; otherwise, eitherx = x′p with t
x′→ X, or z = qz′ with t

xq→ X,
wherep andq are suitable nonempty words. In the former case,u � v

pyz→ X, so

thatt(u � v)
x′pyz→ X andx′pyz = w; in the latter case,u

z′→ X andt � v
xyq→ X,

so that(t � v)u
xyqz′→ X andxyqz′ = w.

On the other hand, supposet(u � v) + (t � v)u w→ X: then eithert(u �

v) w→ X or (t � v)u w→ X. In the first case,w = rxyz with z nonempty,t
r→ X,

u
xz→ X, and eithery is empty orv

y→ X. Thentu
rxz→ X andtu � v

rxyz→ X; but
rxyz = w. In the second case,w = xyzs with z nonempty,t

xz→ X, u
s→ X, and

eithery is empty orv
y→ X. Thentu

xzs→ X andtu � v
xyzs→ X; butxyzs = w. 2

Observe how equationI2 generalizesI2.a to the case of a general concatenation of
terms. In fact,

at � u ≈ a(t � u) + (a � u)t from I2 ,
≈ a(t � u) + (a + ua)t from I1.a ,
≈ a(t � u) + at + uat from A4.1 ,
≈ a(t � u) + uat from I0.1 and A4.2 .

Proposition 4.2 EquationI4 in Table 3 is sound modulo complete trace equiva-
lence.

Proof: We must show that, for every wordw over the alphabetAct and every
closed termst, u, v over BPAint, if t � (u � v) w→ X, then(t � u) � v

w→ X.
Let t � (u � v) w→ X: thenw = xyz with z nonempty,t

xz→ X, and either
y is empty oru � v

y→ X. If y is empty, thenw = xz is a complete trace for
(t � u) � v; otherwise,y = pqr with u

pr→ X and eitherq is empty orv
q→ X. Let

thenx′ = xp, y′ = q, z′ = rz: thent � u
x′z′→ X and eithery′ is empty orv

y′→ X,

thus(t � u) � v
x′y′z′→ X. But x′y′z′ = xpqrz = xyz = w. 2
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EquationI4 says thatt � (u � v) is somewhat “less capable”, in terms of
“possible terminating executions”, than(t � u) � v, something we had already
seen after Theorem 2.2. The question arises naturally:how muchis this “less”?
EquationI5 provides a possible answer to this question.

Theorem 4.1 EquationI5 in Table 3 is sound modulo complete trace equivalence.

Proof: Suppose(t � u) � v
w→ X. We know from Lemma 2.1 thatw = xyz

with t � u
xz→ X and eithery is empty orv

y→ X. From the same lemma we get
xz = pqr with t

pr→ X and eitherq is empty oru
q→ X. Thus four cases must be

studied.
Case 1:y and q are both empty. In this case, the transition is entirely due to

t, thust � (u � v) w→ X.
Case 2: y is empty and q is not. In this case, there is a transitiont

p→ t′,
followed byu

q→ X, then byt′ r→ X; plus,w = xz = pqr. This can be mimicked
by t � (u � v) as follows:

t � (u � v)
p→ t′ � (u � v)

q→ t′ r→ X ,

because ifu
q→ X thenu � v

q→ X as well.
Case 3: y is nonempty andq is empty. In this case, the transition is of the

kind
(t � u) � v

x→ (t′ � u) � v
y→ t′ � u

z→ X ,

This cannot in general be mimicked byt � (u � v), because

t � (u � v) x→ t′ � (u � v)
y→ ut ,

andut might not havez as a complete trace. However, it can be mimicked by

t � v
x→ t′ � v

y→ t′ z→ X ,

which is tolerable, because ift � v
w→ X, then(t � u) � v

w→ X as well.
Case 4: y and q are both nonempty. This is the most complicated case, so

we split it into subcases.
Subcase 4a:x = pq′, z = q′′r. This means that the execution oft is interrupted

by that ofu, which is in turn interrupted by that ofv; that is, for somet′, u′,

(t � u) � v
p→ (t′ � u) � v

q′→ u′t′ � v
y→ u′t′ q′′→ t′ r→ X .

This can be mimicked by

t � (u � v)
p→ t′ � (u � v)

q′→ (u′ � v)t′ y→ u′t′ q′′→ t′ r→ X .
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Subcase 4b:x = pqr′, z = r′′. This means that the execution oft is first
interrupted by that ofu, then resumed, then suspended by that ofv; that is,

(t � u) � v
p→ (t′ � u) � v

q→ t′ � v
r′→ t′′ � v

y→ t′′ r′′→ X .

This cannot in general be mimicked byt � (u � v), because

t � (u � v)
p→ t′ � (u � v)

q→ t′ ,

andt′ might not haver′yr′′ as a complete trace.
Subcase 4c:x = p′, z = p′′qr. This means that the execution oft is first

interrupted by that ofv, then resumed, then suspended by that ofu; that is,

(t � u) � v
p′→ (t′ � u) � v

y→ t′ � u
p′′→ t′′ � u

q→ t′′ r→ X .

This cannot in general be mimicked byt � (u � v), because

t � (u � v)
p′→ t′ � (u � v)

y→ ut′ ,

andut′ might not havep′′qr as a complete trace.
The problems come from subcases 4b and 4c. In fact, in(t � u) � v, the

execution oft can either be first suspended byu, then resumed, then suspended
by v; or be first suspended byv, then resumed, then suspended byu. On the
contrary, int � (u � v), if u interruptst, thenv can only interruptu, and during
this process, the execution oft cannot be resumed; while ifv interruptst, thent
cannot be resumed until firstv, thenu are finished.

However, this behaviour can be mimicked by

(t � v) � u

by means of

(t � v) � u
p→ (t′ � v) � u

q→ t′ � v
r′→ t′′ � v

y→ t′′ r′′→ X

for case 4b, and

(t � v) � u
p′→ (t′ � v) � u

y→ t′ � u
p′′→ t′′ � u

q→ t′′ r→ X

for case 4c; plus, it also works in case 3. This means that we can write down

(t � u) � v 4 (t � v) � u + t � (u � v)
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whereA 4 B is a shortcut forCT (A) ⊆ CT (B). Moreover, by applyingI4 to
t � (v � u) and(t � v) � u, we can refine this inequality into

(t � u) � v + t � (v � u) 4 (t � v) � u + t � (u � v)

But the roles ofu anv are symmetrical on either side, thus we can swap these two
terms and get the reverse inequality. 2

Since, in general,(t � u) � v andt � (u � v) are not c.t.e., they should both
be considered when looking for normal forms. For a termt containing a single
summand, let us introduce a notion ofleftmost term:

1. if the interrupt operator does not occur int, thent is its own leftmost term;

2. if t = u � v, then the leftmost term oft is that ofu.

For instance, the leftmost term ofx � y, x � (y � z), and(x � y) � z, is always
x, while the leftmost term ofxy � z is xy.

Lemma 4.1 Every BPAint term t can be written, modulo complete trace equiva-
lence, as a sum of concatenations of singletons and sequences of interrupts where,
in every subsequence, the leftmost term is a variable.

Proof: By induction on the structure oft. The casest = a, t = x, andt = u + v
with the thesis holding for bothu andv obviously pose no problem.

Supposet = uv with the thesis holding forv andv. Then

u≈
∑

i∈[1...n]

∏
j∈[1...ni]

ui,j

and
v≈

∑
r∈[1...m]

∏
s∈[1...mr ]

vr,s

with eachui,j andvr,s being either a singleton, or a sequence of interrupts where,
in each subsequence, the leftmost term is a variable. Since concatenation is both
left- and right-distributive modulo c.t.e. w.r.t. nondeterministic choice,

uv≈
∑

i ∈ [1 . . . n]
r ∈ [1 . . . m]


 ∏

j∈[1...ni]

ui,j




 ∏

s∈[1...sr ]

vr,s




with each factor in each summand being either a singleton, or a sequence of inter-
rupts where, in each subsequence, the leftmost term is a variable.
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Suppose finallyt = u � v with the thesis holding foru andv. Write u andv
as in previous case, and put

vr =
∏

s∈[1...mr ]

vr,s .

Since interrupt is both left- and right-distributive modulo c.t.e. w.r.t. nondetermin-
istic choice,

u � v≈
∑

i ∈ [1 . . . n]
r ∈ [1 . . . m]




 ∏

j∈[1...ni]

ui,j


 � vr


 .

But by repeatedly applyingI2 we find
 ∏

j∈[1...ni]

ui,j


 � vr≈

∑
j∈[1...ni]

ui,1 . . . ui,j−1 (ui,j � vr) ui,j+1 . . . ui,ni

where each factor in any of the right hand summands is either a singleton or a
sequence of interrupts where, in each subsequence, the leftmost term is surely a
singleton, but possibly not a variable. However:

• if ui,j is a variable, then the thesis is still satisfied;

• if ui,j is a sequence of interrupts, then again the thesis is satisfied by induc-
tive hypothesis;

• finally, if ui,j is a constant, thenui,j � vr = ui,j + vrui,j , and the thesis
keeps on being satisfied, again by inductive hypothesis.

From this the thesis follows. 2

The terms in the thesis of Lemma 4.1 are tentative candidates as normal forms for
BPAint terms. However, from that point of view,x � y andx � y + yx + x are
different forms; but from what we have seen until now it is obvious that they are
complete trace equivalent, so that these forms are unfortunately not characterizing.
To solve these problem, a theory of “reduction” of terms should most probably be
developed. At the time of the writing, we do not know whether the collection of
equations in Theorems 2.1 and 3 is complete for complete trace equivalence over
BPAint.

A thing to do is probably to study the terms of the formx � t, which, because
of Lemma 4.1, seem to be good candidates for basic constituents of normal forms.
The idea should be that, ifx � t ∼ y � u, thenx = y andt ∼ u.
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Let t andu be terms over BPAint, not necessarily closed; letx andy be vari-
ables. Supposex � t ∼ y � u: thenx = y, otherwise, ifσ(x) = a andσ(y) = b,
thenσ(x � t) a→ X andσ(y � u) 6 a→ X. Moreover, the maximum length of
a complete trace forσ(t) andσ(u) must be the same: otherwise, by joining two
complete traces of maximum length for eitherσ(t) or σ(u) andσ(x), we would
get a complete trace for eitherσ(x � t) or σ(x � u), but not both. Lastly,t and
u contain the same variables: otherwise, ifN is larger than the length of any sum-
mand int andu, then by substituting withbN a single variable that does not appear
in botht andu, and witha all other variables, we get two non-c.t.e. closed terms.

We are now left with the task of checking whethert ∼ u. This is not immediate,
because, in general,t � u ∼ t � v does not implyu ∼ v: as a counterexample,
put t = u = a + a2 andv = a2.

Supposex does not occur int (andu). Suppose there exists a closed substi-
tution σ such thatσ(t) andσ(u) are not complete trace equivalent. Thenσ[x 7→
a](x � t) ≈ a + σ(t)a andσ[x 7→ a](x � u) ≈ a + σ(u)a are not complete
trace equivalent, because if (for example)w is a complete trace forσ(t) and not
for σ(u), thenwa is a complete trace fora + σ(t)a and not fora + σ(u)a.

Suppose nowx does occur int (andu). Again, suppose there exists a closed
substitutionσ such thatσ(t) andσ(u) are not complete trace equivalent; in par-
ticular, letw ∈ Act+ be a complete trace forσ(t) and not forσ(u). How can we
prove that there exists a closed substitutionσ′ such thatσ′(x � t) andσ′(x � u)
are not complete trace equivalent?

We can reformulate our problem in terms of language theory. CallX the lan-
guage of complete traces ofσ(x), Y that ofσ(t), andZ that ofσ(u): thenX, Y ,
andZ are finite languages. Saying thatσ(x � t) ∼ σ(x � u), is then equivalent
to saying that

X ∪
⋃

rs∈X,s 6=ε

rY s = X ∪
⋃

rs∈X,s 6=ε

rZs (10)

for all X. We can then state

Conjecture 1 Suppose that, for every finite languageX, equation (10) has a so-
lution (Y,Z) with Y andZ finite. Then, for every finite languageX, there is only
one such solution.

If Conjecture 1 is true, thenσ(x � t) ∼ σ(x � u) for all σ impliesσ(t) = σ(u)
for all σ.
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