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Abstract

We present a survey of control-flow analysis of functional programs,
which has been the subject of extensive investigation throughout the past
25 years. Analyses of the control flow of functional programs have been
formulated in multiple settings and have led to many different approxima-
tions, starting with the seminal works of Jones, Shivers, and Sestoft. In
this paper we survey control-flow analysis of functional programs by struc-
turing the multitude of formulations and approximations and comparing
them.
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1 Introduction
Since the introduction of high-level languages and compilers, much work has
been devoted to approximating, at compile time, which values the variables of
a given program may denote at run time. The problem has been named data
flow analysis or just flow analysis.

In a language without higher-order functions, the operator of a function call
is apparent from the text of the program: it is a lexically visible identifier and
therefore the called function is available at compile time. One can thus base
an analysis for such a language on the textual structure of the program, since
it determines the exact control flow of the program, e.g., as a flow chart. On
the other hand, in a language with higher-order functions, the operator of a
function call may not be apparent from the text of the program: it can be the
result of a computation and therefore the called function may not be available
until run time. A control-flow analysis approximates at compile time which
functions may be applied at run time, i.e., it determines an approximate control
flow of a given program.

Prerequisites We assume some familiarity with program analysis in general
and with control-flow analysis in particular. For a tutorial or an introduction to
the area we refer to Nielson et al. [112]. We also assume familiarity with func-
tional programming and a basic acquaintance with continuation-passing style
(CPS) [149] and with recursive equations [114]. We furthermore assume some
knowledge about closures for representing functional values at run time [95],
and with Reynolds’s defunctionalization [130, 44].

1.1 History
Historically, Reynolds was the first to analyse LISP programs [129]. Later
Jones and Muchnick independently analysed programs with Lisp-like structured
data [84]. Jones was the first to analyse lambda expressions and to use the term
control-flow analysis [80, 81] for the problem of approximating the control flow
of higher-order programs. Shivers formulated control-flow analysis for Scheme
programs including side-effects, and suggested a number of improvements and
applications [144, 145]. Sestoft then developed a closure analysis for programs
in direct style [139, 140]. The latter was reformulated first by Bondorf [23], and
later by Palsberg [115], whose account is closest to how control-flow analysis is
typically presented in textbooks today [112].

1.2 Terminology
1.2.1 Flow vs. closure analysis

Jones and Shivers named their analyses control-flow analysis [80, 81, 145] where-
as Sestoft [139] named his analysis closure analysis. Even though they are pre-
sented with different terminology, all three analyses compute flow information,
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i.e., they approximate where a given first-class function is applied and which
first-class functions are applied at a given call site. The term ‘control flow anal-
ysis’ was originally used by Allen [7] to refer to the extraction of properties of
already given control-flow graphs.

A different line of analysis introduced by Steele in his MS thesis [149] is
also referred to as closure analysis [31, 137]. These analyses, on the other
hand, are concerned with approximating which function calls are known, and
which functions need to be closed because they escape their scope. A call to
a known procedure can be implemented more efficiently than the closure-based
procedure-call convention, and a non-escaping function does not require a heap-
allocated closure [93].

1.2.2 Approximating allocation

In control-flow analysis one typically approximates a dynamically allocated clo-
sure by its code component, representing its place of creation. The idea is well-
known from analyses approximating other heap-allocated structures [84, 10, 30],
where it is named the birth-place approach. Consel, for example, uses the birth-
place approach in his work on binding-time analysis [32].

More generally dynamic allocated storage can be represented by the (ap-
proximate) state of the computation at allocation time [70, 46] — an idea which
has been named the birth-time, birth-date, or time-stamp approach [58, 59, 162].
The state of the computation can be represented by the (approximate) paths
or traces leading to it. One such example is contours [145], which are finite
string encodings approximating the calling context, i.e., the history of function
calls in the computation leading up to the current state. The term contour was
originally used to model block structure in programming languages [79].

1.2.3 Sensitivity

Established terminology from static analysis has been used to characterize and
compare the precision of analyses [69]. Much of this terminology has its roots in
data-flow analysis, where one distinguishes intra-procedural analyses, i.e., local
analyses operating on procedures independently, from inter-procedural analyses,
i.e., global analyses operating across procedure calls and returns. In a functional
language based on expressions, such as Scheme or ML, function calls and returns
are omnipresent. As a consequence, the data-flow analysis terminology does
not fit as well. Throughout the rest of this paper we will use the established
terminology where appropriate.

A context-sensitive analysis distinguishes different calling contexts when
analysing expressions, whereas a context-insensitive analysis does not. Within
the area of control-flow analysis the terms polyvariant analysis and monovariant
analysis are used for the same distinction [112]. A flow-sensitive analysis follows
the control-flow of the source program, whereas a flow-insensitive analysis more
crudely approximates the control-flow of the source program, by assuming that
any expression can be evaluated immediately after any other expression.
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2 Context-insensitive flow analysis
In this section we consider context-insensitive control-flow analyses. Starting
from the most crude approximation, we list increasingly precise approximations.

2.1 All functions
The initial, somewhat naive, approximation is that all lambda expressions in a
program can potentially occur at each application site. In his MS thesis [139],
Sestoft suggests this approximation as safe but too approximate, which mo-
tivates his introduction of a more precise closure analysis. This rough flow
approximation also underlies the polymorphic defunctionalization suggested by
Pottier and Gauthier [125]. Their transformation enumerates all source lambda
expressions (of varying type and arity), and represents them by injection into
a single global data type. The values of the data type are consumed by a sin-
gle global apply function. This approach requires a heavier type machinery
than is available in ML. Their work illustrates that a resulting program can be
type-checked using ‘guarded algebraic data types’.

2.2 All functions of correct arity
Warren independently discovered defunctionalization in the context of logic pro-
gramming [167]. He outlines how to extend Prolog to higher-order predicates.
The extension works by defunctionalizing the predicates-as-parameters, with
one apply function per predicate-arity. The transformation effectively relies on
an underlying flow approximation which approximates an unknown function
(predicate) by all functions (predicates) of the correct arity.

This approximation is not safe for dynamically-typed languages, such as
Scheme, where arity mismatches can occur in, e.g., dead code. On the other
hand the approximation is safe for languages, such as Prolog, where arity checks
are performed at compile time.

2.3 Escape analysis
A lightweight approach to compiling higher-order functions is the so-called es-
cape analysis [11, 12]. This approach is based on a rough flow approximation
originally due to Steele [149]. In its simplest formulation, the analysis draws a
distinction between so-called escaping functions, i.e., functions that (potentially)
escape their lexical scope by being returned, passed as a parameter, stored in
a pair, etc., and known functions, i.e., functions that do not escape [142]. The
categorization is formulated as a simple mapping from source lambdas to a
binary domain. In essence, this analysis categorizes higher-order functions as
‘escaping’, whereas first-order functions are categorized as ‘known’. In the Rab-
bit Scheme compiler [149], Steele used the analysis to decide whether to close
lambda expressions, i.e., create a closure, over their free variables or not.
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A slightly better approximation supplements the above categorization of
source lambdas with a categorization of function calls. Function calls are sep-
arated into known and unknown calls [12]. This categorization is formulated
as a simple mapping from call sites to a binary domain. As a consequence
a function can both escape and also be the operator of a known call. In the
Orbit compiler [92, 93], Kranz further distinguished between upward escaping
and downward escaping variables and lambda expressions, because closures in
the latter category could be stack allocated. Garbage collection was considered
relatively expensive at the time and Kranz’s motivation [93] was to show that
Scheme could be compiled as efficiently as, e.g., Pascal, which was designed to
be stack-implementable.

Escape analysis is a modular flow approximation, i.e., separate modules can
be analysed independently, as opposed to a whole-program flow analysis. The
flow approximation is useful for both closure-conversion [149, 11] and defunc-
tionalization [159]. Different terminology has been used to name the approach,
sometimes with unfortunate overlap. Steele used the term binding analysis for
the corresponding pass in his compiler [149, ch.8]. Kranz refers to the dis-
tinction as escape analysis [93, ch.4]. Both Steele and Kranz refer to their
decision procedure for choosing closure representation and layout as closure
analysis [149, 93]. Clinger and Hansen [31] characterize escape analysis as a
first-order closure analysis, to stress that it detects first-order use of functions.
Serrano referred to escape analysis as closure analysis [137]. Cejtin et al. [30]
refer to escape analysis as a syntactic heuristic.

2.4 Simple closure analysis
Henglein first introduced simple closure analysis in an influential though not
often credited technical report [68], after having devised a similar binding-time
analysis [67]. The analysis is heavily inspired by type inference, and as such
it is based on emitting equality constraints that are then solved by unification.
The latter can be performed efficiently in almost linear time using a union-
find data structure, as is well-known from type inference [124]. Bondorf and
Jørgensen [25] later documented an extension of Henglein’s approach in the
context of a partial evaluator, and Heintze gave a simple formulation in terms
of equality constraints [62]. Tolmach and Oliva [159, 160] as well as Mossin [104]
have since formulated (typed) variants of the approach.

Henglein entitled the approach simple closure analysis. The analysis has
later been named equality-based flow analysis [25, 117] as well as control flow
analysis via equality [62]. The idea is also referred to as unification-based [30,
45, 69], or bi-directional [126, 69]. Aiken refers to the analysis as based on term
equations [3]. We shall sometimes refer to it as unification-based analysis, when
contrasting it with other analyses.
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2.5 0-CFA
Shivers developed the context-insensitive zeroth-order control-flow analysis (0-
CFA) for Scheme [145, 144], and suggested several context-sensitive flow anal-
yses (see below). The 0-CFA originally suggested by Shivers had worst-case
time-complexity O(n3). During his work on globalization, i.e., statically deter-
mining which function parameters can be turned into global variables, Sestoft
had developed a similar flow analysis [139, 140], in order to handle higher-order
programs.

Later Bondorf simplified the equations of Sestoft’s analysis [23] in order to
extend the Similix [24] self-applicable partial evaluator to higher-order func-
tions. Palsberg then limited Bondorf’s equations to the pure lambda calcu-
lus [115, 116]. He presented a simplified analysis as well as a constraint-based
formulation, and proved the equivalence of the three analyses.

Though Shivers’s and Sestoft’s analyses were thought to be equivalent, Mos-
sin [104] proved that Shivers’s analysis is evaluation-order dependent, contrary
to Sestoft’s closure analysis. However one should note that Shivers’s original
analysis operated on a CPS-based intermediate language, i.e., an evaluation-
order-independent language. Mossin’s proof concerns a reformulation in a direct-
style evaluation-order-dependent language. As a consequence his result does not
directly concern Shivers’s original analysis. The term ‘control-flow analysis’ by
itself has since become synonymous with 0-CFA [112].

Serrano [137] describes a variant of Shivers’s 0-CFA used in the Bigloo opti-
mizing Scheme compiler. Serrano’s description is given as a functional program
with side-effects (assignments). Reppy [128] later describes a refinement of Ser-
rano’s algorithm reformulated as a pure functional program. This analysis in-
corporates type information from ML’s module system. The analyses of Serrano
and Reppy do not infer control-flow information for all expressions, they infer
control-flow information only for variables, i.e., they compute an approximation
of the run-time environment.

As opposed to a unification-based control-flow analysis, 0-CFA is sometimes
referred to as an inclusion-based [25], or subset-based [117] control-flow analysis.
In the terminology of pointer analysis it is a (uni-) directional flow analysis [69].
Variants of 0-CFA are used within the Bigloo optimizing Scheme compiler [137]
and within the MLton whole-program optimizing SML compiler [30].

3 Context-sensitive flow analysis
In this section we consider context-sensitive control-flow analyses. Starting from
polymorphic splitting, we describe a number of increasingly precise analyses.

3.1 Polymorphic splitting
Polymorphic splitting is a context-sensitive flow analysis suggested by Wright
and Jagannathan [170]. The analysis is inspired by type systems — in particu-
lar Hindley-Milner (Damas-Milner) let-bound polymorphism [102], where each
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occurrence of a let-bound variable is type-checked separately. In the same spirit
polymorphic splitting analyzes each occurrence of a let-bound variable sepa-
rately. The analysis has an exponential worst-case time complexity, like that
of the polymorphic type inference that inspired it. However, as with the corre-
sponding type inference, the worst-case rarely seems to occur in practice [170].

One can view polymorphic splitting as a refinement of 0-CFA that partitions
the flow of values to expressions and variables according to their static context
(scope) in the program text. Polymorphic splitting is therefore referred to as
approximating the static link of a stack-based implementation [110].

3.2 k-CFA
Call strings and their approximation up to a fixed maximum length have their
roots in data-flow analysis. Call strings were originally suggested by Sharir and
Pnueli [143] as a means for improving the precision of interprocedural data-flow
analyses. Inspired by call strings, Shivers [145] formulated the context-sensitive
first-order control-flow analysis (1-CFA) and suggested the extension to kth-
order control-flow analysis (k-CFA) [145, p.55] as a refined choice of contours.
Since then Jagannathan and Weeks [76] have suggested a polynomial 1-CFA, a
more approximate 1-CFA variant with better worst-case time complexity. Ja-
gannathan and Weeks achieve the speedup by restricting the environment com-
ponent of an abstract closure to a constant function mapping all variables to a
contour representing the most recent call-site. The uniform k-CFA is another
k-CFA variant suggested by Nielson and Nielson [110, 112]. It uses a uniform
“contour distinction”, i.e., abstract caches and abstract environments partition
the flow of values to expressions and variables identically. The resulting analy-
sis has a better worst-case time complexity than the canonical k-CFA. Recently
Van Horn and Mairson have proved that k-CFA is NP-hard for k = 1, and that
k-CFA is complete for EXPTIME for the case k = n, where n is the size of the
program [161]. Their proofs are developed for the uniform k-CFA variant.

One can view k-CFA as a refinement of 0-CFA that partitions the flow of
values to expressions and variables according to their (approximate) dynamic
calling context in a program execution. Call strings are therefore referred to as
approximating the dynamic link of a stack-based implementation [110].

3.3 Beyond the k-CFA hierarchy
An alternative context-sensitive flow analysis suggested by Agesen [2] takes ar-
gument types of the calling context into account. The original formulation of
his Cartesian-product algorithm was given as a type inference algorithm for a
dynamically-typed object-oriented programming language. As with much other
work within type systems the basic idea extends to control-flow analysis. Ja-
gannathan and Weeks [76] outline a control-flow analysis variant hereof, as do
Nielson et al. [112, p.196]. One can view the resulting analysis as a refinement of
0-CFA that partitions the flow of values to expressions and variables according
to the actual argument types in their dynamic calling context.
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The call string approach later inspired Harrison to suggest procedure strings
[58, 59] to capture both procedure calls and returns in a compact format. Re-
cently Might and Shivers have suggested a new context-sensitive control-flow
analysis [100] based on a variant of procedure strings called frame strings. Frame
strings represent stack frame operations, which are more informative in a func-
tional language where proper tail calls do not push a stack frame. Might and
Shivers then approximate the frame strings by regular expressions. From the
result of running their analysis, they finally extract an ‘environment analy-
sis’ [145], i.e., an analysis which statically detects when two run-time environ-
ments agree on a variable.

4 Type-based flow analysis
A parallel line of work has investigated control-flow analysis for typed higher-
order programs. The extra static information provided by types suggests nat-
ural control-flow approximations. Alternatively, known type systems operating
on types enriched with additional flow information suggests new control-flow
analyses. In this section we consider both kinds of type-based approximations.
Starting from the simplest approximation we consider increasingly precise type-
based approximations.

4.1 Per function space (typed)
A naive approach approximates the application of a function by all the functions
of the same type. This context-insensitive approximation underlies Reynolds’s
initial presentation of defunctionalization [130], where the function space of
the environment and the function space of expressible values in his definitional
interpreter were defunctionalized separately. Indeed Reynolds recognizes that
his defining language is typed in a later commentary [131].

Tolmach [159] realized that Reynolds’s defunctionalization was based on an
underlying control-flow approximation induced by the types, noting that “typing
obviously provides a good first cut at the analysis ‘for free’ ” [159, p.2]. Tolmach
and Oliva [159, 160] furthermore pointed out that unification-based analysis can
be viewed as a refinement to the function-space approximation: the function-
space approximation places two functions in the same partition when the types
of their argument and result match. On the other hand, a unification-based
analysis places functions in the same partition when the type unifier unifies
their types.

4.2 Linear-time subtransitive CFA (typed)
Heintze and McAllester [65] present a linear-time algorithm for answering a
number of context-insensitive CFA-related questions. Their algorithm has two
stages. The first stage builds in linear time a graph, whose full transitive closure
can list all callees for each call site in (optimal) quadratic time. By avoiding
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the computation of the full transitive closure they are able to answer some
questions in linear time, e.g., list up to k functions for each call site, otherwise
“many”. However their algorithm only works on programs of bounded types —
for untyped or recursively typed programs their algorithm may not terminate.

Later (unpublished) work by Heintze et al. [133] establishes that the above
approach does not scale since real-world (functorized) programs do not always
exhibit such bounded types. They therefore suggest a hybrid approach, where
the above algorithm is combined with a complementary demand-driven algo-
rithm.

Independently, Mossin arrived at a quadratic-time analysis for simply-typed
programs with bounded types [104, 105]. His analysis is based on flow graphs.
It is furthermore modular, i.e., different parts of the program may be analysed
separately.

4.3 Context-sensitive type-based analysis (typed)
Mossin gave two context-sensitive analyses for a simply-typed programming
language [104]: one inspired by let-polymorphism and one inspired by polymor-
phic recursion. Rehof and Fähndrich [126] later gave O(n3) algorithms for the
two, improving their earlier complexity bounds on O(n7) and O(n8), respec-
tively [104]. Rehof and Fähndrich achieve the speed-up by avoiding copying
constraints when they are instantiated — instead they remember the substitu-
tion (instantiation constraint), leaving the original constraints unmodified.

5 Formulations
Control-flow analysis comes in many different formulations. As an example of
the diversity, Malacaria and Hankin even present a cubic time flow-analysis for
PCF based on game semantics [97]. The resulting analysis is similar to Shivers’s
0-CFA, despite their different starting point and formulation. In this section we
describe the many formulations encountered as well as the known equivalences
and relationships between them.

5.1 Grammar-based, constraint-based, and set-based anal-
ysis

A constraint-based analysis is a two-phase algorithm. The first phase emits
constraints that a solution to an intended analysis needs to satisfy. The second
phase solves the constraints. Type inference [164] is an example of a constraint-
based analysis that has inspired many later analyses [67, 155, 68, 151, 57, 104].
The idea of formulating program analyses in terms of constraints has its advan-
tages: the analysis presents itself in an intuitive form and it allows for reusable
constraint solving software, independent of a particular analysis. Aiken gives
an introduction to set-constraint based analysis [3].
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Initially Reynolds conceived the idea of formulating analyses in terms of re-
cursive set definitions [129] which resembled context-free grammars [129, p.456].
He extended them with suitable list constructors (e.g., cons) and selectors (e.g.,
car and cdr) operating over sets. The analysis then eliminated the selectors
from the definitions. Independently Jones and Muchnick later used extended
regular tree grammars, i.e., regular tree grammars extended with selectors, to
analyse programs with LISP-like structures [84].

Heintze and Jaffar extended the idea of grammar-based analyses to han-
dle projection (selectors) and intersection [64, 63] originally in the context of
analysing logic programs, and introduced the term set constraints. Aiken and
Murphy [5] formulated a type-inference algorithm with types implemented as
regular tree expressions, and described their implementation [4]. In a later pa-
per [6], Aiken and Wimmers gave an algorithm for solving constraint systems
over regular tree expressions — now under the name set constraints.

Heintze coined the term set-based analysis [60] for the intuitive formalism
of formulating program analyses as a series of constraints over set expressions
(extended with intersection and projection/selectors). He later formulated a
set-based analysis for ML [61]. Independently, Palsberg reformulated Bondorf’s
simplification of Sestoft’s control-flow analysis in terms of conditional set con-
straints [115, 116]. Conditional constraints have later been shown to be equally
expressive to a constraint system with selectors [3] such as Heintze’s [60].

Cousot and Cousot [39] clarified how grammar-based, constraint-based, and
set-based analyses are instances of the general theory of abstract interpretation.
They suggest that a formulation in terms of abstract interpretation allows for the
use of widening and for an easy integration with other non-grammar domains.
Gallagher and Peralta [53] have investigated such a regular tree language domain
in the context of partial evaluation.

As an extension to Heintze’s set-based analysis [60], Flanagan and Felleisen
[51, 52] suggested componential set-based analysis. Their analysis works by
extracting, simplifying, and serializing constraints separately for each source
program file. A later pass combines the serialized constraints into a global solu-
tion. One advantage of the approach is avoiding the re-extraction of constraints
from an unmodified file upon later re-analysis. Flanagan used the analysis for
a static debugger [51]. Meunier et al. [99] later identified that selectors compli-
cated the analysis and suggested to use conditional constraints in the style of
Palsberg [116] instead.

Henglein’s simple closure analysis [68] and Bondorf and Jørgensen’s efficient
closure analysis for partial evaluation [25] are also based on constraints. However
they use a different form of constraints, namely equality constraints, that can
be solved by unification in almost linear time [3].

5.2 Type-based analysis
Type-based analysis is an ambiguous term. It is used to refer to analyses of typed
programs, as well as analyses expressed as “enriched type-systems”. Mossin [106]
distinguishes the two, by referring to them as Church-style analysis and Curry-
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style analysis, respectively. The field of type-based analysis is big enough to
deserve a separate treatment. We refer to Palsberg [118] and Jensen [77] for
surveys of the area.

Heintze and Palsberg et al. have investigated the relationship between flow
analyses and type systems [62, 119, 117]. Their systems applies to untyped
terms, and are strictly speaking not type-based analyses. See Section 5.3.1 for
more details.

Mossin presented a number of type-based analyses for simply-typed pro-
grams in his PhD thesis [104]. He formulated two context-insensitive analyses:
a simple analysis and a subtype-based analysis equivalent to Sestoft’s analysis.
He furthermore formulated two context-sensitive analyses: One based on let-
polymorphism and one based on polymorphic recursion. Mossin also developed
a context-sensitive control-flow analysis based on intersection types [104, 106],
which he called exact. He showed the analysis to be decidable; it is however
non-elementary recursive and therefore of limited practical value [104, 106].

Banerjee et al. [17] prove the correctness of two program transformations
based on control-flow analysis. Their analysis operates on a simply-typed lan-
guage. It is a type-based analysis with a sub-type relation on control-flow types.
The analysis resembles one of Heintze’s [62] systems modulo Heintze’s super type
for handling otherwise untypable programs.

Wells et al. [169] have investigated a type-based intermediate language with
intersection and union flow types. Their focus has been type-based compila-
tion, rather than flow analysis [169]. As such, they have inferred control-flow
information using known flow analyses, and afterwards decorated the flow types
with the inferred flow information [48].

The flow analysis of the MLton Standard ML compiler operates on simply
typed programs [30], i.e., after functors and polymorphism have been elimi-
nated. Both eliminating transformations are realized through code duplication,
thereby increasing the size of source programs. Cejtin et al. use a standard
constraint-based CFA with inclusions on datatype elimination and tuple intro-
duction and elimination substituted with equalities, which are then solved by
unification [168]. Apparently the resulting analysis does not exhibit cubic time
behavior [168], which seems consistent with linear-time CFA on bounded-type
programs [65, 105].

Recently, Reppy presented an analysis [128] that utilizes the type abstraction
of ML to increase precision, by approximating arguments of an abstract type
with earlier computed results of the same abstract type. Whereas other analyses
have relied on the typing of programs, e.g., for simple approximations [159,
160], or for termination or time complexity [65, 104], Reppy exploits the static
guarantees offered by the type system to boost the precision of an existing
analysis.

5.3 Equivalences
A line of work has investigated equivalences between type systems, analyses,
and data-flow and context-free grammar reachability.
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5.3.1 Equivalences between type systems and analyses

Palsberg and O’Keefe [119] show that a 0-CFA-based safety analysis (cf. Sec-
tion 7.1) is equivalent to a type system due to Amadio and Cardelli [8] with
subtyping and recursive types. Independently, Heintze showed a number of
similar equivalences [62] between equality-based and subset-based control-flow
analyses and their counterpart type systems with simple types and sub-typing,
including the above.

Palsberg later refuted Heintze’s claim that equality-based flow analysis is
equivalent to a type system with recursive types [117], by giving counter exam-
ples. He then showed a type system with recursive types and a very limited form
of subtyping which is equivalent to equality-based flow analysis. His type sys-
tem furthermore includes top and bottom types to enable typability of otherwise
untypable terms.

Palsberg and Pavlopoulou [120] have since formulated a framework for study-
ing equivalences between polyvariant flow analyses and type systems, and used
it to develop a flow-type system in the style of the Church group [169].

5.3.2 Equivalences between CFL reachability and analyses

Melski and Reps [98] have shown how to convert in linear time a class of set
constraints into a corresponding context-free-language reachability problem, and
vice versa. They also show how to extend the result to Heintze’s ML set con-
straints [61] for closure analysis. Recently Kodumal and Aiken [90] have shown
a particularly simple reduction from a context-free-language reachability prob-
lem to set constraints in the special case of Dyck context-free languages, i.e.,
languages of matching parentheses.

Heintze and McAllester [66] prove a number of problems to be 2NPDA-
complete: data-flow reachability (in a formulation equivalent to the set con-
straints of Melski and Reps), control-flow reachability, and the complement of
Amadio-Cardelli typability [8].

5.4 Specification-based
Nielson and Nielson have championed the specification approach to program
analysis [110, 54, 113, 111]. A specification is formulated as a series of declarative
demands that a valid analysis result must fulfill. In effect a specification-based
analysis constitutes an acceptability relation that verifies a solution as opposed
to computing one. A corresponding analysis can typically be staged in two parts:
first the demands can be serialized into a set of constraints, second the set of
constraints can be analyzed iteratively.

Nielson and Nielson coined the term flow logic for such a tight declarative
format describing analyses [113]. They show how such a specification can be
gradually transformed into a more verbose constraint-based formulation [113].
Their gradual transformation towards constraints involves formulations in terms
of (extended) attribute grammars, which should be compared to the above men-
tioned grammar/constraint correspondence.
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Indeed a specification-based analysis offers a constructive way of calculat-
ing a solution. Cachera et al. [28] have illustrated this point by formalizing a
specification-based analysis in constructive logic using the Coq proof assistant.

5.5 Abstract interpretation-based
As pointed out by Aiken [3] the term abstract interpretation is used interchange-
ably to refer to both monotone analyses defined compositionally on the source
program, and to a formal program analysis methodology initiated by Cousot
and Cousot [35, 37], which suggests that analyses should be derived systemati-
cally from a formal semantics, e.g., through Galois connections. We refer here
to abstract interpretation in the latter meaning.

In his PhD thesis [58], Harrison used abstract interpretation of Scheme pro-
grams to automatically parallelize them. Harrison treats a statement-based
Scheme core language with first-class continuations. His starting point is a
transition-system semantics based on procedure strings, in which functions in
the core language are represented as functions at the meta level. A second,
refined semantics represents functions as closures. This semantics is then grad-
ually transformed and abstracted into a computable analysis. The result serves
as the starting point for a number of parallelizing program transformations.

Shivers’s analysis [145] is based on abstract interpretation. His analysis is
derived from a non-compositional denotational semantics based on closures. He
does not use Galois connections. Instead his soundness proofs are based on
lower adjoints, i.e., abstraction functions mapping concrete objects to abstract
counterparts.

Ayers also treated higher-order flow analysis based on abstract interpreta-
tion in his PhD thesis [15]. His work is similar to Shivers in that his analysis
works on an untyped CPS-based core language. Ayers gradually transforms a
denotational continuation semantics of Scheme into a state transition system
based on closures, which is then approximated using Galois connections.

In a line of papers [134, 135, 136], Schmidt has investigated abstract inter-
pretation in the context of operational semantics. Schmidt explains the traces
of a computation as paths or traces in the tree induced by the inference rules of
an operational semantics. A tree is then abstracted into an approximate regular
tree that safely models its concrete counterpart and is finitely representable.

5.6 Minimal function graphs and program-dependent do-
mains

The function graph is a well-known formal characterization of a function as a
set of argument-result pairs. Characterizing a function for all arguments in
a program analysis can lead to a combinatorial explosion. The general idea
of considering only necessary arguments in an analysis was initially suggested
by Cousot and Cousot [36]. The idea of considering only necessary arguments
in the context of function graphs was suggested and named minimal function
graphs by Jones and Mycroft [86].
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Jones and Rosendahl [87] formulated closure analysis in terms of minimal
function graphs. Their analysis is formulated for a system of curried recursive
equations, where all function abstractions are named and defined at the top level.
Jones and Rosendahl can thereby represent an abstract procedural value by the
name of its origin and a natural number indicating to how many arguments the
function has been partially applied.

Control-flow analyses defined as functions on an expression-based language
do not attempt to give non-trivial approximate characterizations for all possible
expressions. Instead such analyses are often specified as finite partial functions
or as total functions on a program-dependent domain [116, 112], which is finite
for any given (finite) program.

6 Formulation issues

6.1 Evaluation-order dependence
Flow-sensitivity of program analyses in functional languages can potentially
model evaluation order and strategy, e.g., a flow-sensitive analysis for a call-by-
value language with left-to-right evaluation could potentially model the directed
program flow through operator to operand for an application. Most often the ef-
fect is achieved by prior linearization of the program. A flow-insensitive analysis
approximates all evaluation orders and strategies.

Reynolds’s seminal paper [129] inspired Jones to develop control-flow anal-
yses for lambda expressions under both call-by-value [80] and call-by-name [81]
evaluation. Shivers formulated and proved his analysis sound for a CPS lan-
guage, which by nature is evaluation-order independent. Sestoft proved his
closure analysis sound wrt. a strict call-by-value semantics [139] and a lazy call-
by-name semantics [141]. Palsberg [116] then claimed the soundness of closure
analysis wrt. general β-reduction. Unfortunately his proof was flawed, which was
later pointed out and corrected by Wand and Williamson [166]. In an unpub-
lished report [165], Wand then compared prior soundness results wrt. different
semantics.

6.2 Prior term transformation
A number of analyses operate on a normalized core language, such as CPS or
recursive equations, in the same way as a number of algorithms over matrices
or polynomials operate on normal forms.

Jones simplified his earlier analysis approach by limiting his input to recur-
sive equations [82] as obtained, e.g., by lambda lifting [78]. Sestoft’s analysis
was also specified for recursive equations [139, 140]. Shivers argued that in CPS
lambda expressions capture all control flow in one unifying construct. As a
consequence he formulated his original analyses for linearized source programs
in CPS [144, 145] and continues to do so today [100]. Ayers’s analysis was also
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formulated for a core language in CPS [15]. The flow analysis of Ashley and
Dybvig operates on linearized source programs in a variant of CPS [13].

Consel and Danvy [33] pointed out that CPS transforming a program could
improve the outcome of a binding-time analysis, and Muylaert-Filho and Burn
[108] showed a similar result for strictness analysis. Sabry and Felleisen [132]
then gave examples showing that prior CPS transformation could either increase
or decrease precision when comparing the output of two constant-propagation
analyses. They attributed increased precision to the duplication of continuations
and decreased precision to the confusion of return points. It was later pointed
out [43, 122], however, that Sabry and Felleisen were comparing a flow-sensitive
analysis to a flow-insensitive analysis.

Damian and Danvy [43] proved that a non-duplicating CPS transformation
does not affect the precision of a flow-insensitive textbook 0-CFA. They also
proved that CPS transformation can improve and does not degrade the precision
of binding-time analysis. Independently, Palsberg and Wand [122] proved that
a non-duplicating Plotkin-style CPS transformation does not change the preci-
sion of a standard constraint-based 0-CFA, a result that Damian and Danvy [42]
extended to a ‘one-pass’ CPS transformation that performs administrative re-
ductions. In conclusion, a duplicating CPS transformation may improve the
precision of a 0-CFA and a non-duplicating CPS transformation does not affect
its precision.

6.3 Cache-based analysis and iteration order
Hudak and Young [72] introduced the idea of cache-based collecting semantics, in
which the domain of answers of the analysis equations is not an abstract answer,
but rather a function mapping (labeled) expressions to abstract answers. As a
result a cache is passed to and returned from all equations of the analysis, which
yields an answer mapping all sub-expressions to abstract values. The advantage
of this approach is that the specification of the analysis itself is already close to
an implementation.

Shivers’s analysis is cache-based [145]. His implementation [145], however,
has a global cache which is updated through assignments — a well known alter-
native to threading a value through a program. The cache-based formulation
has since influenced many subsequent analyses [23, 116, 110].

In a cache-based analysis, the iteration-strategy is mixed with the equations
of the analysis. In the words of Schmidt, many closure analyses “mix implemen-
tation optimizations with specifications and leave unclear exactly what closures
analysis is” [134]. The alternative is to separate the equations of the analysis
from the iteration strategy for solving them. The advantage of separating them
is that one can develop and calculate an analysis focusing on soundness of the
analysis, and later experiment with different iteration strategies for calculating
a solution.

Cousot and Cousot [39] have noted that several analyses using regular tree
grammars incorporate an implicit widening operator to ensure convergence.
Their point also applies to the equivalent cache-based constraint analyses [116]:
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the joining of consecutive “cache iterates” constitutes a widening. To keep an
analysis as precise as possible one should instead widen explicitly, placing a mini-
mal amount of widening operators to still ensure convergence [27]. Deutsch [47]
and Blanchet [22] have used this approach in the context of escape analyses.
Bourdoncle [27] has suggested different iteration strategies, some of which are
applicable to analysing higher-order programs. He concluded that more work is
needed in the higher-order case.

6.4 Compositionality
Keeping an analysis compositional prevents it from diverging by recursively
analysing the same terms repeatedly (it may however still diverge for other rea-
sons). Furthermore one can reason about a compositional analysis by structural
induction. Different means have been used to prevent non-compositional anal-
yses from repeatedly analysing the same terms: in an unpublished technical
report [171], Young and Hudak invented pending analysis, of which Shivers’s
time-stamps are a variant [146, 145]; and Ashley and Dybvig [13] use a simi-
lar concept which they name pending sets. A related technique is the worklist
algorithm from data flow analysis [89, 112].

The original formulation of 0-CFA in Shivers’s PhD thesis [145, p.32] is not
compositional. The formulation in the later paper proving the soundness of
the approximation is however compositional [146, p.196]. Shivers’s implemen-
tation [145] used a time-stamping approach to ensure convergence on recursive
programs. The formal correctness of time-stamping was later established by
Damian [41]. Neither Serrano’s nor Reppy’s 0-CFA formulations are composi-
tional [137, 128]. In order to avoid re-analysing function bodies (or looping on
recursive functions) Reppy’s analysis passes around a cache of function-result
approximations.

Initially Nielson and Nielson’s specifications were non-compositional and de-
fined by co-induction [110, 54], but later they were reformulated composition-
ally [113, 111] (in which case induction and co-induction coincide [112]).

The context-sensitive analyses — the k-CFA formulation of Shivers [145],
the polymorphic splitting formulation of Wright and Jagannathan [170], and the
uniform k-CFA formulation of Nielson, Nielson and Hankin [110, 112] are non-
compositional. The analysis framework of Nielson and Nielson’s later paper on
higher-order flow analysis supporting side-effects [111] is however compositional,
as is Rehof and Fähndrich’s [126] context-sensitive flow analysis of typed higher-
order programs.

6.5 Frameworks
A line of papers have formulated control-flow analysis frameworks following
Shivers’s initial presentation [144, 145]. Stefanescu and Zhou [153] developed
one such framework for expressing CFAs. Their framework is based on term-
rewriting sequences of a small closure-based core language. The analysis is given
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in the form of a system of traditional data-flow equations, and their approxima-
tions are formulated as static partitions based on the call sites. They suggest
two such partitions: the “unit” partition corresponding to 0-CFA and a finer
partition corresponding to Shivers’s 1-CFA [145].

Jagannathan and Weeks [76] developed a framework based on flow graphs
and instantiate it to 0-CFA, a polynomial-time 1-CFA, and an exponential-time
1-CFA. Furthermore Jagannathan and Weeks prove their 0-CFA instantiation
equivalent to Heintze’s set-based analysis [61].

Ashley and Dybvig [13] developed a flow analysis framework for the Chez
Scheme compiler. The framework is parameterized by an abstract allocation
function and a ‘projection operator’. By different instantiations they obtain
a 0-CFA, a 1-CFA and a sub-0-CFA, the latter analysis being a sub-cubic 0-
CFA variant, that allows only a limited number of updates to each cache entry.
Their results show that the sub-0-CFA instantiation enables effectively the same
optimizations in the underlying compiler as the 0-CFA.

Nielson and Nielson [110] developed a general non-compositional analysis
framework formulated as a co-inductive definition. They instantiate the frame-
work with a 0-CFA, k-CFA, a polymorphic splitting analysis, and a uniform
k-CFA — a k-CFA variant with better worst-case time complexity.

In a later paper [111], Nielson and Nielson develop a framework for control-
flow analysis of a functional language with side-effects. The approach incorpo-
rates ideas from interprocedural data-flow analysis. To illustrate the generality
of the framework they instantiate it with k-CFA in the style of Shivers [145],
with call strings in the style of Sharir and Pnueli [143], and with assumption
sets [112].

In an unpublished report [147], Siskind developed a framework with a precise
flow analysis for his optimizing Scheme compiler, Stalin. The framework com-
bines flow analysis with several other analyses, including reachability, must-alias
analysis, and escape analysis. His results indicate that the combined analysis en-
ables an impressive amount of optimization; however he does not report compile
times or time complexity of the approach.

6.6 Abstract compilation and partial evaluation of CFA
Boucher and Feeley [26] illustrate two approaches to eliminate the interpretive
overhead of an analysis. They name these approaches abstract compilation.
Their first approach serializes the program-specific analysis textually in a file,
that is later interpreted, e.g., using the Scheme eval -function. Their second
approach avoids the interpretive overhead and the I/O of the above serialization
by utilizing the closures of the host language. Ashley and Dybvig note [13] that
the prototype implementation of their analysis is staged. In their own words [13,
p.857] “code is compiled to closures”, i.e., they are effectively performing abstract
compilation.

Boucher and Feeley [26] suggest two optimizations, namely η-reduction and
static look-up of constants and lambda-expressions. They note that abstract
compilation can be seen as a form of partial evaluation, where the analysis is a
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curried function of two arguments, of which the static (known) argument is the
source program to be analyzed.

Damian [40] implemented an interpreter for a small imperative language, in
which he encodes a variant of Shivers’s 0-CFA. He then specializes the interpreter
with respect to the analysis and a source program, and reports relative speedups
on par with Boucher and Feeley’s results [26].

In a related technical report [9], Amtoft partially evaluates two constraint
interpreters with respect to a set of (program specific) CFA constraints (on
the same set of benchmarks [26]). He compares the two to their un-specialized
counterparts and reports of unmanageable residual code-size in the one case
and smaller speedups in the other. When reading his results one should keep
in mind that a constraint-based analysis has already eliminated the (repeated)
interpretive overhead of the original source program. As such Amtoft’s results
do not contradict the results of Boucher, Feeley, and Damian.

An interesting question is how the effectiveness of abstract compilation us-
ing closures (and their suggested optimizations) compares to an off-the-shelf
constraint-based analysis, as the latter also incurs a certain overhead due to
the serialization into a list of constraints and their later iterative interpretation.
Such a comparison would however be relative, as the outcome would depend
heavily on the handling of closures in the host language.

The choice between the compositional interpreting analysis, the serialized
/ constraint interpreting analysis, and the compiled program analysis strongly
echoes the choice between standard approaches to implementing programming
languages: the compositional interpreter, the serialized/byte-code interpreter,
and the compiled program.

6.7 Demand-driven analysis
A standard control-flow analysis analyses all terms of a source program regard-
less of whether they will be used during execution or not. A line of work has
therefore investigated reachability or demand-driven analysis, in order to limit
to a minimum the execution time of a full control-flow analysis.

Ayers [14, 15] illustrate how limiting the analysis to the live parts of the
program can yield a speed-up in analysis time. The abstract semantics of Ja-
gannathan and Weeks’s framework [76] contains a ‘reachability predicate’ to
minimize the size of the generated flow graphs. Biswas [21] augmented a set-
based analysis in the style of Heintze [60] with boolean constraints to formulate
a demand-driven flow analysis for detecting dead code in higher-order functional
programs. Gasser et al. [54] formulated a control-flow analysis for Concurrent
ML [127]. Starting with an abstract specification, they incorporate tracking of
reachable sub-expressions and arrive at a constraint-based formulation.

6.8 Modular and separate analysis
Tang and Jouvelot [156] combine a type and effect system with a control-flow
analysis in the style of Shivers’s 1-CFA [145] to achieve separate abstract inter-
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pretation. Their approach is separated into two phases. First the control-flow
effect system approximates the initial contour and value environments. Second
the output is used as starting points for re-analysis using the more precise 1-
CFA. The approach extends earlier work that formulated a control-flow effect
system [155].

Banerjee [16] developed a modular and polyvariant control-flow and type-
inference system for untyped programs. In a follow-up paper, Banerjee and
Jensen [18] formulated a modular and polyvariant control-flow analysis for
simply-typed programs. Both analyses are based on intersection types, in par-
ticular they rely on the principal typing property of rank 2 intersection types.
Their analyses are compositional and modular in that the analysis of an expres-
sion can be calculated by combining the analyses of its sub-expressions using
intersection types without re-analysis of any sub-expressions.

Lee, Yi, and Paek [96] describe a modularized 0-CFA. The analysis is poly-
variant in the modules of the program, for which the authors coin the term
module-variant. Modules are analysed separately in topological order of their
(acyclic) dependencies. The resulting analysis is more precise than a 0-CFA,
because of the module-variance.

7 Related analyses

7.1 Safety analysis
Safety analysis is another analysis of untyped functional programs related to
control-flow analysis. The basic goal is shared with that of type inference, i.e.,
to statically guarantee the absence of run-time errors, such as applying the
successor function to a lambda abstraction. Static type systems give such guar-
antees, however, at the price of ruling out otherwise useful untypable programs.

Palsberg and Schwartzbach [121] coined the term safety analysis for such
an analysis. Their analysis is based on a constraint-based CFA. It accepts
strictly more programs than type inference (for simple types). Palsberg and
Schwartzbach proved the analysis sound wrt. both call-by-value and call-by-
name evaluation. Thiemann [157] had earlier used the term safety analysis
for an unrelated analysis for functional programs that detects when in-place
updating is safe, i.e., when it does not affect the outcome of programs.

7.2 Pointer analysis
A related field of control-flow analysis is that of pointer analysis. However the
body of research within pointer analysis is so big that it deserves an independent
survey to do it justice. We refer to Hind [69] for such a survey.

Pointer analysis in a language with function pointers shares some of the
issues of higher-order functions, in that the operator of a function call may not
be apparent from the program text. As a consequence such pointer analyses
are sometimes said to support higher-order functions [49]. However one should

18



note that even the formal semantics of a language with pointers, representing
an ideal (uncomputable) analysis, already constitutes a crude approximation of
the semantics of a higher-order language because it approximates closures with
mere function pointers.

Two very significant contributions within the field bear a strong resem-
blance to control-flow analysis and deserve mentioning: Andersen’s subset-based
pointer analysis [10] and Steensgaard’s equality-based pointer analysis [151,
150]. Andersen’s pointer analysis was formulated in terms of subset-inclusion
constraints [10], whereas Steensgaard’s pointer analysis was formulated as a
type system with a non-standard set of types and unification [151].

Andersen’s pointer analysis [10] was conceived simultaneously with Pals-
berg’s control-flow analysis in constraint form [115] and Heintze’s set-based
analysis [61]. On the other hand Steensgaard’s pointer analysis [151] postdates
Henglein’s technical report on closure analysis by type inference [68] by four
years, and indeed Steensgaard [151] cites Henglein [67] as a source of inspiration
for his unification-based pointer analysis.

More recently Das [45] has suggested a compromise between Andersen’s and
Steensgaard’s algorithms. The pointer analysis is (like Steensgaard’s) formu-
lated as a type system. The type-system allows only subtyping (containment)
at the top-level, as opposed to arbitrary subtyping (containment). Elsewhere
flow is propagated by unification. As a result the algorithm has a quadratic
worst-case time complexity. Das’s analysis seems in line with Henglein’s original
analysis relying on a limited form of (flow-)subtyping [68] and with Palsberg’s
funny type system equivalent to equality-based CFA [117].

7.3 Escape analysis and stackability
Control-flow analysis is concerned with flows-from information, i.e., inferring
the origin of function values that may occur at a given expression. Escape
analysis on the other hand is concerned with flows-to information, i.e., inferring
where function values originating at a given lambda expression may occur.

The escape analysis of Section 2.3 provides a fast and practical static approx-
imation that determines whether a function may escape its static scope. The
analysis does so at the expense of crudely approximating higher-order programs.
The basic idea applies to less crude approximations and to other data types as
well, e.g., a heap-allocated cons cell may be stack allocated if an analysis can
infer that it will not escape its static scope.

Park and Goldberg [123] devised an escape analysis for higher-order pro-
grams. Their initial analysis handled constants and procedural values [55]. It
was later extended to handle lists [123]. The analysis was formulated as a for-
ward analysis requiring exponential time even in the first-order case. Deutsch
[47] later gave an equally precise backwards analysis for first-order programs
requiring only O(n log2 n) time. Deutsch furthermore proved that any equally
precise analysis on second-order functions is DEXPTIME-hard, suggesting that
an extension to higher-order functions would demand further approximation.
Blanchet [22] extended Deutsch’s backwards escape analysis [47] to a higher-

19



order ML-like core language incorporating further approximation to ensure rapid
termination.

Banerjee and Schmidt [19] developed a static stackability criterion for simply-
typed call-by-value λ-calculus terms, i.e., a static analysis that determines wheth-
er it is safe to evaluate a given λ-term with stack-allocated bindings. In order
to do so, the analysis has to guarantee that bindings will not escape their static
scope by being among the free variables of a returned closure. Their analysis is
based on Sestoft’s closure analysis. It is developed as a gradual transformation
of an uncomputable specification into a computable specification.

Tang and Jouvelot [155] formulated a control-flow effect system that infers
control-flow information. The system infers both which function a given ex-
pression may evaluate to, and which functions may be evaluated during the
evaluation of a given expression. Tang and Jouvelot applied their analysis to
infer escape information for procedures.

Hannan [57] suggested a type-based escape analysis that detects whether
variable bindings will escape their scope. The analysis is formulated as a type-
directed translation from a simply-typed source language into a target language
where binding and look-up of stack variables are explicitly marked.

Serrano and Feeley [138] presented a storage use analysis. Their analysis is
an extension of Shivers 0-CFA with modules and general data storage. They
present two applications of the analysis: stack allocation and unboxing.

Mohnen [103] gives an (worst-case) quadratic time algorithm for inheritance
analysis for higher-order recursive equations with (monomorphic) data struc-
tures. His analysis can calculate whether functional arguments to a function,
i.e., closures, are inherited in the result, which is then encoded as a binary
domain. When no inheritance is detected the closures can be stack allocated.
He also gives a measure for determining whether a closure will only have one
active activation at a time during execution, in which case he suggests static
allocation. Mohnen’s work extends earlier work by Hughes [74], who formu-
lated an inheritance analysis for lists in higher-order programs. Hughes’s main
application was compile-time garbage collection.

7.4 Must analysis and abstract cardinality
Whereas much work in control-flow analysis has focused on inferring may alias
information, Jagannathan et al. [75] formulated a constraint-based must alias
analysis for a higher-order functional language. The algorithm repeatedly alter-
nates between computing approximate control-flow and cardinality information
when given approximate reachability information and vice versa. Since the in-
volved control-flow analysis alone has cubic worst case time complexity, the
entire analysis is quartic. The analysis determines whether all bindings of a
given variable reachable from each program point refer to the same value. The
resulting information enables lightweight closure conversion [148]. Their analy-
sis determines a related property for reference cells that enables other optimizing
transformations.
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Might and Shivers [101] recently formulated ‘abstract reachability’ and ‘ab-
stract cardinality’ as separate extensions to off-the-shelf control-flow analyses.
The former improves precision of analyses, by performing an abstract ‘garbage
collection’ of any unreachable abstract bindings. The latter helps to infer
equalities of concrete values thereby enabling environment analysis and, e.g.,
lightweight closure conversion. They observe that the increased precision actu-
ally speeds up the running time of the analysis, but they do not report the time
complexity of the analysis.

8 Towards abstract-interpretation analyses
Most CFA-approaches have been bottom up in the sense that researchers have
started with a given computable approximation, and tried to improve it: Shivers
refined 0-CFA into 1-CFA, 2-CFA and k-CFA [145]. Wright and Jagannathan
refined 0-CFA into polymorphic splitting [170], and Nielson and Nielson refor-
mulated k-CFA into a uniform k-CFA [110]. In contrast, the traditional ab-
stract interpretation approach is top-down [37]. The starting point is here the
(collecting) semantics, which is the most precise (and hence not computable)
analysis. Through Galois connections or other approximations, the analysis is
then gradually refined into something computable.

Much work in the field of semantics-based control-flow analysis has focused
on ensuring that the proposed analyses compute safe approximations of the
semantics [116, 110]. In contrast, abstract interpretation offers best approxima-
tions [37] in the form of abstraction functions. Together with a companion con-
cretization function, the two can form a Galois connection [37]. Few papers in-
vestigating control-flow analysis relate them by Galois connections [15, 153, 111].
Ayers’s work on Galois connections is available only in his PhD thesis. Nielson
and Nielson’s work on the other hand focuses on proving three analyses correct
with respect to a general specification (an uncomputable collecting semantics)
in the context of a functional language with side-effects, rather than relating the
individual analyses. Nielson and Nielson earlier formulated the open question of
how “to exploit Galois connections and widenings to systematically coarsen” [110]
control-flow analyses.

8.1 Finite and infinite domains
There continues to be some confusion about the applicability of infinite domains
within the area of constraint-based analysis and the general area of abstract in-
terpretation [60, 39, 3]. The data representation of constraints (or the equivalent
regular-tree grammar [39]) is a finite representative on a potentially infinite do-
main. An abstract interpretation can always “inherit” that finite representation
and their corresponding convergence guarantee [3, p.106] to yield a terminating
analysis. To emphasize the point, Cousot and Cousot develop a finitary gram-
mar domain [39], thereby expressing constraint-based analysis as an instance of
abstract interpretation. A lesson from abstract interpretation is that an infinite
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domain with widening and narrowing operators can offer more precision than a
finite domain [38].

8.2 CFA with widening
Few control-flow analyses have been formulated with an explicit widening oper-
ator. Steensgaard and Marquard [152] include a dynamic widening operator in
their (unpublished) analysis to ensure convergence in an infinite domain. Cor-
respondingly Ashley and Dybvig [13] include in their framework a projection
operator similar to a widening operator to ensure rapid termination.

Schmidt [136] outlines an alternative closure analysis that approximates en-
vironments less crudely. To still ensure termination of his analysis he suggests
to index environments by numbers: closure environments bound inside the en-
vironment of another closure have an index one less than their outer binding
environment; and environments of index 0 are simply joined. Even though not
completely formulated as such, Schmidt’s approach can be interpreted as an
indexed widening, as is well-known [37] in abstract interpretation.

There is a clear line of research headed towards more precise modeling of con-
texts [145, 110, 170, 100]. However one will not get full benefit of a very precise
context representation if code and environment components of closures are anal-
ysed separately as independent attributes [85]. The key to precise control-flow
analysis is to keep the code and its environment together in abstract closures,
thereby obtaining a relational analysis [85] as in the above mentioned work by
Steensgaard, Marquard, and Schmidt. Since closures can contain closures ad
infinitum, one would need to introduce widening in order to ensure convergence
of a fixed-point computation operating on such a domain.

9 Relevance
Serrano questions [137, p.122] the usefulness of the additional context compo-
nent in a 1-CFA for an optimizing compiler, compared to a 0-CFA. A possible
answer is as follows. One is not interested in context per se, i.e., the analysis uses
context as a refinement (to increase precision), but it is not essential in the re-
sult. Any compiler pass utilizing CFA information should therefore benefit from
it, just as they would benefit from substituting an escape analysis with a 0-CFA.
As a consequence contexts should not necessarily be abstracted symbolically as
is traditional in CFA. Alternatively, contexts could be approximated numeri-
cally, in order to distinguish them and still gain precision (as in the abstract
interpretation analyses of Deutsch, of Blanchet, and of Venet [47, 22, 162]).

Research by Waddell and Dybvig [163] indicates that for a functional pro-
gramming-language implementation, a rough CFA approximation backed up by
a well-tuned inliner is sufficient for an effective compiler. However with the
advances in formal verification (and very precise analyses), e.g., ASTRÉE [34],
one will still need precise control-flow analyses in order to bring the advances
to verification of higher-order programs.
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10 Conclusion
Over 25 years after Jones’s initial flow analysis of lambda expressions [81],
control-flow analysis has been the subject of a considerable amount of research.
A range of useful analyses have been designed for programs with first-class
functions, all of which differ in their precision and in their time and space com-
plexity. As a result, analyses now come in many formulations. Some of them
are available only as technical reports, and others not at all.

We have surveyed the field in an attempt to put structure to this body of re-
search. In doing so, we have assembled context-sensitive and context-insensitive
approximations from both theory and practice, and we have classified analyzes
according to their formulation.

As Nielson and Nielson pointed out [110], a simple and systematic devel-
opment of control-flow analysis utilizing the tools of abstract interpretation
still remains to be found. Such a development may provide the insight to ex-
tend recent developments in the verification of first-order programs to verifying
higher-order programs.

Acknowledgments: This paper benefited from Olivier Danvy and Kevin Mil-
likin’s numerous comments and encouragement. Thanks are also due to Thomas
Jensen and Janus Dam Nielsen for comments on an earlier version of this survey.
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