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Extending the Extensional Lambda Calculus
with Surjective Pairing is Conservative

Kristian Støvring

BRICS ∗

Department of Computer Science

University of Aarhus †

November 22, 2005

Abstract

We answer Klop and de Vrijer’s question whether adding surjective-
pairing axioms to the extensional lambda calculus yields a conservative
extension. The answer is positive. As a byproduct we obtain the first “syn-
tactic” proof that the extensional lambda calculus with surjective pairing
is consistent.

1 Introduction

The theory λβηSP is obtained from the (untyped) extensional lambda calculus
λβη [2, p. 32], by adding three surjective-pairing axioms:

(π1) π1 〈M, N〉 = M
(π2) π2 〈M, N〉 = N
(SP) 〈π1 M, π2 M〉 = M

A λ-term is called pure if it does not contain any of the new constructs πi and
〈·, ·〉. In this article we give a positive answer to the following question, asked by
Klop and de Vrijer in 1989 [7, 15] and featured as Problem 5 on the original RTA
list of open problems [4]:
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Suppose that M and N are pure λ-terms. Does M =βηSP N imply
M =βη N?

In other words, we show that the theory λβηSP is a conservative extension of the
theory λβη. As a byproduct we obtain the (as far as the author knows) first proof
of consistency of λβηSP which uses purely syntactic methods.

1.1 Background of the problem

The two perhaps most obvious attempts at showing conservativity of λβηSP fail
because of two negative results: No surjective-pairing function (that is, no pairing
function satisfying the three axioms on the preceding page) is definable in the
lambda calculus [1], and the standard reduction relation for the lambda calculus
with surjective pairing is not confluent [8]. Both results were shown for the
extensional lambda calculus as well.

Klop [8] and Klop and de Vrijer [7] have considered a number of properties
of the (non-extensional) lambda calculus with surjective pairing, λβSP, which
would have trivially followed from confluence of the standard reduction relation.
In particular, de Vrijer has shown that λβSP is a conservative extension of the
lambda calculus [15]. This result motivated the question answered here: whether
surjective pairing also conservatively extends the extensional lambda calculus.

The proof of conservativity by de Vrijer is furthermore the first known “syn-
tactic” consistency proof for λβSP. A model-theoretic consistency proof for λβηSP

(and hence for λβSP) can be given using the inverse limit model construction [12].
The theory λβηSP has also been investigated from a categorical point of view.

If C is a cartesian closed category with an object D such that

D ∼= D ×D ∼= D → D,

then there are various ways of interpreting λ-terms as morphisms of C [2, 9].
Moreover, every extension of the theory λβηSP is the theory of a model arising in
this way [9, 13].

1.2 Formalization

The author has formalized and verified the proof of the conservativity result
using the Twelf system [11]. The formalized proof additionally serves as an
implementation of a procedure transforming a formal derivation of M =βηSP N
into a formal derivation of M =βη N (for pure terms M and N). It is available
from

http://www.brics.dk/∼kss/papers/SP/
The formalized statement of the main result is presented in Appendix A.
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2 Background and notation

The reader is assumed to be familiar with basic properties of the untyped lambda
calculus, as presented for example in the first three chapters of Barendregt’s
book [2].

The syntax of λ-terms is extended with constructs for pairing and projection:

M ::= x | λx.M |M M | 〈M, M〉 | π1 M | π2 M

(where x ranges over an infinite set of variables). The pure terms are the usual
λ-terms, i.e., terms with no occurrences of πi or 〈·, ·〉. The set of free variables
of a term M is denoted FV(M). We follow practice and identify α-equivalent
terms.

We use the following notation and definitions for relations on λ-terms: For
any binary relation BR on λ-terms, −→R denotes the compatible closure of BR

as defined in Figure 1. The relation −→R is called a reduction relation. The
reflexive-transitive closure of −→R is written −→∗

R, and the reflexive-transitive-
symmetric closure of −→R is written =R; the relation =R is a congruence in the
usual sense. We write λR for the equational theory of λ-terms corresponding to
=R, i.e., λR is the set of formal equations “M = N” such that M =R N .

M BR M ′

M −→R M ′
M −→R M ′

λx.M −→R λx.M ′

M −→R M ′

M N −→R M ′ N
N −→R N ′

M N −→R M N ′

M −→R M ′

〈M, N〉 −→R 〈M ′, N〉
N −→R N ′

〈M, N〉 −→R 〈M, N ′〉

M −→R M ′

π1 M −→R π1 M ′
M −→R M ′

π2 M −→R π2 M ′

Figure 1: The compatible closure of BR.

The relation BβηSP is defined by the axioms in Figure 2. This relation gen-
erates a reduction relation −→βηπSP and a congruence =βηSP. The extensional
lambda calculus with surjective pairing is defined as the theory λβηSP.
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(β) (λx.M) N BβηSP M [x := N ]
(η) λx.M x BβηSP M (if x /∈ FV(M))
(π1) π1 〈M, N〉 BβηSP M
(π2) π2 〈M, N〉 BβηSP N
(SP) 〈π1 M, π2 M〉 BβηSP M

Figure 2: The relation BβηSP.

3 Overview of the proof

The relation −→βηSP is the standard reduction relation generating =βηSP. This
reduction relation is however not confluent [8, p. 216]; its confluence would im-
mediately imply the main result, namely that λβηSP is conservative over λβη.

1

In this article we instead define a further extension λβηπ of λβηSP and show
that λβηπ is conservative over λβη. Since λβηπ is an extension of λβηSP, the main
result follows.

The proof is structured in the following way:

• In Section 4 we define the extension λβηπ of λβηSP and show that it is
generated by a confluent reduction relation −→βηπ. In the relation −→βηπ

the axioms (η) and (SP) are oriented as expansion axioms (see, e.g., the
work by Jay and Ghani [6]).

• In Section 5 we show that λβηπ is conservative over λβη on pure λ-terms.
This result does not immediately follow from confluence of −→βηπ since
−→βηπ contains (SP) oriented as an expansion axiom.

4 An extension of the theory λβηSP

We first define the extension λβηπ of λβηSP. The relation Bβηπ is defined by the
axioms in Figure 3. This relation generates the theory λβηπ and the reduction
relation −→βηπ. As discussed above, the axioms (η) and (SP) in −→βηπ are
oriented as expansion axioms.

Remark. The theory λβηπ and the associated reduction relation −→βηπ have cer-
tain properties which might make them interesting in their own right:

1The non-confluent reduction relation considered by Klop [8] is slightly different from
−→βηSP. It is simple to construct a counter-example to confluence similar to Klop’s.
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(β) (λx.M) N Bβηπ M [x := N ]
(η) M Bβηπ λx.M x (if x /∈ FV(M))
(π1) π1 〈M, N〉 Bβηπ M
(π2) π2 〈M, N〉 Bβηπ N
(SP) M Bβηπ 〈π1 M, π2 M〉
(δπ) 〈M, N〉P Bβηπ 〈M P, N P 〉
(π1λ) π1 (λx.M) Bβηπ λx.π1 M
(π2λ) π2 (λx.M) Bβηπ λx.π2 M

Figure 3: The relation Bβηπ .

• From the point of view of semantics: The original model of λβηSP [9, 12] is
also a model of λβηπ. Indeed, let D and E be complete partial orders such
that E ∼= E × E and D ∼= [D → E]. Then D ∼= D × D ∼= [D → D], and
it is easy to verify that the standard interpretation2 of λ-terms as elements
of D gives rise to a model of λβηπ.

As an aside, if D is an arbitrary complete partial order satisfying that
D ∼= D × D ∼= [D → D], then the standard interpretation using these
isomorphisms makes D a model of (at least) λβηSP. Taking D = E in
the above construction now gives an alternative pair of isomorphisms, and
hence an alternative interpretation of λ-terms, resulting in a model of λβηπ.

• From the point of view of term rewriting: In the simply-typed lambda calcu-
lus, term constructs can be proof-theoretically classified as either introduc-
tion forms (λx.M and 〈M, N〉) or elimination forms (M N and πi M), using
the Curry-Howard isomorphism [3]. The simply-typed counterparts of the
axioms (β), (π1), and (π2) of Figure 3 then imply that when constructing
a term bottom-up, “an introduction form followed by an elimination form
is a redex.” This property is preserved in the untyped reduction relation
−→βηπ by virtue of the three new axioms.

In the rest of this section we prove that −→βηπ is confluent. For that pur-
pose we describe −→∗

βηπ as the union of two relations: an “extensionality-free”
part −→∗

βπ and η/SP-expansion −→∗
η.

• In Section 4.1 we define the relation −→βπ and show that it is confluent.

• In Section 4.2 we define η/SP-expansion −→η and show that it commutes
with −→βπ in the following sense: If N1 ←−∗

η M −→∗
βπ N2, then there is a

P such that N1 −→∗
βπ P ←−∗

η N2.

2See also Exercise 18.4.19 in Barendregt’s book [2].
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• Finally, in Section 4.3 we use the Hindley-Rosen Lemma [2, p. 64] (and the
well-known fact that −→η is confluent) to conclude that −→βηπ is confluent.

Earlier, van Oostrom used a similar approach to prove confluence of η-expansion
(together with β-reduction) in the pure lambda calculus [10].

4.1 Confluence of an extensionality-free subrelation

In order to define the subrelation −→βπ of −→∗
βηπ we need the auxiliary notion

of π-neutral terms:

Definition 1. The π-neutral terms are generated by the following (sub)grammar:

A ::= λx.M | π1 A | π2 A

In other words, the π-neutral terms are those of the form πi1(· · · (πin(λx.M)) · · · )
for some n ≥ 0.

The relation Bβπ is defined by the axioms in Figure 4. This relation generates
the reduction relation −→βπ.

(β) (λx.M) N Bβπ M [x := N ]
(π1) π1 〈M, N〉 Bβπ M
(π2) π2 〈M, N〉 Bβπ N
(δπ) 〈M, N〉P Bβπ 〈M P, N P 〉
(π1λ) π1 (λx.M) Bβπ λx.π1 M
(π2λ) π2 (λx.M) Bβπ λx.π2 M

(π1 ν) (π1 M) N Bβπ π1 (M N) (if M is π-neutral)
(π2 ν) (π2 M) N Bβπ π2 (M N) (if M is π-neutral)

Figure 4: The relation Bβπ.

Note that −→βπ does not contain the “extensionality” axioms (η) and (SP).
On the other hand, the new axioms (π1ν) and (π2ν) of −→βπ are derivable in
−→∗

βηπ, using η-expansion:

(πi M) N −→βηπ (πi (λx.M x)) N −→βηπ (λx.πi (M x)) N −→βηπ πi (M N)

Therefore, −→βπ ⊆ −→∗
βηπ.

The key property of π-neutral terms is that if a term M is π-neutral, then no
substitution instance of M can βπ-reduce to a term of the form 〈P, Q〉:
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Proposition 2.

(i) If M is π-neutral and M −→βπ M ′, then M ′ is π-neutral.

(ii) If M is π-neutral and N is an arbitrary term, then M [x := N ] is π-neutral.

(iii) No term of the form 〈P, Q〉 is π-neutral.

We now prove that −→βπ is confluent. The proof follows the Tait/Martin-Löf
proof of confluence of β-reduction in the pure lambda calculus [2, p. 60]: First
we define a “parallel” [14] reduction relation =⇒βπ, shown in Figure 5.

M =⇒βπ M ′ N =⇒βπ N ′

(λx.M) N =⇒βπ M ′[x := N ′]

M =⇒βπ M ′

π1 〈M, N〉 =⇒βπ M ′
N =⇒βπ N ′

π2 〈M, N〉 =⇒βπ N ′

M =⇒βπ M ′ N =⇒βπ N ′ P =⇒βπ P ′

〈M, N〉P =⇒βπ 〈M ′ P ′, N ′ P ′〉

M =⇒βπ M ′

π1 (λx.M) =⇒βπ λx.π1 M ′
M =⇒βπ M ′

π2 (λx.M) =⇒βπ λx.π2 M ′

M =⇒βπ M ′ N =⇒βπ N ′
(M π-neutral)

(π1 M) N =⇒βπ π1 (M ′ N ′)

M =⇒βπ M ′ N =⇒βπ N ′
(M π-neutral)

(π2 M) N =⇒βπ π2 (M ′ N ′)

M =⇒βπ M
M =⇒βπ M ′

λx.M =⇒βπ λx.M ′

M =⇒βπ M ′ N =⇒βπ N ′

M N =⇒βπ M ′ N ′
M =⇒βπ M ′ N =⇒βπ N ′

〈M, N〉 =⇒βπ 〈M ′, N ′〉

M =⇒βπ M ′

π1 M =⇒βπ π1 M ′
M =⇒βπ M ′

π2 M =⇒βπ π2 M ′

Figure 5: Parallel βπ-reduction =⇒βπ.
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Proposition 3.

(i) −→∗
βπ = =⇒∗

βπ.

(ii) If M =⇒βπ M ′ and N =⇒βπ N ′, then M [x := N ] =⇒βπ M ′[x := N ′].

(iii) If M −→∗
βπ M ′ and N −→∗

βπ N ′, then M [x := N ] −→∗
βπ M ′[x := N ′].

Proof. Standard [2, p. 60]. Part (iii) follows from the first two parts and will be
used in the next section.

Proposition 4. The relation =⇒βπ satisfies the diamond property: If M =⇒βπ

N1 and M =⇒βπ N2, then there is a P such that N1 =⇒βπ P and N2 =⇒βπ P .

Proof. By induction on the derivations of M =⇒βπ N1 and M =⇒βπ N2 according
to the rules in Figure 5. Many of the cases are well-known from the proof of
confluence of β-reduction. We show the interesting new cases:

• (λx.πi M1) N1 ⇐=βπ (πi (λx.M)) N =⇒βπ πi ((λx.M2) N2), where M =⇒βπ

M1, M2 and N =⇒βπ N1, N2.

By induction hypothesis, there are M3 and N3 such that M1, M2 =⇒βπ M3

and N1, N2 =⇒βπ N3. Then πi M1 =⇒βπ πi M3, hence (λx.πi M1) N1 =⇒βπ

πi (M3[x := N3]). Also, πi ((λx.M2) N2) =⇒βπ πi (M3[x := N3]).

• (πi M1) N1 ⇐=βπ (πi M) N =⇒βπ πi (M2 N2), where M is π-neutral,
M =⇒βπ M1, M2, and N =⇒βπ N1, N2.

By induction hypothesis, there are M3 and N3 such that M1, M2 =⇒βπ

M3 and N1, N2 =⇒βπ N3. By Proposition 2(i) and 3(i), M1 is π-neutral.
Therefore, (πi M1) N1 =⇒βπ πi (M3 N3) and πi (M2 N2) =⇒βπ πi (M3 N3).

Corollary 5. The relation −→βπ is confluent.

Remark. Without the restriction to π-neutral terms in two of the rules, =⇒βπ

would not satisfy the diamond property: Then we would have (π1 〈x, y〉) z =⇒βπ

x z and (π1 〈x, y〉) z =⇒βπ π1 (〈x, y〉 z), but not π1 (〈x, y〉 z) =⇒βπ x z.

4.2 Eta-expansion commutes with −→βπ

We define Bη by the axioms in Figure 6. This relation generates the η/SP-
expansion relation −→η.

The purpose of this section is to show that −→βπ commutes with −→η: If
N1 ←−∗

η M −→∗
βπ N2, then there is a P such that N1 −→∗

βπ P ←−∗
η N2. In order

to prove this result we define “parallel” η/SP-expansion =⇒η [6, 14], shown in
Figure 7.
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(η) M Bη λx.M x (if x /∈ FV(M))
(SP) M Bη 〈π1 M, π2 M〉

Figure 6: The relation Bη.

M =⇒η M ′
(x /∈ FV(M))

M =⇒η λx.M ′ x
M =⇒η M ′

M =⇒η 〈π1 M ′, π2 M ′〉

M =⇒η M
M =⇒η M ′

λx.M =⇒η λx.M ′

M =⇒η M ′ N =⇒η N ′

M N =⇒η M ′ N ′
M =⇒η M ′ N =⇒η N ′

〈M, N〉 =⇒η 〈M ′, N ′〉

M =⇒η M ′

π1 M =⇒η π1 M ′
M =⇒η M ′

π2 M =⇒η π2 M ′

Figure 7: Parallel η/SP-expansion =⇒η.
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Proposition 6.

(i) −→∗
η = =⇒∗

η.

(ii) −→η is confluent.

(iii) If M =⇒η M ′ and N =⇒η N ′, then M [x := N ] =⇒η M ′[x := N ′].

Proof. Standard [6]. The confluence of −→η follows from the diamond property
of =⇒η.

We now aim to prove that if N1 ⇐=η M −→βπ N2, then there is a P such that
N1 −→∗

βπ P ⇐=η N2. For most of the different cases (according to the axioms
and congruence rules generating −→βπ) this property can be shown using the
following two lemmas.

Lemma 7. If λx.M =⇒η N , then

(i) there is a P such that N x −→∗
βπ P ⇐=η M , and

(ii) there is a Q such that for i ∈ {1, 2}: πi N −→∗
βπ λx.πi Q and M =⇒η Q.

Proof. By induction on the definition of λx.M =⇒η N .

Lemma 8. If 〈M1, M2〉 =⇒η N , then

(i) for i ∈ {1, 2} there is a Pi such that πi N −→∗
βπ Pi ⇐=η Mi, and

(ii) there are Q1, Q2 such that N x −→∗
βπ 〈Q1 x, Q2 x〉 and also M1 =⇒η Q1

and M2 =⇒η Q2.

Proof. By induction on the definition of 〈M1, M2〉 =⇒η N .

The most complicated case is N ⇐=η (πi M1) M2 −→βπ πi (M1 M2) (where
M1 is π-neutral). Here we use two additional lemmas. In the proof of Lemma 10
we need to perform induction on the height of derivations of “M =⇒η N”, con-
sidering these derivations as finite trees constructed according to the rules in
Figure 7.

Lemma 9. If M =⇒η N and M is π-neutral, then there is a π-neutral P such
that

(i) for i ∈ {1, 2}, πi N −→∗
βπ πi P ,

(ii) M =⇒η P , and

(iii) for any given derivation of M =⇒η N of height n, one can find a derivation
of M =⇒η P of height no greater than n.
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Proof. By induction on the definition of M =⇒η N . Since M is π-neutral there
are only a few cases to consider.

Case 1: N is π-neutral. Then we choose P = N .

Case 2: N = πi N
′ and M = πi M

′ where M ′ =⇒η N ′ and M ′ is π-neutral.
By the induction hypothesis there is a π-neutral P ′ such that N =
πi N

′ −→∗
βπ πi P

′ and M ′ =⇒η P ′. Now choose P = πi P
′.

Case 3: N = 〈π1 N ′, π2 N ′〉 where M =⇒η N ′. By the induction hypothesis
there is a π-neutral P ′ such that π1 N ′ −→∗

βπ π1 P ′, π2 N ′ −→∗
βπ π2 P ′,

and M =⇒η P ′. Then π1 N −→βπ π1 N ′ −→∗
βπ π1 P ′, and similarly

π2 N −→∗
βπ π2 P ′. Now choose P = P ′.

It is easy to verify that if the given derivation of M =⇒η N has height n, then
the above construction gives a derivation of M =⇒η P of height no greater than
n.

Lemma 10. If πi M =⇒η N and M is π-neutral, then there is a P such that
N x −→∗

βπ P ⇐=η πi (M x).

Proof. By induction on the height of the derivation of πi M =⇒η N . We show
the interesting case: Assume that N = 〈π1 N ′, π2 N ′〉 where πi M =⇒η N ′. Let
the height of the given derivation of πi M =⇒η N be n + 1; the height of the
subderivation πi M =⇒η N ′ is then n. By Lemma 9 there is a π-neutral Q such
that π1 N ′ −→∗

βπ π1 Q, π2 N ′ −→∗
βπ π2 Q, and πi M =⇒η Q. Furthermore, the

lemma gives a derivation of πi M =⇒η Q of height no greater than n. Therefore
the induction hypothesis gives a P ′ such that Q x −→∗

βπ P ′ ⇐=η πi (M x). Hence,

N x = 〈π1 N ′, π2 N ′〉 x −→∗
βπ 〈π1 Q, π2 Q〉 x

−→βπ 〈(π1 Q) x, (π2 Q) x〉
−→∗

βπ 〈π1 (Q x), π2 (Q x)〉
−→∗

βπ 〈π1 P ′, π2 P ′〉
⇐=η πi (M x).

We now prove the main lemma needed in the commutation proof:

Lemma 11. If N ⇐=η M −→βπ M ′, then there is a P such that N −→∗
βπ

P ⇐=η M ′.

Proof. Induction on the definition of M =⇒η N , using Lemmas 7-10. We show
some illustrative cases.
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Case 1: 〈π1 N ′, π2 N ′〉 ⇐=η M −→βπ M ′ where N ′ ⇐=η M . By the induction
hypothesis there is a P ′ such that N ′ −→∗

βπ P ′ ⇐=η M ′. Then

〈π1 N ′, π2 N ′〉 −→∗
βπ 〈π1 P ′, π2 P ′〉 ⇐=η M ′

so we choose P = 〈π1 P ′, π2 P ′〉.
Case 2: N1 N2 ⇐=η (λx.M1) M2 −→βπ M1[x := M2] where N1 ⇐=η λx.M1 and

N2 ⇐=η M2. Without loss of generality, x /∈ FV(N1). By Lemma 7(i)
there is a P ′ such that N1 x −→∗

βπ P ′ ⇐=η M1. Then by Propositions 3
and 6, N1 N2 −→∗

βπ P ′[x := N2] ⇐=η M1[x := M2], so we choose P =
P ′[x := N2].

Case 3: N1 N2 ⇐=η (πi M1) M2 −→βπ πi (M1 M2) where M1 is π-neutral,
N1 ⇐=η πi M1, and N2 ⇐=η M2. Choose x /∈ FV(N1). Lemma 10
gives a P ′ such that N1 x −→∗

βπ P ′ ⇐=η πi (M1 x). Then by Proposi-
tions 3 and 6, N1 N2 −→∗

βπ P ′[x := N2] ⇐=η πi (M1 M2), so we choose
P = P ′[x := N2].

Lemma 12.

(i) If N ⇐=η M −→∗
βπ M ′, then there is a P such that N −→∗

βπ P ⇐=η M ′.

(ii) If N ⇐=∗
η M −→∗

βπ M ′, then there is a P such that N −→∗
βπ P ⇐=∗

η M ′.

Proof.

(i) By induction on the length of the reduction sequence M −→∗
βπ M ′, using

Lemma 11.

(ii) By induction on the length of the reduction sequence M =⇒∗
η N , using Part

(i).

By Proposition 6(i), −→∗
η = =⇒∗

η. We therefore conclude from Lemma 12(ii)
that the relations −→βπ and −→η commute:

Proposition 13. If N ←−∗
η M −→∗

βπ M ′, then there is a P such that N −→∗
βπ

P ←−∗
η M ′.

4.3 Confluence of −→βηπ

We now use the results of Sections 4.1 and 4.2 to prove the main result of Sec-
tion 4:

Proposition 14. The relation −→βηπ is confluent.

12



Proof. Proposition 5 states that −→βπ is confluent, Proposition 6(ii) states that
−→η is confluent, and Proposition 13 states that −→βπ commutes with −→η.
By the Hindley-Rosen Lemma [5], the relation −→∗

βηπ = −→∗
βπ ∪ −→∗

η is con-
fluent. More specifically, by constructing the following diagram we see that the
composition of −→∗

βπ with −→∗
η satisfies the diamond property:

M
∗

βπ
~~}}

}}
}}

}} ∗
βπ

  A
AA

AA
AA

A

∗
βπ

  @
@

@
@

@
∗

η~~}}
}}

}}
}} ∗

βπ
~~~

~
~

~
~

∗
η   A

AA
AA

AA
A

N1
∗

βπ
  A

A
A

A ∗
η

~~~
~

~
~

~
∗

η
  @

@
@

@
@ N2

∗
βπ

~~}
}

}
}

∗
η   A

A
A

A
∗

η~~}
}

}
}

P

Corollary 15 (Church-Rosser property). If M =βηπ N , then there is a P
such that M −→∗

βηπ P and N −→∗
βηπ P .

Proof. Follows from confluence of −→βηπ in the standard way [2, p. 54].

Remark. Orienting the axioms (SP) and (η) of −→βηπ as contraction axioms does
not give rise to a confluent reduction relation: With these axioms we would have
〈y, z〉 ←−βηπ λx.(〈y, z〉 x) −→βηπ λx.〈y x, z x〉, but both 〈y, z〉 and λx.〈y x, z x〉
would be normal forms.

5 Main result

We are now almost in a position to prove the main result: Suppose M and N are
pure λ-terms such that M =βηSP N . Then M =βηπ N , and by the Church-Rosser
property (Corollary 15) there is a P such that M −→∗

βηπ P and N −→∗
βηπ P .

However, since −→βηπ contains SP-expansion, we cannot immediately conclude
that P is a pure λ-term with M −→∗

βη P and N −→∗
βη P .

Definition 16 (π-erasure). The π-erasure of a λ-term M is the pure λ-term
|M | defined inductively as follows:

|x| = x
|M N | = |M | |N |
|λx.M | = λx.|M |
|〈M, N〉| = |M |
|π1 M | = |M |
|π2 M | = |M |

13



We could just as well have defined |〈M, N〉| as |N |, since we are only interested
in |P | when P is π-symmetric:

Definition 17. A λ-term M is π-symmetric if for every subterm of M of the
form 〈P, Q〉, the π-erasures of P and Q are βη-equivalent: |P | =βη |Q|.

In particular, every pure λ-term is π-symmetric.

Proposition 18.

(i) |M [x := N ]| = |M |[x := |N | ]
(ii) If M and N are π-symmetric, then M [x := N ] is π-symmetric.

Proof. By induction on M .

Proposition 19. If M is π-symmetric and M −→βηπ N , then

(i) |M | =βη |N |, and

(ii) N is π-symmetric.

Proof. By induction on the definition of M −→βηπ N , using Proposition 18.

Now we are ready to prove that λβηπ is a conservative extension of λβη:

Theorem 20. Let M, N be pure λ-terms. If M =βηπ N , then M =βη N .

Proof. Suppose M and N are pure λ-terms such that M =βηπ N . By the Church-
Rosser property (Corollary 15) there is a P such that M −→∗

βηπ P and N −→∗
βηπ

P . Since M and N are pure, they are in particular π-symmetric; it follows from
Proposition 19 that P is π-symmetric, and that |M | =βη |P | =βη |N |. Hence,

M = |M | =βη |P | =βη |N | = N.

Corollary 21. The theory λβηπ is consistent.

Proof. By Theorem 20 and consistency of λβη [2, p. 67].

Finally we turn to the main result of this article:

Theorem 22. Let M, N be pure λ-terms. If M =βηSP N , then M =βη N .

Proof. By Theorem 20 and the fact that λβηπ is an extension of λβηSP.

We have also obtained a new—syntactic—proof of consistency of λβηSP:

Corollary 23. The theory λβηSP is consistent.

14



Remark. The question of conservativity was originally formulated in a slightly
different setting [7]: Let D, D1 and D2 be three new constants, and add the
following axioms to the pure λβη-calculus:

D1 (D M N) =βηD M
D2 (D M N) =βηD N

D (D1 M) (D2 M) =βηD M

To see that the resulting theory λβηD is conservative over λβη, one can simulate
λβηD in λβηSP by defining D as λx.λy.〈x, y〉, D1 as λx.π1 x, and D2 as λx.π2 x.

6 Related problems

The conservativity proof presented here can be adapted to the non-extensional
case settled by de Vrijer [15], i.e., a minor modification gives an alternative proof
that λβSP is conservative over the lambda calculus λβ. To this end, one should
remove the axiom (η) from every definition and add the two (πiν) axioms to the
definition of −→βηπ. The electronic, formalized version of the proof allows for a
straightforward verification that the modification is correct.

Another related problem posed by Klop and de Vrijer is still open: whether
the reduction relation −→βηSP has the unique normal-form property [7]. The
theory λβηπ does not seem useful in solving that problem.

Meyer asked whether any lambda theory can be conservatively extended with
surjective pairing [4]. That problem also remains open.
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A Formalized statement of the main result

%%% Terms of the untyped lambda calculus with surjective pairing.

term : type.

@ : term -> term -> term. %infix left 10 @.

lam : (term -> term) -> term.

p1 : term -> term.

p2 : term -> term.

pair : term -> term -> term.

%%% Lambda calculus with the extensionality rules eta and SP.

==SP : term -> term -> type. %infix none 5 ==SP.

sp_beta : (lam F) @ N ==SP F N.

sp_eta : lam ([x] M @ x) ==SP M.

sp_proj1 : p1 (pair M N) ==SP M.

sp_proj2 : p2 (pair M N) ==SP N.

sp_SP : pair (p1 M) (p2 M) ==SP M.

% Congruence rules.

sp_refl : M ==SP M.

sp_sym : M ==SP N -> N ==SP M.

sp_trans : M ==SP N -> N ==SP P -> M ==SP P.

sp_c-app : M @ N ==SP M’ @ N’

<- M ==SP M’

<- N ==SP N’.

sp_c-lam : lam F ==SP lam F’

<- ({x} F x ==SP F’ x).
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sp_c-p1 : p1 M ==SP p1 M’

<- M ==SP M’.

sp_c-p2 : p2 M ==SP p2 M’

<- M ==SP M’.

sp_c-pair : pair M N ==SP pair M’ N’

<- M ==SP M’

<- N ==SP N’.

%%% Pure lambda-terms, i.e., no "pair", "p1", or "p2".

pterm : type.

^ : pterm -> pterm -> pterm. %infix left 10 ^.

lambda : (pterm -> pterm) -> pterm.

%block pvar : block {y : pterm}.

%%% Beta-eta equality on pure terms.

==be : pterm -> pterm -> type. %infix none 5 ==be.

be_beta : (lambda F) ^ N ==be F N.

be_eta : lambda ([x] M ^ x) ==be M.

% Congruence rules.

be_refl : M ==be M.

be_sym : M ==be N -> N ==be M.

be_trans : M ==be N -> N ==be P -> M ==be P.

be_c-app : M ^ N ==be M’ ^ N’

<- M ==be M’

<- N ==be N’.

be_c-lam : lambda F ==be lambda F’

<- ({x} F x ==be F’ x).
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%%% Injecting pure terms into the general terms.

inject : pterm -> term -> type.

%mode inject +P -T.

inj_app : inject (P1 ^ P2) (M1 @ M2)

<- inject P1 M1

<- inject P2 M2.

inj_lam : inject (lambda P) (lam M)

<- ({x} {y} inject x y -> inject (P x) (M y)).

%block inj : block {x : pterm} {y : term} {thm : inject x y}.

%worlds (inj) (inject _ _).

%total P (inject P _).

%%% The main theorem: ==SP is conservative over ==be.

conservative : inject M M’ -> inject N N’

-> M’ ==SP N’

-> M ==be N

-> type.

%mode conservative +I1 +I2 +E1 -E2.

% [The proof is omitted.]

%worlds () (conservative _ _ _ _).

%total I1 (conservative I1 _ _ _).

% With empty "worlds", the main theorem is actually only shown

% for closed terms. (The generalization to open terms easily

% follows by lambda-abstracting every free variable).
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