
BRICS
Basic Research in Computer Science

A Concrete Framework for
Environment Machines

Małgorzata Biernacka
Olivier Danvy

BRICS Report Series RS-05-15

ISSN 0909-0878 May 2005

B
R

IC
S

R
S

-05-15
B

iernacka
&

D
anvy:

A
C

oncrete
F

ram
ew

ork
for

E
nvironm

entM
achines



Copyright c© 2005, Małgorzata Biernacka & Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/15/



A concrete framework for environment machines

Ma lgorzata Biernacka and Olivier Danvy

BRICS∗

Department of Computer Science
University of Aarhus†

May 13, 2005

Abstract

We materialize the common belief that calculi with explicit substitutions provide
an intermediate step between an abstract specification of substitution in the λ-
calculus and its concrete implementations. To this end, we go back to Curien’s
original calculus of closures (an early calculus with explicit substitutions), we ex-
tend it minimally so that it can also express one-step reduction strategies, and we
methodically derive a series of environment machines from the specification of two
one-step reduction strategies for the λ-calculus: normal order and applicative or-
der. The derivation extends Danvy and Nielsen’s refocusing-based construction of
abstract machines with two new steps: one for coalescing two successive transitions
into one, and the other for unfolding a closure into a term and an environment in
the resulting abstract machine. The resulting environment machines include both
the idealized and the original versions of Krivine’s machine, Felleisen et al.’s CEK
machine, and Leroy’s Zinc abstract machine.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {mbiernac,danvy}@brics.dk

i



Contents

1 Introduction 1

2 One-step reduction in a calculus of closures 2
2.1 Curien’s calculus of closures . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 A minimal extension to Curien’s calculus of closures . . . . . . . . . . . 4
2.3 Specification of the normal-order reduction strategy . . . . . . . . . . . 6
2.4 Specification of the applicative-order reduction strategy . . . . . . . . . 6

3 From normal-order reduction to call-by-name environment machine 6
3.1 A reduction semantics for normal order . . . . . . . . . . . . . . . . . . 7
3.2 A pre-abstract machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 A staged abstract machine . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 An eval/apply abstract machine . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 A push/enter abstract machine . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 An optimized push/enter machine . . . . . . . . . . . . . . . . . . . . . 11
3.7 An environment machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.8 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.9 Correspondence with the λ-calculus . . . . . . . . . . . . . . . . . . . . . 12

4 From applicative-order reduction to call-by-value environment ma-
chine 13
4.1 The reduction semantics for applicative order . . . . . . . . . . . . . . . 13
4.2 From evaluation function to environment machine . . . . . . . . . . . . 14
4.3 Correctness and correspondence with the λ-calculus . . . . . . . . . . . 14

5 A notion of context-sensitive reduction 15
5.1 Normal order: variants of Krivine’s machine . . . . . . . . . . . . . . . . 15

5.1.1 The idealized version of Krivine’s machine . . . . . . . . . . . . . 16
5.1.2 The original version of Krivine’s machine . . . . . . . . . . . . . 16
5.1.3 An adjusted version of Krivine’s machine . . . . . . . . . . . . . 16

5.2 Applicative order: variants of the Zinc machine . . . . . . . . . . . . . . 17

6 A space optimization for call-by-name evaluation 18

7 Actual substitutions, explicit substitutions, and environments 19
7.1 A derivational taxonomy of abstract machines . . . . . . . . . . . . . . . 19
7.2 Reversibility of the derivation steps . . . . . . . . . . . . . . . . . . . . . 21

8 Conclusion 21

ii



1 Introduction

Krivine’s machine and Felleisen et al.’s CEK machine are probably the simplest exam-
ples of abstract machines implementing an evaluation function of the λ-calculus [15,22,
27]. Like many other abstract machines for languages with binding constructs, they are
environment-based, i.e., roughly, one component of each machine configuration stores
terms that are substituted for free variables during the process of evaluation. The tran-
sitions of each machine provide a precise way of handling substitution. This precision
contrasts with the traditional presentations of the λ-calculus [9, page 9] [7, page 51]
where the β-rule is expressed using a meta-level notion of substitution:

(λx.t0) t1 → t0{t1/x}

On the right-hand side of this rule, all the free occurrences of x in t0 are simultaneously
replaced by t1 (which may require auxiliary α-conversions to avoid variable capture).
Most implementations, however, do not implement the β-rule using actual substitutions.
Instead, they keep an explicit representation of what should have been substituted
and leave the term untouched. This environment technique is due to Hasenjaeger in
logic [38, § 54] and to Landin in computer science [29]. In logic, it makes it possible
to reason by structural induction over λ-terms (since they do not change across β-
reduction), and in computer science, it makes it possible to compile λ-terms (since they
do not change at run time).

To bridge the two worlds of actual substitutions and explicit representations of what
should have been substituted, various calculi of ‘explicit substitutions’ have been pro-
posed [1,2,12,13,26,31,36,37]. The idea behind explicit substitutions is to incorporate
the notion of substitution into the syntax of the language and then specify suitable
rewrite rules that realize it.

In these calculi, the syntax is extended with a ‘closure’ (the word is due to Landin
[29]), i.e., a term together with its environment—hereby referred to as ‘substitution’
to follow tradition [1, 12]. Moreover, variables are often represented with de Bruijn
indices [19] (i.e., lexical offsets in compiler parlance [34]) rather than explicit names;
this way, substitutions can be conveniently regarded as lists and the position of a closure
in such a list indicates for which variable this closure is to be substituted.

Thus, in a calculus of explicit substitutions, β-reduction is specified using one rule
for extending the substitution with a closure to be substituted, such as

((λt)[s]) c → t[c · s],

where c is prepended to the list s, and another rule that replaces a variable with the
corresponding closure taken from the substitution, such as

i[s] → c,

where c is the ith element of the list s.
Calculi of explicit substitutions come in two flavors: weak calculi, typically used to

express weak normalization (evaluation); and strong calculi, that are expressive enough
to allow strong normalization. The greater power of strong calculi comes from a richer
set of syntactic constructs forming substitutions (for instance, substitutions can be
composed, and indices can be lifted).

1



This work: We present a completely systematic way of deriving an environment ma-
chine from a specification of one-step reduction strategy in a weak calculus of closures,
by employing Danvy and Nielsen’s refocusing technique [18] followed by the fusion of
two steps into one and an unfolding of the data type of closures.

We first consider Curien’s original calculus of closures λρ [12]. Curien argues that his
calculus mediates between the standard λ-calculus and its implementations via abstract
machines. He illustrates his argument by constructing Krivine’s machine from a multi-
step normal-order reduction strategy.

We observe, however, that one-step reductions cannot be expressed in λρ and there-
fore we propose a minimal extension to make it capable of expressing such computations
(we dub it the λρ̂-calculus). We then present a detailed derivation of the usual ideal-
ized version of Krivine’s machine [10, 12, 24] from the specification of the normal-order
one-step strategy in λρ̂, and we outline the derivation of its applicative-order analog,
the CEK machine [22]. We also outline the derivation of the original version of Kriv-
ine’s machine [28] and of its applicative-order analog, which we identify as Leroy’s Zinc
abstract machine [30].

Prerequisites and notation: We assume a basic familiarity with the λ-calculus,
explicit substitutions, and abstract machines [12]. We also follow standard usage and
overload the word “closure” (as in: a term together with a substitution, a reflexive and
transitive closure, a compatible closure, and also a closed term) and the word “step”
(as in: a derivation step, a decomposition step, and one-step reduction).

Overview: We first present a minimal extension to Curien’s original calculus of clo-
sures that is expressive enough to account for one-step reduction (Section 2). We then
methodically derive environment machines from a series of reduction semantics à la
Felleisen (Sections 3 to 6) before drawing a bigger picture (Section 7).

2 One-step reduction in a calculus of closures

In this section we first briefly review Curien’s original calculus of closures λρ [12], and
then present an extension of λρ that facilitates the specification of one-step reduction
strategies. We illustrate the power of the extended calculus with the standard definitions
of normal-order and applicative-order strategies.

As a reference point, we first specify the one-step and multi-step reduction relations
in the standard λ-calculus.

Reduction in the λ-calculus: Let us recall the formulation of the λ-calculus with
de Bruijn indices. Terms are built according to the following grammar:

t ::= i | t t | λt,

where i ranges over natural numbers (greater than 0).
In the λ-calculus, one-step reduction is defined as the compatible closure of the

notion of reduction given by the β-rule [7, Section 3.1]:

(β) (λt0) t1 → t0{t1/1}

(ν)
t0 → t′0

t0 t1 → t′0 t1

(µ)
t1 → t′1

t0 t1 → t0 t′1

(ξ)
t → t′

λt → λt′

where in (β), t0{t1/1} is a meta-level substitution operation (with suitable reindexing
of variables).

2



Weak (nondeterministic) subsystems are obtained by discarding the ξ-rule. The
usual deterministic strategies are obtained as follows:

• The normal-order strategy is obtained by a further restriction, disallowing also
the right-compatibility rule (µ). In effect, one obtains the following normal-order
one-step reduction strategy for the λ-calculus, producing weak head normal forms:

(β) (λt0) t1 →n t0{t1/1}

(ν)
t0 →n t′0

t0 t1 →n t′0 t1

Alternatively, the normal-order strategy can be expressed by the following rule:

t0 →∗
n λt′0

t0 t1 →n t′0{t1/1}

A rule of this form specifies a multi-step reduction strategy (witness the reflexive,
transitive closure used in the premise).

• The applicative-order strategy is obtained by another restriction on the β-rule:

(βv) (λt0) t1 →v t0{t1/1} if t1 is a value

Values are variables (de Bruijn indices) and λ-abstractions.

The following restriction on the right-compatibility rule (µ) makes the reduction
strategy deterministically proceed from left to right:

(ν)
t0 →v t′0

t0 t1 →v t′0 t1

(µ)
t1 →v t′1

t0 t1 →v t0 t′1
if t0 is a value

The following restriction on the left-compatibility rule (ν) makes the reduction
strategy deterministically proceed from right to left:

(ν)
t0 →v t′0

t0 t1 →v t′0 t1
if t1 is a value

(µ)
t1 →v t′1

t0 t1 →v t0 t′1

2.1 Curien’s calculus of closures

The language of λρ [12] has three syntactic categories: terms, closures and substitutions:

(Term) t ::= i | t t | λt

(Closure) c ::= t[s]
(Substitution) s ::= • | c · s

3



Terms are defined as in the λ-calculus with de Bruijn indices. A λρ-closure is a pair
consisting of a λ-term and a λρ-substitution, which itself is a finite list of λρ-closures to
be substituted for free variables in the λ-term. We abbreviate c1 ·(c2 ·(c3 ·. . . (cm ·•) . . .))
as c1 · · · cm.

The weak reduction relation
ρ→ is specified by the following rules:

(Eval)
t0[s]

ρ→∗ (λt′0)[s′]

(t0 t1)[s]
ρ→ t′0[(t1[s]) · s′]

(Var) i[c1 · · · cm]
ρ→ ci if i ≤ m

(Sub)
c1

ρ→∗ c′1 . . . cm
ρ→∗ c′m

t[c1 · · · cm]
ρ→ t[c′1 · · · c′m]

where
ρ→∗ is the reflexive, transitive closure of

ρ→. Reductions are performed on clo-
sures, and not on individual terms. Although minimalist (it is not possible to “push” a
substitution inside a λ-abstraction), this calculus is powerful enough to compute weak
head normal forms. The grammar of weak head normal forms is as follows:

tnf ::= (λt)[s] | (. . . ((i[s]) c1) . . .) cm

where i[s] is irreducible, which happens if and only if i is greater than the length of s. If
we restrict ourselves to considering only closed terms, then the only weak head normal
form is a closure whose term is an abstraction.

The rules of the calculus are nondeterministic and can be restricted to define a spe-
cific deterministic reduction strategy. For instance, the normal-order strategy (denoted
ρ→n) is obtained by restricting the rules to (Eval) and (Var). This restriction specifies a

multi-step reduction strategy because of the transitive closure used in the (Eval) rule.

2.2 A minimal extension to Curien’s calculus of closures

The λρ-calculus is not expressive enough to specify one-step reduction because the
specification of one-step reduction requires a way to “compose” intermediate results of
computation—here, closures—to form a new closure that can be reduced further. In
λρ, there is no such possibility. A simple solution is to extend the syntax of closures
with a construct denoting closure composition. We denote it simply by juxtaposition:

(Term) t ::= i | t t | λt

(Closure) c ::= t[s] | c c

(Substitution) s ::= • | c · s
With the extended syntax we are now in position to define the one-step reduction re-

lation as the compatible closure of the notion of (a closure-based variant of) β-reduction:

(β) ((λt)[s]) c
bρ→ t[c · s]

(ν)
c0

bρ→ c′0

c0 c1
bρ→ c′0 c1

(µ)
c1

bρ→ c′1

c0 c1
bρ→ c0 c′1

(Var) i[c1 · · · cm]
bρ→ ci if i ≤ m

(App) (t0 t1)[s]
bρ→ (t0[s]) (t1[s])

(Sub)
ci

bρ→ c′i

t[c1 · · · ci · · · cm]
bρ→ t[c1 · · · c′i · · · cm]

for i ≤ m

4



The λρ̂-calculus is nondeterministic and confluent. The following proposition formalizes
the simulation of λρ reductions in λρ̂ and vice versa.

Proposition 1 (Simulation). Let c0 and c1 be λρ-closures. Then the following prop-
erties hold:

1. If c0
ρ→ c1, then c0

bρ→+ c1.

2. If c0
bρ→∗ c1, then c0

ρ→∗ c1.

Proof. The proofs are done by induction; we show only the interesting cases.

Proof of 1 . By induction on the derivation of c0
ρ→ c1, with a subinduction on the

length of the reduction sequence in the following auxiliary property:

If c′0
ρ→∗ c′1, then c′0

bρ→∗ c′1,

where c′0
ρ→∗ c′1 is a subderivation of c0

ρ→ c1.

Case (t0 t1)[s]
ρ→ t′0[(t1[s]) · s′]. We then know that t0[s]

ρ→ n (λt′0)[s′] for some

n ≥ 0. By induction on n we prove that t0[s]
bρ→∗ (λt′0)[s′]:

Case n = 0. Trivial.
Case n = k + 1. Assume t0[s]

ρ→ c′0
ρ→k (λt′0)[s′]. Applying the outer induc-

tion hypothesis to t0[s]
ρ→ c′0, we obtain t0[s]

bρ→+ c′0, and then applying
the inner induction hypothesis to c′0

ρ→k (λt′0)[s′] yields the desired prop-
erty.

Hence we obtain the following reduction sequence in λρ̂:

(t0 t1)[s]
bρ→ (t0[s]) (t1[s])

bρ→∗ ((λt′0)[s′]) (t1[s])
bρ→ t′0[(t1[s]) · s′].

Proof of 2 . By induction on the length of the reduction sequence c0
bρ→∗ c1. For the

inductive case, assume c0
bρ→n+1 c1, i.e., c0

bρ→ c′0
bρ→n c1. We distinguish two cases:

• c′0 = t[s]: In this case, the first reduction step in λρ̂ is either according to
the rule (Var), or to the rule (Sub); thus it can be simulated directly by the
corresponding rule in λρ.

• c′0 = c c: The only applicable reduction is (App), hence c0 = (t0 t1)[s] and
c′0 = (t0[s]) (t1[s]). Analyzing the reduction rules, we observe that in the
subsequent reduction sequence the rule (β) must be applied, since c1 is again
a λρ-closure. Without loss of generality we can assume that

c′0
bρ→k1 ((λt′0)[s′]) (t1[s])

bρ→k2 ((λt′0)[s′]) (t′1[s′′])
bρ→ t′0[(t′1[s′′]) · s′] bρ→k3 c1

for k1 + k2 + 1 + k3 = n. By induction hypothesis t0[s]
ρ→ ∗ (λt′0)[s′] and

t1[s]
ρ→ ∗ t′1[s′′], and hence c′0

ρ→ t′0[(t1[s]) · s′] ρ→ ∗ t′0[(t′1[s′′]) · s′]. Finally,
t′0[(t′1[s′′]) · s′] ρ→∗ c1 by induction hypothesis.

5



2.3 Specification of the normal-order reduction strategy

The normal-order strategy is obtained by restricting λρ̂ to the following rules:

(β) ((λt)[s]) c
bρ→n t[c · s]

(ν)
c0

bρ→n c′0

c0 c1
bρ→n c′0 c1

(Var) i[c1 · · · cm]
bρ→n ci if i ≤ m

(App) (t0 t1)[s]
bρ→n (t0[s]) (t1[s])

We consider only closed terms, and hence we omit the side condition on i in Sections 3
and 5.1.

Let
bρ→n

∗ (the call-by-name evaluation relation) denote the reflexive, transitive clo-

sure of
bρ→n. The grammar of values and substitutions for call-by-name evaluation reads

as follows:

(Value) v ::= (λt)[s]
(Substitution) s ::= • | c · s

2.4 Specification of the applicative-order reduction strategy

Similarly, the applicative-order strategy is obtained by restricting λρ̂ to the following
rules:

(β) ((λt)[s]) c
bρ→v t[c · s] if c is a value

(ν)
c0

bρ→v c′0

c0 c1
bρ→v c′0 c1

(µ)
c1

bρ→v c′1

c0 c1
bρ→v c0 c′1

if c0 is a value

(Var) i[c1 · · · cm]
bρ→v ci if i ≤ m

(App) (t0 t1)[s]
bρ→v (t0[s]) (t1[s])

We consider only closed terms, and hence we omit the side condition on i in Sections 4
and 5.2.

Let
bρ→v

∗ (the call-by-value evaluation relation) denote the reflexive, transitive clo-

sure of
bρ→v. The grammar of values and substitutions for call-by-value evaluation reads

as follows:

(Value) v ::= (λt)[s]
(Substitution) s ::= • | v · s

Under call by value, both sub-components of any composition c0 c1 (i.e., both c0 and
c1) are evaluated. We consider left-to-right evaluation (i.e., c0 is evaluated, and then
c1) in Section 4 and right-to-left evaluation in Section 5.2.

3 From normal-order reduction
to call-by-name environment machine

We present a detailed and systematic derivation of an abstract machine for call-by-
name evaluation in the λ-calculus, starting from the specification of the normal-order

6



reduction strategy in the λρ̂-calculus. We first follow the steps outlined by Danvy and
Nielsen in their work on refocusing [18]:

Section 3.1: We specify the normal-order reduction strategy in the form of a reduc-
tion semantics, i.e., with a one-step reduction function specified as decomposing
a non-value term into a reduction context and a redex, contracting this redex,
and plugging the contractum into the context. As is traditional, we also specify
evaluation as the transitive closure of one-step reduction.

Section 3.2: We replace the combination of plugging and decomposition by a refocus
function that iteratively goes from redex site to redex site in the reduction se-
quence. The resulting ‘refocused’ evaluation function is the transitive closure of
the refocus function and takes the form of a ‘pre-abstract machine.’

Section 3.3: We merge the definitions of the transitive closure and the refocus function
into a ‘staged abstract machine’ that implements the reduction rules and the
compatibility rules of the λρ̂-calculus with two separate functions.

Section 3.4: We inline the function implementing the reduction rules. The result is an
eval/apply abstract machine consisting of an ‘eval’ transition function dispatching
on closures and an ‘apply’ transition function dispatching on contexts.

Section 3.5: We inline the apply transition function. The result is a push/enter abstract
machine.

We then simplify and transform the push/enter abstract machine:

Section 3.6: Observing that in a reduction sequence, an (App) reduction step is always
followed by a decomposition step, we shortcut these two steps into one decompo-
sition step. This simplification enables the following step.

Section 3.7: We unfold the data type of closures, making the simplified machine oper-
ate over two components—a term and a substitution—instead of over one—a clo-
sure. The substitution component is the traditional environment of environment
machines, and the resulting machine is an environment machine. This machine
coincides with the usual idealized version of Krivine’s machine [10, 12, 24]. (The
original version of Krivine’s machine [27, 28] is a bit more complicated, and we
treat it in Section 5.)

In Section 3.8, we state the correctness of the idealized version of Krivine’s machine
with respect to evaluation in the λρ̂-calculus, and in Section 3.9 we get back to the
λ-calculus.

3.1 A reduction semantics for normal order

A reduction semantics [20,21] consists of the grammar of a source language, a syntactic
notion of value, a collection of reduction rules, and a reduction strategy. This reduction
strategy is embodied in a grammar of reduction contexts (terms with one hole), a plug
function mapping a term and a context into a new term, and a strategy for decomposing
a non-value term into a redex and its reduction context. When the redexes do not
overlap, the reduction rules are implemented by a contraction function that maps a

7



redex into the corresponding contractum. When the source language satisfies a unique-
decomposition property with respect to the reduction strategy, decomposing a non-value
term into a redex and its reduction context is implemented by a decomposition function.

A reduction semantics for normal-order reduction in the λρ̂-calculus can be obtained
from the specification of normal-order reduction strategy in Section 2.3 as follows: the
syntactic notion of value and the collection of reduction rules are specified directly, and
the compatibility rule (ν) induces the grammar of reduction contexts:1

C ::= [ ] | ARG(c, C )

The redexes do not overlap and the source language satisfies a unique-decomposition
property. Therefore we can define the following three functions:

contract : Redex → Closure
decompose : Closure → Value + (Redex× Context)

plug : Closure× Context → Closure

Given these three functions, we can define the following one-step reduction function
that tests whether a closure is a value or can be decomposed into a redex and a context,
that contracts this redex, and that plugs the contractum in the context:

reduce : Closure → Closure
reduce c = case decompose c

of v ⇒ v
| (r, C ) ⇒ plug (c,C ) where c = contract r

The following proposition is a consequence of the unique-decomposition property.

Proposition 2. For any non-value closure c and for any closure c′, c
bρ→n c′ ⇔

reduce c = c′.

Finally, we can define evaluation as the transitive closure of one-step reduction:

iterate : Closure → Value
iterate c = c if c is a value
iterate c = iterate (reduce c) otherwise

evaluate : Term → Value
evaluate t = iterate (t[•])

This evaluation function is partial because a reduction sequence might not terminate.

Proposition 3. For any closed term t and any value v, t[•] bρ→n
∗ v ⇔ evaluate t = v.

For simplicity, we inline the definition of reduce and we use decompose to test whether
a value has been reached:

iterate : Value + (Redex× Context) → Value
iterate v = v

iterate (r, C ) = iterate (decompose (plug (c,C ))) where c = contract r

evaluate : Term → Value
evaluate t = iterate (decompose (t[•]))

1In the standard inside-out notation, this grammar can also be stated as follows:

C ::= [ ] | C [[ ]c]

8



3.2 A pre-abstract machine

The reduction sequence implemented by evaluation can be depicted as follows:

◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F

◦
contract

// ◦

plug
;;xxxxxxxxx ◦

contract
// ◦

plug
;;xxxxxxxxx ◦

contract
// ◦

In earlier work [18], Danvy and Nielsen stated formal conditions under which the com-
position of plug and decompose could be replaced by a more efficient function, refocus,
that would directly go from redex site to redex site in the reduction sequence, and they
presented an algorithm for constructing such a refocus function:

◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F ◦
decompose

##FF
FF

FF
FF

F

//____ ◦
contract

// ◦

plug
;;xxxxxxxxx

refocus
//________ ◦

contract
// ◦

plug
;;xxxxxxxxx

refocus
//________ ◦

contract
// ◦

The formal conditions are satisfied here: the unique-decomposition property holds and
the grammar of reduction contexts is context free. The algorithm yields the following
definition, which takes the form of two state-transition functions, i.e., of an abstract
machine:

refocus : Closure× Context → Value + (Redex× Context)
refocus (i[s], C ) = (i[s], C )

refocus ((λt)[s], C ) = refocusaux (C , (λt)[s])
refocus ((t0 t1)[s], C ) = ((t0 t1)[s], C )

refocus (c0 c1, C ) = refocus (c0, ARG(c1, C ))

refocusaux : Context× Value → Value + (Redex× Context)
refocusaux ([ ], v) = v

refocusaux (ARG(c, C ), v) = (v c, C )

In this abstract machine, the configurations are pairs of a closure and a context; the
final transitions are specified by refocusaux and by the first and third clauses of refocus;
and the initial transition is specified by two clauses of the corresponding ‘refocused’
evaluation function, which reads as follows:

iterate : Value + (Redex× Context) → Value
iterate v = v

iterate (r, C ) = iterate (refocus (c, C )) where c = contract r

evaluate : Term → Value
evaluate t = iterate (refocus (t[•], [ ]))

(For the initial call to iterate, we have exploited the double equality decompose (t[•]) =
decompose (plug (t[•], [ ])) = refocus (t[•], [ ]).)

Through the auxiliary function iterate, this evaluation function computes the tran-
sitive closure of refocus. Following Danvy and Nielsen, we refer to it as a ‘pre-abstract
machine.’

9



3.3 A staged abstract machine

To transform the pre-abstract machine into an abstract machine, we distribute the calls
to iterate from the definitions of evaluate and of iterate to the definitions of refocus and
refocusaux:

evaluate : Term → Value
evaluate t = refocus (t[•], [ ])

iterate : Value + (Redex× Context) → Value
iterate v = v

iterate (r, C ) = refocus (c, C ) where c = contract r

refocus : Closure× Context → Value + (Redex× Context)
refocus (i[s], C ) = iterate (i[s], C )

refocus ((λt)[s], C ) = refocusaux (C , (λt)[s])
refocus ((t0 t1)[s], C ) = iterate ((t0 t1)[s], C )

refocus (c0 c1, C ) = refocus (c0, ARG(c1, C ))

refocusaux : Context× Value → Value + (Redex× Context)
refocusaux ([ ], v) = iterate v

refocusaux (ARG(c, C ), v) = iterate (v c, C )

The resulting definitions of evaluate, iterate, refocus, and refocusaux are that of four mu-
tually recursive transition functions that form an abstract machine. In this abstract
machine, the configurations are pairs of a closure and a context, the initial transition is
specified by evaluate, and the final transition in the first clause of iterate. The compat-
ibility rules are implemented by refocus and refocusaux, and the reduction rules by the
call to contract in the second clause of iterate. We can make this last point even more
manifest by inlining contract in the definition of iterate:

iterate v = v
iterate (i[c1 · · · cm], C ) = refocus (ci, C )

iterate ((t0 t1)[s], C ) = refocus ((t0[s]) (t1[s]), C )
iterate (((λt)[s]) c, C ) = refocus (t[c · s], C )

By construction, the machine therefore separately implements the reduction rules and
the compatibility rules; for this reason, we refer to it as a ‘staged abstract machine.’

3.4 An eval/apply abstract machine

We now inline the calls to iterate in the staged abstract machine. The resulting machine
reads as follows:

evaluate t = refocus (t[•], [ ])

refocus (i[c1 · · · cm], C ) = refocus (ci, C )
refocus ((λt)[s], C ) = refocusaux (C , (λt)[s])

refocus ((t0 t1)[s], C ) = refocus ((t0[s]) (t1[s]), C )
refocus (c0 c1, C ) = refocus (c0, ARG(c1, C ))

refocusaux ([ ], (λt)[s]) = (λt)[s]
refocusaux (ARG(c, C ), (λt)[s]) = refocus (t[c · s], C )

10



As already observed by Danvy and Nielsen in their work on refocusing, inlining iterate
yields an eval/apply abstract machine [32]: refocus (the ‘eval’ transition function) dis-
patches on closures and refocusaux (the ‘apply’ function) dispatches on contexts.

3.5 A push/enter abstract machine

We now inline the calls to refocusaux in the eval/apply abstract machine. The resulting
machine reads as follows:

evaluate t = refocus (t[•], [ ])

refocus (i[c1 · · · cm], C ) = refocus (ci, C )
refocus ((λt)[s], [ ]) = (λt)[s]

refocus ((λt)[s], ARG(c, C )) = refocus (t[c · s], C )
refocus ((t0 t1)[s], C ) = refocus ((t0[s]) (t1[s]), C )

refocus (c0 c1, C ) = refocus (c0, ARG(c1, C ))

As already observed by Ager et al. [4], inlining the apply transition function in a call-
by-name eval/apply abstract machine yields a push/enter machine [32].

3.6 An optimized push/enter machine

The abstract machine of Section 3.5 only produces a composition of closures through an
(App) reduction step (second-to-last clause of refocus). We observe that in a reduction
sequence, an (App) reduction step is always followed by a decomposition step (last
clause of refocus). As an optimization, we shortcut these two consecutive steps into one
decomposition step, replacing the last two clauses of refocus with the following one:

refocus ((t0 t1)[s], C ) = refocus (t0[s], ARG(t1[s], C ))

The optimized machine never produces any composition of closures and therefore works
for the λρ-calculus as well as for the λρ̂-calculus with the grammar of closures restricted
to that of λρ.

3.7 An environment machine

Finally, we unfold the data type of closures. If we read each syntactic category as a
type, then the type of closures is recursive:

Closure
def= µX.Term× List(X)

and furthermore
Substitution

def= List(Closure).

Hence one unfolding of the type Closure yields Term × Substitution. Therefore, for any
closure t[s] of type Closure, its unfolding gives a pair (t, s) of type Term× Substitution.
We replace each closure in the definition of evaluate and refocus, in Section 3.6, by its
unfolding. Flattening (Term×Substitution)×Context into Term×Substitution×Context
yields the following abstract machine:

11



v ::= (λt, s)
C ::= [ ] | ARG((t, s), C )

evaluate : Term → Value
evaluate t = refocus (t, •, [ ])

refocus : Term× Substitution× Context → Value
refocus (i, (t1, s1) · · · (tm, sm), C ) = refocus (ti, si, C )

refocus (λt, s, [ ]) = (λt, s)
refocus (λt, s, ARG((t′, s′), C )) = refocus (t, (t′, s′) · s, C )

refocus (t0 t1, s, C ) = refocus (t0, s, ARG((t1, s), C ))

We observe that this machine coincides with the usual idealized version of Krivine’s
machine [10, 12, 24], in which evaluation contexts are treated as last-in, first-out lists
(i.e., stacks) of closures. In particular, the substitution component assumes the rôle of
the environment.

3.8 Correctness

We state the correctness of the final result—the idealized version of Krivine’s machine
—with respect to evaluation in the λρ̂-calculus.

Theorem 1. For any term t in λρ̂,

t[•] bρ→n
∗ (λt′)[s] if and only if evaluate t = (λt′, s).

Proof. The proof relies on the correctness of refocusing [18], and the (trivial) meaning
preservation of each of the subsequent transformations.

The theorem states that Krivine’s machine is correct in the sense that it computes closed
weak head normal forms, and it realizes the normal-order strategy in the λρ̂-calculus,
which makes it a call-by-name machine [33]. Furthermore, each of the intermediate
abstract machines is also correct with respect to call-by-name evaluation in the λρ̂-
calculus. Since the reductions of λρ can be simulated in λρ̂ (see Proposition 1), as a
byproduct we obtain the correctness of Krivine’s machine also with respect to Curien’s
original calculus of closures:

Corollary 1. For any term t in λρ,

t[•] ρ→n
∗ (λt′)[s] if and only if evaluate t = (λt′, s).

However, Krivine’s machine is better known as an environment machine that com-
putes weak head normal forms of λ-terms. We show the correspondence theorem next.

3.9 Correspondence with the λ-calculus

The call-by-name evaluation relation in the λ-calculus is defined as the reflexive, tran-
sitive closure of the normal-order one-step reduction strategy shown in Section 2.

In order to relate values in the λ-calculus with values in the language of closures,
we define a function σ that forces all the delayed substitutions in a λρ̂-closure. The
function takes a closure and a number k indicating the current depth of the processed
term (with respect to the number of surrounding λ-abstractions), and returns a λ-term:

12



σ(i[s], k) =




i if i ≤ k
σ(ci−k, k) if k < i ≤ m + k and s = c1 · · · cm

i−m if i > m + k and s = c1 · · · cm

σ((t0 t1)[s], k) = (σ(t0[s], k)) (σ(t1[s], k))
σ((λt)[s], k) = λ(σ(t[s], k + 1))

σ(c0 c1, k) = σ(c0, k) σ(c1, k)

The function σ puts us in position to state the correspondence theorem.

Theorem 2 (Correspondence). For any λ-term t, t →∗
n λt′ if and only if

evaluate t = (λt′′, s) and σ((λt′′)[s], 0) = λt′.

Proof. The left-to-right implication relies on the following property, proved by structural
induction on t:

If t →n t′, then t[•] bρ→n
∗ c in λρ̂, and σ(c, 0) = t′.

In order to prove the converse implication, we observe that if c
bρ→n c′, then either

σ(c, 0) →n σ(c′, 0), if the smallest reduction step uses the rule (β), or σ(c, 0) = σ(c′, 0)
otherwise. The proof is done by structural induction on c, using the fact that σ(t[s], j +
1){σ(c, 0)/j + 1} = σ(t[c · s], j).

Curien, Hardin and Lévy consider several weak calculi of explicit substitutions capa-
ble of simulating call-by-name evaluation [13]. They relate these calculi to the λ-calculus
with de Bruijn indices in much the same way as we do above. In fact, our function σ
performs exactly σ-normalization in their strong calculus λσ for the restricted gram-
mar of closures and substitutions of the λρ-calculus, and the structure of the proof of
Theorem 2 is similar to that of their Theorem 3.6 [13]. More recently, Wand has used a
translation U from closure to λ-terms with names that is an analog of σ, and presented
a similar simple proof of the correctness of Krivine’s machine for the λ-calculus with
names [40].

4 From applicative-order reduction
to call-by-value environment machine

Starting with the applicative-order reduction strategy specified in Section 2.4, we follow
the same procedure as in Section 3.

4.1 The reduction semantics for applicative order

We first specify a reduction semantics for applicative-order reduction. The grammar
of the source language is specified in Section 2.2, the syntactic notion of value and the
collection of reduction rules are specified in Section 2.4, and the compatibility rules (ν)
and (µ) induce the following grammar of reduction contexts:2

C ::= [ ] | ARG(c, C ) | FUN(v, C )
2In the standard inside-out notation, this grammar can also be stated as follows:

C ::= [ ] | C [[ ]c] | C [v[ ]]

13



The redexes do not overlap and the source language satisfies a unique-decomposition
property with respect to the applicative-order reduction strategy. Therefore, as in
Section 3.1 we can define a contraction function, a decomposition function, a plug
function, a one-step reduction function, and an evaluation function.

4.2 From evaluation function to environment machine

We now take the same steps as in Section 3. The reduction semantics of Section 4.1 sat-
isfies the refocusing conditions, and Danvy and Nielsen’s algorithm yields the following
definition:

refocus : Closure× Context → Value + (Redex× Context)
refocus (i[s], C ) = (i[s], C )

refocus ((λt)[s], C ) = refocusaux (C , (λt)[s])
refocus ((t0 t1)[s], C ) = ((t0 t1)[s], C )

refocus (c0 c1, C ) = refocus (c0, ARG(c1, C ))

refocusaux : Context× Value → Value + (Redex× Context)
refocusaux ([ ], v) = v

refocusaux (ARG(c, C ), v) = refocus (c, FUN(v, C ))
refocusaux (FUN(v′, C ), v) = (v′ v, C )

We successively transform the resulting pre-abstract machine into a staged abstract
machine and an eval/apply abstract machine.

The eval/apply abstract machine reads as follows:

evaluate t = refocus (t[•], [ ])

refocus (i[v1 · · · vm], C ) = refocusaux (C , vi)
refocus ((λt)[s], C ) = refocusaux (C , (λt)[s])

refocus ((t0 t1)[s], C ) = refocus ((t0[s]) (t1[s]), C )
refocus (c0 c1, C ) = refocus (c0, ARG(c1, C ))

refocusaux ([ ], v) = v
refocusaux (ARG(c, C ), (λt)[s]) = refocus (c, FUN((λt)[s], C ))
refocusaux (FUN((λt)[s], C ), v) = refocus (t[v · s], C )

As in Section 3.6, we observe that we can shortcut the third and the fourth clauses of
refocus (they are the only producer and consumer of a composition of closures, respec-
tively). We can then unfold the data type of closures, as in Section 3.7, and obtain an
eval/apply environment machine. This environment machine coincides with Felleisen et
al.’s CEK machine [21].

4.3 Correctness and correspondence with the λ-calculus

As in Section 3.8, we state the correctness of the eval/apply machine with respect to
the λρ̂-calculus.

Theorem 3. For any term t in λρ̂,

t[•] bρ→v
∗ (λt′)[s′] if and only if evaluate t = (λt′, s′).

14



The theorem states that the eval/apply machine is correct in the sense that it computes
closed weak head normal forms, and it realizes the applicative-order strategy in the
λρ̂-calculus, which makes it a call-by-value machine [33]. Furthermore, each of the
intermediate abstract machines is also correct with respect to call-by-value evaluation
in the λρ̂-calculus.

The CEK machine is an environment machine for call-by-value evaluation in the
λ-calculus. The following theorem formalizes this correspondence, using the function σ
defined in Section 3.9.

Theorem 4 (Correspondence). For any λ-term t, t →v λt′ if and only if

evaluate t = (λt′′, s) and σ((λt′′)[s], 0) = λt′.

5 A notion of context-sensitive reduction

Krivine’s machine, as usually presented in the literature [2,4,10–12,18,23–26,31,37,40],
contracts one β-redex at a time. The original version [27, 28], however, grammatically
distinguishes nested λ-abstractions and contracts nested β-redexes in one step. Simi-
larly, Leroy’s Zinc machine [30] optimizes curried applications.

Krivine’s language of λ-terms reads as follows:

(terms) t ::= i | t t | λnt

for n ≥ 1, and where a nested λ-abstraction λnt corresponds to

n︷ ︸︸ ︷
λλ. . . λ t, i.e., to n

nested λ-abstractions, where t is not a λ-abstraction.
In the original version of Krivine’s machine, and using the same notation as in

Section 3, (nested) β-reduction is implemented by the following transition:

refocus (λnt, s, ARG((t1, s1), . . . ARG((tn, sn), C ) . . .))
= refocus (t, (tn, sn) · · · (t1, s1) · s, C )

This transition implements a nested β-reduction not just for the pair of terms forming
a β-redex, or even for a tuple of terms forming a nested β-redex, but for a nested
λ-abstraction and the context of its application. The contraction function is therefore
not solely defined over the redex to contract, but over a term and its context: it is
context-sensitive.

In this section, we adjust the definition of a reduction semantics with a contract
function that maps a redex and its context to a contractum and its context. Nothing
else changes in the definition, and therefore the refocusing method still applies. We
first consider normal order, and we show how the usual idealized version of Krivine’s
machine arises, how the original version of Krivine’s machine also arises, and how one
can derive a slightly more perspicuous version of the original version. We then consider
applicative order, and we show how the Zinc machine arises.

5.1 Normal order: variants of Krivine’s machine

Let us consider the language of the λρ̂-calculus based on Krivine’s modified grammar of
terms. Together with the language comes the following grammar of reduction contexts,
which is induced by the compatibility rule (ν), just as in Section 3.1.

C ::= [ ] | ARG(c, C )

15



Let us adapt the rules of Section 2.3 for context-sensitive reduction in λρ̂:

(β+) ((λnt)[s], ARG(c1, . . . ARG(cn, C ) . . .))
bρ→n (t[cn · · · c1 · s], C )

(Var) (i[c1 · · · cm], C )
bρ→n (ci, C )

(App) ((t0 t1)[s], C )
bρ→n ((t0[s]) (t1[s]), C )

(ν) (c0 c1, C )
bρ→n (c0, ARG(c1, C ))

The new (β+) rule is the only reduction rule that actually depends on the context
(in the subsequent two rules the context remains unchanged). The left-compatibility
rule (ν) now explicitly constructs the reduction context.

We notice that with the context-sensitive notion of reduction we are in position to
express the one-step normal-order strategy already in the λρ-calculus, if we combine
(App) and (ν) in one rule:

((t0 t1)[s], C )
bρ→n (t0[s], ARG(t1[s], C )).

In the context-sensitive reduction semantics corresponding to this normal-order
context-sensitive reduction strategy, contract has type Redex × Context → Closure ×
Context and the one-step reduction function (see Section 3.1) reads as follows:

reduce c = case decompose c
of v ⇒ v
| (r, C ) ⇒ plug (c,C ′) where (c, C ′) = contract (r, C )

We then take the same steps as in Section 3. We consider three variants, each of which
depends on the specification of n in each instance of (β+).

5.1.1 The idealized version of Krivine’s machine

Here, we choose n to be 1. We then take the same steps as in Section 3, and obtain the
same machine as in Section 3.7, i.e., the usual idealized version of Krivine’s machine.

5.1.2 The original version of Krivine’s machine

Here, we choose n to be the “arity” of each nested λ-abstraction, i.e., the number of
nested λ’s surrounding a term (the body of the innermost λ-abstraction) which is not
a λ-abstraction.

We then take the same steps as in Section 3, and obtain the same machine as
Krivine [27,28]. As pointed out by Wand [40], since the number of arguments is required
to match the number of nested λ-abstractions, the machine becomes stuck if there are
not enough arguments in the context. We handle this case by adapting the β+-rule as
described next.

5.1.3 An adjusted version of Krivine’s machine

Here, we choose n to be the smallest number between the arity of each nested λ-
abstraction and the number of nested applications. (So n = 1 for (λλt, ARG(c1, [ ])),
for example.)

16



We then take the same steps as in Section 3, and obtain a version of Krivine’s
machine that directly computes weak head normal forms.

5.2 Applicative order: variants of the Zinc machine

From Landin [29] to Leroy [30], implementors of call-by-value functional languages have
looked fondly upon right-to-left evaluation (i.e., evaluating the actual parameter before
the function part of an application) because of its fit with a stack implementation: when
the function part of a (curried) application yields a functional value, its parameter(s)
is (are) available on top of the stack, as in the call-by-name case. In this section, we
consider right-to-left applicative order and call by value, which as in the normal order
and call-by-name case, give rise to a push/enter abstract machine.

We first adapt the rules of Section 2.4 for context-sensitive reduction in λρ̂. First
of all, the compatibility rules (ν) and (µ), for right-to-left applicative order, induce the
following grammar of contexts:3

C ::= [ ] | ARG(v, C ) | FUN(c, C )

This grammar differs from the one of Section 4.1 because it is for right-to-left instead
of for left-to-right applicative order.

The rules therefore read as follows:

(β+) ((λnt)[s], ARG(v1, . . . ARG(vn, C ) . . .))
bρ→v (t[vn · · · v1 · s], C )

(Var) (i[v1 · · · vm], C )
bρ→v (vi, C )

(App) ((t0 t1)[s], C )
bρ→v ((t0[s]) (t1[s]), C )

(ν′) (v, FUN(c, C ))
bρ→v (c, ARG(v, C ))

(µ′) (c0 c1, C )
bρ→v (c1, FUN(c0, C ))

Similarly to the call-by-name case, the only context-sensitive reduction rule is (β+)
(we specify n as in Section 5.1.3), and the two compatibility rules explicitly construct
reduction contexts.

As in Section 5.1.1, we notice that with the context-sensitive notion of reduction we
are in position to express the one-step applicative-order strategy in the λρ-calculus if
we combine (App) and (µ′) in one rule:

((t0 t1)[s], C )
bρ→v (t1[s], FUN(t0[s], C )).

We now take the same steps as in Section 4. The reduction semantics of Section 4.1,
adapted to the grammar of contexts and to the reduction rules above, satisfies the
refocusing conditions, and Danvy and Nielsen’s algorithm yields the following definition:

3In the standard inside-out notation, this grammar can also be stated as follows:

C ::= [ ] | C [[ ]v] | C [c[ ]]

17



refocus : Closure× Context → Value + (Redex× Context)
refocus (i[s], C ) = (i[s], C )

refocus ((λnt)[s], C ) = refocusaux (C , (λnt)[s])
refocus ((t0 t1)[s], C ) = refocus (t1[s], FUN(t0[s], C ))

refocusaux : Context× Value → Value + (Redex× Context)
refocusaux ([ ], v) = v

refocusaux (FUN(c, C ), v) = refocus (c, ARG(v, C ))
refocusaux (ARG(v′, C ), v) = (v, ARG(v′, C ))

We then successively transform the resulting pre-abstract machine into a staged ab-
stract machine, an eval/apply abstract machine, a push/enter abstract machine, and a
push/enter abstract machine with unfolded closures.

The resulting environment machine reads as follows:

evaluate t = refocus (t, •, [ ])

refocus (i, (t1, s1) · · · (tm, sm), C ) = refocus (ti, si, C )
refocus (λnt, s, [ ]) = (λnt, s)

refocus (λnt, s, FUN((t′, s′), C )) = refocus (t′, s′, ARG((λnt, s), C ))
refocus (λnt, s, ARG(c1, . . . ARG(cn, C ) . . .)) = refocus (t, cn · . . . · c1 · s, C )

refocus (t0 t1, s, C ) = refocus (t1, s, FUN((t0, s), C ))

This machine corresponds to an instance of Leroy’s Zinc machine for the pure λ-
calculus [30, Chapter 3], with the proviso that it operates directly on λ-terms instead
of over an instruction set (which has been said to be the difference between an abstract
machine and a virtual machine [3]). Moreover, in the Zinc machine the sequence of val-
ues on the stack (denoted here by ARG(c1, . . . ARG(cn, C ) . . .)) is delimited by a stack
mark that separates already evaluated terms from unevaluated ones. The Zinc machine
was developed independently of Krivine’s machine and to the best of our knowledge the
reconstruction outlined here is new.

6 A space optimization for call-by-name evaluation

In the compilation model of ALGOL 60, which is a call-by-name programming language,
identifiers occurring as actual parameters are compiled by (1) looking up their value in
the current environment, and (2) passing this value to the callee [34, Section 2.5.4.10,
pages 109-110]. The rationale is that under call by name, an identifier denotes a thunk,
so there is no need to create another thunk for it. This compilation rule avoids a
space leak at run time and it is commonly used in implementations of lazy functional
programming languages.

To circumvent the space leak, one extends Krivine’s machine with the following
clause for the case where the actual parameter is a variable:

refocus (t0 i, (t1, s1) · · · (tm, sm), C )
= refocus (t0, (t1, s1) · · · (tm, sm), ARG((ti, si), C ))

We observe that circumventing the space leak has an analogue in the normal-order
reduction semantics: it corresponds to adding the following reduction rule to the λρ̂-
calculus:

(App′) (t0 i)[c1 · · · cm]
bρ→n (t0[c1 · · · cm]) ci

18



This addition shortens the reduction sequence of a given λ-term towards its weak head
normal form.

The context-insensitive reduction semantics: Taking the same steps as in Sec-
tion 3 mechanically leads one to an idealized version of Krivine’s machine with the space
optimization. Crégut has considered this space-optimized version [10] and Friedman,
Ghuloum, Siek, and Winebarger have measured the impact of this optimization for a
lazy version of Krivine’s machine [23].

The context-sensitive reduction semantics: Taking the same steps as in Section 3
mechanically leads one to an adjusted version of Krivine’s machine with the space
optimization.

7 Actual substitutions, explicit substitutions, and en-
vironments

The derivations in Sections 3, 4, 5, and 6 hint at a bigger picture that we draw in
Figure 1 and describe in Section 7.1. We then address the reversibility of the derivation
steps in Section 7.2.

7.1 A derivational taxonomy of abstract machines

Let us analyze Figure 1.
The left-most column concerns the reduction and evaluation of terms with actual

substitutions (λ). The second column concerns the reduction and evaluation of terms
with explicit substitutions (λρ̂). The third column concerns the evaluation of terms
with explicit substitutions (λρ). The right-most column concerns the evaluation of
terms using an environment.

Reading down each column follows Danvy and Nielsen’s work on refocusing [18].
They show how to go from an evaluation function (obtained as the transitive closure of
a one-step reduction function) to a pre-abstract machine, and then to a staged machine,
an eval/apply machine, and, for call by name and right-to-left call by value, a push/enter
machine.

The connections between the columns in the 4× 4-matrix are new. Given a closure
(i.e., a term and a substitution), carrying out the substitution in this term yields a new
term. Through this operation (depicted with the short dotted arrow in the diagram), we
can go from each of the abstract machines for λρ̂-closures to the corresponding abstract
machine for λ-terms. To go from each of the abstract machines for λρ̂-closures to the
corresponding abstract machine for λρ-closures, we shortcut the (App) reduction step
with the following decomposition step. To go from each of the abstract machines for λρ-
closures to the corresponding environment machine, we unfold the data type of closures
into a pair of term and substitution (the unfolded substitution acts as the environment
of the machine). Finally, given a term and an environment, carrying out the delayed
substitutions represented by the environment in the term yields a new term. Through
this operation (depicted with the long dotted arrow in the diagram), we can go from
each of the environment machines to the corresponding abstract machine for λ-terms.

19



λ

one-step
reduction
function

transitive
closure

���
�
�
�
�

λρ̂

one-step
reduction
function

���
�
�
�
�

λρ

evaluation
function

refocus

��

evaluation
function

��
pre-

abstract
machine

distribute

��

pre-
abstract
machine

shortcut //

��

substituteoo
pre-

abstract
machine

unfold //

��

pre-
abstract
machine

distribute

��

fold
oo

substitutenn

staged
abstract
machine

inline

��

staged
abstract
machine

//

��

oo
staged

abstract
machine

//

��

staged
abstract
machine

inline

��

oo
nn

eval/apply
abstract
machine

inline

��

eval/apply
abstract
machine

//

��

oo
eval/apply
abstract
machine

//

��

eval/apply
abstract
machine

inline

��

oo
nn

push/enter
abstract
machine

push/enter
abstract
machine

shortcut //substituteoo
push/enter

abstract
machine

unfold // push/enter
abstract
machinefold

oo

substitutenn

Figure 1: A derivational taxonomy of abstract machines

In Section 3, we observed that the push/enter environment machine corresponding
to normal-order reduction coincides with the usual idealized version of Krivine’s ma-
chine [10, 12, 24]. In Section 4, we observed that the eval/apply environment machine
corresponding to applicative-order reduction coincides with Felleisen’s et al.’s CEK ma-
chine [21]. In Section 5, we observed that a context-sensitive reduction semantics gives
rise to the original version of Krivine’s machine and to the Zinc machine. In Section 6,
we observed that the space optimization of two families of call-by-name machines cor-
responds to two reduction semantics.

20



Earlier [18], Danvy and Nielsen observed that the eval/apply machine with actual
substitution corresponding to applicative-order reduction coincides with Felleisen et al.’s
CK machine [21]. Obtaining staged abstract machines was one of the goals of Hardin,
Maranget, and Pagano’s study of functional runtime systems using explicit substitu-
tions [26]; these machines arise mechanically here. As investigated by Danvy and his
students in their study of the functional correspondence between compositional evalu-
ation functions and abstract machines [4–6,16], the eval/apply machines are in defunc-
tionalized form [17, 35] and they can be ‘refunctionalized’ into a continuation-passing
evaluation function which itself can be written in direct style [14] and implements a
big-step operational semantics. (Because of the closures, the result is again in defunc-
tionalized form and can be refunctionalized into a compositional evaluation function
implementing the valuation function of a denotational semantics.)

Each of the machines in Figure 1 is thus of independent value.

7.2 Reversibility of the derivation steps

Going from a push/enter machine to the corresponding eval/apply machine or from a
push/enter machine or an eval/apply machine to a staged machine requires a degree
of insight [26]. Going from a staged machine to a pre-abstract machine and from a
pre-abstract machine to a reduction semantics is mechanical. We are however not
aware of any systematic method to go from a given abstract machine to a reduction
semantics [8, 22].

Going from an environment machine where the environment is treated as a list to
a closure-based machine is done by folding the pair (term, environment) into a closure.
The resulting machine mediates between an environment-based specification and an
explicit-substitution-based specification. Obtaining an explicit-substitution-based ma-
chine from this intermediate machine, however, requires a major architectural overhaul.

8 Conclusion

Curien originally presented a simple calculus of closures, the λρ-calculus, as an abstract
framework for environment machines [12]. This approach gave rise to a general study
of explicit substitutions [1,2,13,26,31,36,37] where a number of abstract machines have
been obtained through a combination of skill and ingenuity.

We have presented a concrete framework for environment machines where abstract
machines are methodically derived from specifications of reduction strategies. The
derivation is based on Danvy and Nielsen’s refocusing method, which requires the one-
step specification of a reduction strategy, i.e., a reduction semantics. For this reason,
we needed to extend Curien’s original λρ-calculus with closure composition, yielding
the λρ̂-calculus.

We have illustrated the concrete framework by deriving several known environ-
ment machines—Krivine’s abstract machine both in idealized form and in original form,
Felleisen et al.’s CEK machine, and Leroy’s Zinc machine—from the normal-order and
the applicative-order reduction strategies expressed in the λρ̂-calculus, both in context-
insensitive and in context-sensitive form. The last step of the derivation (closure unfold-
ing) provides a precise characterization of what has now become folklore: that explicit
substitutions mediate between actual substitutions and environments.

21



Acknowledgments: Thanks are due to Mads Sig Ager, Dariusz Biernacki, Mayer
Goldberg, Julia Lawall, Jan Midtgaard, Kevin Millikin, and Kristian Støvring for com-
ments, and to Ulrich Kohlenbach for providing us with what appears to be the original
bibliographic reference of the logic counterpart of environments [38, § 54].

This work is partially supported by the ESPRIT Working Group APPSEM II (http:
//www.appsem.org) and by the Danish Natural Science Research Council, Grant no. 21-
03-0545.

References

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. In Paul Hudak, editor, Proceedings of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages, pages 31–46, San Francisco,
California, January 1990. ACM Press.

[2] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. Journal of Functional Programming, 1(4):375–416, 1991.

[3] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From inter-
preter to compiler and virtual machine: a functional derivation. Research Report
BRICS RS-03-14, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, March 2003.

[4] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional
correspondence between evaluators and abstract machines. In Dale Miller, editor,
Proceedings of the Fifth ACM-SIGPLAN International Conference on Principles
and Practice of Declarative Programming (PPDP’03), pages 8–19. ACM Press,
August 2003.

[5] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Information Process-
ing Letters, 90(5):223–232, 2004. Extended version available as the technical report
BRICS-RS-04-3.

[6] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with computa-
tional effects. Theoretical Computer Science, 2005. To appear. Extended version
available as the technical report BRICS RS-04-28.

[7] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundation of Mathematics. North-Holland, revised
edition, 1984.

[8] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foun-
dation for delimited continuations in the CPS hierarchy (revised version). Research
Report BRICS RS-05-11, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, March 2005. A preliminary version was presented at
the Fourth ACM SIGPLAN Workshop on Continuations (CW 2004).

[9] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press,
1941.

22



[10] Pierre Crégut. An abstract machine for lambda-terms normalization. In Wand [39],
pages 333–340.

[11] Pierre Crégut. Strongly reducing variants of the Krivine abstract machine. Higher-
Order and Symbolic Computation, 2006. To appear.

[12] Pierre-Louis Curien. An abstract framework for environment machines. Theoretical
Computer Science, 82:389–402, 1991.

[13] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence prop-
erties of weak and strong calculi of explicit substitutions. Journal of the ACM,
43(2):362–397, 1996.

[14] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–
195, 1994.

[15] Olivier Danvy. On evaluation contexts, continuations, and the rest of the com-
putation. In Hayo Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN
Workshop on Continuations, Technical report CSR-04-1, Department of Computer
Science, Queen Mary’s College, pages 13–23, Venice, Italy, January 2004. Invited
talk.

[16] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens
Grelck and Frank Huch, editors, Implementation and Application of Functional
Languages, 16th International Workshop, IFL’04, number 3474 in Lecture Notes
in Computer Science, pages 52–71, Lübeck, Germany, September 2004. Springer-
Verlag. Recipient of the 2004 Peter Landin price. Extended version available as the
technical report BRICS-RS-03-33.

[17] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming (PPDP’01), pages
162–174, Firenze, Italy, September 2001. ACM Press. Extended version available
as the technical report BRICS RS-01-23.

[18] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Research
Report BRICS RS-04-26, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, November 2004. A preliminary version appears in
the informal proceedings of the Second International Workshop on Rule-Based
Programming (RULE 2001), Electronic Notes in Theoretical Computer Science,
Vol. 59.4.

[19] Nicholas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 34(5):381–392, 1972.

[20] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages. PhD thesis,
Computer Science Department, Indiana University, Bloomington, Indiana, August
1987.

23



[21] Matthias Felleisen and Matthew Flatt. Programming languages and lambda cal-
culi. Unpublished lecture notes. http://www.ccs.neu.edu/home/matthias/3810-w02/
readings.html, 1989-2003.

[22] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine,
and the λ-calculus. In Martin Wirsing, editor, Formal Description of Programming
Concepts III, pages 193–217. Elsevier Science Publishers B.V. (North-Holland),
Amsterdam, 1986.

[23] Daniel P. Friedman, Abdulaziz Ghuloum, Jeremy G. Siek, and Lynn Winebarger.
Improving the lazy Krivine machine. Higher-Order and Symbolic Computation,
2006. To appear.

[24] Chris Hankin. Lambda Calculi, a guide for computer scientists, volume 1 of Grad-
uate Texts in Computer Science. Oxford University Press, 1994.

[25] John Hannan and Dale Miller. From operational semantics to abstract machines:
Preliminary results. In Wand [39], pages 323–332.

[26] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime systems
within the lambda-sigma calculus. Journal of Functional Programming, 8(2):131–
172, 1998.

[27] Jean-Louis Krivine. Un interprète du λ-calcul. Brouillon. Available online at
http://www.pps.jussieu.fr/~krivine/, 1985.

[28] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and
Symbolic Computation, 2006. To appear. Available online at http://www.pps.

jussieu.fr/~krivine/.

[29] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1964.

[30] Xavier Leroy. The Zinc experiment: an economical implementation of the ML
language. Rapport Technique 117, INRIA Rocquencourt, Le Chesnay, France,
February 1990.

[31] Pierre Lescanne. From λσ to λv a journey through calculi of explicit substitutions.
In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual ACM Sympo-
sium on Principles of Programming Languages, pages 60–69, Portland, Oregon,
January 1994. ACM Press.

[32] Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter
vs. eval/apply for higher-order languages. In Kathleen Fisher, editor, Proceedings
of the 2004 ACM SIGPLAN International Conference on Functional Programming,
pages 4–15, Snowbird, Utah, September 2004. ACM Press.

[33] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

[34] Brian Randell and Lawford John Russell. ALGOL 60 Implementation. Academic
Press, London and New York, 1964.

24



[35] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998. Reprinted
from the proceedings of the 25th ACM National Conference (1972), with a fore-
word.

[36] Kristoffer H. Rose. Explicit substitution – tutorial & survey. BRICS Lecture Series
LS-96-3, DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, September 1996.

[37] Kristoffer H. Rose. Operational Reduction Models for Functional Programming Lan-
guages. PhD thesis, DIKU, Computer Science Department, University of Copen-
hagen, Copenhagen, Denmark, 1996.

[38] Heinrich Scholz and Gisbert Hasenjaeger. Grundzüge der Mathematischen Logik.
Springer-Verlag, 1961.

[39] Mitchell Wand, editor. Proceedings of the 1990 ACM Conference on Lisp and
Functional Programming, Nice, France, June 1990. ACM Press.

[40] Mitchell Wand. On the correctness of the Krivine machine. Higher-Order and
Symbolic Computation, 2006. To appear.

25



Recent BRICS Report Series Publications

RS-05-15 Małgorzata Biernacka and Olivier Danvy.A Concrete Frame-
work for Environment Machines. May 2005. ii+25 pp.

RS-05-14 Olivier Danvy and Henning Korsholm Rohde. On Obtaining
the Boyer-Moore String-Matching Algorithm by Partial Evalua-
tion. April 2005. ii+8 pp.

RS-05-13 Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan.On
the Dynamic Extent of Delimited Continuations. April 2005.
ii+32 pp. Extended version of an article to appear inInforma-
tion Processing Letters. Subsumes BRICS RS-05-2.

RS-05-12 Małgorzata Biernacka, Olivier Danvy, and Kristian Støvring.
Program Extraction from Proofs of Weak Head Normalization.
April 2005. 19 pp. Extended version of an article to appear in
the preliminary proceedings of MFPS XXI, Birmingham, UK,
May 2005.

RS-05-11 Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations in the
CPS Hierarchy. March 2005. iii+42 pp. A preliminary version
appeared in Thielecke, editor,4th ACM SIGPLAN Workshop on
Continuations, CW ’04 Proceedings, Association for Comput-
ing Machinery (ACM) SIGPLAN Technical Reports CSR-04-1,
2004, pages 25–33. This version supersedes BRICS RS-04-29.

RS-05-10 Dariusz Biernacki and Olivier Danvy.A Simple Proof of a Folk-
lore Theorem about Delimited Control. March 2005. ii+11 pp.

RS-05-9 Gudmund Skovbjerg Frandsen and Peter Bro Miltersen.Re-
viewing Bounds on the Circuit Size of the Hardest Functions.
March 2005. 6 pp. To appear inInformation Processing Let-
ters.

RS-05-8 Peter D. Mosses.Exploiting Labels in Structural Operational
Semantics. February 2005. 15 pp. Appears inFundamenta
Informaticae, 60:17–31, 2004.

RS-05-7 Peter D. Mosses.Modular Structural Operational Semantics.
February 2005. 46 pp. Appears inJournal of Logic and Alge-
braic Programming, 60–61:195–228, 2004.

RS-05-6 Karl Krukow and Andrew Twigg. Distributed Approximation
of Fixed-Points in Trust Structures. February 2005. 41 pp.


