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Abstract

In this paper we prove general logical metatheorems which state
that for large classes of theorems and proofs in (nonlinear) functional
analysis it is possible to extract from the proofs effective bounds
which depend only on very sparse local bounds on certain param-
eters. This means that the bounds are uniform for all parameters
meeting these weak local boundedness conditions. The results vastly
generalize related theorems due to the second author where the global
boundedness of the underlying metric space (resp. a convex subset
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of a normed space) was assumed. Our results treat general classes of
spaces such as metric, hyperbolic, CAT(0), normed, uniformly con-
vex and inner product spaces and classes of functions such as nonex-
pansive, Hölder-Lipschitz, uniformly continuous, bounded and weakly
quasi-nonexpansive ones. We give several applications in the area of
metric fixed point theory. In particular, we show that the uniformities
observed in a number of recently found effective bounds (by proof the-
oretic analysis) can be seen as instances of our general logical results.

1 Introduction

In [22], the second author established - as part of a general project of ap-
plied proof theory - logical metatheorems which guarantee a-priorily the
extractability of uniform bounds from large classes of proofs in functional
analysis. ‘Uniformity’ here refers to the independence of the bounds from
parameters ranging over compact subspaces (in the case of concrete Polish
spaces) as well as abstract bounded (not necessarily compact!) metric spaces
or bounded convex subsets of hyperbolic, CAT(0), normed, uniformly con-
vex or inner product spaces. By ‘abstract’ spaces we mean that the proofs
only use the general axioms for e.g. metric or hyperbolic spaces. If these
axioms have a strong uniformity built-in (as in the classes just mentioned),
then this property prevails also for theorems proved in strong theories based
on these axioms. The metatheorems were derived using a monotone proof
interpretation, namely an extension of Gödel’s so-called functional interpre-
tation combined with a novel form of majorizability over function spaces
of arbitrary types. The theorems were applied to results in metric fixed
point theory to explain the extractability of strong uniform bounds that had
been observed previously in several concrete cases ([18, 20, 24]) as well as to
predict new such bounds which subsequently could, indeed, be found follow-
ing the extraction algorithm provided by monotone functional interpretation
([23, 21]).

In the concrete applications it usually turned out that instead of the assump-
tion of the whole space or some convex subset being bounded only some
sparse local boundedness conditions were actually needed. This observation
was the starting point of the present paper which establishes far reaching
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extensions of the results from [22] to unbounded spaces which guarantee
uniform bounds under exactly such limited local boundedness assumptions.
As we will show below, in most applications our new metatheorems com-
pletely close the gap which was left between the conclusions predicted by the
old metatheorems and the general form of actual bounds constructed in the
case studies. In particular, we now for the first time can explain a quan-
titative version of a well-known theorem of Borwein, Reich and Shafrir [2]
on Krasnoselski-Mann iterations of nonexpansive mappings in unbounded hy-
perbolic spaces, which was found in [24], as an instance of the new metatheo-
rems. The proofs still use a combination of functional interpretation and ma-
jorization but this time in a much more subtle way: both the functional inter-
pretation as well as the majorization relation to be applied are parametrized
by a point a of the space X in question. In the applications we will be able to
achieve by a suitable choice of a (which in turn depends on the parameters
of the problem) that the object constructed by the a-functional interpre-
tation can be a-majorized by a term which no longer depends on a (nor
the parameters involving the space X). This applies, furthermore, to large
classes of mappings between such spaces, as e.g. nonexpansive, weakly quasi-
nonexpansive, Lipschitz-Hölder, uniformly continuous or bounded mappings.

The results in this paper not only allow one to strengthen known existence
results in functional analysis by establishing qualitatively new forms of uni-
form existence as well as new quantitative bounds, but also by weakening
of the assumptions needed. E.g. assumptions of the form ‘f has a fixed
point’ can for large classes of proofs and theorems be replaced by the much
weaker assumption ‘f has approximate fixed points’. Finally, we will indicate
how our results extend to contexts where several spaces X1, . . . , Xn from the
aforementioned classes of spaces as well as their products are simultanously
present. We are confident that these results will have many more applications
also outside the context of fixed point theory (see e.g. [25] for a survey of
different topics to which this kind of ‘proof mining’ approach can be applied).

2 Definitions

The classes of general spaces we are considering are metric spaces, hyper-
bolic spaces (including CAT(0)-spaces) as well as normed spaces. Under a

3



hyperbolic space we understand the following:

Definition 2.1. (X, d, W ) is called a hyperbolic space if (X, d) is a metric
space and W : X ×X × [0, 1] → X a function satisfying

(i) ∀x, y, z ∈ X∀λ ∈ [0, 1](d(z, W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y)),

(ii) ∀x, y ∈ X∀λ1, λ2 ∈ [0, 1](d(W (x, y, λ1), W (x, y, λ2)) = |λ1−λ2|·d(x, y)),

(iii) ∀x, y ∈ X∀λ ∈ [0, 1](W (x, y, λ) = W (y, x, 1− λ)),

(iv)

{ ∀x, y, z, w ∈ X, λ ∈ [0, 1]
(d(W (x, z, λ), W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w)).

Remark 2.2. As discussed in detail in [22], we obtain Takahashi’s [34] ‘con-
vex metric spaces’ if the axioms (ii)-(iv) are dropped, and a notion which is
equivalent to the concept of ‘space of hyperbolic type’ from [11] if we drop
only (iv). As observed in [31, 2] and [32], several arguments in metric fixed
point theory require a bit more of linear structure which gave rise to a notion
of ‘hyperbolic space’1 in [14, 31] which adds axiom (iv) (for λ := 1

2
) and the

requirement that any two points not only are connected by a metric segment
but by a metric line. As a consequence of this (just as in the case of normed
spaces) nontrivial hyperbolic spaces in the sense of [14, 31] always are un-
bounded and convex subsets of a hyperbolic space in general are no longer
hyperbolic spaces themselves. The existence of metric lines allows one to de-
rive the general axiom (iv) from the special case of λ = 1

2
. It turns out that

if we state (iv) directly for general λ as above then the proofs in metric fixed
point theory we are interested in (e.g. the main results in [2] and [32]) all go
through for our more liberal notion of ‘hyperbolic space’ which not only has
a simpler logical structure but also includes all convex subsets of hyperbolic
(and in particular normed) spaces as well as all CAT(0)-spaces, whereas the
more restricted notion used in [14, 31, 32] only covers CAT(0)-spaces having
the geodesic line extension property (see [3] for details on CAT(0)-spaces).

As carried out in detail in [22] we formalize our classes of spaces on top of
a formal system Aω of classical analysis which is based on a language of
functionals of finite type.

1Unfortunately, Kirk calls this notion in [14] ‘space of hyperbolic type’ although it
differs from the definition of the latter in [11].
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Definition 2.3. The set T of all finite types is defined inductively over the
ground type 0 by the clauses

(i) 0 ∈ T, (ii) ρ, τ ∈ T ⇒ (ρ → τ) ∈ T.

The formal system Aω for analysis (which is based on the axioms of count-
able and dependent choice which, in particular, yield full comprehension for
numbers) is defined as in [22]. Higher type equality is not a primitive predi-
cate but defined extensionally. Instead of the full axiom of extensionality in
all types, the system Aω only has a quantifier-free rule of extensionality.2

Before we can describe the extensions Aω[X, d],Aω[X, d, W ] etc. of Aω by
an abstract metric space (X, d) or hyperbolic space (X, d, W ) we briefly have
to recall the representation of real numbers in the formal system Aω:

In our formal systems based on Aω, real numbers are represented by Cauchy
sequences (an)n of rational numbers with Cauchy modulus 2−n, i.e.

∀m, n(m, n ≥ k → |am − an| < 2−k).

Rational numbers are represented as pairs (n, m) of natural numbers coded
into a single natural number j(n, m), where j is the Cantor pairing function.

If n is even j(n, m) represents the rational number n/2
m+1

, if n is odd j(n, m)

represents the negative number − (n+1)/2
m+1

. Thus every natural number can
be conceived as the code of a unique rational number. An equality relation
=Q on the representatives of the rational numbers, as well as the usual op-
erators +Q,−Q , ·Q, etc. and the predicates <Q ,≤Q are defined (primitive
recursively) in the obvious way. Thus natural and rational numbers are rep-
resented by objects of type 0 and sequences of rational numbers by objects
of type 1, i.e. by functions of type 0 → 0.

Real numbers are represented by functions f : IN → IN (i.e of type 1) s.t.

∀n(|f(n)−Q f(n + 1)| <Q 2−n−1). (∗)
To ensure that each function f : IN → IN represents a real number we use
the following construction:

f̂(n) :=

{
f(n) if ∀k < n(|f(k)−Q f(k + 1)|Q <Q 2−k−1),
f(k) for min k < n with |f(k)−Q f(k + 1)|Q ≥Q 2−k−1 otherwise.

2See [22] for an extensive discussion of this crucial point.
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For better readability we will usually write e.g. 2−n instead of its (canonical)
code 〈2−n〉 := j(2, 2n − 1).

For every f : IN → IN the construction f̂ , which can be carried out in Aω,
satisfies (∗), and if already f satisfies (∗) then ∀n(f(n) =0 f̂(n)). Thus every
f codes a unique real number, namely the one given by the Cauchy sequence
coded by f̂ . The construction f 7→ f̂ enables us to reduce quantifiers ranging
over IR to ∀f 1, resp. ∃f 1, without introducing additional quantifiers. For
natural numbers b ∈ IN we have the embedding (b)IR via the constructing
(b)IR =1 λn.j(2b, 0).

The equivalence relation =IR and the relations ≤IR and <IR on (representa-
tives of) real numbers are defined notions. The relations =IR and ≤IR are
given by Π0

1-predicates while <IR is given by a Σ0
1-predicate:

f1 =IR f2 :≡ ∀n(|f̂1(n + 1)−Q f̂2(n + 1)| <Q 2−n)

f1 <IR f2 :≡ ∃n(f̂2(n + 1)−Q f̂1(n + 1) ≥Q 2−n)
f1 ≤IR f2 :≡ ¬(f2 <IR f1)

The operators +IR,−IR, ·IR,etc. on representatives of real numbers can be
defined by simple primitive recursive functionals. For further details see [22].

For the interval [0, 1], which plays an important role in the formal treatment
of hyperbolic spaces, we use a special representation by number theoretic
functions IN → IN(which are bounded by a fixed function M):

Definition 2.4.

x̃(n) := j(2k0, 2
n+2 − 1), where k0 = max k ≤ 2n+2[

k

2n+2
≤Q x̂(n + 2)].

One easily verifies the following:

Lemma 2.5. Provably in Aω, for all x1:

1. 0IR ≤IR x ≤IR 1IR → x̃ =IR x,

2. 0IR ≤IR x̃ ≤IR 1IR,

3. x̃ ≤1 M := λn.j(2n+3, 2n+2 − 1),

4. x >IR 1IR → x̃ =IR 1IR, x <IR 0IR → x̃ =IR 0IR.
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The theories of classical analysis extended with metric or normed linear
spaces and their variants are defined almost as in [22]. The crucial difference
is that while in [22] only bounded metric spaces (X, d) and bounded convex
subsets C of normed linear spaces (X, ‖ · ‖) are considered, we now permit
unbounded metric spaces (X, d) and unbounded convex subsets C. In [22],
the boundedness is expressed by an axiom stating explicitly that (X, d), resp.
the convex subsets C, are bounded by b. In our unbounded variants we omit
this axiom. To distinguish the not-b-bounded theories from the b-bounded
theories Aω[X, d] and Aω[X, ‖ · ‖, C] defined in [22], we will denote them by
Aω[X, d]−b and Aω[X, ‖ · ‖, C]−b. We also consider theories Aω[X, d, W ]−b

capturing hyperbolic spaces and Aω[X, d, W, CAT(0)]−b capturing CAT(0)-
spaces. More precisely, the theories Aω[X, d]−b, Aω[X, d, W ]−b and
Aω[X, d, W, CAT(0)]−b result by

(i) extending Aω to the set TX of all finite types over the two ground types
0 and X, i.e.

(i) 0, X ∈ TX , (ii) ρ, τ ∈ TX ⇒ (ρ → τ) ∈ TX

(in particular, the constants Πρ,τ , Σδ,ρ,τ , Rρ for λ-abstraction and prim-
itive recursion (in the extended sense of Gödel [10]) and their defining
axioms and the schemes IA (induction), QF-AC (quantifier-free choice
in all types), DC (dependent countable choice) and the weak exten-
sionality rule QF-ER are now taken over the extended language),

(ii) adding a constant 0X of type X,

(iii) adding a new constant dX of type X → X → 1 (representing the
metric) together with the axioms

(1) ∀xX(dX(x, x) =IR 0IR),

(2) ∀xX , yX(dX(x, y) =IR dX(y, x)),

(3) ∀xX , yX , zX(dX(x, z) ≤IR dX(x, y) +IR dX(y, z)).

In these axioms we refer to the representation of real numbers (includ-
ing the definition of =IR,≤IR) as sketched above.

Equality =0 at type 0 is the only a primitive equality predicate. xX =X yX

is defined as dX(x, y) =IR 0IR. Equality for complex types is defined as before
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as extensional equality using =0 and =X for the base cases.

Aω[X, d, W ]−b results from Aω[X, d]−b by adding a new constant WX of type
X → X → 1 → X together with the axioms (where λ̃ is defined as above)

(4) ∀xX , yX, zX∀λ1(dX(z, WX(x, y, λ)) ≤IR (1IR−IRλ̃)dX(z, x)+IRλ̃dX(z, y)),

(5) ∀xX, yX∀λ1
1, λ

1
2(dX(WX(x, y, λ1), WX(x, y, λ2)) =IR |λ̃1−IRλ̃2|IR·IRdX(x, y)),

(6) ∀xX , yX∀λ1(WX(x, y, λ) =X WX(y, x, (1IR −IR λ))),

(7)

{ ∀xX , yX, zX , wX , λ1

(dX(WX(x, z, λ), WX(y, w, λ)) ≤IR (1IR −IR λ̃)dX(x, y) +IR λ̃dX(z, w)).

Aω[X, d, W, CAT(0)]−b results from Aω[X, d, W ]−b by adding as further ax-
iom the formalized form of the Bruhat-Tits or CN−-inequality[4], i.e.

∀xX , yX
1 , yX

2 (dX(x, WX(y1, y2,
1
2
))2

≤IR
1
2
dX(x, y1)

2 +IR
1
2
dX(x, y2)

2 −IR
1
4
dX(y1, y2)

2).

Remark 2.6. 1. The additional axioms of Aω[X, d]−b express (modulo
our representation of IR sketched above) that dX represents a pseudo-
metric d (on the universe the type-X variables are ranging over).3

Hence dX represents a metric on the set of equivalence classes gen-
erated by =X. We do not form these equivalence classes explicitly but
talk instead only about representatives xX , yX. However, it is important
to stress that a functional fX→X represents a function X → X only if
it respects this equivalence relation, i.e.

∀xX , yX(x =X y → f(x) =X f(y)).

Due to our weak (quantifier-free) rule of extensionality we in general
only can infer from a proof of s =X t that f(s) =X f(t). The re-
striction on the availability of extensionality is crucial for our results
to hold (see the discussion in [22]). However, the extensionality of the
constants dX , WX as well as the constants for normed linear spaces can
all be proved to be fully extensional from their defining axioms. Like-
wise, for most (but not all) of the classes of functions which we will
consider below (notably nonexpansive functions) the full extensionlity
will follow from their defining conditions.

3Note that (1)− (3) imply that ∀xX , yX
(
dX(x, y) ≥IR 0IR

)
.
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2. Our axiomatization of WX given by the axioms (4)-(7) differs slightly
from the one given in [22]. Our present axiomatization is equivalent to
the extension of the one given in [22] by the additional axiom

WX(x, y, λ) =X WX(x, y, λ̃)

using the property

1̃−IR λ =IR 1−IR λ̃

of our operation λ 7→ λ̃ (which follows using lemma 2.5.4). This ad-
ditional axiom is trivially satisfied by the interpretation of WX in the
model Sω,X from [22] so that it can be added without causing problems.
The benefit of this is that then the axioms on WX can be stated in the
simple form given above compared to the more complicated formula-
tion in [22]. The intuitive interpretation of WX in a hyperbolic spaces
(X, d, W ) is that for x, y ∈ X we interpret WX(x, y, λ) by W (x, y, rλ̃)
where rλ̃ is the unique real number in [0, 1] that is represented by λ̃.

3. Our additional axiom CN− used in defining Aω[X, d, W,CAT(0)] dif-
fers from the one used in [22] (under the name CN∗) but is in fact
equivalent to the latter: CN− is (over the W -axioms (i)-(iv)) equiva-
lent to the more usual formulation CN of the Bruhat-Tits inequality[4]
which states that every midpoint of y1, y2 satisfies the inequality stated
for W (y1, y2,

1
2
). The latter point provably (in Aω[X, d, W ]) is a mid-

point so that CN implies CN−. From CN− is easily follows not only
that every midpoint of y1, y2 has to coincide with W (y1, y2,

1
2
) (so that

CN follows) but even the quantitative version CN∗ of CN. In [22],
CN∗ was used as axiom as it is (in contrast to CN) purely universal
which is crucially used in the proofs). However, CN− is purely uni-
versal too and equivalent to CN∗. Since it easier to state we use this
formulation here.

As for Aω[X, ‖ · ‖, C]−b, the corresponding theories for uniformly convex
spaces, Aω[X, ‖·‖, C, η]−b, and real inner product spaces, Aω[X, ‖·‖, C, 〈·, ·〉]−b,
are defined as in [22] except that the axioms stating the boundedness of C
is dropped.

Finally, various moduli naturally occurring in analysis, such as e.g. a modulus
of uniform continuity or a modulus of uniform convexity, are also represented
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by number theoretic functions IN → IN, i.e. objects of type 1. Thus e.g. the
statement f : X → X is uniformly continuous with modulus ω : IR → IR:

∀x, y ∈ X∀ε > 0(d(x, y) ≤ ω(ε) → d(f(x), f(y)) ≤ ε)

is translated into

∀x, y ∈ X∀k ∈ IN(d(x, y) < 2−ω(k) → d(f(x), f(y)) ≤ 2−k)

where ω : IN → IN and the translated statement is purely universal.

3 A generalized approach to majorization

In [22] the strong majorization relation, first introduced by Bezem[1] for the
finite types T over IN, is extended to the types TX with the new ground type
X for metric spaces (X, d) and normed linear spaces (X, ‖ · ‖). Furthermore,
a mapping ρ̂ between types ρ ∈ TX and ρ̂ ∈ T, and a relation ∼ρ between
functionals of type ρ ∈ TX and ρ̂ ∈T are defined inductively. By relating
the constants of the theories Aω[X, d] and Aω[X, ‖ · ‖] (and their variants)
to suitable functionals in Aω via the relation ∼ρ one can, combined with
majorization in the types TX , systematically eliminate the dependency on
the type X in the extracted terms and obtain bounds independent of param-
eters ranging over bounded metric spaces, resp. bounded convex subsets of
normed linear spaces.

In this section we present a generalized approach to extending the strong
majorization relation to the types TX . The (strong) majorization relation
was defined by Howard and Bezem:

Definition 3.1 (Howard-Bezem, [12, 1]). The strong majorization rela-
tion s-maj over the finite types T is defined as follows:

• x∗ s-maj0 x :≡ x∗ ≥IN x, where ≥IN is the usual (primitive recursive)
order on IN,

• x∗ s-majρ→τ x :≡ ∀y∗, y(y∗ s-majρ y → x∗y∗ s-majτ x∗y, xy).
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In [22], two different approaches are employed for metric and normed linear
spaces respectively to extend the majorization relation to the new type X.
For metric spaces only the restricted case of b-bounded spaces is treated,
where b is an integer upper bound on the metric of the space. For bounded
metric spaces the relation s-maj is extended to the types TX by defining:

x∗ s-majX x :≡ (0 = 0), i.e. always true.

Usually extending majorization to a new type X imposes a kind of order on
the elements of X which the majorization of the constants 0X , dX and WX

must respect. Since here the metric dX can be bounded independently of the
elements x, y ∈ X to which it is applied, namely by λxX , yX .(b)IR, and since
the function WX merely produces new elements of X, in [22] the majorization
relation on X could be defined to be always true (corresponding to a trivial
order on X).

For normed linear spaces this approach does not work as non-trivial normed
linear spaces always are unbounded. Instead in [22] the extension of the
majorization relation to the new type X for normed linear spaces (X, ‖ · ‖)
is defined via the norm:

x∗ s-majX x :≡ ‖x∗‖X ≥IR ‖x‖X .

The majorization of extracted terms in [22] then consists of three steps:
First one majorizes the extracted terms in TX – these majorants may still
depend on the constants of Aω[X, ‖ · ‖]. Next one eliminates the dependency
on X using the relation ∼ρ and an ineffective operator (·)◦ (to be defined
below). Finally, the resulting terms are majorized once more in the types T
to eliminate uses of the ineffective (·)◦-operator.

As mentioned above, using these techniques it is possible to derive the inde-
pendence of extracted bounds from parameters ranging over bounded metric
spaces, resp. norm-bounded convex subsets C of normed linear spaces. The
generalized approach to majorization we describe in this section aims to
treat the more general cases of unbounded metric and hyperbolic spaces and
normed linear spaces with unbounded convex subsets C, i.e. the theories
Aω[X, d]−b, Aω[X, d, W ]−b and Aω[X, ‖ · ‖, C]−b, and to derive similar unifor-
mities under certain local boundedness conditions to be discussed in detail
later. This generalized approach is based upon the first two steps of the pre-
vious treatment of normed linear spaces: (strong) majorization in the types
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TX and the relation ∼ρ. In [22], in the mapping ·̂ the type X with (X, d) a
metric space was mapped to the type 0, while the type X with (X, ‖ · ‖) a
normed linear space was mapped to the type 1. In this paper, we will map
the type X to 0 in both cases:

Definition 3.2. For ρ ∈ TX we define ρ̂ ∈ T inductively as follows

0̂ := 0, X̂ := 0, ̂(ρ → τ) := (ρ̂ → τ̂),

i.e. ρ̂ is the result of replacing all occurrences of the type X in ρ by the type
0.

The generalized approach to majorization will again involve the ()◦-operator,
but restricted to cases where the circle operator is effectively computable.
Hence, the second application of strong majorization, used in the previous
treatment of normed linear spaces to get rid of ineffective instances of the
()◦-operator, is no longer necessary.

Combining Bezem’s notion of strong majorization s-maj and the idea of the
relation ∼ρ we define a family of (majorization) relations &a

ρ between ob-
jects of type ρ ∈ TX and their majorants of type ρ̂ ∈ T. The relation is
parametrized by an element a ∈ X, where X is the underlying metric or
normed linear space and a ∈ X serves as a reference point for comparing
and majorizing elements of X. In L(A[X, d])−b, resp. L(A[X, ‖ · ‖]), this is
syntactically expressed as follows:

Definition 3.3. We define a ternary relation &a
ρ between objects x, y and a

of type ρ̂, ρ and X respectively by induction on ρ as follows:

• x0 &a
0 y0 :≡ x ≥IN y,

• x0 &a
X yX :≡ (x)IR ≥IR dX(y, a),

• x &a
ρ→τ y :≡ ∀z′, z(z′ &a

ρ z → xz′ &a
τ yz) ∧ ∀z′, z(z′ &a

bρ z → xz′ &a
bτ

xz).

For normed linear spaces we choose a = 0X
4, so that dX(x, a) =IR ‖x‖X .

4While it will turn out to be independent of the choice of a whether a given functional
is a-majorizable or not, the choice of a is crucial to obtain “nice” majorants. See Section
9 for a detailed discussion.
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As &a is a relation between objects of different types, the definition of &a
ρ→τ is

slightly more complicated than the corresponding definition of s-majρ→τ . The
first part of the clause ensures that x is a “majorant” for y, the second part
ensures that a majorant x also majorizes itself. Since majorants are of type
ρ̂ ∈ T (where &a

bρ coincides with s-majbρ), this corresponds to requiring that
for all majorants x s-maj x, and so the definition of &a

ρ→τ could equivalently
be rewritten as:

x &a
ρ→τ y :≡ ∀z′, z(z′ &a

ρ z → xz′ &a
τ yz) ∧ x s-majbρ→bτ x.

Remark 3.4. Restricted to the types T the relation &a is identical with
the Howard-Bezem notion of strong majorizability s-maj and hence for ρ ∈
T we may freely write s-majρ instead of &a

ρ, as here the parameter a ∈ X
is irrelevant. Without the requirement that “majorants” must be strongly
self-majorizing, &a restricted to T is identical with Howard’s notion of ma-
jorizability maj.

In the following, we call majorization in the sense of the relation &a (strong)
“a-majorization”, i.e. if t1 &a t2 for terms t1, t2 we say that t1 a-majorizes t2
and we call t1 an a-majorant. If neither term ti depends on a we say that t1
uniformly a-majorizes t2. We will in general aim at uniform majorants so that
we can choose a appropriately (without having an effect on the majorants of
the constants of our theories) to obtain bounds with the intended uniformity
features.

For the normed case we also need a pointwise ≥ρ relation between functionals
of type ρ :

Definition 3.5. ≥ρ is a binary relation between functionals of of type ρ and
which is defined by induction on ρ as follows:

• x0 ≥0 y0 :≡ x ≥IN y,

• xX ≥X yX :≡ ‖x‖X ≥IR ‖y‖X,

• x ≥ρ→τ y :≡ ∀zρ(xz ≥τ yz).

The only nontrivial relation between &0X
ρ and ≥ρ which holds in all types is

the following one:
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Lemma 3.6. For all x∗, x, y of type ρ̂, ρ, ρ resp. the following holds (provably
in Aω[X, ‖ · ‖]):

x∗ &0X
ρ x ∧ x ≥ρ y → x∗ &0X

ρ y.

Proof. Easy induction on ρ. �

4 Metatheorems for metric and hyperbolic

spaces

Before we state the new metatheorems, we recall and add the following defi-
nitions:

Definition 4.1 ([22]). We say that a type ρ ∈ TX has degree

• 1 if ρ = 0 → . . . → 0 (including ρ = 0),

• (0, X) if ρ = 0 → . . . → 0 → X (including ρ = X),

• (1, X) if it has the form τ1 → . . . → τk → X (including ρ = X), where
τi has degree 1 or (0, X).

Definition 4.2. We say that a type ρ ∈ TX has degree 1b, if ρ̂ has degree 1.
Amongst others, the type degree 1b covers types IN, X, IN → IN, IN → X, X →
IN and X → X.

Definition 4.3. A formula F is called a ∀-formula (resp. ∃-formula) if it
has the form F ≡ ∀aσFqf (a) (resp. F ≡ ∃aσFqf(a)) where Fqf does not
contain any quantifiers and the types in σ are of degree 1b or (1, X).

The ()◦-operator is defined as follows:

Definition 4.4 ([22]). For x ∈ [0,∞) define (x)◦ ∈ ININ by

(x)◦(n) := j(2k0, 2
n+1 − 1),

where

k0 := max k
[ k

2n+1
≤ x

]
.
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Remark 4.5. ()◦ is a ‘semantic’ operator defined on the real numbers them-
selves (rather than representatives of real numbers). However, it has a coun-
terpart ◦ : ININ → ININ defined as (f 1)◦ = (|r|)◦, where r is the real number
represented by f, i.e. (f 1)◦ ∈ ININ is defined by

(f)◦(n) := j(2k0, 2
n+1 − 1),

where

k0 := max k
[ k

2n+1
≤IR |f |IR

]
.

In contrast to f̃ 1 defined before, this functional of type 1 → 1 is not com-
putable, but in our bounds it will only be used in the form λn0.((n)IR)◦ which
is (even primitive recursively) computable. It will be clear from the context
whether we refer to ◦ defined on [0,∞) or on ININ.

We will use the following properties of the ()◦-operator:

Lemma 4.6 ([22]). 1. If x ∈ [0,∞), then (x)◦ is a representative of x in
the sense of the representation of real numbers described in Section 2.

2. If x, y ∈ [0,∞) and x ≤ y (in the sense of IR), then (x)◦ ≤IR (y)◦ and
also (x)◦ ≤1 (y)◦ (i.e. ∀n ∈ IN((x)◦(n) ≤ (y)◦(n))).

3. If x ∈ [0,∞), then (x)◦ is monotone, i.e. ∀n ∈ IN((x)◦(n) ≤0 (x)◦(n +
1)).

4. If x, y ∈ [0,∞) and x ≤ y (in the sense of IR), then (y)◦ s-maj1(x)◦

Proof. 1.-3. are part of Lemma 2.10 in [22]. 4. follows from 2. and 3.

Definition 4.7. Let X be a nonempty set. The full set-theoretic type struc-
ture Sω,X := 〈Sρ〉ρ∈TX over IN and X is defined by

S0 := IN, SX := X, Sρ→τ := SSρ
τ .

Here S
Sρ
τ is the set of all set-theoretic functions Sρ → Sτ .

Using this and the ()◦-operator we state the following definition:
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Definition 4.8. We say that a sentence of L(Aω[X, d, W ]−b) holds in a
nonempty hyperbolic space (X, d, W ) if it holds in the models5 of Aω[X, d, W ]−b

obtained by letting the variables range over the appropriate universes of the
full set-theoretic type structure Sω,X with the set X as the universe for the
base type X, 0X is interpreted by an arbitrary element of X, WX(x, y, λ1) is
interpreted as W (x, y, rλ̃), where rλ̃ ∈ [0, 1] is the unique real number repre-
sented by λ̃1 and dX is interpreted as dX(x, y) :=1 (d(x, y))◦.

Finally, we define the following functional, which is particularly useful for
defining majorants for functionals of degree 1.

Definition 4.9 ([22]). For types 0 → ρ with ρ = ρ1 → . . . → ρk → 0, we
define functionals (·)M of types (0 → ρ) → 0 → ρ by :

xM (y0) := λvρ. max 0{x(i, v) | i = 1, . . . , y}.

We now state the main version of our metatheorem for unbounded metric,
hyperbolic and CAT(0)-spaces:

Theorem 4.10. 1. Let ρ be of degree (1, X) or 2 and let B∀(x, u), resp.
C∃(x, v), contain only x, u free, resp. x, v free. Assume that the con-
stant 0X does not occur in B∀, C∃ and that

Aω[X, d]−b ` ∀xρ(∀u0B∀(x, u) → ∃v0C∃(x, v)).

Then there exists a partial computable functional6 Φ : Sbρ ⇀ IN s.t. Φ
is defined on all strongly majorizable elements of Sbρ and the following
holds in all nonempty metric spaces (X, d): for all x ∈ Sρ, x∗ ∈ Sbρ if
there exists an a ∈ X s.t. x∗ &a x then7

∀u ≤ Φ(x∗)B∀(x, u) → ∃v ≤ Φ(x∗)C∃(x, v).

In particular, if ρ is in addition of degree 1b, then Φ : Sbρ × IN → IN is
totally computable.

If 0x does occur in B∀ and/or C∃, then the bound Φ depends (in addition
to x∗) on an upper bound IN 3 n ≥ d(0X , a).

5We use here the plural since the interpretation of 0X is not uniquely determined.
6More precisely, Φ is given by a bar recursive term (in the sense of [33]) which de-

fines a total functional in Mbρ→0 where Mω := 〈Mρ〉 is the type structure of all strongly
majorizable functionals [1]. Note that Mbρ ⊆ Sbρ.

7Note that x∗ &a x implies that x∗ s-majbρ x∗ and hence the strong majorizability of
x∗ so that Φ(x∗) is defined.
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2. The theorem also holds for nonempty hyperbolic spaces Aω[X, d, W ]−b,
(X, d, W ) and for
Aω[X, d, W, CAT(0)]−b where (X, d, W ) is a CAT(0) space.

Instead of single variables x, u, v and single premises ∀uB∀(x, u) we may have
tuples of variables and finite conjunctions of premises. In the case of a tuple x
we then have to require that we have a tuple x∗ of a-majorants for a common
a ∈ X for all the components of the tuple x.

Remark 4.11. Another way to treat parameters xρ, ρ of degree (1, X) or 2
is to require for a majorant a computable functional t in Sσ → Sbρ,

8 where
all σi are of degree 1. Then we may obtain a totally computable Φ : Sσ → IN
such that given c ∈ Sσ, if there exists an a ∈ X for which t(c) &a

ρ x then the
bound Φ(c) holds.

The restriction on the types of degree (1, X) or 2 is made necessary by the
interpretation of dependent choice using bar recursive functionals. If a given
proof does not use dependent choice, we can allow arbitrary types ρ in the
parameters (with majorants of type ρ̂).

Remark 4.12. From the proof of Theorem 4.10 (to be given in section 9
below) two further extensions follow:

1. The language may be extended by a-majorizable constants (in particular
constants of types 0 and 1, which always are uniformly majorizable)
where the extracted bounds then additionally depend on (a-majorants
for) the new constants.

2. The theory may be extended by purely universal axioms or, alterna-
tively, axioms which can be reformulated into purely universal axioms
using new majorizable constants if the types of the quantifiers are all of
degree 2 or (1, X),9 as purely universal axioms are their own functional
interpretation. Again the extracted bounds depend on (a-majorants for)
these new constants. Then the conclusion holds in all metric (X, d)
resp. hyperbolic (X, d, W ) spaces which satisfy these axioms (under a
suitable interpretation of the new constants if any).

8Since t is of degree 2, the computability of t implies its (strong) majorizability.
9This ensures that validity in Sω,X implies validity in Mω,X defined further below.
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Remark 4.13. The need for the restriction to ∃-formulas C∃ in theorem 4.10
is a consequence of the fact that our theories are based on classical logic, where
one can produce counterexamples already for formulas ∃v0∀w0Cqf(v, w) with
Cqf quantifier-free. If one bases the system on intuitionistic logic instead
this can (even in the presence of many ineffective principles) be avoided and
effective bounds for formulas C of arbitrary complexity can be extracted
(though no longer bounds on universal premises ∀u0B∀). See [9] for this.

As a corollary to the proof of Theorem 4.10 we obtain Theorem 3.7 in [22]:

Corollary 4.14. 1. Let σ, ρ be types of degree 1 and τ be a type of degree
(1, X). Let sσ→ρ be a closed term of Aω[X, d] and let B∀(x, y, z, u),
resp. C∃(x, y, z, v), contain only x, y, z, u free, resp. x, y, z, v free. If

∀xσ∀y ≤ρ s(x)∀zτ (∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v))

is provable in Aω[X, d], then one can extract a computable functional
Φ : Sσ × IN → IN such that for all x ∈ Sσ and all b ∈ IN

∀y ≤ρ s(x)∀zτ [∀u ≤ Φ(x, b) B∀(x, y, z, u) → ∃v ≤ Φ(x, b) C∃(x, y, z, v)]

holds in any nonempty metric space (X, d) whose metric is bounded by
b ∈ IN.

2. If the premise is proved in ‘Aω[X, d, W ]’, instead of ‘Aω[X, d]’, then
the conclusion holds in all b-bounded hyperbolic spaces.

3. If the premise is proved in ‘Aω[X, d, W, CAT(0)]’, instead of ‘Aω[X, d, W ]’,
then the conclusion holds in all b-bounded CAT(0)-spaces.

Instead of single variables x, y, z, u, v we may also have finite tuples of vari-
ables x, y, z, u, v as long as the elements of the respective tuples satisfy the
same type restrictions as x, y, z, u, v.
Moreover, instead of a single premise of the form ‘∀u0B∀(x, y, z, u)’ we may
have a finite conjunction of such premises.

Proof. Take a = 0X . For x, which has type σ of degree 1, we easily see
(even using only strong majorization s-maj) that xM &0X x. Next, for the
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0X-majorant s∗ &0X s, which we can construct by induction on the structure
of s as a closed term of Aω (see Lemma 9.10 in Section 9), we have that
s∗(xM ) &0X

1 y for all y ≤1 s(x). Given a bound b ∈ IN on the metric, let
τ = τ1 → . . . → τk → X, then also λxbτi .b &0X

τ z. Likewise, independent of
the choice of a we have that the distance d(0X , a) ≤ b, but for a = 0X even
d(0X , a) = 0.

Then by Theorem 4.10 we can extract a (bar recursive) functional φ such
that φ((x)M , s∗(xM ), λxbτi .b, 0) is a bound on ∃v, resp. ∀u, for any b-bounded
metric space. Since both the functional (·)M , the 0X-majorant s∗ for s and
the 0X-majorant λxbτi .b for z are given by closed terms of Aω (and hence
primitive recursive in the sense of [10]), the functional

Φ :≡ λx, b.φ(xM , s∗(xM ), λxbτi.b, 0)

is computable and yields the desired bound.

Note, that in Aω[X, d] we have the boundedness of (X, d) as an axiom, while
Theorem 4.10 only allows one to treat the boundedness of (X, d) as an im-
plicative assumption. Since (due to the restrictions on our weak extensional-
ity rule) our systems do not satisfy the deduction theorem10, strictly speaking
this corollary does not follow from Theorem 4.10, but rather from the proof
of Theorem 4.10: As mentioned in Remark 4.12, we may freely add another
purely universal axiom, i.e. the axiom that (X, d) is a b-bounded metric
space, to the theory Aω[X, d]−b.

Similarly, one can derive Corollary 3.11 from [22], but we will state a gener-
alized version of Corollary 3.11 from [22] below. For most applications to be
discussed in this paper the following more concrete version of the metatheo-
rem is sufficient:

Corollary 4.15. Let P (resp. K) be a Aω-definable Polish space11 (resp.
compact Polish space), let τ be of degree 1b and let B∀, resp. C∃, contain only
x, y, z, u free, resp. x, y, z, v free, where furthermore 0X does not occur in
B∀, C∃. If

Aω[X, d, W ]−b ` ∀x ∈ P∀y ∈ K∀zτ (∀u0B∀ → ∃v0C∃),

10See [22] for an extensive discussion of this point.
11For details on this see [22] and [16].
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then there exists a computable functional Φ : ININ × IN(IN×...×IN) → IN s.t.
the following holds in every nonempty hyperbolic space (X, d, W ): for all
representatives rx ∈ ININ of x ∈ P and all z∗ ∈ IN(IN×...×IN) if there exists an
a ∈ X for which z∗ &a

τ z then

∀y ∈ K(∀u ≤ Φ(rx, z
∗)B∀ → ∃v ≤ Φ(rx, z

∗)C∃).

As before, instead of single variables x, y, z and a single premise ∀u0B∀, we
may have tuples of variables and a finite conjunction of premises.
Analogously, for Aω[X, d]−b or Aω[X, d, W, CAT(0)]−b where then (X, d) resp.
(X, d, W ) is an arbitrary nonempty metric resp. CAT(0)-space.

Proof. Using the representation of P and K in Aω, quantification over x ∈ P
and y ∈ K can be expressed as quantification over all x1, resp. all y1 ≤ s for
some closed function term s. Then, for (type 1-)representatives rx of elements
x we have (rx)

M &a rx, while from s and x we obtain an a-majorant s∗(xM )
for all y ≤ s(x). Finally, τ has degree 1b, so by Theorem 4.10 we obtain a
totally computable bound Φ(rx, z

∗).

Definition 4.16. A function f : X → X on a metric space (X, d) is called

• nonexpansive (‘f n.e.’) if d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X,

• quasi-nonexpansive if ∀p, x ∈ X(d(p, f(p)) = 0 → d(f(x), f(p)) ≤
d(x, p)),

• weakly quasi-nonexpansive if ∃p ∈ X(d(p, f(p)) = 0∧∀x ∈ X(d(f(x), f(p))
≤ d(x, p))) or – equivalently –

∃p ∈ X∀x ∈ X(d(f(x), p) ≤ d(x, p)).

• Lipschitz continuous if d(f(x), f(y)) ≤ L · d(x, y) for some L > 0 and
for all x, y ∈ X,

• Hölder-Lipschitz continuous if d(f(x), f(y)) ≤ L · d(x, y)α for some
L > 0, 0 < α ≤ 1 and for all x, y ∈ X.

For normed linear spaces (X, ‖·‖) those definitions are to be understood w.r.t.
the induced metric d(x, y) := ‖x− y‖.

20



The notion of quasi-nonexpansivity was introduced by Dotson in [6], the no-
tion of weak quasi-nonexpansivity is (implicitly) due to B. Lambov and the
second author[23] (note that in context where quasi-nonexpansive mappings
are used it always is assumed that fixed points exists so that ‘weakly quasi-
nonexpansive’ is indeed weaker than ‘quasi-nonexpansive’).12 Using that ≤IR

and =IR are Π0
1-statements, we observe that the above statements, except

for ‘f quasi-nonexpansive’ and ‘f weakly quasi-nonexpansive’, can – when
formalized in L(Aω[X, d, W ]) – be written as ∀-formulas, where in the case
of Lipschitz and Hölder-Lipschitz the constants L, resp. L and α are as-
sumed to be given as parameters. For ‘f weakly quasi-nonexpansive’, if we
take the fixed point p as a parameter, the remaining formula can be written
as a ∀-formula, so that to use ‘f weakly quasi-nonexpansive’ as a premise
one needs to quantify over the additional parameter p. The statement ‘f
quasi-nonexpansive’ is of the form ∀ → ∀ and hence not of a suitable form
to serve as a premise, if we want to apply our metatheorems. Most theorems
involving quasi-nonexpansive functions easily extend to the ‘weakly quasi-
nonexpansive’ functions which makes our metatheorems applicable. For ex-
amples of this see [23].

As examples of weakly quasi-nonexpansive functions (communicated by L.
Leustean) consider in the setting of normed linear spaces (with a convex
subset C) the class of functions satisfying ‖f(x)‖ ≤ ‖x‖, which are weakly
quasi-nonexpansive in the fixed point 0X . To see that such functions need
not by quasi-nonexpansive consider f : [0, 1] → [0, 1] (on the convex subset
[0, 1] of IR) defined by f(x) := x2, which has fixed points 0, 1, but only is
weakly quasi-nonexpansive in 0.

For unbounded hyperbolic spaces (X, d, W ) we now state the following corol-
lary:

Corollary 4.17. 1. Let P (resp. K) be a Aω-definable Polish space (resp.
compact Polish space). Assume we can prove in Aω[X, d, W ]−b the
following sentence:

∀x ∈ P∀y ∈ K∀zX∀fX→X

(f n.e. ∧ ∀u0B∀(x, y, z, f, u) → ∃v0C∃(x, y, z, f, v)),

12The concept of weakly quasi-nonexpansive mapping has recently been formulated in-
dependently – under the name of J-type mapping – in [8] where the fixed point p is called
a ‘center’.
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where 0X does not occur in B∀ and C∃. Then there exists a computable
functional Φ : ININ × IN → IN s.t. for all representatives rx ∈ ININ of
x ∈ P and all b ∈ IN

∀y ∈ K∀zX∀fX→X(f n.e. ∧ dX(z, f(z)) ≤IR (b)IR

∧∀u0 ≤ Φ(rx, b)B∀(x, y, z, f, u) → ∃v0 ≤ Φ(rx, b)C∃(x, y, z, f, v))

holds in all nonempty hyperbolic spaces (X, d, W ).
Analogously, for Aω[X, d, W, CAT(0)]−b where (X, d, W ) is a CAT(0)
space.

2. The corollary also holds for an additional parameter ∀z′X if we add the
additional premise dX(z, z′) ≤IR (b)IR to the conclusion.

3. Furthermore, the corollary holds for an additional parameter ∀c0→X if
one adds the premise ∀n(dX(z, c(n)) ≤IR (b)IR) or just ∀n(dX(z, c(n)) ≤IR

(g(n))IR) to the conclusion, where the bound then additionally depends
on g : IN → IN.

4. Statements 1., 2. and 3. also hold if we replace ‘f n.e.’ with ‘f Lips-
chitz continuous’ (with constant L ∈ Q∗

+), ‘f Hölder-Lipschitz contin-
uous’ (with constants L, α ∈ Q∗

+, where α ≤ 1) or ‘f uniformly contin-
uous’ (with modulus ω : IN → IN). For Lipschitz and Lipschitz-Hölder
continuous functions the bound additionally depends on the given con-
stants and for uniformly continuous functions the bound additionally
depends on the given modulus of uniform continuity.

5. Furthermore, 1., 2. and 3. hold if we replace ‘f n.e.’ with ‘f weakly
quasi-nonexpansive’. For weakly quasi-nonexpansive functions (with
fixed point p) we need to state the additional premise ‘dX(z, p) ≤IR (b)IR’
in the conclusion.

6. More generally, 1., 2. and 3. hold if in the conclusion f satisfies
‘dX(z, f(z)) ≤IR (b)IR’ and if instead of ‘f n.e.’ we assume

∀zX
1 , zX

2 (dX(z1, z2)IR <IR (n)IR → dX(f(z1), f(z2)) ≤IR (Ω0(n))IR), (∗)
where Ω0 is a function IN → IN. The bound then depends on Ω0 and b.

7. Finally, 1.,2. and 3. hold if ‘f n.e.’ is replaced by

∀z̃X(dX(z, z̃)IR <IR (n)IR → dX(z, f(z̃)) ≤IR (Ω(n))IR), (∗∗)
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where Ω is a function IN → IN. Then we can drop ‘dX(z, f(z)) ≤IR (b)IR’
in the conclusion and the extracted bound only depends on Ω instead of
b.

Proof. In the following we write for simplicity e.g. ‘d(z, z̃) ≤ n’ instead of
its formal representation ‘dX(z, z̃) ≤IR (n)IR’ as a formula of L(Aω[X, d]).
For 1., by the comment after Definition 4.16 the premise ‘f n.e.’ is a ∀-
formula and hence an admissible premise in Corollary 4.15. The parameters
ranging over the Polish spaces P , resp, compact Polish spaces K, are treated
as before. Choose a = z, then trivially 0 &z z and λn0.(n+ b) &z f , as using
d(z, f(z)) ≤ b and the nonexpansivity of f and assuming d(z, z̃) ≤ n we get13

d(z, f(z̃)) ≤ d(z, f(z)) + d(f(z), f(z̃)) ≤ b + d(z, z̃) ≤ n + b.

For 2. and 3., note that trivially b &z z, z′ and λn0.b &z c, resp. gM &z c.

For 4., 5. and 6., we will show that d(z, f(z)) ≤ b in conjunction with
the requirement that f is Lipschitz continuous, Hölder-Lipschitz continu-
ous, uniformly continuous or f satisfying (∗) allows one to derive an Ω such
that f satisfies (∗∗), thereby reducing these cases to 7. Similarly, if f is
weakly quasi-nonexpansive (with fixed point p) and the additional premise
d(z, p) ≤ b is satisfied, f satisfies (∗∗). All these conditions on f , including
(∗), can be written as purely universal formulas (in the case of ‘f weakly
quasi-nonexpansive’ with a parameter p) and may hence serve as a premise
according to our metatheorem.

For 7., if f satisfies ∀z̃ ∈ X(d(z, z̃) < n → d(z, f(z̃)) ≤ Ω(n)), then trivially
λn.ΩM(n + 1) &z f , as d(z, z̃) ≤ n implies d(z, z̃) < n + 1 which by (∗∗)
implies d(z, f(z̃)) ≤ Ω(n + 1). Using the fact that <IR is a Σ0

1-statement and
≤IR is a Π0

1-statement we can express (∗∗) as a ∀-formula. Also note, that
f satisfying (∗∗) implies a bound on d(z, f(z)): since d(z, z) < 1 by (∗∗) we
have d(z, f(z)) ≤ Ω(1).

If f is Lipschitz continuous with constant L > 0 then one shows, using
d(z, f(z)) ≤ b and the triangle inequality and assuming d(z, z̃) ≤ n

d(z, f(z̃)) ≤ d(z, f(z)) + d(f(z), f(z̃)) ≤ L · d(z, z̃) + b ≤ L · n + b,

13Here and in the following we write for better readability simply d and b instead of dX

and (b)IR etc.

23



so f satisfies (∗∗) with Ω(n) := L ·n+ b. If f is Hölder-Lipschitz continuous,
i.e. d(f(x), f(y)) ≤ L · d(x, y)α for constants L > 0 and 0 < α ≤ 1, then f
satisfies (∗∗) with Ω(n) := L · nα + b.

If f : X → X with (X, d, W ) a hyperbolic space is uniformly continuous with
modulus14 ω, then f satisfies (∗∗) with Ω(n) := n·2ω(0)+b+1. Given z, z̃ ∈ X
with d(z, z̃) < n we can (using W with z, z̃ and suitable λ to construct z1, W
with z1, z̃ and suitable λ to construct z2, etc.) inductively construct points
z1, . . . zk−1 (with k = n · 2ω(0) + 1) such that

d(z, z1), d(z1, z2), . . . , d(zk−1, z̃) < 2−ω(0)

and hence

d(f(z), f(z1)), d(f(z1), f(z2)), . . . , d(f(zk−1), f(z̃)) ≤ 1(= 2−0).

Then by the triangle inequality d(f(z), f(z̃)) ≤ k = n · 2ω(0) + 1 and another
use of the triangle inequality yields d(z, f(z̃)) ≤ d(z, f(z)) + d(f(z), f(z̃)) ≤
n · 2ω(0) + b + 1.

For weakly quasi-nonexpansive functions f – with fixed point p and with
the additional premise: ‘d(z, p) ≤ b’ – the function f satisfies (∗∗) with
Ω(n) := n + 2b, as given d(z, z̃) < n

d(z, f(z̃)) ≤ d(z, p) + d(f(z̃), p) ≤ d(z, p) + d(z̃, p)
≤ d(z, p) + d(z̃, z) + d(z, p) ≤ n + 2b.

Alternatively, choosing a = p and writing (∗∗) with p instead of z (and
adjusting the other majorants accordingly) f even satisfies (∗∗) with Ω(n) :=
n, as given d(p, z̃) < n

d(p, f(z̃)) ≤ d(p, z̃) ≤ n.

If f satisfies d(z, f(z)) ≤ b and (∗), then given d(z, z̃) < n,

d(z, f(z̃)) ≤ d(z, f(z)) + d(f(z), f(z̃)) ≤ Ω0(n) + b

and hence f satisfies (∗∗) with Ω(n) := Ω0(n) + b.

The results then follow using Corollary 4.15.

14Recall, that f : X → X uniformly continuous with modulus ω : IN → IN is defined as
∀x, y ∈ X∀k ∈ IN(d(x, y) < 2−ω(k) → d(f(x), f(y)) ≤ 2−k).
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Note, that neither the space nor the range of f are in any way assumed to
be bounded, but still the bound Φ is highly uniform as it depends only on
b (and additional input L, α, ω, Ω0 and Ω as stated in cases 3.-7.), but not
directly on the points z, z′, the sequence c or the function f .

Remark 4.18. Even if ‘z’ does not occur in B∀, C∃ so that ‘∀z’ is a ‘dummy’
quantifier, we still need in 1.-4. and 6. in the conclusion a number b with
b ≥ d(z, f(z) for some z as this is used in constructing a majorant for f. In
5. we could identify z with p (and b := 1 say) and construct a p-majorant of
f. In 7. we can construct a uniform f -majorant without reference to b.

Remark 4.19. Note that for f nonexpansive, Lipschitz, Hölder-Lipschitz
or uniformly continuous, f is provably extensional. For f weakly quasi-
nonexpansive or f satisfying conditions (∗) or (∗∗) it does not follow that
f is extensional. Thus in these cases, if an instance of the extensionality of
f is used in a proof, it must either be provable via the extensionality rule (or
one must explicitly require f to be (provably) extensional, e.g. by requiring
that f is at least uniformly continuous).

Remark 4.20. Except for the case of f being uniformly continuous all results
also hold for general (non-hyperbolic) metric spaces Aω[X, d]−b, (X, d). This
also applies to corollaries 4.22 and 5.2 below. Note, that in general metric
spaces uniformly continuous functions can in general not be majorized, i.e.
for (∗∗) no suitable Ω(n) can be defined, because given x, y ∈ X we cannot
construct intermediate points in order to be able to make use of the uniform
continuity of f .

For a complete characterization of those metric spaces for which uniformly
continuous functions f admit the definition of a suitable Ω see [30]. Other-
wise, in the setting of metric spaces, we need to require explicitly that a given
uniformly continuous function f with modulus ω also satisfies (∗∗) with a
suitable Ω.

As a generalization of Corollary 3.11 in [22] we prove the following:

Definition 4.21. Let f : X → X, then

• for Fix(f) := {xX | x =X f(x)} the formula Fix(f) 6= ∅ expresses f
has a fixed point,
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• for Fixε(f, y, b) := {xX | dX(x, f(x)) ≤IR ε∧dX(x, y) ≤IR b} and ε > 0
the formula Fixε(f, y, b) 6= ∅ expresses f has an ε-fixed point in a b-
neighborhood of y.

Corollary 4.22. 1. Let P (resp. K) be a Aω-definable Polish space (resp.
compact Polish space) and let B∀ and C∃ be as before. If Aω[X, d, W ]−b

proves that

∀x ∈ P ∀y ∈ K ∀zX , fX→X(f n.e. ∧ Fix(f) 6= ∅ ∧ ∀u0B∀ → ∃v0C∃)

then there exists a computable functional Φ1→0→0 (on representatives
rx : IN → IN of elements x of P) s.t. for all rx ∈ ININ, b ∈ IN

∀y ∈ K ∀zX , fX→X(f n.e. ∧ ∀ε > 0Fixε(f, z, b) 6= ∅
∧dX(z, f(z)) ≤IR (b)IR ∧ ∀u0 ≤ Φ(rx, b)B∀ → ∃v0 ≤ Φ(rx, b)C∃).

holds in any nonempty hyperbolic space (X, d, W ).
Analogously, for Aω[X, d, W, CAT(0)]−b where then (X, d, W ) has to be
a CAT(0) space.

2. The corollary also holds if ‘f n.e.’ is replaced by f Lipschitz contin-
uous, Hölder-Lipschitz continuous or uniformly continuous, where the
extracted bound then additionally will depend on the respective constants
and moduli.

3. Considering the premise ‘f weakly quasi-nonexpansive’, i.e.

∃pX(f(p) =X p ∧ ∀wX(dX(f(p), f(w)) ≤IR dX(p, w)))

instead of ‘f n.e. ∧Fix(f) 6= ∅’ we may weaken this premise to

∀ε > 0∃pX(dX(f(p), p) ≤IR ε ∧ dX(z, p) ≤IR (b)IR

∧∀wX(dX(f(p), f(w)) ≤IR dX(p, w))).

4. Let Ψ : (X → X) → X → 1 be a provably extensional closed term
of Aω[X, d, W ]−b, then in 1. and 2. instead of ‘Fix(f) 6= ∅’ we may
weaken ‘Ψ(f, p) =IR 0’, expressing that Ψ(f, ·) has a root p, to ‘∀ε >
0∃p ∈ X(d(z, p) ≤ b ∧ |Ψ(z, p)| ≤IR ε)’, expressing that Ψ(f, ·) has
ε-roots p which are b-close to z for every ε > 0.
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Proof. Representing P and K in Aω, quantification over x ∈ P and y ∈ K
can be expressed as quantification over all x1, resp. all y1 ≤ s for some closed
function term s of Aω. Thus the statement provable by assumption can be
written as

∀x1 ∀y ≤1 s ∀zX , pX , fX→X(f n.e. ∧ f(p) =X p ∧ ∀u0B∀ → ∃v0C∃),

where f(p) =X p can be written as ∀k0(dX(p, f(p)) ≤IR 2−k) and both
dX(p, f(p)) ≤IR 2−k and f n.e., resp. the other conditions on f , are ∀-
formulas.

For x we have xM &a x and from s we may obtain an a-majorant s∗ for s and
hence for y ≤ s. By Corollary 4.17.2, under the additional (purely universal)
premises dX(z, p), dX(z, f(z)) ≤IR (b)IR, we extract a functional Φ s.t. for all
x ∈ P if rx ∈ ININ represents x then

∀y ∈ K ∀zX , pX , fX→X(dX(z, p), dX(z, f(z)) ≤IR (b)IR ∧ f n.e. ∧
dX(f(p), p) ≤IR 2−Φ(rx,b) ∧ ∀u0 ≤ Φ(rx, b)B∀ → ∃v0 ≤ Φ(rx, b)C∃)

holds in all nonempty hyperbolic spaces (X, d, W ) (similarly for the other
conditions on f , except that then the extracted bound depends on the addi-
tional constants and moduli L, α and ω).

The statement dX(z, p) ≤IR (b)IR ∧ dX(f(p), p) ≤IR 2−Φ(rx,b) expresses that
f has a 2−Φ(rx,b)-fixed point in a b-neighborhood of z, which, since 2−Φ(rx,b)

does not depend on p, is implied by ∀ε > 0Fixε(f, z, b) 6= ∅, so 1. and 2.
follow from Corollary 4.17. The weakening of the premise ‘f weakly quasi-
nonexpansive’ in 3. is treated similarly.

For 4., similar to the treatment of f(p) =X p in 1., 2. and 3. we may write
Ψ(f, p) =IR 0 as ∀k0(|Ψ(f, p)|IR ≤IR 2−k). Then as before may weaken this
statement to ∀ε > 0∃pX(dX(z, p) ≤IR (b)IR ∧ |Ψ(z, p)| ≤IR ε).

Remark 4.23. Note, that in 1. the original premise ‘Fix(f) 6= ∅’ is weak-
ened to ‘∀ε > 0Fixε(f, z, b) 6= ∅’. By Theorem 1 in [11], nonexpansive
mappings on bounded hyperbolic spaces always have ε-fixed points for arbi-
trary ε > 0, while they need not have exact fixed points in general (not even
in the case of bounded, closed and convex subsets of Banach spaces such as
c0). Hence, for bounded hyperbolic spaces and nonexpansive mappings the
premise ‘∀ε > 0Fixε(f, z, b) 6= ∅’ can be dropped, if b is taken as an upper
bound on the metric d. For further discussion, see Remark 3.13 in [22].
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5 Herbrand normal forms

The metatheorems in the previous sections allow one to treat at most classical
proofs of formulas that prenex to the form ∀∃Aqf . Already for the formula
class Π0

3, i.e. ∀x0∃y0∀z0Aqf(x, y, z), there are counterexamples where one
no longer can extract effective bounds from a given classical proof. These
counterexamples basically correspond to the undecidability of the halting
problem for Turing machines.

However, the Herbrand normal form BH = ∀x0∀h1
z∃y0Aqf(x, y, hz(y)) of

B = ∀x0∃y0∀z0Aqf(x, y, z) does have the appropriate form (and the Her-
brand index function hz has a suitable restricted type) to allow the extrac-
tion of a bound Φ(x, hz) on ∃yAqf(x, y, hz(y)). Even though B and BH are
(ineffectively) equivalent, an extracted bound for ∃y in the Herbrand normal
form BH does not yield a bound for ∃y in the original formula B, as it may
depend in addition to x on the index function hz.

The extraction of bounds for Herbrand normal forms can be generalized to
a large class of formulas, more precisely to those for which there exists a
prenexation such that the Herbrand index functions are of suitable restricted
type. The types of the Herbrand index functions depend on the ∃∀ config-
urations that occur in the prenexation. A configuration ∃yρ∀zτ gives rise to
∀hρ→τ

z ∃yρ, i.e. Herbrand index functions of type ρ → τ . Restricting ourselves
to cases where the Herbrand index functions are guaranteed to have majo-
rants, we only allow configurations ∃yρ∀zτ where ρ = 0 and τ is of degree
(0, X) or 1. Then the types of the Herbrand index functions are of degree
(0, X) or 1 as well. This class of formulas covers all arithmetical formulas as
well as many other interesting classes involving the extended types TX .

Clearly, one may extract effective bounds for the Herbrand normal form of
formulas if the Herbrand index functions are of suitable restricted type, where
naturally, the extracted bounds depend on (a-majorants for) the Herbrand
index functions. Of even greater interest is the fact that we may, similarly
to the result of Corollary 4.22, weaken or even eliminate the premises of a
theorem, even though the conclusion might be of too general form to allow
one to extract effective bounds on A rather than AH , as we will show next.

Definition 5.1. The class H of formulas consists of all formulas F that have
a prenexation F ′ ≡ ∃xρ1

1 ∀yτ1
1 . . .∃xρn

n ∀yτn
n F∃(x, y) where F∃ is an ∃-formula,
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the types ρi are of degree 0 and the types τi are of degree 1 or (0, X).

We state the following corollary:

Corollary 5.2. 1. Let P (resp. K) be a Aω-definable Polish space (resp.
compact Polish space) and let the formula A be in the class H, where
moreover A does not contain 0X. If Aω[X, d, W ]−b proves a sentence

∀x ∈ P ∀y ∈ K ∀zX , fX→X(f n.e. ∧ Fix(f) 6= ∅ → A)

then the following holds in every nonempty hyperbolic space (X, d, W ):

∀x ∈ P ∀y ∈ K ∀zX , fX→X

(f n.e. ∧ ∃b0∀ε > 0(Fixε(f, z, b) 6= ∅) → A).

Analogously, for Aω[X, d, W, CAT(0)]−b where (X, d, W ) is a CAT(0)
space.

2. The corollary also holds if we replace ‘f n.e.’ with f Lipschitz contin-
uous, Hölder-Lipschitz continuous or uniformly continuous.

3. Considering the premise ‘f weakly quasi-nonexpansive’, i.e.

∃pX(f(p) =X p ∧ ∀wX(dX(f(p), f(w)) ≤IR dX(p, w)))

instead of ‘f n.e. ∧Fix(f) 6= ∅’ we may weaken this premise to

∃b0∀ε > 0∃pX(dX(f(p), p) ≤IR ε ∧ dX(z, p) ≤IR (b)IR

∧∀wX(dX(f(p), f(w)) ≤IR dX(p, w))).

4. Let Ψ : (X → X) → X → 1 be a provably extensional closed term
of Aω[X, d, W ]−b, then in 1. and 2. instead of ‘Fix(f) 6= ∅’ we may
weaken ‘∃pXΨ(f, p) =IR 0’, expressing that Ψ(f, ·) has a root in p, to
‘∃b0∀ε > 0∃pX(dX(z, p) ≤IR (b)IR ∧ |Ψ(z, p)| ≤IR ε)’, expressing that
Ψ(f, ·) has ε-roots p which are b-close to z for every ε > 0.

Proof. Since A → AH is logically valid, the statement

∀x ∈ P ∀y ∈ K ∀zX , fX→X(f n.e. ∧ Fix(f) 6= ∅ → A)
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trivially implies

∀x ∈ P ∀y ∈ K ∀zX , fX→X(f n.e. ∧ Fix(f) 6= ∅ → AH)

where AH is the Herbrand normal form of a suitable prenexation of A as
suggested by the formula class H. Pulling outside the universal quantifiers
in AH , which range over the Herbrand index functions, the statement now
has a suitable form and the index functions have a suitable type to make
possible the extraction of an effective numerical bound (by Corollary 4.22) on
the numerical universal quantifiers in the premise and existential quantifiers
in the conclusion.

As is to be expected, the extracted bound depends on the parameter x via a
representative rx, on a bound b ≥ d(z, f(z)) (and b ≥ d(z, 0X) if 0X occurs
in A) and on majorants for the Herbrand index functions. Such majorants
always exist, as the Herbrand index functions h all are of type degree 1,
in which case hM is an a-majorant, or of type degree (0, X), i.e. basically
a sequence of elements in X, in which case we (ineffectively) choose as an
a-majorant h∗ any sequence of numbers such that h∗(n) ≥ d(h(m), a) for all
n ∈ IN and all m ≤ n, e.g. we may take h∗ := h̃M , where h̃(n) := dd(h(n), a)e.
As before, using the representation of P and K in Aω, we obtain majorants
for (representatives of) x and y.

Thus, by Theorem 4.10 and reasoning as in the proof of Corollary 4.22 we
may weaken the universal premise ‘Fix(f) 6= ∅’ to ‘∀ε > 0Fixε(f, z, b) 6= ∅’.
Shifting the quantifiers ranging over the Herbrand index functions back in,
we obtain:

∀x ∈ P ∀y ∈ K ∀zX , fX→X∀b0

(f n.e. ∧ ∀ε > 0Fixε(f, z, b) 6= ∅ ∧ dX(z, f(z)) ≤IR (b)IR → AH).

But using that (ineffectively) AH implies back A this yields that

∀x ∈ P ∀y ∈ K ∀zX , fX→X∀b0

(f n.e. ∧ ∀ε > 0Fixε(f, z, b) 6= ∅ ∧ dX(z, f(z)) ≤IR (b)IR → A)

holds in all nonempty hyperbolic spaces (X, d, W ).

Finally, since here we are not interested in effective bounds but only the
(classical) truth of the statement, we may furthermore omit the premise
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‘dX(z, f(z)) ≤IR (b)IR’: if for a given z ∈ X and f : X ∈ X there exists a b
such that ‘∀ε > 0Fixε(f, z, b) 6= ∅’ holds, then there also exists a b′ satisfying
both premises, as we may simply take b′ = dmax(b, dX(z, f(z)))e.
The cases 2., 3. and 4. are treated similarly.

To see that the restrictions on the types of the Herbrand index functions
are necessary consider the following counterexample. In Aω[X, d, W ]−b one
trivially proves that:

∀fX→X(f n.e. ∧ Fix(f) 6= ∅ → Fix(f) 6= ∅),

where ‘Fix(f) 6= ∅’ is expressed by ‘∃zX∀k0(dX(z, f(z)) ≤IR 2−k)’.

Without the restrictions on the types of the Herbrand index functions in AH

and hence on A, Corollary 5.2 would allow us to weaken the premise ‘f has
a fixed point’ to ‘f has ε-fixed points’ and in the case of bounded hyperbolic
spaces even eliminate the premise completely since nonexpansive mappings
on bounded hyperbolic spaces always have approximate fixed points. Hence
we could prove that for bounded hyperbolic case every nonexpansive mapping
has exact fixed points. As we mentioned already, this is false even for bounded
closed convex subsets of Banach spaces, such as e.g. c0.

This counterexample is ruled out by the restrictions on the types of the Her-
brand index functions. Since the statement ‘f has a fixed point’ is expressed
by ∃zX∀k0(dX(z, f(z)) ≤IR 2−k), the resulting Herbrand index functions have
the type X → 0. But already this very simple type is not allowed in the for-
mula class H and hence not in our corollary.

6 Metatheorems for normed linear spaces

We now discuss the setting of (real) normed linear spaces with convex subsets
C. As discussed in Machado[28], one may characterize convex subsets of
normed spaces in the setting of hyperbolic spaces in terms of additional
conditions on the function W . The additional conditions are (I) that the
convex combinations do not depend on the order in which they are carried
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out, and (II) that the distance is homothetic. These additional conditions
are:

(I) ∀x, y, z ∈ X∀λ1, λ2, λ3 ∈ [0, 1](λ1 + λ2 + λ3 =IR 1 →
W (z, W (y, x, λ1

1−λ3
), 1− λ3) = W (x, W (z, y, λ2

1−λ1
), 1− λ1)),

(II) ∀x, y, z ∈ X∀λ ∈ [0, 1](d(W (z, x, λ), W (z, y, λ)) = λ · d(x, y)).

The formal version of axiom (I) will look slightly different, as expressing the
axiom with λ1 +λ2 +λ3 =IR 1 (with the equality as a premise) is problematic
for our purposes. Equality on the reals is a universal statement and hence
the axiom itself would no longer be purely universal.

Instead, given λ1, λ2 we may explicitly define λ̄1, λ̄2 and λ̄3 s.t. provably (in
Aω) both λ̄1 + λ̄2 + λ̄3 =IR 1 and if λi ∈ [0, 1] and λ1 + λ2 + λ3 =IR 1 then
λ̄i = λi for i = 1, 2, 3. The formal versions of the axioms are then as follows:

(I) ∀xX , yX, zX∀λ1
1, λ

1
2

(WX(z, WX(y, x, λ̄1

1−λ̄3
), 1− λ̄3) = WX(x, WX(z, y, λ̄2

1−λ̄1
), 1− λ̄1)),

where λ̄1 =1 λ̃1, λ̄2 =1 minIR(λ̃2, 1−IR λ̄1) and λ̄3 =1 1−IR (λ̄1 +IR λ̄2),

(II) ∀xX , yX, zX∀λ1(dX(WX(z, x, λ), WX(z, y, λ)) =IR λ̃ ·IR dX(x, y)),

where λ̃ is the construction in Definition 2.4. As discussed for the other
(X, d, W ) axioms in Remark 2.6, the axiom (II) is formulated with WX to
implicitly satisfy WX(x, y, λ) =X WX(x, y, λ̃).

Thus, theorems concerning convex subsets of normed linear spaces which
can be formalized Aω[X, d, W ]−b + Machado’s two additional axioms can
already be treated using the above Theorem 4.10 (as discussed in Remark
4.12). However, as discussed in [22], metatheorems covering normed linear
spaces in general rather than just convex subsets of normed linear spaces can
be expected to have many more applications, than the applications in fixed
point theory investigated so far.

For the new metatheorem for normed linear spaces (with convex subset C)
there are, compared to the new metatheorems for (unbounded) metric spaces,
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two differences: (1) we fix the choice a = 0X and (2) one cannot meaningfully
differentiate between 0X occurring or not occurring in the theorem to be
treated by the metatheorem since it implicitly occurs whenever the norm is
used as the latter measures the distance from 0X (in metric spaces, the only
purpose of the constant 0X was to witness the nonemptyness of the space
by a closed term). It is this link between the constant 0X and the other
constants of normed linear spaces, that lets us choose a = 0X (one could also
use an arbitrary a, but then the majorant of the norm would depend on a,
i.e. the norm is – in contrast to the metric – not uniformly majorizable).

As in [22], the type C for the convex subset C and quantification over ele-
ments of types involving C are defined notions, i.e. an element x ∈ X is of
type C if χC(x) =0 0, where χC is a constant of type X → 0 representing
the characteristic function of C. Note, however, that our weakly extensional
context does not allow us to prove that x =X y ∧ χC(x) =0 0 → χC(y) =0 0
but only if s =X t is provable that then χC(s) =0 χC(t) (see [22] for a dis-
cussion of this point).

Quantification is treated using the following abbreviations:

∀xC A(x) :≡ ∀xX(χC(xX) =0 0 → A(x)),
∀f 1→C A(f) :≡ ∀f 1→X(∀y1(χC(f(y)) =0 0) → A(f)),
∀fX→C A(f) :≡ ∀fX→X(∀yX(χC(f(y)) =0 0) → A(f))

∀fC→C A(f) :≡ ∀fX→X(∀xX(χC(x) =0 0 → χC(f(x)) =0 0) → A(f̃)),

where f̃(x) =

{
f(x), if χC(x) =0 0
cX , otherwise.

Analogously, for the corresponding ∃-quantifiers with ‘∧’ instead of ‘→’.

Note, that the additional premises to the conclusion are ∀-formulas if we have
parameters of these defined types. This extends to types of degree (1, X, C)
where ρ is of degree (1, X, C) if it has the form τ1 → . . . → τk → C, where τi

has degree 1 or equals X or C.
Also note, that if we write ‘f nonexpansive’ for a function f : C → C, this
is to be understood as the ∀-formula

∀xX , yX(χC(x) =0 0 =0 χC(y) → ‖f(x)− f(y)‖X ≤IR ‖x− y‖X).

Analogously, for the other notions in Definition 4.16.
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Remark 6.1. When we aim to treat parameters f : C → C in our metatheo-
rems, we need to majorize not that f , but rather the extension f̃ to a function
X → C. In [22], where only norm-bounded convex subsets C are considered,
the extended function f̃ is easily majorized using the b-boundedness of C (as
are parameters of type (1, X, C) in general). In this paper, where we consider
unbounded convex subsets C, majorization must employ special properties of
the function f , such as e.g. f being nonexpansive. However, the extension
f̃ does in general not inherit such properties from f , so instead a majorant
for f̃ in general will result from deriving a majorant for f on C from special
properties of f , deriving a majorant for f̃ on X \ C from the definition of f̃
and taking the maximum over these two majorants.

Definition 6.2. We say that a sentence of L(Aω[X, ‖ · ‖, C]−b holds in a
non-trivial (real) normed linear space with a nonempty convex subset C, if
it holds in the models15 of Aω[X, ‖ · ‖, C]−b obtained by letting the variables
range over the appropriate universes of the full set-theoretic type structure
Sω,X with the sets IN, X as the universes for the base types 0 and X. Here
0X is interpreted by the zero vector of the linear space X, 1X by some vector
a ∈ X with ‖a‖ = 1, +X is interpreted as addition in X, −X is the inverse
of x w.r.t. + in X, ·X is interpreted as λα ∈ ININ, x ∈ X.rα · x, where rα is
the unique real number represented by α and · refers to scalar multiplication
in the IR-linear space X. Finally, ‖ ·‖X is interpreted by λx ∈ X.(‖x‖)◦. For
the nonempty convex subset C ⊆ X, χC is interpreted as the characteristic
function for C and cX by some arbitrary element of C.

The new metatheorem for normed linear spaces is:

Theorem 6.3. 1. Let ρ be of degree (1, X), (1, X, C) or 2 and let B∀(x, u),
resp. C∃(x, v), contain only x, u free, resp. x, v free. Assume

Aω[X, ‖ · ‖, C]−b ` ∀xρ(∀u0B∀(x, u) → ∃v0C∃(x, v)),

Then there exists a partial computable functional Φ : Sbρ × IN ⇀ IN s.t.
Φ is defined on all strongly majorizable elements of Sbρ and the following
holds in all non-trivial (real) normed linear spaces (X, ‖ · ‖, C) with a

15Again we use the plural, as in the setting of normed linear spaces the interpretation
of 1X and cX are not uniquely determined.
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nonempty convex subset C: for all x ∈ Sρ, x∗ ∈ Sbρ and n ∈ IN if
x∗ &0X x and (n)IR ≥IR ‖cX‖X then

∀u ≤ Φ(x∗, n)B∀(x, u) → ∃v ≤ Φ(x∗, n)C∃(x, v)).

In particular, if ρ is in addition of degree 1b, then Φ : Sbρ × IN → IN is
totally computable.

2. For uniformly convex spaces with modulus of uniform convexity η state-
ment 1. holds with (X, ‖ · ‖, C, η), Aω[X, ‖ · ‖, C, η]−b instead of (X, ‖ ·
‖, C), Aω[X, ‖ · ‖, C]−b, where the extracted bound Φ additionally de-
pends on η.

3. Analogously, for real inner product spaces (X, 〈·, ·〉).
As in the metric case, instead of single variables x, u, v and single premises
∀uB∀(x, u) we may have tuples of variables and finite conjunctions of premises.

Remark 6.4. In the case of metric spaces, if 0X did not occur in the formula
for which we want to extract a bound, the bound did not depend on a bound
on the distance between the chosen a and 0X. This is mainly because the
axioms of Aω[X, d]−b place no requirements on 0X. This is not the case for
normed linear spaces, as in the theory Aω[X, ‖ · ‖, C]−b the constant cX is
necessary for the interpretation of one of the axioms and hence in general
the extracted term may depend on a bound on the norm of cX , even though
cX does not occur in the formulas B∀ and C∃. However, if cX does not occur
in the formulas B∀ and C∃ and we have another parameter z ∈ C for which
we have a bound on the norm, we need not explicitly demand a bound on
‖cX‖, since in the model cX may be interpreted by an arbitrary element of C
and we then may interpret cX by z.

As a corollary we prove Theorem 3.30 in [22].

Corollary 6.5. 1. Let σ be of degree 1 and ρ of degree 1 or (1, X) and
let τ be a type of degree (1, X, C). Let s be a closed term of type σ → ρ
and B∀, C∃ as before. If

∀xσ∀y ≤ρ s(x)∀zτ (∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v))

is provable in Aω[X, ‖ · ‖, C] then one can extract a computable func-
tional Φ : Sσ × IN → IN s.t. for all x ∈ Sσ

∀y ≤ρ s(x)∀zτ (∀u0 ≤ Φ(x, b)B∀(x, y, z, u) → ∃v0 ≤ Φ(x, b)C∃(x, y, z, v))
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holds in any non-trivial (real) normed linear space (X, ‖ · ‖) and any
nonempty b-bounded convex subset C ⊂ X (with ‘bX ’ interpreted by
‘b’).

2. For uniformly convex spaces (X, ‖ · ‖, η) with modulus of uniform con-
vexity η ‘1.’ holds with Aω[X, ‖ · ‖, C, η] and (X, ‖ · ‖, C, η) instead of
Aω[X, ‖ · ‖, C] and (X, ‖ · ‖, C). This time Φ is a computable func-
tional in x, b and a modulus η of uniform convexity for (X, ‖ ·‖) (which
interprets the constant ‘η’).

3. Analogously, for real inner-product spaces (X, 〈·, ·〉).

Proof. As before in the proof of Corollary 4.14, for x we have xM &0X x and
for s(x) ≥ρ y we get (using Lemma 3.6) that s∗(xM ) &0X y, where s∗ is some
majorant of s (which exists by Lemma 9.12 as a closed term of Aω). Next,
given a bound b ∈ IN on the diameter of C, trivially (b)IR ≥ ‖cX‖ and writing
τ = τ1 → . . . → τk → C, then also λxbτi .b &0X

τ z.

Then by Theorem 6.3 we can extract a bar recursive functional φ such that
φ((x)M , s∗(xM), λxbτi .b, b) is a bound on ∃v, resp. ∀u, for any non-trivial real
normed linear space and any (nonempty)b-bounded convex subset C. Since
both the functional (·)M , the a-majorant s∗ for s and the a-majorant λxbτi .b
for z are given by closed terms of Aω, the functional

Φ :≡ λx, b.φ(xM , s∗(xM), λxbτi .b, b)

is computable and yields the desired bound.

Note, that in Aω[X, ‖ · ‖, C] we have the boundedness of C as an axiom,
while Theorem 6.3 only allows one to treat the boundedness as an implicative
assumption. Therefore, as in the proof of Corollary 4.14, this corollary follows
from the proof of Theorem 6.3, rather than from the theorem itself.

We furthermore prove the analogue of Corollary 4.17, though with one impor-
tant difference: it is no longer sufficient to just have a bound on ‖z − f(z)‖,
‖z − z′‖, etc. as in the metric case. Since the choice of a is fixed to a = 0X

in the normed linear case, we also need a bound on the distance between z
and 0X , i.e. ‖z‖. Moreover, for the functions f : C → C we consider as
parameters, the majorization of f , or rather of the extension f̃ : X → C,
requires special care (see Remark 6.1).
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Corollary 6.6. 1. Let P (resp. K) be a Aω-definable Polish space (resp.
compact Polish space). Assume we prove in Aω[X, ‖·‖, C]−b a sentence

∀x ∈ P∀y ∈ K∀zC∀fC→C

(f n.e. ∧ ∀u0B∀(x, y, z, f, u) → ∃v0C∃(x, y, z, f, v)),

where cX does not occur in B∀ and C∃. Then there exists a computable
functional Φ : ININ × IN → IN s.t. for all representatives rx ∈ ININ of
x ∈ P and all b ∈ IN

∀y ∈ K∀zC∀fC→C(f n.e. ∧ ‖z‖X , ‖z − f(z)‖X ≤IR (b)IR

∧∀u0 ≤ Φ(rx, b)B∀(x, y, z, f, u) → ∃v0 ≤ Φ(rx, b)C∃(x, y, z, f, v))

holds in all non-trivial normed linear spaces (X, ‖ · ‖) and nonempty
convex subsets C.
Analogously, for uniformly convex spaces (X, ‖·‖, C, η) and inner prod-
uct spaces (X, 〈·, ·〉), where for uniformly convex spaces the bound Φ
additionally depends on the modulus of uniform convexity η.

2. The corollary also holds for an additional parameter ∀z′C , if we add
the additional premise ‖z − z′‖X ≤IR (b)IR to the conclusion.

3. Furthermore, the corollary holds for an additional parameter ∀c0→C

if we add the additional premise ∀n(‖z − c(n)‖X ≤IR (b)IR) or just
∀n(‖z − c(n)‖X ≤IR (g(n))IR) to the conclusion, where the bound then
additionally depends on g : IN → IN.

4. 1., 2. and 3. also hold if we replace ‘f n.e.’ with ‘f Lipschitz con-
tinuous’ (with constant L ∈ Q∗

+), ‘f Hölder-Lipschitz continuous (with
constants L, α ∈ Q∗

+, where α ≤ 1) or ‘f uniformly continuous’ (with
modulus ω : IN → IN). For Lipschitz and Lipschitz-Hölder continuous
functions the bound depends on the given constants, for uniformly con-
tinuous functions the bound depends on the given modulus of uniform
continuity.

5. Furthermore, 1., 2. and 3. hold if we replace ‘f n.e.’ with ‘f weakly
quasi-nonexpansive’. For weakly quasi-nonexpansive functions (with
fixed point p) we need to state the additional premise ‖p‖X ≤IR (b)IR in
the conclusion.
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6. 1.,2. and 3. also hold if we replace ‘f n.e.’ in the premise and the
conclusion by

∀zC
1 , zC

2 (‖z1 − z2‖X <IR (n)IR → ‖f(z1)− f(z2)‖X ≤IR (Ω0(n))IR), (∗)

where Ω0 is a function IN → IN and the bound additionally depends on
Ω0.

7. Finally, 1.,2. and 3. hold if the previous conditions on f are replaced
by

∀z̃C(‖z̃‖X <IR (n)IR → ‖f(z̃)‖X ≤IR (Ω(n))IR), (∗∗)
where Ω is a function IN → IN and the bound additionally depends on
Ω. In this case we can drop the assumption ‘‖z − f(z)‖X ≤ (b)IR’ in
the conclusion whereas ‘‖z‖X ≤ (b)IR’ has to remain.

Note that (∗), (∗∗) are logically equivalent to ∀-formulas.

Proof. This is basically the same proof as the proof of Corollary 4.17, except
for two points: (1) as discussed we need to fix a = 0X and we need an
additional premise, ‖z‖ ≤ b and (2) the 0X-majorization of f (actually f̃)
requires extra care. From the definition of f̃ it is obvious that n &0X

X f(x)
for x ∈ X \ C if n ≥ ‖cX‖. Also note, that since we assume cX does not
occur in B∀ and C∃ we may, by Remark 6.4 interpret cX by the parameter z
in the model, so that ‖cX‖ ≤ b. Hence, given an a-majorant λn.f ∗(n) &0X

X f
on the convex subset C, we obtain the 0X-majorant λn.max(f ∗(n), b) for f̃
and thus the extracted bound does not depend on an explicit bound on the
norm of cX . In the following we may therefore focus on 0X-majorants for f
on the convex subset C.

For 1., 2. and 3. we have that b &0X z, 2b &0X z′ and λn0.2b &0X c, resp.
λn.gM(n) + b &0X c. For λn0.n + 3b &0X f , where f is nonexpansive, we
reason as follows: assume ‖z̃‖ ≤ n then

‖f(z̃)‖ = ‖f(z̃)− f(z) + f(z)− z + z‖
≤ ‖f(z̃)− f(z)‖+ ‖f(z)− z‖ + ‖z‖
≤ ‖z̃ − z‖ + b + b
≤ ‖z̃‖+ ‖z‖+ 2b
≤ n + 3b.
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Similarly, for 4.,5., 6. and 7. one obtains λn0.ΩM (n + 1) &0X f if Ω satisfies
(∗∗) from 7. As in the metric case, one may obtain a bound on ‖f(z) − z‖
using (∗∗): ‖z‖ ≤ b(⇒ ‖z‖ < b + 1) implies ‖f(z)‖ ≤ Ω(b + 1) and hence
‖f(z)− z‖ ≤ Ω(b + 1) + b. For 4., 5. and 6. we derive the various Ωs, under
the assumptions ‖z‖, ‖f(z)− z‖ ≤ b, as follows:

If f is Lipschitz continuous with constant L > 0 and we assume ‖z̃‖ ≤ n,
then using the triangle inequality and the aforementioned assumptions

‖f(z̃)‖ ≤ ‖f(z̃)− f(z)‖+ ‖f(z)− z‖ + ‖z‖
≤ L · ‖z̃ − z‖ + b + b
≤ L · (n + b) + 2b,

so f satisfies (∗∗) with Ω(n) := L · (n + b) + 2b. Likewise, one obtains
that f Hölder-Lipschitz continuous with constants L, α satisfies (∗∗) with
Ω(n) := L · (n + b)α + 2b.

For f uniformly continuous functions with modulus ω the argument is similar
to that in the hyperbolic case: assuming ‖z̃‖ ≤ n and using ‖z‖ ≤ b we obtain
‖z̃−z‖ ≤ n+ b. Dividing the line segment between z̃, z into (n+ b) ·2ω(0) +1
pieces of length < 2−ω(0) we obtain ‖f(z̃)− f(z)‖ ≤ (n + b) · 2ω(0) + 1. Thus
we obtain

‖f(z̃)‖ ≤ ‖f(z̃)− f(z)‖ + ‖f(z)− z‖+ ‖z‖ ≤ (n + b) · 2ω(0) + 2b + 1,

i.e. f satisfies (∗∗) with Ω(n) := (n+b)·2ω(0)+2b+1 for uniformly continuous
functions f with modulus ω.

As in the metric case, for weakly quasi-nonexpansive functions, the fixed
point p is an additional parameter and we require the additional premise
‖p‖ ≤ b. For weakly quasi-nonexpansive functions f , we then obtain Ω(n) :=
n + 2b as follows:

‖z̃‖ ≤ n → ‖f(z̃)‖ ≤ ‖f(z̃)−p‖+‖p‖ ≤ ‖z̃−p‖+‖p‖ ≤ ‖z̃‖+‖p‖+‖p‖ ≤ n+2b.

At last, if f satisfies ‖z− f(z)‖ ≤ b and (∗) with an Ω0, then f satisfies (∗∗)
with Ω(n) := Ω0(n + b) + b.

The result then follows from Theorem 6.3.
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Remark 6.7. The previous remark 4.18 applies accordingly in the normed
case.

Defining, in the setting of normed linear spaces, the notions of Fix(f) and
Fixε(f, z, b) as before, we prove the following corollary.

Corollary 6.8. 1. Let P (resp. K) be a Aω-definable Polish space (resp.
compact Polish space) and let B∀ and C∃ be as before. If Aω[X, ‖·‖, C]−b

proves a sentence

∀x ∈ P∀y ∈ K∀zC , fC→C(f n.e. ∧ Fix(f) 6= ∅∀u0B∀ → ∃v0C∃),

then there exists a computable functional Φ1→0→0 (on representatives
rx : IN → IN of elements of P ) s.t. for all rx ∈ ININ, b ∈ IN

∀y ∈ K∀zC , fC→C(f n.e. ∧ ∀ε > 0Fixε(f, z, b) 6= ∅
∧‖z‖X , ‖z − f(z)‖X ≤IR (b)IR ∧ ∀u0 ≤ Φ(rx, b)B∀ → ∃v0 ≤ Φ(rx, b)C∃)

holds in all non-trivial normed linear spaces (X, ‖ · ‖) with nonempty
convex subset C for which ‖cX‖ ≤ b.
If cX does not occur in B∀, C∃, we can drop the requirement that ‖cX‖ ≤
b.
Analogously, for uniformly convex spaces (X, ‖·‖, C, η) and inner prod-
uct spaces (X, 〈·, ·〉), where for uniformly convex spaces the bound Φ
additionally depends on the modulus of uniform convexity η.

2. The corollary also holds if ‘f n.e.’ is replaced by f Lipschitz contin-
uous, Hölder-Lipschitz continuous or uniformly continuous, where the
extracted bound then will depend on the respective constants and moduli.

3. Considering the premise ‘f weakly quasi-nonexpansive’, i.e.

∃pC(f(p) =X p ∧ ∀wX(‖f(p)− f(w)‖X ≤IR ‖p− w‖X))

instead of ‘f n.e. ∧Fix(f) 6= ∅’ we may weaken this premise to

∀ε > 0∃pC(‖f(p)− p‖X ≤IR ε ∧ ‖z − p‖X ≤IR (b)IR

∧∀w ∈ X(‖f(p)− f(w)‖X ≤IR ‖p− w‖X)).
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4. Let Ψ : (X → X) → X → 1 be a provably extensional closed term of
Aω[X, ‖ · ‖, C]−b, then in 1. and 2. instead of ‘Fix(f) 6= ∅’ we may
weaken ‘Ψ(f, p) =IR 0’ expressing that Ψ(f, ·) has a root p to ‘∀ε >
0∃p ∈ X(‖z − p‖X ≤IR (b)IR ∧ |Ψ(f, p)| ≤IR ε)’, expressing that Ψ(f, ·)
has ε-roots p which are b-close to z for every ε > 0.

Proof. This is essentially the same proof as for Corollary 4.22, except that
b not only bounds the distance between z and f(z) and the diameter of the
subset where ε-fixed points are to be found, but also the norm of z itself and
the norm of the element cX of the convex subset C. The result then follows
using Corollary 6.6.

Similar to Corollary 5.2 we may also in the setting of normed linear spaces
allow a Herbrand normal form version of the previous corollary, which allows
one to weaken premises even though the conclusion is of a too general form
to allow extraction of explicit bounds.

7 Simultaneous treatment of several spaces

The generalized approach to majorization developed in the previous section
may also be extended to simultaneously cover finite collections of spaces.
Instead of a single space X and a single element a ∈ X we may have a
collection of spaces X1, . . . , Xn and corresponding elements ai ∈ Xi that we
take as reference points for the majorization relation. We then may consider
elements of products of these spaces and functions between such product-
elements.

TX1,...,Xn is the set of all finite types ρ over the ground types 0, X1, . . . , Xn.
For ρ ∈ TX1,...,Xn the type ρ̂ defines the type which results from ρ by replacing
all occurrences of Xi, 1 ≤ i ≤ n by 0. The relation &a is then defined as
follows:

Definition 7.1. We define a ternary relation &a
ρ between objects x, y and an

n-tuple a of type ρ̂, ρ and X1, . . . , Xn respectively as follows:

• x0 &a
0 y0 :≡ x ≥0 y,
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• x0 &a
Xi

yXi :≡ (x)IR ≥IR dXi
(y, ai),

• x &a
ρ→τ y :≡ ∀z′, z(z′ &a

ρ z → xz′ &a
τ yz) ∧ ∀z′, z(z′ &a

bρ z → xz′ &a
τ

xz).

If Xi is a normed linear spaces we require ai = 0Xi
s.t. dXi

(x, ai) =IR ‖x‖Xi
.

E.g. if we have two metric spaces (X1, dX1) and (X2, dX2) then an (a1, a2)-
majorant for fX1→X2 is a function f ∗ of type 1 such that

∀n0, xX1(dX1(x, a1) ≤IR (n)IR → dX2(f(x), a2) ≤IR (f ∗(n))IR).

If f is nonexpansive and a2 := f(a1), then f is (a1, a2)-majorized by the
identity function λn.n0.

Functions involving product types are treated using “currying” in the form
of the following two patterns:

• a function f : X1 × . . . × Xn → ρ is represented by f : X1 → . . . →
Xn → ρ,

• a function ρ → X1× . . .×Xn is represented by an n-tuple of functions
fi : ρ → Xi.

Thus e.g. a function f : X1 ×X2 → X1 × X2 will be represented by a pair
f1,2 : X1 → (X2 → X1,2). A function g : (X1 ×X2 → X1 ×X2) → X1 ×X2

by a pair g1,2 : (X1 → (X2 → X1)) → ((X1 → (X2 → X2)) → X1,2) and
similar for products of greater arity and functions of more complex types.

8 Applications

Application 8.1. Let (X, d, W ) be an arbitrary (nonempty) hyperbolic space,

k ∈ IN, k ≥ 1 and (λn)n∈IN a sequence in [0, 1 − 1
k
] with

∞∑
n=0

λn = ∞ and

define for f : X → X, x ∈ X the Krasnoselski-Mann iteration (xn)n starting
from x ([26, 29]) by

x0 := x, xn+1 := (1− λn)xn ⊕ λnf(xn).
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In [11](Theorem 1) the following is proved16

∀x ∈ X, f : X → X((xn)n bounded and f n.e. → lim
n→∞

d(xn, f(xn)) = 0).

As observed in [2], it actually suffices to assume that (x∗n)n starting from
some x∗ is bounded. Therefore

∀x ∈ X, f : X → X(∃x∗ ∈ X((x∗n)n bounded) and f n.e.
→ lim

n→∞
d(xn, f(xn)) = 0).

The proof given in [11] (and [2]) can easily be formalized in Aω[X, d, W ]−b

(see [22] for more details on this). As an application of Corollary 4.17 we
obtain (see the proof below) the following effective and uniform version:
There exists a computable bound Φ(k, α, b, l) such that in any (nonempty)
hyperbolic space (X, d, W ), for any l, b, k ∈ IN and any α : IN → IN the
following holds: if (λn) is a sequence in [0, 1) such that

∀n ∈ IN(λn ≤ 1− 1

k
∧ n ≤

α(n)∑
i=0

λi)

then

∀x, x∗ ∈ X∀f : X → X( ∀i, j(d(x, x∗), d(x∗i , x
∗
j) ≤ b)

∧f n.e. → ∀m ≥ Φ(k, α, b, l)d(xm, f(xm)) < 2−l).

Proof. As mentioned already, Aω[X, d, W ]−b proves the following (formalized
version of Theorem 1 in [11]): if k ≥ 1, λ0→1

(·) represents an element of the

compact Polish space [0, 1]∞ (with the product metric) and α : IN → IN such
that

(∗) ∀n ∈ IN(λn ≤IR 1− 1

k
∧ n ≤IR

α(n)∑
i=0

λi),

where
α(n)∑
i=0

λi represents the corresponding summation of the real numbers in

[0, 1] represented by λi, then

∀l, b ∈ IN, x, x∗, fX→X( (x∗n)n b-bounded ∧f n.e.
→ ∃n ∈ IN(dX(xn, f(xn)) <IR 2−l)),

16For the case of convex subsets C ⊆ X of normed linear spaces (X, ‖ · ‖) this result is
already due to [13]. [11] even treats spaces of hyperbolic type.
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where ‘(∗)’ and ‘(x∗n)n b-bounded’ are a ∀-formulas and ‘dX(xn, f(xn)) <IR

2−l’ is a ∃-formula.

Now Corollary 4.17 yields the existence of a computable functional Φ(k, α, b, l)
such that for n := Φ(k, α, b, l)

∀(λm) ∈ [0, 1]∞∀x, x∗ ∈ X∀f : X → X((∗) ∧ ∀i, j(d(x, f(x)), d(x, x∗),
d(x∗i , x

∗
j ) ≤ b) ∧ f n.e. → ∃m ≤ n(d(xm, f(xm)) < 2−l))

holds for all k, α, b, l in any (nonempty) hyperbolic space (X, d, W ).

Since (d(xn, f(xn)))n is a non-increasing sequence ([11]) the conclusion actu-
ally implies

∀m ≥ Φ(k, α, b, l)(d(xm, f(xm)) < 2−l).

The only thing which remains to show is that the assumption ‘d(x, f(x)) ≤ b’
is redundant: by Theorem 1 from [11] we know, in particular, that
d(x∗n, f(x∗n)) → 0 and so a-fortiori

∃n ∈ IN(d(x∗n, f(x∗n)) ≤ b).

Using d(x, x∗), d(x∗i , x
∗
j) ≤ b for all i, j and the nonexpansivity of f yields

d(x, f(x)) ≤
d(x, x∗) + d(x∗, x∗n) + d(x∗n, f(x∗n)) + d(f(x∗n), f(x∗)) + d(f(x∗), f(x)) ≤ 5b.

So replacing ‘b’ in the bound by ‘5b’ we can drop the assumption ‘d(x, f(x)) ≤
b’.

As a corollary it follows, that for bounded hyperbolic spaces (X, d, W ) the
convergence d(xn, f(xn)) → 0 is uniform in x, f and – except for a bound b
on the metric – in (X, d, W ). This corollary was first proved as Theorem 2
in [11]17 and was shown to follow from a general logical metatheorem in [22]
where a detailed discussion of this point is given. In [24], the extraction of an
actual effective uniform rate of convergence was carried out and it was noticed
that the assumption on X to be bounded could be weakened to a bound b on
d(x, x∗) and (x∗n)n for some x∗ ∈ X. At that time, there was no explanation

17For the case of bounded convex subsets of normed spaces and constant λn = λ ∈ (0, 1)
the uniformity in x was already shown in [7] and – for (λn)n in [a, b] ⊂ (0, 1) and non-
increasing – in [5].
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in terms of a general result from logic for the fact that these local bounds
where sufficient. This latter fact can now for the first time be explained by
our refined logical metatheorems as well. Note that the proof of Theorem 2
in [11] (as well as the alternative proof for constant λn = λ ∈ (0, 1) given in
[15]) crucially uses that the whole space X is assumed to be bounded. So the
uniformity result guaranteed a-priorily by the metatheorems of the present
paper applied to Theorem 1 of [11] not only yields immediately Theorem 2
from [11] (called ‘main result’) but even a qualitatively stronger uniformity
which apparently cannot be obtained by the functional analytic embedding
techniques used in [11] (or in [15]).

The aforementioned explicit bound extracted in [24](see theorem 3.21 and
remark 3.13) is as follows (for the case of convex subsets of normed linear
spaces the result is due already to [19, 20]):

Φ(k, α, b, l) := α̂(d12b · exp(k(M + 1))e − 1, M)), where
M := (1 + 6b) · 2l, α̂(0, n) := α̃(0, n), α̂(i + 1, n) := α̃(α̂(i, n), n), with
α̃(i, n) := i + α+(i, n), where α+(i, n) := max

j≤i
[α(n + j)− j + 1].

Before we come to the next application we need the following

Proposition 8.2 ([13, 11]). Let (X, d, W ) be a (nonempty) compact hy-
perbolic space and (λn), f, (xn) as in application 8.1. Then (xn)n converges
towards a fixed point of f (see [21] for details).

Proof. By the result mentioned in application 8.1 we have that d(xn, f(xn)) →
0 since the compactness of X implies that X – and hence (xn)n – is bounded.
Using again the compactness of X, we know that (xn)n has a convergent sub-
sequence (xnk

)k with limit x̂. One easily shows (using the continuity of f)
that x̂ is a fixed point of f . The proof is concluded by verifying the easy fact
that for any fixed point x̂ of f

∀n ∈ IN(d(xn+1, x̂) ≤ d(xn, x̂))

which implies that already (xn)n converges towards x̂.

In particular it follows that (xn)n is a Cauchy sequence and for this corollary
one does not need the completeness of X but only its total boundedness:
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suppose X is totally bounded. Then its metric completion X̂ (which again
is a hyperbolic space) is totally bounded too and hence compact. f extends

to a nonexpansive function f̂ on the completion so that the previous result
applies. Since f̂ coincides with f on X, also the Krasnoselski-Mann iteration
of f̂ coincides with that of f when starting from a point x ∈ X. Hence we
conclude that (xn)n is a Cauchy sequence.

Application 8.3. Let us consider the proof of the Cauchy property of (xn)
from the asymptotic regularity (i.e. d(xn, f(xn)) → 0) (taken as assump-
tion)18 under the additional assumption of X being totally bounded, i.e. the
proof of

(+) X totally bounded ∧ lim d(xn, f(xn)) = 0 ∧ f n.e. →
∀k ∈ IN∃n ∈ IN∀m ≥ n(d(xn, xm) ≤ 2−k)

which can be formalized in Aω[X, d, W ]−b.

In order to apply Corollary 4.17 we first have to modify (+) so that the logical
form required in the corollary is obtained. In order to do so we first have to
make the assumptions explicit:

• due to the fact that d(xn, f(xn))n is non-increasing, we can write the
asymptotic regularity equivalently as ∀l ∈ IN∃n ∈ IN(d(xn, f(xn)) ≤
2−l) which asks for a witnessing rate of asymptotic regularity δ : IN →
IN such that

(1) ∀l ∈ IN(d(xδ(l), f(xδ(l))) ≤ 2−l).

• the total boundedness of X is expressed by the existence of a sequence
(an)n of points in X and a function γ : IN → IN such that

(2) ∀l ∈ IN, x ∈ X∃n ≤ γ(l)(d(x, an) ≤ 2−l).

A function γ such that a sequence (an)n in X satisfying (2) exists is
called a modulus of total boundedness for X.

It is important to notice that both (1) and (2) are (provably equivalent to)
∀-formulas.

18The proof relative to this assumption only uses that (λn)n is a sequence in [0, 1] but not
the other assumptions on (λn)n (which are only needed to prove that d(xn, f(xn)) → 0).
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The conclusion, i.e. the Cauchy property of (xn), is a Π0
3-formula and so

too complicated to be covered by our metatheorems. In fact, as shown in [21]
there is no Cauchy rate computable in the parameters even for a very simple
computable sequence of nonexpansive functions on X = [0, 1] and λn = 1

2
.

We therefore modify the conclusion to its Herbrand normal form19

(H) ∀l ∈ IN∀g : IN → IN∃n ∈ IN∀i, j ∈ [n; n + g(n)](d(xi, xj) < 2−l),

where [n; m] denotes the subset {n, n + 1, . . . , m− 1, m} of IN for m ≥ n.

Classically, (H) is a equivalent to the Cauchy property for (xn)n but – since
the proof is ineffective – a computable bound on (H) does not yield a com-
putable Cauchy modulus for (xn)n. Note that

∃n ∈ IN∀i, j ∈ [n; n + g(n)](d(xi, xj) < 2−l)

is (equivalent to) an ∃-formula.

Aω[X, d, W ]−b proves that

∀(λm) ∈ [0, 1]∞∀xX∀fX→X , (an)0→X , l0, γ1, δ1, g1

((1) ∧ (2) ∧ f n.e. → ∃m ∈ IN∀i, j ∈ [m; m + g(m)](d(xi, xj) < 2−l)).

The total boundedness of X implies that the metric of X is bounded and a
bound can be computed by b := max{d(ai, aj) : i, j ≤ γ(0)}+ 2. However, in
order to guarantee our result to be independent from (an)n we add a bound b
of X as an additional input. Hence by Corollary 4.14 we obtain a computable
bound n := Ω(l, b, γ, δ, g) such that for all (λn) in [0, 1], x ∈ X, (an) in X, f :
X → X, l ∈ IN and γ, δ, g : IN → IN :

(1) ∧ (2) ∧ f n.e. → ∃m ≤ n∀i, j ∈ [m; m + g(m)](d(xi, xj) < 2−l)

holds in any (nonempty) b-bounded, totally bounded (with modulus γ) hyper-
bolic space (X, d, W ).

A concrete bound Ω of this kind has in fact been extracted first in [21], where
there extraction itself was guided by the algorithm provided by the proof of

19More precisely, the Herbrand normal form of a slightly different but trivially equivalent
formulation of the Cauchy property.
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Corollary 4.14 as well as the proof-theoretic study of the Bolzano-Weierstraß
principle carried out in [17]. This concrete Ω even is independent from b and
is defined as follows

Ω(l, g, δ, γ) := max
i≤γ(l+3)

Ψ0(i, l, g, δ),

where


Ψ0(0, l, g, δ) := 0

Ψ0(n + 1, l, g, δ) := δ

(
l + 2 + dlog2(max

i≤n
g(Ψ0(i, l, g, δ)) + 1)e

)
.

For X being b-bounded and (λn) s.t. λi ∈ [0, 1 − 1
k
],

α(n)∑
i=0

λi ≥ n, we can take

δ(l) := Φ(k, α, b, l) from application 8.1.

Application 8.4. Let (X, d, W ), k, (λn), f, x and (xn) be as in application
8.1. In [2], the following result is proved:

∀x ∈ X, f : X → X(f n.e. → lim
n→∞

d(xn, f(xn)) = r(f)),

where r(f) := inf
y∈X

d(y, f(y)) is the so-called minimal displacement of f . As

(xn) is no longer assumed to be bounded, r(f) can very well be strictly posi-
tive: e.g. for IR (with the natural metric) and f : IR → IR, f(x) := x + 1 we
have r(f) = 1 although f is nonexpansive.

The above theorem can be written equivalently as follows (using again that
(d(xn, f(xn))) is non-increasing):20

∀l ∈ IN∀x, x∗ ∈ X, f : X → X∃n ∈ IN(d(xn, f(xn)) < d(x∗, f(x∗)) + 2−l).

The proof given in [2] can be formalized in Aω[X, d, W ]−b and so Corollary
4.17 yields (like in the proof of application 8.1 above) an effective bound
n := Ψ(k, α, b, l) such that in any (nonempty) hyperbolic space (X, d, W ), for

any l, b, k ∈ IN and any α : IN → IN such that λn ≤ 1
k

and n ≤
α(n)∑
i=0

λi the

following holds

∀x, x∗ ∈ X∀f : X → X(d(x, x∗), d(x, f(x)) ≤ b
∧f n.e. → ∃k ≤ n(d(xk, f(xk)) < d(x∗, f(x∗)) + 2−l))

20For details see [20].
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and so (by the fact that d(xn, f(xn))n is non-increasing)

∀x, x∗ ∈ X∀f : X → X( d(x, x∗), d(x, f(x)) ≤ b
∧f n.e. → ∀m ≥ Ψ(k, α, b, l)(d(xm, f(xm)) < d(x∗, f(x∗)) + 2−l)).

An explicit such bound Ψ (which is very similar to the bound Φ mentioned
in connection with application 8.1) has been extracted first in [24] (for the
special case of convex subsets of normed spaces this is already due to [19] and
– in a stronger form – in [20]). Our refined metatheorems for the first time
allow one to explain this finding as an instance of a general result in logic.

9 Proofs of Theorems 4.10 and 6.3

We focus on proving Theorems 4.10 and 6.3 for the theories Aω[X, d, W ]−b

andAω[X, ‖·‖, C]−b respectively. From these proofs, the corresponding proofs
for the other variants of the theories for metric and normed linear spaces can
easily be obtained by treating one of the following kinds of extensions: (1)
adding another purely universal axiom to the theory (purely universal axioms
are their own functional interpretation), e.g. for Aω[X, d, W, CAT (0)]−b, or
(2) adding a new majorizable constant to the language as e.g. for Aω[X, ‖ ·
‖, C, η]−b, where the modulus of uniform convexity η is given as a number
theoretic function η : IN → IN.

The proofs of Theorems 4.10 and 6.3 closely follow the general proof outline
in [22], but both the interpretation of the theories Aω[X, d, W ]−b, Aω[X, ‖ ·
‖, C]−b by bar-recursive functionals and the subsequent interpretation of
these functionals in an extension of the Howard-Bezem strongly majoriz-
able functionals to all types TX are now parametrized by an element a ∈
X for the relation &a. For the interpretation of Aω[X, d, W ]−b by bar-
recursive functionals this in effect leads to a family of functional interpre-
tations parametrized by a ∈ X, where the interpretation of the element
a ∈ X is fixed later during the majorization process (see Remark 9.11). For
Aω[X, ‖ · ‖, C]−b the choice a = 0X is fixed from the beginning.

Based on &a we redefine Kohlenbach’s [22] extension of Bezem’s[1] type
structure of hereditarily strongly majorizable set-theoretical functionals to
all types TX (based on &a instead of s-maj) as follows:
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Definition 9.1. Let (X, d) be a metric space, resp. (X, ‖ ·‖) a (real) normed
linear space, and let a ∈ X be given. The extensional type structure Mω,X

of all hereditarily strongly a-majorizable set-theoretic functionals of type ρ ∈
TX over IN and X is defined as



M0 := IN, n &a
0 m :≡ n ≥ m ∧ n, m ∈ IN,

MX := X, n &a
X x :≡ n ≥ d(x, a) ∧ n ∈ M0, x ∈ MX ,

where ≥ is the usual order on IR.

x∗ &a
ρ→τ x :≡ x∗ ∈ M

Mbρ

bτ ∧ x ∈ M
Mρ
τ

∧∀y∗ ∈ Mbρ, y ∈ Mρ (y∗ &a
ρ y → x∗y∗ &a

τ xy)
∧∀y∗, y ∈ Mbρ (y∗ &a

bρ y → x∗y∗ &a
bτ x∗y),

Mρ→τ :=
{

x ∈ M
Mρ
τ

∣∣∣ ∃x∗ ∈ M
Mbρ

bτ : x∗ &a
ρ→τ x

}
(ρ, τ ∈ TX) .

Remark 9.2. Restricted to the types T, this type structure is identical to
Bezem’s original type structure Mω of strongly hereditarily majorizable func-
tionals, as for ρ ∈ T the relations s-majρ and &a

ρ are the same and hence
for ρ ∈ T we may freely write s-majρ instead of &a

ρ, as here the parameter
a ∈ X is irrelevant.

Even though the a-majorization relation is parametrized by an element a ∈
X, the resulting model of all hereditarily strongly a-majorizable functionals
is independent of the choice of a ∈ X, as the following lemma shows:

Lemma 9.3. Let a, b ∈ X be given. Then for every ρ ∈ TX there is a
mapping Φρ of type ρ̂ → 0 → ρ̂ s.t. for all x∗ ∈ Ma

bρ , x ∈ Ma
ρ and all n ∈ IN

s.t. d(a, b) ≤ n,
x∗ &a

ρ x → Φρ(x
∗, n) &b

ρ x,

and for all x∗, x̂ ∈ Ma
bρ

x∗ s-majbρ x̂ → Φρ(x
∗, n) s-majbρ Φρ(x̂, n).

In particular: Ma
ρ = M b

ρ and – trivially – Ma
bρ = M b

bρ . Note, that this property
is symmetric in a, b ∈ X.

Proof. The proof is by induction on the type ρ ∈ TX .

For ρ = 0 define Φ0(x, n) := x. Trivially Ma
0 = M b

0 by definition.
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For ρ = X the mapping ΦX is the mapping ΦX(x∗, n) = x∗+n, as x∗ &a
X x is

equivalent to x∗ ≥ d(x, a) but then by the triangle inequality x∗+n ≥ d(x, b)
and hence x∗ + n &b

X x. Obviously, Ma
X = M b

X .

For ρ = σ → τ , we need to construct the mapping Φσ→τ and show that
x ∈ Ma

σ→τ implies x ∈ M b
σ→τ . Assume x∗ &a

σ→τ x for x ∈ Ma
σ→τ , and let

y∗ ∈ Mbσ and y ∈ Mσ be given such that y∗ &b
σ y. By the induction hypothesis

for σ there is a Φσ such that, using the symmetry in a and b, Φσ(y∗, n) &a
σ y.

Next, by the definition of &a
σ→τ we have that x∗(Φσ(y∗, n)) &a

τ xy. But then
by the induction hypothesis for τ there is a mapping Φτ such that

Φτ (x
∗Φσ(y∗, n), n) &b

σ xy.

Also for y∗ s-majbσ ŷ we have by I.H. that Φσ(y∗, n) s-majbσ Φσ(ŷ, n) and so for
x∗ s-majbρ x̂ we get x∗(Φσ(y∗, n)) s-majbτ x̂(Φσ(ŷ, n)) which in turn implies that
Φτ (x

∗(Φσ(y∗, n))) s-majbτΦτ (x̂(Φσ(ŷ, n))). The desired Φσ→τ is then obtained
by λ-abstracting x∗ and y∗. In particular, λy∗.Φτ (x

∗Φσ(y∗, n), n) is a b-
majorant for x and hence x ∈ M b

σ→τ .

Remark 9.4. Even though it is independent of the choice of a ∈ X whether
or not a certain functional is a-majorizable, the complexity and possible uni-
formities of the majorants depend crucially on the choice of a ∈ X. In
particular, for normed linear spaces a-majorants for a 6= 0X will usually de-
pend on an upper bound n ≥ ‖a‖ and hence will not have the uniformity
w.r.t. a that we aim for in our applications.

We also need the following lemmas:

Lemma 9.5. x∗ &a
ρ x → x∗ &a

bρ x∗ for all ρ ∈ TX.

Proof. By induction on ρ using that by definition of &a if x∗ &a
ρ→τ x then

∀z∗, z(z∗ &a
bρ z → x∗z∗ &a

bτ x∗z).

Lemma 9.6. Let ρ = ρ1 → . . . → ρk → τ . Then x∗ &a
ρ x iff

(I) ∀y∗1, y1, . . . , y
∗
k, yk(

k∧
i=1

(y∗i &a
ρi

yi) → x∗y∗1 . . . y∗k &a
τ xy1 . . . yk) and

(II) ∀y∗1, y1, . . . , y
∗
k, yk(

k∧
i=1

(y∗i &a
bρi

yi) → x∗y∗1 . . . y∗k &a
bτ x∗y1 . . . yk).
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Proof. By induction on k. The case k = 1 follows from the definition of &a.

k = n + 1: Let τ0 = ρn+1 → τ . For ‘⇒’, we have by induction hypothesis

∀y∗1, y1, . . . y
∗
n, yn(

n∧
i=1

(y∗i &a
ρi

yi) → x∗y∗1 . . . y∗n &a
τ0 xy1 . . . yn).

Now assume y∗n+1 &a
ρn+1

yn+1 then by definition of &a

x∗y∗n . . . y∗ny
∗
n+1 &a

τ xy1 . . . ynyn+1,

so (I) follows. (II) can be treated analogously.

For ‘⇐’, assume

∀y∗1, y1, . . . y
∗
n+1, yn+1(

n+1∧
i=1

(y∗i &a
ρi

yi) → x∗y∗1 . . . y∗n+1 &a
τ xy1 . . . yn+1)

and

∀y∗1, y1, . . . y
∗
n+1, yn+1(

n+1∧
i=1

(y∗i &a
bρi

yi) → x∗y∗1 . . . y∗n+1 &a
bτ x∗y1 . . . yn+1).

We need to show that under these assumptions (1) x∗y∗1 . . . y∗n &a
τ0

xy1 . . . yn

and (2) x∗y∗1 . . . y∗n &a
bτ0

x∗y1 . . . yn hold, then using the induction hypothesis
we are done.

There are three cases to check:

(1a)
n+1∧
i=1

y∗i &a
ρi

yi → (x∗y∗1 . . . y∗n)y∗n+1 &a
τ (xy1 . . . yn)yn+1,

(1b)
n+1∧
i=1

y∗i &a
bρi

yi → (x∗y∗1 . . . y∗n)y
∗
n+1 &a

bτ (x∗y∗1 . . . y∗n)yn+1,

(2)
n+1∧
i=1

y∗i &a
bρi

yi → (x∗y∗1 . . . y∗n)y∗n+1 &a
bτ (x∗y1 . . . yn)yn+1,

(1a) and (2) hold by assumption, (1b) follows from (1a) using Lemma 9.5.

We need following (primitive recursive) functionals for the types ρ ∈ T whose
definitions we recall here:
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Definition 9.7. For ρ = ρ1 → . . . → ρk → 0 ∈ T we define maxρ by

max ρ(x, y) := λvρ
1, . . . , v

ρk

k . max IN(xv, yv)

For types 0 → ρ with ρ = ρ1 → . . . → ρk → 0, we define functionals (·)M of
types (0 → ρ) → 0 → ρ by :

xM(y0) := λvρ. max IN{x(i, v) | i = 1, . . . , y}.

The next lemma is easy:

Lemma 9.8. If ∀n(x∗(n) &a
ρ x(n)) then (x∗)M &a

0→ρ x.

We now prove Theorem 4.10. We focus on hyperbolic spaces (X, d, W ) and
the corresponding theory Aω[X, d, W ]−b. The case of ordinary metric spaces
(X, d) follows by simply omitting the axioms concerning W , while for CAT(0)
spaces we merely need to consider the additional purely universal axiom
CN−.
The next lemma is an adaptation of the corresponding result from [22] and
states that Aω[X, d, W ]−b has (via its so-called negative translation) a Gödel
functional interpretation in Aω[X, d, W ]−b − {QF-AC} (actually even with-
out DC and in a quantifier-free fragment of this theory) augmented by the
schema (BR) of simultaneous bar recursion in all types of TX (for Aω this
fundamental result is due to [33] (see [27] for a comprehensive treatment)
which extends [10], where functional interpretation was introduced).
Let Aω[X, d, W ]−−b := Aω[X, d, W ]−b \ {QF-AC}. Analogously, we define
Aω[X, ‖ · ‖, C]−−b := Aω[X, ‖ · ‖, C]−b \ {QF-AC} etc.

Lemma 9.9 ([22]). Let A be a sentence in the language of Aω[X, d, W ]−b.
Then the following rule holds:

Aω[X, d, W ]−b ` A
⇒ one can construct a tuple of closed terms t of Aω[X, d, W ]−b+(BR) s.t.
Aω[X, d, W ]−−b + (BR) ` ∀y (A′)D(t, y).

where A′ is the negative translation of A and (A′)D ≡ ∃x∀y(A′)D(x, y) is the
Gödel functional interpretation of A′.
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Proof. This is Lemma 4.4 in [22],21 except that we have one less purely univer-
sal axiom to interpret: the axiom that the metric of (X, d, W ) is bounded by
b. Also, as discussed in Section 2 the axioms concerning the hyperbolic func-
tion have been reformulated to implicitly satisfy WX(x, y, λ) =X WX(x, y, λ̃).
Recall that, in general, purely universal axioms not containing ∨, such as the
additional axioms for metric, hyperbolic and CAT(0) spaces, are interpreted
by themselves.

Lemma 9.10. Let (X, d, W ) be a nonempty hyperbolic space. Then Mω,X

is a model of Aω[X, d, W ]−−b +(BR) (for a suitable interpretation of the con-
stants of Aω[X, d, W ]−−b +(BR) in Mω,X), where we may interpret 0X by an
arbitrary element a ∈ X.

Moreover, for any closed term t of Aω[X, d, W ]−−b +(BR) one can construct
a closed term t∗ of Aω +(BR) – so in particular t does not contain the
constants 0X , dX and WX – such that

Mω,X |= ∀aX∀n0((n)IR ≥ d(0X , a) → t∗(n) &a t).

In particular, if we interpret 0X by a ∈ X, then it holds in Mω,X that t∗(00)
is an a-majorant of t

Proof. The constants of Aω[X, d, W ]−−b +(BR) are interpreted as in [22], so
next we need to show that all these functionals are in Mω,X by constructing
a-majorants. To show that we can construct a suitable a-majorant t∗ for any
closed term t of Aω[X, d, W ]−−b +(BR) it suffices to describe a-majorants for
the constants of Aω[X, d, W ]−−b +(BR).

We first describe the (trivially uniform) a-majorants for the constants of
classical analysis Aω, which now are taken over the extended set of types
TX . Using Lemma 9.6 one easily verifies that:

• 0 &a
0 0,

21Correction to [22]: lemma 4.4 of [22] is stated with Aω [X, d, W ]+(BR) instead of
Aω[X, d, W ] \ {QF-AC}+(BR) in the conclusion but the lemma also holds of course with
the weaker theory as QF-AC disappears – as is well-known – during the functional inter-
pretation. This is in fact needed since lemma 4.7 in [22] (corresponding to our lemma 9.10)
does not hold for Aω[X, d, W ]+(BR) as stated but only for Aω[X, d, W ]\{QF-AC}+(BR).
Analogously on p. 122, line 7.
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• S &a
1 S,

• Πbρ,bτ &a Πρ,τ ,

• Σbσ,bρ,bτ &a Σσ,ρ,τ .

To produce a-majorants for the recursor R and the bar-recursor B22, we only
need the functional maxρ defined for all types ρ ∈ T. As a-majorants for R
and B only operate on the types T, we do not need to extend maxρ to the
types TX as it was done in [22].

By induction on n and using Lemma 9.6 one easily proves ∀n(Rbρn &a
ρ Rρn)

and hence by Lemma 9.8 RM
bρ &a

ρ Rρ.

The majorant for the bar-recursor B is defined as

sB∗
ρ,τ := λx, z, u, n, y.(Bρ,τx

Mzuz)
Mny,

where xM (y0→ρ) := x(yM) and uz := λv, n, y. max(znyM , uvnyM). As the
defining axioms of B involve 0X , we here assume a = 0X , though by Lemma
9.3 given a bound on d(a, 0X) we may transform this majorant into a majo-
rant for any choice of a. If 0X does not occur, such that we may interpret
0X by a ∈ X, the dependency on 0X , resp. a bound on d(a, 0X) disappears.

The crucial step in proving B∗
bρ,bτ &0X Bρ,τ is to establish the following: let

x∗, z∗, u∗, x, z, u, x̂, ẑ, û be given s.t. x∗ &α x, x∗ &bα x̂, z∗ &β z, z∗ &bβ ẑ,
u∗ &γ u and u∗ &bγ û, where α, β and γ are determined by ρ and τ . Then

(+) ∀y ∈ M0→bρ∀n0Q(y, n; n),

where Q(y, n; n) :≡

∀y∗, ỹ, ̂̃y ∈Mω,X(∀k(y∗k &ρ ỹk ∧ y∗k &bρ

̂̃yk) ∧ y∗, n =0→bρ y, n ⇒
B+x∗z∗u∗ny∗ &τ Bxzunỹ ∧
B+x∗z∗u∗ny∗ &bτ B+x∗z∗u∗n̂̃y, B+x̂ẑûn̂̃y),

22As in [22], our formal systems are formulated with simultaneous recursion R and
simultaneous bar-recursion B, both of which can be defined primitive recursively in ordi-
nary recursion R and ordinary bar-recursion B. For convenience we will only discuss the
ordinary recursors R and B. See [22] for a detailed discussion.
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where B+
ρ,τ := λx, z, u, n, y.Bρ,τx

Mzuzny. By Lemma 9.6 and 9.8 it then
follows that B∗ & B and B∗, B ∈Mω,X .

The proof of (+) uses the following form of dependent choice, also called bar
induction (which holds inMω,X since by lemma 9.8 we have M0→ρ = (Mρ)

IN):

∀y ∈ M0→bρ∃n0 ∈ IN∀n ≥ n0 Q(y, n; n) ∧
∀y ∈ M0→bρ, n ∈ IN(∀D ∈ Mbρ Q(y, n ∗D; n + 1) → Q(y, n; n))
→ ∀y ∈ M0→bρ, n0 ∈ INQ(y, n; n).

For the additional constants of Aω[X, d, W ]−−b we define the following a-
majorants:

• n0 &a 0X for every n with (n)IR ≥IR dX(a, 0X), where as just mentioned
we can take n := 0 if we interpret 0X by a,

• 00 &a a, since dX(a, a) =IR (0)IR,

• λx0, y0.((x + y)IR)◦ &a dX→X→1
X ,23

• λz1, x0, y0. max0(x, y) &a W 1→X→X→X
X .

The a-majorants for 0X and a are obvious. The a-majorant for dX follows
from the triangle inequality: assume n1 &a x and n2 &a y then

d(x, y) ≤ d(x, a) + d(y, a) ≤ n1 + n2.

Hence, as in the model Mω,X the expression dX(x, y) is interpreted by
(d(x, y))◦ (see [22]) and by Lemma 4.6 n1 + n2 ≥IR d(x, y) implies (n1 + n2)◦
s-maj1d(x, y))◦, the validity of the a-majorant for dX follows.

Finally, the a-majorant for WX can be justified by the first axiom for hyper-
bolic spaces:

∀xX , yX, zX∀λ1(dX(z, WX(x, y, λ)) ≤IR (1−IR λ̃)dX(z, x) +IR λ̃dX(z, y)),

The construction λ̃ turns representatives λ of arbitrary real numbers into
representatives λ̃ of real numbers in the interval [0, 1]. Hence we may reason

23Here we refer to remark 4.5.
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that dX(z, WX(x, y, λ)) is less than the maximum of dX(z, x) and dX(z, y)
and hence less than the maximum of respective upper bounds on dX(z, x)
and dX(z, y). Note that without the reformulation of axioms (4)-(7) for
hyperbolic spaces discussed in Section 2 (see Remark 2.6), this reasoning only
holds in the model Mω,X (in which WX(x, y, λ) is interpreted by W (x, y, rλ̃),
where W is the function of the hyperbolic space (X, d, W ) and rλ̃ is the
real number in [0, 1] represented by λ̃) whereas now it is even provable in
Aω[X, d, W ]−b.

Note, that the a-majorants for dX , WX are uniform, i.e. they do not depend
on a. The a-majorant for a also does not depend on a, other than the
requirement that the variable a and the element a in &a denote the same
element. Only the a-majorant for 0X depends on a. Also note, that the (·)◦-
operator, which is ineffective in general, only is applied to natural numbers,
where it is effectively (even primitive recursively) computable.

Thus given a closed term t of Aω[X, d, W ]−−b +(BR) we construct an a-
majorant t∗ by induction on the term structure from the a-majorants given
above, where we furthermore λ-abstract the majorant n for 0X . Then one
easily shows that

Mω,X |= ∀aX∀n0((n)IR ≥IR dX(0X , a) → t∗(n) &a t).

where t∗ does not contain 0X , dX and WX and we may take n := 0 if we
interpret 0X by a.

Lemma 9.10 also covers Aω[X, d]−b, simply by omitting the parts concerning
the W -function, and Aω[X, d, W, CAT(0)]−b, as this theory contains no addi-
tional constants that need to be majorized but only another purely universal
axiom which is interpreted by itself.

Proof of Theorem 4.10.

Assume
Aω[X, d, W ]−b ` ∀xρ(∀u0B∀(x, u) → ∃v0C∃(x, v)).

As in [22], this yields (using that negative translation and (partial) functional
interpretation of the formula in question results in ∃U, V ∀xρ(B∀(x, U(x)) →
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C∃(x, V (x)))) by Lemmas 9.9 and 9.10 the extractabilty of closed terms tU , tV
and tU∗ , tV ∗ , the latter not containing 0X , dX, WX , such that for all n0 ≥
d(0X , a)

Mω,X |=
{

tU∗(n) &a tU ∧ tV ∗(n) &a tV∧
∀xρ(B∀(x, tU(x)) → C∃(x, tV (x))).

Next, define the functional Φ(xbρ, n) := max(t′U∗(n, x), t′V ∗(n, x)), then

(+) Mω,X |= ∀u ≤ Φ(x∗, n)B∀(x, u) → ∃v ≤ Φ(x∗, n)C∃(x, v)

holds for all n ∈ IN, x ∈ Mρ and x∗ ∈ Mbρ for which there exists an a ∈ X
such that n ≥ d(0X , a) and x∗ &a x.

For the types γ of degree 1bor (1, X) of the quantifiers hidden in the definition
of ∀/∃-formulas we have at least Mγ ⊆ Sγ, which is sufficient for our purposes.
This is because types of that kind have arguments for whose types δ one has
– using lemma 9.8 – that Mδ = Sδ. For parameters xρ with ρ of degree 2
or (1, X), we restricted ourselves to those x ∈ Sρ which have a-majorants
x∗ ∈ Sbρ. Since functionals of such types ρ only have arguments of types τ
for which Mτ = Sτ we get from x∗ &a

ρ x (which implies that x∗ &a
bρ x∗) that

x∗ ∈ Mbρ, x ∈ Mρ. Hence Φ(x∗, n) is defined and (+) yields

(++) Sω,X |= ∀u ≤ Φ(x∗, n)B∀(x, u) → ∃v ≤ Φ(x∗, n)C∃(x, v)

holds for all n ∈ IN, x ∈ Sρ and x∗ ∈ Sbρ for which there exists an a ∈
X such that n0 ≥ d(0X , a) and x∗ &a x (here Φ(x∗, n) is interpreted as
[Φ(x∗, n)]Mω,X ).

This finishes the proof, as Φ is a partial functional (which is always defined
on the majorizable elements of Sbρ) in Sbρ→0→0 which does not depend on
(X, d, W ).

Finally, if 0X does not occur in either B∀ or C∃ we may freely interpret 0X

by a ∈ X. We then get majorants tU∗ , tV ∗ and a resulting term Φ which no
longer depend on a bound n on d(0X , a) (as we can take n := 0).

Remark 9.11. The proof of the soundness theorem of Gödel’s functional
interpretation (by closed terms) requires that we have closed terms for each
type which we can use e.g. in order to construct the functional interpretation
of axioms such as ⊥ → A. That closed term can be arbitrarily chosen and
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usually is taken as the constant-0-functional of suitable type, where for the
type X one takes by default 0X . However, one could have also chosen an
open term such as the constant-a-functional for types which map arguments
to the type X. So rather than having just one term extracted by functional
interpretation we have a whole family of such terms parametrized by aX . In
the last step of the previous proof we make use of this by picking the a-th
term according to our choice of the reference point a for &a. By letting both
&a and the functional interpretation depend on a in a simultaneous way we
achieve that the extracted majorant does not depend on the distance between
a and any arbitrarily fixed constant such as 0X .

For normed linear spaces we focus on the theory Aω[X, ‖ · ‖, C]−b. The
further cases Aω[X, ‖·‖, C, η]−b and Aω[X, ‖·‖, C, 〈·, ·〉]−b follow by extending
Aω[X, ‖ · ‖, C]−b respectively with an additional (majorizable) constant η for
the modulus of uniform convexity or an additional purely universal axiom
expressing the properties of the inner product in terms of the norm.

Lemma 9.12. Let (X, ‖ · ‖) be a non-trivial normed linear space with a
nonempty convex subset C. Then Mω,X is a model of Aω[X, ‖ ·‖, C]−−b (for a
suitable interpretation of the constants of Aω[X, ‖ · ‖, C]−b +(BR) in Mω,X).

Moreover, for any closed term t of Aω[X, ‖ ·‖, C]−b +(BR) one can construct
a closed term t∗ of Aω +(BR) such that

Mω,X |= ∀n0((n)IR ≥IR ‖cX‖X → t∗(n) &0X t).

Similarly for Aω[X, ‖ · ‖, C, η]−−b +(BR) and Aω[X, ‖ · ‖, C, 〈·, ·〉]−−b +(BR).

Proof. The proof is almost the same as the above proof of Lemma 9.10 and
as before the interpretation of the constants of Aω[X, ‖ · ‖, C]−b+(BR) is as
in [22].

The main difference to the proof of Lemma 9.10 is that we fix a = 0X (where
0X now has to be interpreted by the zero vector of X), as otherwise we
cannot define suitable (i.e. suitably uniform) majorants for the new constants
of Aω[X, ‖ · ‖, C]−b. So now it suffices to state 0X-majorants for the new
constants:

• 00 &0X 0X ,
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• 10 &0X 1X ,

• λx0.((x)IR)◦ &0X ‖ · ‖X→1
X ,

• λx0, y0.x + y &0X +X→X→X
X ,

• λx0.x &0X −X→X
X ,

• λα1, x0.(α(0) + 1) · x &0X ·1→X→X
X .

For the convex subset C, we have the characteristic term χC for the subset
C, which is majorized as follows:

λx0.1 &0X χX→0
C .

For the constant cX ∈ C we have, given an n ≥ ‖cX‖, the 0X-majorant

n0 &0X
X cX .

For uniformly convex spaces we 0X-majorize the modulus η : IN → IN of
uniform convexity by

(η)M &0X
1 η.

In [22], inner product spaces are defined by adding the so-called parallelogram
law as another axiom. A norm satisfying the parallelogram law, allows one
to define an inner product in terms of the norm and hence the inner product
is immediately 0X-majorizable. Inversely, if only an inner product is given
the norm ‖ · ‖ can be recovered by defining ‖x‖ :=

√〈x, x〉.
The majorants for the constants of normed linear spaces, with the exception
of the modulus η of uniform convexity, are only seemingly uniform, since
they depend on properties of the norm and hence on the choice of a = 0X .
The 0X -majorants for 0X , 1X , χC and cX are obvious. For ‖ · ‖X we need to
consider the interpretation of ‖ · ‖X in the model Mω,X : the norm ‖x‖X of
an element x ∈ X is interpreted by the actual norm using the ()◦-operator,
i.e. by (‖x‖)◦. In order to show that (in the model) λx.((x)IR)◦ &a ‖ · ‖X

we need to show two things: (1) if n &0X x then ((n)IR)◦ s-maj1(‖x‖)◦ and
(2) if n ≥ m then ((n)IR)◦ s-maj1((m)IR)◦ (recall that for ρ ∈ T s-maj1 and
&a

1 are equivalent). For (1), if n &0X x then by definition (n)IR ≥IR ‖x‖X
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and the result then follows by Lemma 4.6. For (2) the result follows directly
from Lemma 4.6. For −X the 0X-majorant is derived straightforwardly from
basic properties of the norm ‖ · ‖X . For +X we additionally use the triangle
inequality to verify the majorant, i.e. ‖x + y‖ ≤ ‖x‖ + ‖y‖ and then if
n1 &0X x and n2 &0X y we have that n1 + n2 ≥ ‖x + y‖, and the validity of
the majorant follows.

Finally, for scalar multiplication ·X we use that α codes a real number
via a Cauchy sequence of rational numbers with fixed rate of convergence.
The rational numbers in turn are represented by natural numbers using a
monotone coding function such that (α(n))Q ≥Q |α(n)|Q for all n. Since
|λn0.α(0)−IRα| ≤ 1 the natural number α(0)+1 is an upper bound for the real
number represented by |α|IR. Now let α∗ s-maj α. Then α∗(0)+1 ≥ α(0)+1.
Since ‖α ·x‖X =IR |α|IR ·IR ‖x‖X we, therefore, have that α∗(0)+ 1 taken as a
natural number multiplied with an n &0X x is a 0X-majorant for α ·X x.

Proof of Theorem 6.3. As in the proof of Theorem 4.10

Aω[X, ‖ · ‖, C]−b ` ∀xρ(∀u0B∀(x, u) → ∃v0C∃(x, v))

yields (using an easy adaptation of lemma 9.9 and Lemma 9.12) the ex-
tractability of closed terms tU , tV of Aω[X, ‖ · ‖, C]−b+(BR) and closed terms
tU∗ , tV ∗ of Aω+(BR) (so, in particular, tU∗ , tV ∗ do not contain 0X , 1X , cX , +X ,
−X , ·X or ‖ · ‖X) such that for all n0 ≥ ‖cX‖

Mω,X |=
{

tU∗(n) &0X tU ∧ tV ∗(n) &0X tV∧
∀xρ(B∀(x, tU(x)) → C∃(x, tV (x))).

As before, defining Φ(xbρ, n) := max(tU∗(n, x), tV ∗(n, x)), we then have that

Mω,X |= ∀u ≤ Φ(x∗, n)B∀(x, u) → ∃v ≤ Φ(x∗, n)C∃(x, v)

holds for all n ∈ IN, x ∈ Mρ and x∗ ∈ Mbρ for which n ≥ ‖cX‖ and x∗ &0X x.

Also for normed linear spaces one verifies that for the types γ of degree 1b

and (1, X) hidden in the definition of ∀/∃-formulas, we have the necessary
inclusion Mγ ⊆ Sγ . For parameters xρ with types ρ of degree (1, X), (1, X, C)
or 2, we again restricted ourselves to functionals which have 0X-majorants
x∗ and hence the necessary inclusions hold.
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Thus, also

Sω,X |= ∀u ≤ Φ(x∗, n)B∀(x, u) → ∃v ≤ Φ(x∗, n)C∃(x, v)

holds for all n ∈ IN, x ∈ Sρ and x∗ ∈ Sbρ for which n0 ≥ ‖cX‖ and x∗ &0X x.
In uniformly convex spaces the bound additionally depends on a modulus η
of uniform convexity via its majorant ηM .

This finishes the proof, as Φ is a partial (resp. total, if ρ is in addition
of degree 1b) computable functional in Sbρ→0→0, defined on the majorizable
elements of Sbρ, which does not depend on (X, ‖ · ‖, C).

References

[1] M. Bezem. Strongly majorizable functionals of finite type: a model of
bar recursion containing discontinous functionals. J. of Symbolic Logic,
50:652–660, 1985.

[2] J. M. Borwein, S. Reich, and I. Shafrir. Krasnoselski-Mann iterations in
normed spaces. Canad. Math. Bull., 35:21–28, 1992.

[3] M. Bridson and A. Haefliger. Metric spaces of non-positive curvature.
Springer Verlag, Berlin, 1999.
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Standpunktes. Dialectica, 12:280–287, 1958.

[11] K. Goebel and W. A. Kirk. Iteration processes for nonexpansive map-
pings. In S. Singh, S. Thomeier, and B. Watson, editors, Topological
Methods in Nonloinear Functional Analysis, volume 21 of Contempo-
raray Mathematics, pages 115–123. AMS, Providence, R.I., 1983.

[12] W. A. Howard. Hereditarily majorizable functionals of finite type. In
A. Troelstra, editor, Metamathematical investigation of intuitionistic
arithmetic and analysis, volume 344 of Springer LNM, pages 454–461.
Springer-Verlag, Berlin, 1973.

[13] S. Ishikawa. Fixed points and iterations of a nonexpansive mapping in
a Banach space. Proc. Amer. Math. Soc., 59:65–71, 1976.

[14] W. A. Kirk. Krasnosel’skii iteration process in hyperbolic spaces. Nu-
mer. Funct. Anal. Optimiz., 4:371–381, 1982.

[15] W. A. Kirk. Nonexpansive mappings and asymptotic regularity. Non-
linear Analysis, 40:323–332, 2000.

[16] U. Kohlenbach. Effective moduli from ineffective uniqueness proofs. an
unwinding of de La Vallee Poussin’s proof for Chebycheff approximation.
Annals of Pure and Applied Logic, pages 27–94, 1993.

[17] U. Kohlenbach. Arithmetizing proofs in analysis. In Logic Colloquium
’96, volume 12 of Springer Lecture Notes in Logic, pages 115–158.
Springer-Verlag, Berlin, 1998.

[18] U. Kohlenbach. A quantitative version of a theorem due to Borwein-
Reich-Shafrir. Numer. Funct. Anal. and Optimiz., 22:641–656, 2001.

63



[19] U. Kohlenbach. On the computational content of the Krasnoselski and
Ishikawa fixed point theorems. In Proc. of the Fourth Workshop on Com-
putability and Complexity in Analysis, pages 119–145. Spinger Lecture
Notes in Computer Science LNCS 2064, 2001.

[20] U. Kohlenbach. Uniform asymptotic regularity for Mann iterates. J.
Math. Anal. Appl., 279:531–544, 2003.

[21] U. Kohlenbach. Some computational aspects of metric fixed point the-
ory. Nonlinear Analysis, 61, no.5:823–837, 2005.

[22] U. Kohlenbach. Some logical metatheorems with applications in func-
tional analysis. Trans. Amer. Math. Soc., 357:89–128, 2005.

[23] U. Kohlenbach and B. Lambov. Bounds on iterations of asymptotically
quasi-non-expansive mappings. In Proc. International Conference on
Fixed Point Theory and Applications, Valencia 2003, pages 143–172.
Yokohama Publishers, 2004.

[24] U. Kohlenbach and L. Leu̧stean. Mann iterates of directionally nonex-
pansive mappings in hyperbolic spaces. Abstract and Applied Analysis,
8:449–477, 2003.

[25] U. Kohlenbach and P. Oliva. Proof mining: a systematic way of an-
alyzing proofs in mathematics. Proc. Steklov Inst. Math, 242:136–164,
2003.

[26] M. A. Krasnoselski. Two remarks on the method of successive approxi-
mation. Usp. Math. Nauk (N.S.), 10:123–127, 1955. (Russian).
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