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Abstract. We analyze the situation where computationally binding
string commitment schemes are used to force the receiver of a BB84 en-
coding of a classical bitstring to measure upon reception. Since measuring
induces an irreversible collapse to the received quantum state, even given
extra information after the measurement does not allow the receiver to
evaluate reliably some predicates apply to the classical bits encoded in
the state. This fundamental quantum primitive is called quantum mea-
sure commitment (QMC) and allows for secure two-party computation
of classical functions. An adversary to QMC is one that can both pro-
vide valid proof of having measured the received states while still able to
evaluate a predicate applied to the classical content of the encoding. We
give the first quantum black-box reduction for the security of QMC to
the binding property of the string commitment. We characterize a class
of quantum adversaries against QMC that can be transformed into ad-
versaries against a weak form for the binding property of the string com-
mitment. Our result provides a construction for 1 − 2-oblivious transfer
that is computationally secure against the receiver and unconditionally
secure against the sender from any string commitment scheme satisfying
a weak binding property.
keywords: quantum bit commitment, oblivious transfer, quantum mea-
surement, computational assumptions.

1 Introduction

As in the classical case, secure quantum 2-party cryptography must rely
upon assumptions but the two models do not share the same capabilities
and limits. In particular, given a classical black-box for bit commitment,
there exists a quantum protocol, called the BBCS protocol [4], achiev-
ing 1 − 2 oblivious transfer [7, 6, 22] (one-out-of-two oblivious transfer).
This is in sharp contrast with the classical case where such a reduction is
? Basic Research in Computer Science (www.brics.dk), funded by the Danish National

Research Foundation.



not only unknown but unlikely to exist [12]. The difference between the
two models can intuitively be appreciated by observing that a classical
black-box for bit commitment allows to transform the quantum channel
into a noisy classical channel powerful enough to provide OT. To see
this, consider the BB84 coding scheme [2, 4] for classical bit b into a ran-
dom state in { b〉+, b〉×}.The random θ ∈ {+,×} used to encode b into
the quantum state b〉θ, is called the transmission basis for b.Since only
orthogonal quantum states can be distinguished with certainty, the trans-
mitted bit b is not received perfectly by the receiver, Alice, who does
not know the transmission basis. The coding scheme also specifies what
an honest Alice should be doing with the received state b〉θ. She picks
θ̂ ∈R {+,×} and measures b〉θ with measurement Mθ̂ that distinguishes
perfectly orthogonal states 0〉θ̂ and 1〉θ̂, providing the classical outcome
b̂ ∈ {0, 1}. If Bob and Alice follow honestly the BB84 coding scheme then
b is received with probability 1 when θ̂ = θ whereas a random bit is re-
ceived when θ̂ 6= θ. The error-rate of such a transmission is therefore 1

4
when θ is not revealed to Alice. Dishonest Bob however, could send dif-
ferent states in order to temper with the error-rate of the channel so it
becomes an unfair noisy channel (i.e. UNC) [9]. Bob could instead send
cos π

8 b〉+ (−1)b sin π
8 1 − b〉 for the encoding of b. In this case, the error-

rate falls to sin2 π
8 . According to [9], the resulting (sin2 π

8 ,
1
4)-UNC has no

cryptographic capability since 2 sin2 π
8 (1−sin2 π

8 ) ≤ 1
4 . In order to prevent

Bob from behaving in such way, a slightly different strategy is used. Bob is
now asked to announce θ allowing Alice to determine whether b has been
received. The result is an oblivious transfer of bit b from Bob to Alice only
assuming Alice is honest. Dishonest Alice can easily learn b all the time
by waiting for θ before applying measurement Mθ̂. Bob must make sure
that Alice has measured before the announcement of θ so the initial state
has collapsed irreversibly. An oblivious transfer is possible only given such
a primitive. The natural way to build used commitments [4].

We call Quantum Measure Commitment (or QMC) the primitive that
allows Alice to provide Bob with evidences that she measured the qubits
received before the announcement of θ. Implementing a QMC is simply
done by sending a commitment containing (θ̂, b̂) to Bob. A collapse oc-
curred if given the transmission basis θ, the bit b cannot be determined
perfectly. However, verifying the collapse of a single qubit cannot be done
perfectly since Alice could always provide a commitment to random (θ̂, b̂)
while keeping b〉θ untouched until θ is announced. The probability of
opening with success would then be 3

4 while b can always be received per-
fectly from θ. To avoid a lucky Alice from learning too much about b, QMC
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are made to n random BB84 qubits b〉θ = b1〉θ1
, b2〉θ2

, . . . , bn〉θn
before

Bob announces the transmission basis θ = θ1, . . . , θn. The QMC is sim-
ply a string commitment containing the measurements θ̂ ∈ {+,×}n and
the outcomes b̂ ∈ {0, 1}n. The classical transmission is encoded in some
predicate f(b1, . . . , bn). Alice should be unable to evaluate f(b1, . . . , bn)
even given the knowledge of θ. The BBCS protocol can be seen as a re-
duction of oblivious transfer to such a QMC to n random BB84 qubits
with f(b1, . . . , bn) ≡ ⊕n

i=1bi. A QMC is therefore an universal primitive
for secure quantum 2-party computation of classical functions. A success-
ful adversary to QMC is one that can unveil valid measurement outcomes
with good probability while being able to get a bias on f(b1, . . . , bn) given
θ ∈ {+,×}n.

In this paper, we address the question of determining how the bind-
ing property of the string commitment scheme used for implementing a
QMC enforces its security. As already pointed out in [10, 8], quantum
bit commitment schemes satisfy different binding properties than classi-
cal ones. The difference becomes more obvious when string commitments
are taken into account. We generalize the computational binding crite-
ria of [10] to the case where commitments are made to strings of size
l(n) ∈ Ω(n) for n the security parameter. Intuitively, for a class of func-
tions F ⊆ {f : {0, 1}l(n) → {0, 1}m(n)}, we say that a string commitment
scheme is F–binding if for all f ∈ F and given y ∈R {0, 1}m(n), the com-
mitter cannot open with success any s ∈ {0, 1}l(n) such that f(s) = y.
The smaller m(n) is compared to l(n), the weaker is the F–binding cri-
teria. We relate the security of a QMC to a weak form of the F–binding
property. Assume QMC’s are made using some computationally binding
string commitments containing the bases θ̂ ∈ {+,×}n and the results
b̂ ∈ {0, 1}n obtained by Alice after Bob’s transmission of b〉θ. At this
point, Bob selects a challenge c ∈R {0, 1}. If c = 0, Alice unveils all
measurements and outcomes that Bob verifies. If c = 1, Bob announces
the transmission basis θ ∈R {+,×}n and Alice tries to get a bias on the
parity of b. Let p̃s be Alice’s probability of success when c = 0 and let
ε̃ be Alice’s expected bias when c = 1. Our main contribution describes
how p̃s and ε̃ relates to the Fn

m(n)–binding criteria of the string commit-
ment where Fn

m(n) is a class of functions with m(n) ∈ O(polylog(n)). We
give a black-box reduction of any good quantum adversary against QMC
into one against the Fn

m(n)–binding property of the string commitment.
We show that if p̃s + 4ε̃2 ≥ 1 + δ(n) for non-negligible δ(n), then the
string commitment is not Fn

m(n)–binding. Our reduction shows that using
computationally binding commitments one can enforce a computational
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collapse of quantum information. This is the first quantum black-box re-
duction linking the security of those two primitives. Previously, Yao [22]
has shown that if the string commitment is modeled by a classical black-
box then the BBCS protocol is secure. Our result can be used for proving
the security of OT in the computational setting using a different approach.
We describe a 1 − 2 oblivious transfer unconditionally secure against the
sender but computationally secure against the receiver that is very similar
to the BBCS protocol. It is shown that any dishonest receiver able to get
a non-negligible amount of information about each transmitted bit can
break the Fn

m(n)-binding property of the string commitment used in the
construction. As for the Quantum Goldreich-Levin theorem of [1] and the
computationally binding commitments of [10] and [8], our result clearly
indicates that 2-party quantum cryptography in the computational set-
ting can be based upon different assumptions (i.e. weaker to some extend)
than its classical counterpart.

2 Preliminaries

Notations and Tools. In the following, poly(n) stands for any poly-
nomial in n. We write A(n) < poly(n) for “A(n) is smaller than any
polynomial provided n is sufficiently large” and A(n) ≤ poly(n) (resp.
A(n) ≥ poly(n)) means that A(n) is upper bounded by some polyno-
mial (resp. lower bounded by some polynomial). For w ∈ {0, 1}n, x � w
means that xi = 0 for all 1 ≤ i ≤ n such that wi = 0 (x belongs to
the support of w). We denote by “�” the string concatenation operator.
For w ∈ {0, 1}n, we write [w] ≡ ⊕n

i=1wi. For w, z ∈ {0, 1}n, we write |w|
for the Hamming weight of w, ∆(w, z) = |w ⊕ z| for the Hamming dis-
tance, and w� z ≡ ⊕n

i=1wi · zi is the boolean inner product. Notation ‖u‖
denotes the Euclidean norm of u and u† denotes its complex conjugate
transposed. The following well-known identity will be useful,

(∀y ∈ {0, 1}n)[y 6= 0n ⇒
∑

x∈{0,1}n

(−1)x�y = 0]. (1)

Next lemma, proved in Appendix A, provides a useful generalization of
the parallelogram identity:

Lemma 1. Let A ⊆ {0, 1}n be a set of bitstrings. Let {vw,z}w,z be any
family of vectors indexed by w ∈ {0, 1}n and z ∈ A that satisfies for all
s, t ∈ {0, 1}n, s 6= t,∑

w

∑
z1∈A:w⊕z1=s

∑
z2∈A:w⊕z2=t

(−1)w�(z1⊕z2)〈vw,z1,vw,z2〉 = 0 (2)
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Then, ∑
w

‖
∑
z∈A

(−1)w�zvw,z‖2 =
∑

w∈{0,1}n

∑
z∈A

‖vw,z‖2. (3)

Finally, for θ, b ∈ {0, 1}n, we define ∆�(θ, b) = {(θ̂, b̂) ∈ {0, 1}n ×
{0, 1}n|(∀i, 1 ≤ i ≤ n)[θ̂i = θi ⇒ b̂i = bi]}. It is easy to verify that
#∆�(θ, b) = 3n and that (θ ⊕ τ, b⊕ β) ∈ ∆�(θ, b) iff β � τ .

Quantum Operators and Encoding. In the following, we denote
the m-dimensional Hilbert space by Hm. The basis { 0〉, 1〉} denotes
the computational or rectilinear or “+” basis for H2. When the con-
text requires, we write b〉+ to denote the bit b in the rectilinear ba-
sis. The diagonal basis, denoted “×”, is defined as { 0〉×, 1〉×} where
0〉× = 1√

2
( 0〉+ 1〉) and 1〉× = 1√

2
( 0〉− 1〉). The states 0〉, 1〉, 0〉×

and 1〉× are the four BB84 states. For any x ∈ {0, 1}n and θ ∈ {+,×}n,
the state x〉θ is defined as ⊗n

i=1 xi〉θi
. An orthogonal (or Von Neumann)

measurement of a quantum state in Hm is described by a set of m orthog-
onal projections M = {Pi}m

i=1 acting in Hm thus satisfying
∑

i Pi = 1m

for 1m denoting the identity operator in Hm. Each projection or equiv-
alently each index i ∈ {1, . . . ,m} is a possible classical outcome for M.
In the following, we write P+,0 ≡ P0 = 0〉〈0 , P+,1 ≡ P1 = 1〉〈1 ,
P×,0 = 0〉×〈0 and P×,1 = 1〉×〈1 for the projections along the four
BB84 states. The two possible measurements applied by the receiver of
BB84 qubits are M+ = {P0,P1} and M× = {P×,0,P×,1}. For θ ∈ {+,×}n,
measurement Mθ is the composition of measurements Mθi

for 1 ≤ i ≤ n.
In order to simplify the notation, we sometimes associate the rectilinear
basis “+” with bit 0 and the diagonal basis with bit 1. We map sequences
of rectilinear and diagonal bases into bitstring the obvious way. In order
to indicate that φ〉 ∈ H2r is the state of a quantum register HR ' H2r

we write φ〉R. If HR ' H2r and HS ' H2s are two quantum registers
and φ〉 =

∑
x∈{0,1}r

∑
y∈{0,1}s γx,y x〉 ⊗ y〉 ∈ H2r ⊗ H2s then we write

φ〉RS =
∑

x∈{0,1}r

∑
y∈{0,1}s γx,y x〉R ⊗ y〉S to denote the state of both

registers HR and HS . Given any transformation UR acting on a register
HR and any state φ〉 ∈ HR ⊗HOthers, where HOthers corresponds to the
other registers, we define UR φ〉 def

= (UR⊗ 1Others) φ〉. We use the same
notation when UR denotes a projection operator.

Model of Computation and Protocols. In this paper, we model pro-
tocols and algorithms by quantum circuits built out of the universal set of
quantum gates UG = {CNot, H, P, T}, where CNot denotes the controlled-
not, H the one qubit Hadamard gate, P the phase gate, and T is a one
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qubit gate sometimes refer to as the π/8 gate [19].In addition to the set
of gates UG, a quantum circuit is allowed to perform von Neumann mea-
surements in the computational basis M+. A circuit C executed in the
reverse direction is denoted C†. The complexity of the circuit C is simply
the number ‖C‖UG of elementary gates in UG contained in C.

In the following, we use the two Pauli (unitary) transformations σX

(bit flip) and σZ (conditional phase shift) defined for b ∈ {0, 1} as,
σX : b〉 7→ 1− b〉 and σZ : b〉 7→ (−1)b b〉. Assuming U is a one
qubit operation and s ∈ {0, 1}n, we write U⊗s = ⊗n

i=1Ui where Ui = 12

if si = 0 and Ui = U if si = 1. U⊗s is therefore a conditional application
of U on each of n registers depending upon the value of s. The maximally
entangled state Φ+

n 〉 = 2−n/2
∑

x∈{0,1}n x〉⊗ x〉 will be useful in our re-
duction. This state can easily be constructed from (scratch) 0n〉L⊗ 0n〉R
after applying n Hadamard H and CNOT gates. A 2-party quantum pro-
tocol taking place between A and B is a pair of interactive quantum
circuits (PA, PB) applied to some initial product state xA〉A ⊗ xB〉B
representing A’s and B’s (maybe secret) inputs to the protocol neglect-
ing to write explicitly the states of A’s and B’s registers that do not
encode their respective input to the protocol (thus all in initial states
0〉). Since communication takes place between A and B, the complete

circuit representing one protocol execution may have quantum gates in
PA and PB acting upon the same quantum registers. We write PA �PB

for the complete quantum circuit when A is interacting with B. The final
composite state Ψfinal〉 obtained after the execution is then written as
Ψfinal〉 = (PA � PB) xA〉A xB〉B . Protocols are to be understood, al-

though not always explicitly stated, as specified by families of interactive
quantum circuits, one for each possible value of the security parameter n.
We denote by PAB = {(PA

n , P
B
n )}n>0 such a family of protocols.

3 Definitions

3.1 Computationally Binding Quantum String Commitment

In the following we shall always refer to A as the sender and B as the
receiver of some commitment. Such a scheme can be specified by two
families of protocols CAB = {(CA

n , C
B
n )}n>0, and OAB = {(OA

n , O
B
n )}n>0

where each pair defined A’s and B’s circuits for the committing and the
opening phase respectively. A l(n)-string commitment allows to commit
upon strings of length l(n) for n a security parameter. The committing
stage generates the state ψs〉 = (CA

n �CB
n ) s〉A 0〉B when A commits to

6



s ∈ {0, 1}l(n). The opening stage is executed from the shared state ψs〉
and produces ψfinal〉 = (OA

n � OB
n ) ψs〉. In [10], the security criteria

for computationally binding but otherwise concealing quantum bit com-
mitment schemes were introduced. Here, we follow a similar approach for
string commitment schemes.

An adversary Ã = {(C̃A
n , Õ

A
n )}n>0 for the binding condition is such

that ψ̃〉 = (C̃A
n �CB

n ) 0〉A 0〉B is generated during the committing stage.
The dishonest opening circuit ÕA

n tries to open s ∈ {0, 1}l given as an extra
input in state s〉A. Given the final state ψ̃final〉 = (ÕA

n �OB
n ) s〉A ψ̃〉 we

define p̃s(n) as the probability to open s ∈ {0, 1}l(n) with success. More
precisely, p̃s(n) = ‖QB

s ψ̃final〉‖2 where QB
s is B’s projection operator

on the subspace leading to accept the opening of s. The main difference
between quantum and classical commitments is the impossibility in the
quantum case to fix the adversary’s committed string s after the commit-
ting phase of the protocol has been executed. Classically, this can be done
by fixing the adversary’s random tape so any s′ 6= s cannot be unveiled
with non-negligible probability. In addition, techniques like rewinding have
no quantum counterpart [20]. A committer (to a concealing commitment)
can always commit upon any superposition of values for s that will remain
such until the opening phase. Even an honest committer does not neces-
sarily know a single string that can be unveiled with non-negligible proba-
bility of success. Suppose a quantum l(n)–string commitment scheme has
committing circuit CA

n � CB
n such that ψ(s)〉AB = (CA

n � CB
n ) s〉A. If

the committer starts with superposition
∑

s

√
p̃s(n) s〉, for any proba-

bility distribution {(p̃s(n), s)}s∈{0,1}l(n) , then the state obtained after the
committing phase would be:

∑
s∈{0,1}l(n)

√
p̃s(n) ψ(s)〉AB =

CA
n � CB

n


(

∑
s∈{0,1}l(n)

√
p̃s(n) s〉A) ⊗ 0〉A ⊗ 0〉B


 .

(4)

Equation (4) is a valid commitment to a superposition of strings that
will always allow the sender to open s with probability p̃s(n). The honest
strategy described in (4) achieves

∑
s p̃s(n) = 1. In [10], the binding con-

dition is satisfied if no adversary can do significantly better than what is
achievable by (4) in the special case where l(n) = 1. More precisely, a bit
commitment scheme is binding if for all adversaries Ã:

p̃0(n) + p̃1(n) < 1 + 1/poly(n) (5)
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where p̃b(n) is the probability to open bit b with success. Extending this
definition to the case where l(n) ∈ Ω(n) must be done with care however.
The obvious generalization of (5) to the requirement

∑
s∈{0,1}l(n) p̃s(n) <

1+1/poly(n) is too strong whenever l(n) ∈ Ω(n). For example, if l(n) = n
and p̃s(n) = 2−n(1 + 1

p(n)) for all strings s ∈ {0, 1}n then the poly-
time adversary Ã is indistinguishable from what is achievable with the
honest state (4) resulting from distribution {(2−n, s)}s. Any attack that
cannot be distinguished from the honest behaviour in polynomial time
should hardly be considered successful. On the other hand, defining a
successful adversary Ã as one who can open s and s′ (s 6= s′) such
that p̃s(n) + p̃s′(n) ≥ 1 + 1/p(n) is in general too weak when one tries
to reduce the security of a protocol to the security of the string com-
mitment used by that protocol (as we shall see for QMCs). Breaking a
protocol could be reduced to breaking the string commitment scheme in
a more subtle way. In general, the possibility to commit upon several
strings in superposition can be used by the adversary to make his attack
against the binding condition even more peculiar. Instead of trying to
open a particular string s ∈ {0, 1}l(n), an attacker could be interested
in opening any s ∈ {0, 1}l(n) such that f(s) = y for some predeter-
mined function f : {0, 1}l(n) → {0, 1}m(n) with m(n) ≤ l(n). We shall
see in the following that the security of QMC is guaranteed provided the
string commitment does not allow the committer to mount such an at-
tack for a special class of functions. Such an adversary is characterized
by a family of interactive quantum circuits Ãf = {(C̃A

n , Õ
A
n )}n>0 such

that ψ̃〉 = (C̃A
n � CB

n ) 0〉A 0〉B is the state generated during the com-
mitting phase of the protocol and ψ̃(y)〉 = (ÕA

n �OB
n ) y〉A ψ̃〉AB

is the
state (hopefully) allowing to open s ∈ {0, 1}l(n) such that f(s) = y. The
probability to succeed in opening such an s is,

p̃f
y(n) = ‖

∑
s∈{0,1}l(n) :f(s)=y

QB
s ψ̃(y)〉‖2, (6)

where QB
s is B’s projector operator leading to accept the opening of

s ∈ {0, 1}l(n). The following security criteria takes into account a class
of functions for which the binding condition is guaranteed:
Definition 1. Let F ⊆ {f : {0, 1}l(n) → {0, 1}m(n)} be a set of functions.
A l(n)-string commitment scheme is computationally F -binding if for any
f ∈ F and any adversary Ãf such that ‖Ãf‖UG ≤ poly(n), we have that∑

y∈{0,1}m(n)

p̃f
y(n) < 1 + 1/poly(n) with p̃f

y(n) defined as in (6). (7)
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Note that any standard attack can be expressed in terms of an appropriate
class of functions F . In general, the smaller m(n) is with respect to l(n),
the weaker is the F–binding requirement. A class of functions of particular
interest is built out of s1(x, y) = x, s2(x, y) = y, and s3(x, y) = x⊕ y for
all x, y ∈ {0, 1}. Let In

m(n) be the set of subsets of {1, . . . , n} having size
exactly m(n), we define the class of functions Fn

m(n) as,

Fn
m(n) = {fI : {0, 1}2n → {0, 1}m(n)|I ∈In

m(n), fI(x, y) = �
h∈I

sjh
(xh, yh),

where jh ∈ {1, 2, 3} for h ∈ I}.
(8)

In other words, Fn
m(n) contains the set of functions f : {0, 1}2n →

{0, 1}m(n) such that f(x, y) is a set of m(n) bits where each is either
in x or in y or in x⊕ y.

3.2 Quantum Measure Commitment

Quantum Measure Commitment (QMC) is a primitive allowing the re-
ceiver of random qubits to show the sender that the qubits have been
measured without disclosing any further information about the measure-
ment and the outcome. In this paper we restrict our attention to quantum
transmission of random BB84 qubits. The measurements performed by the
receiver are for each transmission independently chosen in {M+,M×}. For
simplicity we model QMCs by the following game between players A and
B:

1. B sends n random BB84 qubits in state b〉θ for b ∈R {0, 1}n and
θ ∈R {+,×}n,

2. A measures the qubits with measurement Mθ̂ for θ̂ ∈R {+,×}n thus
and producing the classical outcome b̂ ∈ {0, 1}n,

3. A uses a 2n-string commitment and commits to (θ̂, b̂) toward B,
4. B picks a random challenge c ∈R {0, 1},

– If c = 0 then B asks A to open (θ̂, b̂) and verifies that b̂i = bi for
all i such that θ̂i = θi (if errors are found then B aborts),

– If c = 1 then B announces θ and A tries to bias [b].

A wants to maximize both her success probability when unveiling and
the bias on [b] whenever θ is announced. This is almost identical to the
receiver’s situation in the BBCS protocol[4]. Since we only consider un-
conditionally concealing string commitments, B gets information about
A’s measurements and results only if they are unveiled.

9



We model the adversary Ã by a family of interactive quantum cir-
cuits Ã = {(C̃A

n , Õ
A
n , Ẽn)}n>0 where C̃A

n and ÕA
n are Ã’s circuits for the

committing and the opening (c=0) phases. Circuit Ẽn allows to extract
the parity of b upon the announcement of basis θ. Circuit C̃A

n works upon
Ã’s internal registers HA together with the register Hchannel (the channel)
carrying the BB84 qubits. We denote by

ψθ,b〉AB = (C̃A
n �CB

n ) b〉channel
θ , (9)

the resulting state after the committing phase (step 3). This state should
allow Ã to succeed both challenges with good probability. By linearity, we
have that for all θ, b, x ∈ {0, 1}n,

ψθ,b〉 = 2−
|x|
2

∑
y:y�x

(−1)b�x⊕b�y ψθ⊕x,b⊕y〉. (10)

The probability to open with success p̃ok
(θ,b)(n), when b〉θ was sent, is

p̃ok
(θ,b)(n) =

∑
(θ̂,b̂)∈∆�(θ,b)

‖QB
(θ̂,b̂)

(ÕA
n �OB

n ) ψθ,b〉‖2 = ‖Q∗
(θ,b) ψθ,b〉‖2, (11)

for QB
(θ̂,b̂)

the projection operator applied upon B’s registers and leading

to a valid opening of (θ̂, b̂) ∈ {0, 1}2n. The opening of (θ̂, b̂) is accepted by
B iff (θ̂, b̂) ∈ ∆�(θ, b). For simplicity, circuits ÕA

n � OB
n can be included

in the description of QB
(θ̂,b̂)

so the opening process can be seen as a sin-

gle projection Q∗
(θ,b) =

∑
(θ̂,b̂)∈∆�(θ,b) QB

(θ̂,b̂)
. The expected probability of

success p̃ok(n) is,

p̃ok(n) =
1
4n

∑
b∈{0,1}n

∑
θ∈{+,×}n

p̃ok
(θ,b)(n). (12)

When c = 1, Ã should be able, given the announcement of θ, to extract
information about the parity [b].The extractor Ẽn has access to an extra
register HΘ that contains the basis θ ∈ {+,×}n. The extractor stores the
guess for [b] in register H⊕. The bias ε̃θ,b(n) provided by the extractor
when the qubits were initially in state b〉θ is

ε̃θ,b(n) = ‖P⊕
[b](Ẽn ⊗ 1B) θ〉Θ 0〉⊕ ψθ,b〉AB‖2, (13)

where P⊕
[b] is applied upon the output register H⊕. The expected value

ε̃(n) for the bias provided by Ẽn is,

ε̃(n) =
1
4n

∑
b∈{0,1}n

∑
θ∈{+,×}n

ε̃θ,b(n). (14)

10



We characterize Ã’s behaviour against QMC using p̃ok(n) and ε̃(n). In-
dependently of the string commitment scheme used, there always exists
Ã∗ preparing a superposition of attacks that 1) provides [b] with certainty
and 2) succeeds with probability 1 during the opening. Such an attack
can be implemented as follows:

ψ∗
θ,b
〉 = α(CA

n � CB
n ) b〉channel

θ + β(CA
n � CB

n ) 0n〉channel
+n (15)

where |α|2 + |β|2 = 1 and CA
n and CB

n are the honest circuits for com-
mitting. The state ψ∗

θ,b
〉 is a superposition of the honest behaviour with

probability |α|2 and the trivial attack consisting in not measuring the
BB84 qubits received with probability |β|2. The expected probability of
success p∗(n) is

p∗(n) = |α|2 + |β|2(3
4
)n ≈ |α|2 (16)

since with probability |α|2 an honest QMC was executed and with prob-
ability |β|2 a QMC to the fixed state 0n〉θ was made. In the later case,
the probability to pass B’s test is (3/4)n. The expected bias satisfies

ε∗(n) =
|α|2
2

(
1
2
)n +

|β|2
2

≈ |β|2
2

(17)

since with probability |α|2 a QMC to b〉θ is recovered (in which case a
nonzero bias on [b] occurs only when θ̂ = θ) and with probability |β|2 a
QMC to a dummy value is made allowing to extract [b] perfectly. Such an
attack does not enable the committer to break the binding property of the
string commitment but achieves: p∗(n)+2ε∗(n) > 1. We define two flavors
of adversaries against QMC. The first flavor captures any adversary that
achieves anything better than the trivial adversary Ã∗ defined in (15).
The second flavor captures stronger adversaries for which our reduction
will be shown to produce attacks against the Fn

m(n)–binding property of
the string commitment.

Definition 2. Adversary Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 against QMC is δ(n)–

non-trivial if p̃ok(n)+2ε̃(n) ≥ 1+δ(n), and δ(n)–good if p̃ok(n)+4ε̃(n)2 ≥
1 + δ(n) for p̃ok(n) and ε̃(n) defined as in (12) and (14) respectively.

4 The Reduction

Using a good adversary Ã against QMC, we would like to build an ad-
versary for the F -binding property of the string commitment scheme. In
this section, we provide such a reduction provided Ã’s parity extractor

11



is perfect. We construct a circuit built from Ã that allows to prepare a
commitment from which any ψθ,b〉 can be generated efficiently during
the opening phase. In Sect. 5, we shall use the resulting circuit, called
the switching circuit, to provide an attack against the binding property of
string commitment.

4.1 The Switching Circuit

Let Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 be an adversary in QMC. We call HKeep

the register kept by Ã after the committing phase. We denote by HB the
register containing what is sent by A and kept by B after the committing
phase. HQ ' H2n denotes the register containing the BB84 qubit before
the commitment, HΘ ' H2n denotes the register for the basis given as
input to the extractor, and H⊕ ' H2 denotes the register in which the
guess on [b] is stored by the extractor.

Instead of running C̃n ≡ (C̃A
n �CB

n ) upon some BB84 qubits, we run it
with the maximally entangled state Φ+

n 〉 where the first half is stored in
HΘ and the second half stored inHQ. Therefore, the basis given as input to
the extractor is not a classical state but is rather entangled with register
HQ containing the qubits Ã is committed upon. After the execution of
C̃n Φ+

n 〉Θ,Q, transformations B⊗b and T⊗θ are applied to register HΘ

in order to prepare the input for the extractor where, B = σX σZ and
T = HσZ . Ẽn is then run before σZ is applied upon the extractor’s output
register H⊕. The transformation is completed by running the extractor in
reverse. The following circuit is called the switching circuit:

E

z

E

n

n

+| 〉n

B b T

| 〉
,b

C̃

H
H

HQ

HKeep

HB

Next, we see that whenever the parity extractor is perfect (i.e. Ẽn ≡
En), the switching circuit using transformations B⊗b and T⊗θ generates
ψθ,b〉. To see this, we follow its evolution from the initial state Φ+

n 〉. We
first look at the state generated before the extractor is applied,

Φ+
n 〉 ≡

∑
s

1√
2

n s〉 s〉 C̃n

7−→
∑

s

1√
2

n s〉 ψ+n,s〉 (18)

B⊗b

7−→
∑

s

(−1)b�s

√
2

n b⊕ s〉 ψ+n,s〉

12



T⊗θ

7−→
∑

s,t : t�θ

(−1)b�s ⊕ b�t ⊕ s�t

√
2

n+|θ| b⊕ s⊕ t〉 ψ+n,s〉 (19)

=
∑

s,t,v :
t�θ

v�b⊕s⊕t

(−1)b�t ⊕ s�v ⊕ s�s

√
2

n+|θ|+|b⊕s⊕t| b⊕ s⊕ t〉 ψb⊕s⊕t,s⊕v〉. (20)

The intermediary states up to (19) are obtained by definition of
Φ+

n 〉, C̃n, B
⊗b, and T⊗θ. Equation (20) follows after changing the ba-

sis from +n to b ⊕ s ⊕ t using (10). From (20), we follow the evolution
through E†

nσZEn,

Ψθ,b〉 ≡ T⊗θB⊗bCn Φ+
n 〉 (21)

E†
nσzEn

7−→
∑

s,t,v :
t�θ

v�b⊕s⊕t

(−1)b�t ⊕ s�v ⊕ v�v

√
2

n+|θ|+|b⊕s⊕t| b⊕ s⊕ t〉 ψb⊕s⊕t,s⊕v〉 (22)

=
∑

x,y,v :
v⊕x⊕y�θ

v�θ⊕x

(−1)b�θ ⊕ b�x ⊕ b�y ⊕ v�y

√
2

n+|θ|+|θ⊕x| θ ⊕ x〉 ψθ⊕x,b⊕y〉

=
∑
y�x

(−1)b�θ ⊕ b�x ⊕ b�y

√
2

n+|θ|+|θ⊕x|−2|θ∧x̄| θ ⊕ x〉 ψθ⊕x,b⊕y〉

=
∑
y�x

(−1)b�θ ⊕ b�x ⊕ b�y

√
2

n+|x| θ ⊕ x〉 ψθ⊕x,b⊕y〉 (23)

=
∑

x

(−1)b�θ

√
2

n θ ⊕ x〉 ⊗
∑

y : y�x

(−1)b�x ⊕ b�y

√
2
|x| ψθ⊕x,b⊕y〉

=
∑

x

(−1)b�θ

√
2

n θ ⊕ x〉 ψθ,b〉. (24)

Equation (22) follows from the fact that the extractor is perfect. Equation
(23) follows after using (1). We finally get (24) from (10).

In conclusion, a perfect extractor allows to produce a commitment
inside which any ψθ,b〉 can be put efficiently during the opening phase.

5 Analysis

We analyze the switching circuit when it is run with imperfect parity ex-
tractors. We first show how states { Ψ̃θ,b〉}θ,b, produced in this case, over-
lap with states { Ψθ,b〉}θ,b generated when perfect extractors are available.
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In Sect. 5.2, we represent the behaviour of the switching circuit by a ta-
ble.In Sect. 5.3, we relate the table representation to attacks against the
Fn

m(n)–binding property of the string commitment.

5.1 Generalization to Imperfect Extractors

Assume the adversary Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 has access to an imperfect

extractor. Ẽn modeled as follows:

Ẽn θ〉Θ ψθ,b〉 = θ〉Θ ⊗
(
γθ,b [b]〉⊕ ϕθ,b〉 + γ̂θ,b 1 ⊕ [b]〉⊕ ϕ̂θ,b〉

)
. (25)

Without loss of generality, we may assume that both γθ,b and γ̂θ,b are real
positive numbers such that |γθ,b|2 ≥ 1

2 (i.e. arbitrary phases can be added
to ϕθ,b〉 and ϕ̂θ,b〉). According (14), the expected bias provided by Ẽn

is,

ε̃(n) ≡ 4−n
∑

θ

∑
b

ε̃θ,b(n) = 4−n
∑

θ

∑
b

∣∣∣∣|γθ,b|2 −
1
2

∣∣∣∣ . (26)

Compared to the case where the extractor is perfect, only the effect of
transformation Ẽ†

nσZẼn needs to be recalculated. From (25), we obtain,

Ẽ†
nσZẼn θ〉 ψθ,b〉 =

(−1)[b] θ〉 ψθ,b〉 − 2(−1)[b]γ̂θ,bẼ
†
n

(
θ〉 1⊕ [b]〉⊕ ϕ̂θ,b〉

)
.

(27)

We now define the vector eθ,b such that

θ〉 ⊗ eθ,b ≡ −2γ̂θ,bẼ
†
n( θ〉 1 ⊕ [b]〉 ϕ̂θ,b〉)

so that (27) becomes

(Ẽ†
nσZẼn) θ〉 ψθ,b〉 = (−1)[b] θ〉 ⊗ ( ψθ,b〉 + eθ,b) . (28)

The final state Ψ̃θ,b〉 produced by the switching circuit can be obtained
from (22) using (28). We get,

Ẽ†
nσzẼnT

⊗θB⊗bCn Φ+
n 〉 =

∑
y�x

(−1)b�θ ⊕ b�x ⊕ b�y

√
2

n+|x| θ ⊕ x〉 ⊗ ( ψθ⊕x,b⊕y〉 + eθ⊕x,b⊕y) .
(29)

Splitting the inner sum of (29) gives,

Ψ̃θ,b〉 = Ψθ,b〉 − F θ,b (30)
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where

Ψθ,b〉 =
∑
y�x

(−1)b�θ⊕b�x⊕b�y

√
2

n+|x| θ ⊕ x〉 ψθ⊕x,b⊕y〉, and

F θ,b =
∑
y�x

(−1)b�θ⊕b�x⊕b�y

√
2

n+|x| θ ⊕ x〉 ⊗ eθ⊕x,b⊕y.

The first part Ψθ,b〉 = (2−n/2
∑

x(−1)b�θ θ〉)⊗ ψθ,b〉 is exactly what one
gets when the switching circuit is run with a perfect extractor (see (24)).
The second part is the error term for which next lemma gives a precise
characterization.

Lemma 2. Let Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 be the adversary from which we

build the switching circuit. Then,

4−n
∑

θ

∑
b

‖F θ,b‖2 ≤ 2 − 4ε̃(n).

Proof. Let θ be fixed. Using the definition of F θ,b, we get

2−n ∑
b∈{0,1}n ‖F θ,b‖2 (31)

= 2−n
∑

b

‖
∑
y�x

(−1)b�θ⊕b�x⊕b�y

√
2

n+|x| θ ⊕ x〉 ⊗ eθ⊕x,b⊕y‖2

= 2−n
∑

b

‖
∑

x

(−1)b�θ⊕b�x

√
2

n+|x| θ ⊕ x〉 ⊗
∑

y:y�x

(−1)b�yeθ⊕x,b⊕y‖2

= 2−2n−|x| ∑
x

∑
b

‖
∑

y:y�x

(−1)b�yeθ⊕x,b⊕y‖2, (32)

where (32) is obtained from the orthogonality of all terms eθ⊕x,b⊕y when
x varies, and from Phytagoras theorem. We now apply Lemma 1 to (32)
with A = {y ∈ {0, 1}n|y � x}, w ≡ b,z ≡ y, and vw,z ≡ eθ⊕x,b⊕y. Let us
first verify that the condition expressed in (2) is satisfied:

∑
b

∑
y1∈A:b⊕y1=s

∑
y2∈A:b⊕y2=t

(−1)b�(y1⊕y2)〈eθ⊕x,b⊕y1,eθ⊕x,b⊕y2〉 =

〈eθ⊕x,s,eθ⊕x,t〉
∑

b:
b⊕s�x,b⊕t�x

(−1)b�(s⊕t) = 0

from an identity equivalent to (1) since b runs aver all substrings in the
support of s ⊕ t � x. We therefore apply the conclusion of Lemma 1 to
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get that for all x ∈ {0, 1}n,
∑

b

‖
∑

y:y�x

(−1)b�yeθ⊕x,b⊕y‖2 =
∑

y:y�x

∑
b

‖eθ⊕x,b⊕y‖2

≤ 2n+|x|(2 − 4ε̃(n)).
(33)

The result follows after replacing (33) in (32). ut

Using Lemma 2, we show how the the output of the switching circuit
with imperfect extractors approaches the one with perfect extractors. The
next lemma gives an upper bound on the expected overlap between the
states produced in the two cases.

Lemma 3. Let Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 be the circuits for the adversary

such that the extractor Ẽn has expected bias ε̃(n). Then, the set of states
{ Ψ̃θ,b〉}b,θ produced by the switching circuit satisfies,

SÃ = 4−n
∑
b,θ

|〈Ψ̃θ,b Ψθ,b〉| ≥ 2ε̃(n).

Proof. According (30), we can write Ψ̃θ,b〉 = Ψθ,b〉 − F θ,b = (1 −
αθ,b) Ψθ,b〉 − βθ,b Ψ⊥

θ,b〉, where 1 = ‖ Ψ̃θ,b〉‖2 = |(1 − αθ,b)|2 + |βθ,b|2 and
〈Ψθ,b Ψ

⊥
θ,b〉 = 0. Isolating |αθ,b| and using the fact that |αθ,b|2 + |βθ,b|2 =

‖F θ,b‖2 gives,

|αθ,b| =
‖F θ,b‖2

2
. (34)

Using (34) and Lemma 2 gives, SÃ =
∑

θ,b 4−n|〈Ψ̃θ,b Ψθ,b〉| ≥
∑

θ,b 4−n(1−
|αθ,b|) = 1 − ∑

θ,b 4−n ‖Fθ,b‖2

2 ≥ 2ε̃(n). ut

Lemma 3 tells us that with a good extractor, one can generate states
having large overlap with all QMCs to different BB84 qubits after the end
of the committing stage.

5.2 Representing The Switching Circuit by a Table

In this section, we look at how to use the switching circuit in order to
obtain an attack against the binding condition of the string commitment.
Remember first that ψθ,b〉 has probability p̃ok

(θ,b)(n) = ‖Q∗
(θ,b) ψθ,b〉‖2 to

open a valid QMC to b〉θ where Q∗
(θ,b) is defined as in (11). Remember

that a valid opening of b〉θ consists in the opening of any 2n–bit string
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(θ̂, b̂) ∈ ∆�(θ, b). We take advantage of the structure of ∆�(θ, b) in order
to exhibit attacks against the binding condition.

Suppose first that adversary Ã has access to a perfect parity extractor
En. From Sect. 4.1, such an adversary can generate ψθ,b〉 for any choice
of θ ∈ {+,×}n and b ∈ {0, 1}n. Each of 4n sets of valid announcements
∆�(θ, b) is of size #∆�(θ, b) = 3n. We define a table of positive real
numbers having 4n rows and 3n columns where each row is labeled by a
pair (θ, b). The row (θ, b) contains values Tθ,b(τ, β) = ‖QB

(θ⊕τ,b⊕β) ψθ,b〉‖2

for all (τ, β) such that (θ⊕τ, b⊕β) ∈ ∆�(θ, b). This condition is equivalent
to (τ, β) such that β � τ . The table values for the case n = 1 are shown
in Fig. 1. The sum of each row is added to the right. The construction

‖QB
(+,0) ψ+,0〉‖2 ‖QB

(×,0) ψ+,0〉‖2 ‖QB
(×,1) ψ+,0〉‖2 p̃ok

(+,0)(n) = ‖Q∗
(+,0) ψ+,0〉‖2

‖QB
(+,1) ψ+,1〉‖2 ‖QB

(×,1) ψ+,1〉‖2 ‖QB
(×,0) ψ+,1〉‖2 p̃ok

(+,1)(n) = ‖Q∗
(+,1) ψ+,1〉‖2

‖QB
(×,0) ψ×,0〉‖2 ‖QB

(+,0) ψ×,0〉‖2 ‖QB
(+,1) ψ×,0〉‖2 p̃ok

(×,0)(n) = ‖Q∗
(×,0) ψ×,0〉‖2

‖QB
(×,1) ψ×,1〉‖2 ‖QB

(+,1) ψ×,1〉‖2 ‖QB
(+,0) ψ×,1〉‖2 p̃ok

(×,1)(n) = ‖Q∗
(×,1) ψ×,1〉‖2

Fig. 1. The table for the case n = 1 and perfect extractor.

is easily generalized for arbitrary n. Each column contains 4n orthogonal
projectors applied to the 4n states { ψθ,b〉}θ,b. The sum of all values in
the table is simply 4np̃ok(n) =

∑
θ,b p̃

ok
(θ,b)(n).

The table is defined similarly for imperfect parity extractors. In this
case, table TÃ = {Tθ,b(τ, β)}θ,b,τ,β�τ associated with adversary Ã contains
elements,

Tθ,b(τ, β) = ‖QB
(θ⊕τ,b⊕β) Ψ̃θ,b〉‖2. (35)

While for perfect extractors the sum over all elements in the table is at
least 4np̃ok(n), next theorem shows that any table TÃ built from a δ(n)–
good adversary Ã adds up to 4npoly(δ(n)). The proof is a consequence of
Lemma 3 and can be found in Appendix B.

Theorem 1. If Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 is a δ(n)–good adversary against

QMC and TÃ = {Tθ,b(τ, β)}θ,b,τ,β�τ is its associated table, then

∑
θ,b,τ

∑
β�τ

Tθ,b(τ, β) ≥ 4nδ(n)3

32
. (36)

Theorem 1 establishes the existence of one column in table TÃ pro-
viding a weak attack against the binding property since any table with 3n
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columns all summing up to more than 4nδ(n)3

32 has one column exceeding
(2
3 )n δ(n)2

32 ≥ 1 + 1/poly(n). Let (τ, β) be such a column and consider the
class of functions 12n containing only the identity. For (y, y′) ∈ {0, 1}2n,
the state Ψ̃y⊕τ,y′⊕β〉 can be generated using the switching circuit. The
probability to unveil (y, y′) is Ty⊕τ,y′⊕β(τ, β) = ‖QB

(y,y′) Ψ̃y⊕τ,y′⊕β〉‖2.

By construction, we have
∑

(y,y′) p̃
f
(y,y′)(n) =

∑
(y,y′) Ty⊕τ,y′⊕β(τ, β) >

1 + 1/poly(n) which provides an attack against the 12n–binding prop-
erty of string commitment according (7). As we have seen in Sect. 3.1
however, this attack might not even be statistically distinguishable from
the trivial adversary. In the next section, we find stronger attacks allowing
to relax the binding property required for secure QMC.

5.3 Strong Attacks Against the String Commitment

We now show that the table TÃ, built out of any δ(n)–good adversary Ã,
contains an attack against the Fn

m(n)–binding property of the 2n–string
commitment with m(n) ∈ O(polylog(n)) whenever δ(n) ≥ 1/poly(n). We
show this using a counting argument. We cover uniformly the table TÃ
with all attacks in Fn

m(n). Theorem 1 is then invoked in order to conclude
that for some f ∈ Fn

m(n), condition (7) does not hold.
Attacking the binding condition according to a function f ∈ Fn

m(n)

is done by grouping columns in TÃ as described in (6) and discussed in
more details in Appendix C. The number of lines involved in such an
attack is clearly 2m(n) while the number of columns can be shown to be
2m(n)3n−m(n) (see Appendix C and Lemma 4). This means that any attack
in Fn

m(n) covers t = 3n−m(n)4m(n) elements in TÃ. The quality of such an
attack is characterized by the sum of all elements in the sub-array defined
by the attack since this sum corresponds to the value of (7). Let tÃ = 3n4n

be the total number of elements in TÃ and let sÃ be its sum. The following
lemma, proved in Appendix D, shows that the attacks in Fn

m(n) covers TÃ
uniformly:

Lemma 4. All attacks f ∈ Fn
m(n) cover TÃ uniformly, that is, each ele-

ment in TÃ belongs to exactly a = C(m(n), n)4m(n) attacks each of size
t = 3n−m(n)4m(n).

Let s∗ be the maximum of (7) for all attacks f ∈ Fn
m(n). Clearly, a · s∗ ≥

a·t·sÃ
tÃ

since by Lemma 4, the covering of TÃ by f ∈ Fn
m(n) is uniform and

a · t/tÃ is the number of times TÃ is generated by attacks in Fn
m(n). In
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other words,

a · s∗ ≥ a · t · sÃ
tÃ

=
a · t · sÃ

3n4n
⇒ s∗ ≥ t · sÃ

3n4n
=

4m(n) · sÃ
3m(n)4n

. (37)

Assuming that Ã is δ(n)–good, Theorem 1 tells us that sÃ ≥ 4nδ(n)3

32 .
Replacing in (37) finally leads to,

s∗ ≥ δ(n)34m(n)

32 · 3m(n)
≥ 1 + δ(n), (38)

for any m(n) ≥ dlog 4
3

(
32

δ(n)3

)
e. Equation (38) guarantees that for at least

one f ∈ Fn
m(n), condition (7) is not satisfied thereby providing an attack

against the Fn
m(n)–binding property of the string commitment. Moreover,

for δ(n) ≥ 1/poly(n) it is sufficient that m(n) ∈ O(polylog(n)).

6 The Main Result and Its Application to Oblivious
Transfer

Putting together Theorem 1 and (38) leads to our main result:

Theorem 2 (Main). Any δ(n)–good adversary Ã against QMC can
break the Fn

m(n)–binding property of the string commitment it is built upon
for m(n) ∈ O(log 1

δ(n)) using a circuit of size O(‖Ã‖UG).

Theorem 2 has an immediate application to the security of 1 − 2-OT in
the computational setting. We can easily observe that a QMC implements
a weak 1 − 2 oblivious transfer (i.e. WOT) where 1)the sender has no
information about the receiver’s selection bit and 2)the receiver, according
Theorem 2, can only extract a limited amount of information about both
bits (provided the string commitments are Fn

m(n)-binding). The following
primitive, called Wn, accepts B’s input bits (β0, β1) and A’s selection bit
s and builds a WOT from a QMC:

Protocol Wn

1. B and A run the committing phase of a QMC (i.e. built upon
any Fn

m(n)-binding string commitment scheme) upon b〉θ for b ∈R

{0, 1}n, θ ∈R {+,×}n picked by B,
2. B chooses c ∈R {0, 1} and announces it to A,

– if c = 0 then A unveils the QMC, if ok then A and B return to 1
otherwise B aborts,
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– if c = 1 then B announces θ, A announces a partition I0, I1 ⊆
{1, . . . , n}, then B announces a0, a1 ∈ {0, 1} s.t. β0 = a0 ⊕i∈I0 bi
and β1 = ⊕i∈I1bi:
• A does her best to guess (b̂0, b̂1) ≈ (

⊕
i∈I0

bi,
⊕

i∈I1
bi).

Clearly, Wn is a correct 1−2 OT since an honest receiver A can always get
bit βs = bs⊕as by announcing Is such that for all i ∈ Is the measurements
were made in basis θ̂i = θi. The adversary Ã’s information about the other
bit can be further reduced using the following simple protocol accepting
B’s input bits (β0, β1) and the selection bit s for the honest receiver:

Protocol R-Reduce(t,W)

1. W is executed t times, with inputs (β0i, β1i), i = 1..t for the sender and
input s for the receiver where β01⊕ . . .⊕β0t = β0 and β11⊕ . . .⊕β1t =
β1.

2. The receiver computes the XOR of all bits received, that is βs =
⊕t

i=1βsi.

Classically, it is straightforward to see that the receiver’s information
about one-out-of-two bit decreases exponentially in t. We say that a quan-
tum adversary Ã against R-Reduce(t,Wn) is promising if it runs in poly-
time and the probability to complete the execution is non-negligible. Us-
ing Theorem 2, it is not difficult to show that Ã’s information about one
of the transmitted bits also decreases exponentially in t whenever Ã is
promising:

Theorem 3. For any promising receiver Ã in R-Reduce(t,Wn) and for
all executions, there exists s̃ ∈ {0, 1} such that Ã’s expected bias on βs̃ is
negligible in t.

A sketch of proof can be found in Appendix E. It relies upon the fact that
any promising adversary must run almost all Wn with p̃ok(n) > 1 − δ for
any δ > 0. Using Theorem 2, this means that independently for each of
those executions 1 ≤ i ≤ t, one bit βs̃i out of (β0i, β1i) cannot be guessed
with bias better than εmax(δ) < 1. In this case, the guessing probability for
the parity of the t random bits can be shown to approach 1

2 exponentially
fast in t as one would expect in the classical case.

Clearly, the sender B in R-Reduce(t,Wn) cannot get any non-negligible
amount of information about A’s selection bit when the commitments are
statistically concealing. This remark together with Theorem 3 and the
correctness of R-Reduce(t,Wn) lead to:
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Corollary 1. 1 − 2 OT can be based upon any Fn
m(n)-binding and statis-

tically concealing quantum string commitment scheme. The resulting OT
statistically hides the selection bit and computationally hides one out of
two transmitted bits.

In other words, basing the security of 1 − 2-OT upon Theorem 2 allows
for a simple proof of security in the computational setting. Note that for
simplicity, we assumed an error-free quantum channel.

7 Conclusion and Open Questions

Our first open question is whether or not Theorem 2 holds for δ(n)–
non-trivial adversaries against QMC. Such an extension would show that
our reduction from an adversary to QMC into one against the binding
condition is optimal. It is also of interest to find attacks against weaker
binding properties. In particular, is it possible to transform an adversary
against QMC into one against the F–binding property where F is class
of functions with range of size in o(log 1/δ(n))? Our transformation of
an adversary against QMC to one against the binding condition is non-
uniform since we did not provide an efficient way to find an f–attack
against the binding property. Our result would be stronger if a uniform
reduction was found. It is also an interesting problem to show that the
computationally binding bit commitments of [10] and [8] can be turned
the obvious way into Fn

m(n)–binding string commitments. This would show
that QMCs and therefore OT can be based upon any one-way permutation
from [10] and upon any one-way function from [8]. Recent work of Mayers
[18] seems to indicate that it is indeed the case for [10].

Finally, it would be of great interest to formally proof the security
of the BBCS protocol using Theorem 2. This would result in a proof of
security that, in addition to apply in the computational setting, would be
based upon a completely different approach than Yao’s original proof [22].
It is also an interesting problem to proof Corollary 1 in the case where
the quantum channel is not error-free.
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A Proof of Lemma 1

First, we prove the following related claim:

Claim. Let {uw,z}w,z be any family of vectors, indexed by w, z ∈ {0, 1}n,
that satisfies,

(∀s, t ∈{0, 1}n, s 6= t)

[
∑
w

∑
z1:w⊕z1=s

∑
z2:w⊕z2=t

(−1)w�(z1⊕z2)〈uw,z1,uw,z2〉 = 0] (39)

Then, ∑
w

‖
∑

z

(−1)w�zuw,z‖2 =
∑

w,z∈{0,1}n

‖uw,z‖2. (40)

Proof. We carry out the calculation for (40):
∑
w

‖
∑

z

(−1)w�z uw,z ‖2 =
∑
w

〈
∑
z1

(−1)w�z1uw,z1,
∑
z2

(−1)w�z2uw,z2〉

=
∑

w,z1,z2

(−1)w�(z1⊕z2)〈uw,z1,uw,z2〉

=
∑
w,z

‖uw,z‖2 +
∑

w,z1,z2:z1 6=z2

(−1)w�(z1⊕z2)〈uw,z1,uw,z2〉. (41)

We now re-arrange the terms in the right-hand part of (41):
∑

w,z1,z2:z1 6=z2

(−1)w�(z1⊕z2)〈uw,z1,uw,z2〉

=
∑
w,z1

∑
s:w⊕z1=s

∑
z2:z2 6=z1

∑
t:w⊕z2=t

〈uw,z1,uw,z2〉

=
∑

s,t:s 6=t

∑
w

∑
z1:w 6=z1

∑
z2:w⊕z2=t

〈uw,z1,uw,z2〉

= 0,
(42)

where the final equality follows from condition (39). Replacing (42) in (41)
concludes the proof. ut
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Proof (Lemma 1). The proof of Lemma 1 follows from the Claim after
setting uw,z = vw,z if z /∈ A and uw,z = 0 if z ∈ A. It is easy to verify
that if condition (2) is satisfied by {vw,z}w,z then {uw,z}w,z satisfies (39).
Our result then follows from (40). ut

B Proof of Theorem 1

Proof. We use Lemma 3 together with the fact that Ã is δ(n)–good. From
Lemma 3, any δ(n)–good adversary is such that,

p̃ok(n) +
∑
θ,b

4−n|〈Ψθ,b Ψ̃θ,b〉|2 = 4−n
∑
θ,b

(
p̃ok
(θ,b)(n) + |〈Ψθ,b Ψ̃θ,b〉|2

)

≥ 1 + δ(n). (43)

The sum of any row (θ, b) ∈ TÃ is given by,

‖Q∗
(θ,b) Ψ̃θ,b〉‖2 ≥

‖Q∗
(θ,b)

(
|〈Ψθ,b Ψ̃θ,b〉| Ψθ,b〉 −

√
1 − |〈Ψθ,b Ψ̃θ,b〉|2 Ψ⊥

θ,b〉
)
‖2,

(44)

where Ψ⊥
θ,b
〉 is any state orthogonal to Ψθ,b〉. Now, notice that we can

always write Ψθ,b〉 =
√
p̃ok
(θ,b)(n) ξθ,b〉 +

√
1 − p̃ok

(θ,b)(n) ξ⊥θ,b〉 for ξθ,b〉 =

Q∗
(θ,b) Ψθ,b〉/

√
p̃ok
(θ,b)(n) and ξ⊥θ,b

〉 = ( 1−Q∗
(θ,b)) Ψθ,b〉/

√
1 − p̃ok

(θ,b)(n). We

can also write Ψ⊥
θ,b〉 = αθ,b ξθ,b〉 + βθ,b ξ⊥θ,b〉 + ζθ,b Λθ,b〉 where Λθ,b〉 is

orthogonal to both ξθ,b〉 and ξ⊥θ,b〉 and where |αθ,b|2 + |βθ,b|2+ |ζθ,b|2 = 1.
Since by construction 〈Ψθ,b Ψ

⊥
θ,b〉 = 0, it is easy to verify that |αθ,b| ≤√

1 − p̃ok
(θ,b)(n). Using the above observations 4, we rewrite (44) as,

‖Q∗
(θ,b) Ψ̃θ,b〉‖2 ≥

1
4
(‖〈Ψθ,b Ψ̃θ,b〉Q∗

(θ,b) Ψθ,b〉‖2

− ‖
√

1 − |〈Ψθ,b Ψ̃θ,b〉|2Q∗
(θ,b) Ψ

⊥
θ,b
〉‖2)2

≥
1
4
(|〈Ψθ,b Ψ̃θ,b〉

√
p̃ok
(θ,b)(n)|2

− |
√

1 − |〈Ψθ,b Ψ̃θ,b〉|2|αθ,b||2)2

≥
1
4
(|〈Ψθ,b Ψ̃θ,b〉|2p̃ok

(θ,b)(n)−

(1 − |〈Ψθ,b Ψ̃θ,b〉|2)(1 − p̃ok
(θ,b)(n)))2

4 and the fact that (
√
a−√

a− b)2 ≥ 1/4b2 for any 0 ≤ b ≤ a ≤ 1.
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≥ 1
4

(
p̃ok
(θ,b)(n) + |〈Ψθ,b Ψ̃θ,b〉|2 − 1

)2
. (45)

Since Ã is δ(n)–good, we use (43) to conclude that the set G =
{(θ, b)|p̃ok

(θ,b)(n) + |〈Ψθ,b Ψ̃θ,b〉|2 ≥ 1 + δ(n)
2 } must satisfy #G ≥ 4nδ(n)/2.

Any (θ, b) ∈ G is such that (45) is at least δ(n)2

4 . The result follows easily
from

∑
θ,b ‖Q∗

(θ,b) Ψ̃θ,b〉‖2 ≥ ∑
(θ,b)∈G ‖Q∗

(θ,b) Ψ̃θ,b〉‖2 ≥ 4nδ(n)3

32 . ut

C Implementing an f -attack From the Switching Circuit

In this appendix, we briefly describe how one can use the switching circuit
in order to attack the binding property of the string commitment relative
to some function f ∈ Fn

m(n). We call such an attack an f -attack since its
purpose is to try to open s ∈ f−1(y) for any y ∈ {0, 1}m(n). To make
the description easier, let us consider the case n = 1 resulting in table
TÃ shown at Fig. 2 (this is almost identical to Fig.1). We have seen how

‖QB
(+,0) Ψ̃+,0〉‖2 ‖QB

(×,0) Ψ̃+,0〉‖2 ‖QB
(×,1) Ψ̃+,0〉‖2

‖QB
(+,1) Ψ̃+,1〉‖2 ‖QB

(×,1) Ψ̃+,1〉‖2 ‖QB
(×,0) Ψ̃+,1〉‖2

‖QB
(×,0) Ψ̃×,0〉‖2 ‖QB

(+,0) Ψ̃×,0〉‖2 ‖QB
(+,1) Ψ̃×,0〉‖2

‖QB
(×,1) Ψ̃×,1〉‖2 ‖QB

(+,1) Ψ̃×,1〉‖2 ‖QB
(+,0) Ψ̃×,1〉‖2

Fig. 2. Table TÃ for the case n = 1.

the switching circuit allows for generating any state Ψ̃θ,b〉. Suppose now
that the attacker wants to open a string commitment (in this case the
string as length 2) according to function f1 ∈ Fn

1 defines as f1(θ, b) = b
for θ, b ∈ {0, 1}. One way consists in generating (using the switching
circuit) Ψ̃+,0〉 in order to open f1(θ, b) = 0 and Ψ̃+,1〉 in order to open
f1(θ, b) = 1. According to (6), the probability to succeed in unveiling s
s.t. f1(s) = 0 and f1(s) = 1 satisfies

p̃f
0(n) = ‖(QB

(+,0)+QB
(×,0)) Ψ̃+,0〉‖2 and p̃f

1(n) = ‖(QB
(+,1)+QB

(×,1)) Ψ̃+,1〉‖2.

The quality of this f1–attack is given by (2). That is, the attack succeed
if p̃f

0(n) + p̃f
1(n) > 1 + δ for some large enough δ. Looking at Fig. 2, this

particular f1–attack is formed by the 2×2 upper left sub-array of TÃ. The
quality of the attack p̃f

0(n) + p̃f
1(n) is simply the sum of all elements in

the sub-array. The same function f1 can be attacked using the elements in
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the lower left 2×2 sub-array of TÃ. This means that the attacker prepare
Ψ̃×,0〉 and Ψ̃×,1〉 in order to open s ∈ f−1

1 (0) and s ∈ f−1
1 (1) respectively.

In this case, one gets p̃f
0(n) = ‖(QB

(×,0) + QB
(+,0)) Ψ̃×,0〉‖2 and p̃f

1(n) =

‖(QB
(×,1) + QB

(+,1)) Ψ̃×,1〉‖2. There are two other ways to implement an
f1–attack by mixing the first two. The attacker could generate Ψ̃+,0〉 to
unveil s ∈ f−1

1 (0) and Ψ̃×,1〉 to unveil s ∈ f−1
1 (1). Similarly, Ψ̃+,1〉 to

unveil s ∈ f−1
1 (1) and Ψ̃×,0〉 to unveil s ∈ f−1

1 (0) can be used. This
adds up to 4 possible implementations of the f1–attack using the first two
columns of TÃ.

Now consider function f2 ∈ Fn
1 defines as f2(θ, b) = θ. As for f1–

attacks, there are four f2–attacks located in the two last columns of TÃ.
In the first case, states Ψ̃+,0〉 and Ψ̃×,0〉 are generated (by the switching
circuit) in order to open s ∈ f−1

2 (1) and s ∈ f−1
2 (0) respectively (using

′+′ = 0 and ′×′ = 1). We get p̃f
1(n) = ‖(QB

(×,0) + QB
(×,1)) Ψ̃+,0〉‖2 and

p̃f
0(n) = ‖(QB

(+,0) + QB
(+,1)) Ψ̃×,0〉‖2. The second way of attacking f2 is

by generating states Ψ̃+,1〉 and Ψ̃×,1〉 in order to open s ∈ f−1
2 (1) and

s ∈ f−1
2 (0) respectively. The other two are obtained similarly.

There is only one function left in Fn
1 , that is f3(θ, b) = θ ⊕ b. This

one can be attacked in four different ways using the first and third
columns in TÃ. In the first case, states Ψ̃+,0〉 and Ψ̃+,1〉 are gener-
ated in order to open s ∈ f−1

3 (0) and s ∈ f−1
3 (1). We get p̃f

0(n) =
‖(QB

(+,0) + QB
(×,1)) Ψ̃+,0〉‖2 and p̃f

1(n) = ‖(QB
(+,1) + QB

(×,0)) Ψ̃+,1〉‖2. The
two others can be found similarly.

Remark that any element in TÃ belongs to exactly 4 attacks and that
any attack uses exactly 4 elements in TÃ. This is what we mean when we
say that all attacks in Fn

1 covers TÃ uniformly. The construction can easily
be generalized for arbitrary n. The number of rows of TÃ uses in any f–
attack (f ∈ Fn

m(n)) is 2m(n) and the number of columns is 2m(n)3n−m(n).
That is, the number of elements in TÃ involved in such an f–attack is
4m(n)3n−m(n). As we shall see in Lemma 4, the covering remains uniform
for all values of n.

D Proof of Lemma 4

Lemma 4 follows from the combinatorial lemma 5 below. To make the
statement of this combinatorial lemma more succinct we first set the stage
for it.
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Let T be a 4n lines by 3n columns array. The lines are indexed by the
4n strings (θ, b) ∈ {0, 1}n × {0, 1}n. The columns are indexed by the 3n

strings (τ, β) ∈ {0, 1}n × {0, 1}n such that β � τ .
We now consider sub-arrays of T . Each sub-array will be composed of

cells lying at the intersections of 2m lines of T and 3n−m2m columns of T .
Any choice of the following 3n parameters will define a unique sub-array
and different choices of parameters will define different sub-arrays:

r1, r2, . . . , rn ∈ {0, 1, 2, 3}, (46)
u1, u2, . . . , un ∈ {0, 1}, (47)
v1, v2, . . . , vn ∈ {0, 1} (48)

subject to the condition

#{j : rj 6= 0} = m. (49)

Accordingly, there will be C(m,n)3m4n different sub-arrays.
Let us fix a choice for rj ∈ {0, 1, 2, 3}, uj, vj ∈ {0, 1} for all j ∈

{1, . . . , n} satisfying (49). We now describe the sub-array defined by that
choice. The column (τ, β) is part of the sub-array if and only if:

rj = 0 =⇒ (τj, βj) ∈ {(0, 0), (1, 0), (1, 1)} i.e.: βj � τj, (50)
rj = 1 =⇒ (τj, βj) ∈ {(1, 0), (1, 1)} i.e.: τj = 1, (51)
rj = 2 =⇒ (τj, βj) ∈ {(0, 0), (1, 0)} i.e.: βj = 0, (52)
rj = 3 =⇒ (τj, βj) ∈ {(0, 0), (1, 1)} i.e.: βj = τj . (53)

The line (θ, b) is part of the sub-array if and only if:

rj = 0 =⇒ (θj , bj) ∈ {(uj , vj)}, (54)
rj = 1 =⇒ (θj , bj) ∈ {(0, uj), (1, vj)}, (55)
rj = 2 =⇒ (θj , bj) ∈ {(uj , 0), (vj , 1)}, (56)
rj = 3 =⇒ (θj , bj) ∈ {(uj , uj), (vj , 1 − vj)}. (57)

One can easily verify that the lines (50) to (57) define a 2m × 3n−m2m

sub-array, thus containing 3n−m4m cells, and that different choices of the
parameters (46) to (48) will lead to different sub-arrays.

We can now state and prove the combinatorial lemma:

Lemma 5. Every cell (θ, b, τ, β) of T belongs to exactly C(m,n)4m sub-
arrays.
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0000 0010 0011 0100 0110 0111 1000 1010 1011 1100 1110 1111

(0; 0; 0) (0; 0; 0) (0; 0; 0)

(0; 0; 1) (0; 0; 1) (0; 0; 1)

(0; 1; 0) (0; 1; 0) (0; 1; 0)

(0; 1; 1) (0; 1; 1) (0; 1; 1)

(1; 0; 0) (1; 0; 0) (1; 0; 0) (1; 0; 0)

(1; 0; 1) (1; 0; 1) (1; 0; 1) (1; 0; 1)

(1; 1; 0) (1; 1; 0) (1; 1; 0) (1; 1; 0)

(1; 1; 1) (1; 1; 1) (1; 1; 1) (1; 1; 1)

(2; 0; 0) (2; 0; 0) (2; 0; 0) (2; 0; 0)

(2; 0; 1) (2; 0; 1) (2; 0; 1) (2; 0; 1)

(2; 1; 0) (2; 1; 0) (2; 1; 0) (2; 1; 0)

(2; 1; 1) (2; 1; 1) (2; 1; 1) (2; 1; 1)

(3; 0; 0) (3; 0; 0) (3; 0; 0) (3; 0; 0)

(3; 0; 1) (3; 0; 1) (3; 0; 1) (3; 0; 1)

(3; 1; 0) (3; 1; 0) (3; 1; 0) (3; 1; 0)

(3; 1; 1) (3; 1; 1) (3; 1; 1) (3; 1; 1)

Fig. 3. Eligible triplets (rj , uj , vj) given (θj , bj , τj , βj)

Proof. Let us fix j ∈ {1, . . . , n}. Figure 3 shows the possible values for
(rj , uj , vj) given the value of (θj , bj , τj, βj). One can verify that, for all j,
any 4-tuple (θj , bj , τj, βj) allows exactly 1 triplet (rj , uj , vj) if rj = 0, and
exactly 4 if rj 6= 0. From that follows the statement of this combinatorial
lemma. ut

E Sketch of Proof for Theorem 3

Protocol Wn, which is almost identical to a QMC, is also a weak form of
1 − 2-OT. Theorem 2 tells us that any efficient adversary Ã against Wn

must satisfy:
p̃ok(n) + (2ε̃(n))2 ≤ 1 + 1/poly(n) (58)

for some polynomial poly(n) where p̃ok(n) is the probability to succeed in
challenge c = 0 and ε̃(n) is the maximum bias on [b] = b0 ⊕ b1 that Ã can
extract in challenge c = 1.

The only difference between Wn and a QMC (as far as p̃ok(n) and ε̃(n)
are concerned) is that in Wn, QMCs are made until challenge c = 1 has
been reached. Let p̃abort,Wn be the probability for B to abort the execution
of Wn. Notice that there is no reason for Ã to change p̃ok(n) during the
same execution of Wn since the challenges are independent and random.
We have,

p̃abort,Wn =
∞∑

j=1

2−j(p̃ok(n))j−1(1 − p̃ok(n))

>
1 − p̃ok(n)

2
⇒ p̃ok(n) > 1 − 2p̃abort,Wn .

(59)
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Let In = {(I0, I1)|I0 ∪ I1 = {1, . . . , n}, I0 ∩ I1 = ∅} be the set of possible
announcements for Ã in Wn. Let I = (I0, I1) ∈ In be the set of positions
announced by Ã’s during an execution of Wn. We define fI(b) as the 2-bit
output function:

fI(b) ≡ (
⊕
i∈I0

bi,
⊕
i∈I1

bi).

For s ∈ {0, 1} and b ∈ {0, 1}n, let hI(b, s) ≡ fI(b)[s] where fI(b)[s] de-
notes the s-th output bit of fI(b). Let QPoly(n) and QPoly(n,t) be
the classes of families of polynomial-size quantum circuits in one and two
variables respectively having one-bit output. Let Cδ be the non-uniform
class of all families of polynomial size circuits allowing to run Wn with
success probability at least 1 − δ. That is, any family {Cn}n>0 ∈ Cδ can
be used to define the committing phase of an adversary Ã = {(Cn, ·)}n>0

against Wn where Cn allows for p̃abort,Wn ≤ δ given n is large enough.
For simplicity, we abuse the notation by writing the output state of the
committing phase on b〉θ as Cn b〉θ although formally, Cn is the cir-
cuit obtained by combining Ã’s and B’s interactive circuits. Let Gn be a
quantum circuit with a one-bit output register so Gn · (Cn b〉θ) defines
a probability distribution over the possible outcomes for the measure-
ment in the computational basis of Gn’s output register. When we write
out {Gn · (Cn b〉θ) ⊗ θ〉} we are not only designating the value of Gn’s
output register but any classical mapping from the output into {0, 1}.
Using this convention, Pr (hI(b, s) 6= out {Gn · (Cn b〉θ) ⊗ θ〉}) ≥ 1

2 − ε,
means that any classical mapping from the value of the output register
to {0, 1} has expected probability of error at least 1

2 − ε in guessing the
value of hI(b, s).

Using (59), we get that Ã also defines an adversary against QMC with
p̃ok(n) ≥ 1 − 2δ. From (58), we conclude that

ε̃(n) ≤

√
2δ + 1

poly(n)

2
(60)

given the output of any family of poly-size quantum circuits {Gn}n>0 ∈
QPoly(n). Remember that ε̃(n) is the maximum expected bias on
hI(b, 0) ⊕ hI(b, 1) for any announcement I ∈ In. The following lemma
follows easily from Theorem 2:
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Lemma 6.

(∀{Cn}n>0 ∈ Cδ)(∀I ∈ In)(∃s ∈ {0, 1})(∀{Gn}n>0 ∈ QPoly(n))(∀n > n0)[
Pr (hI(b, s) 6= out {Gn · (Cn b〉θ) ⊗ θ〉}) ≥ 1 − 2ε̃(n)

10

]
,

(61)

where the probability is taken over θ ∈R {+,×}n and b ∈R {0, 1}n and
where ε̃(n) is the function of δ and n defined in (60).

The proof of Lemma 6 is easy and omitted due to space limitations. It
proceeds by contradiction showing that if both bits hI(b, 0) and hI(b, 1)
can be guessed respectively by G0

n and G1
n with probability larger than

1−2ε̃(n)
10 then Ã could attack a QMC with success probability p̃ok(n) ≥

1 − 2δ and expected bias larger than
√

2δ + 1/poly(n)/2 contradicting
(58).

Let p̃abort(`) be the probability that B aborts the execution no later
than during the `–th call to Wn in R-Reduce. Let p̃stop(` + 1) be the
probability that given the first ` calls to Wn were successful, B aborts
during the `+ 1-th execution of Wn. We have,

p̃abort(1) = p̃abort,Wn and (62)
p̃abort(`+ 1) = p̃abort(`) + (1 − p̃abort(`))p̃stop(`+ 1). (63)

In order for Ã’s success probability 1 − p̃abort(t) to be non-negligible in
t, p̃stop(`) must be small for most executions ` ∈ [1 . . . t]. Let δ > 0 and
α > 0 be two arbitrary constants. Assuming p̃stop(`) > δ for all ` ∈ L with
#L ≥ αt then p̃abort(t) ≥ 1 − (1 − δ)αt. In other words, if p̃stop(`) > δ
for a constant fraction of the t executions then 1 − p̃abort(t) is negligible
in t. In general, an adversary Ã against R-Reduce(t,Wn) is modeled by a
family of quantum circuits Ã = {(Cn,t, G

0
n,t, G

1
n,t)}n,t>0 where Cn runs the

committing phase and circuits G0
n and G1

n extract information about b0
and b1 respectively. Promising adversaries in R-Reduce(t,Wn) are defined
as follows:

Definition 3. A polynomial size adversary Ã = {(Cn,t, G
0
n,t, G

1
n,t)}n,t>0

against R-Reduce(t,Wn) is promising if p̃abort(t) ≤ 1− 1
p(t) for some p(t) ∈

poly(t).

We now consider the limitations implied by (61) to any adversary Ã
against R-Reduce(t,Wn). Let b〉θ = ⊗t

i=1 b(i)〉θ(i) be the random n · t
BB84 qubits picked and sent by B. The following lemma links promis-
ing adversaries against R-Reduce(t,Wn) to Lemma 6. It tells us that if
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Ã is promising then there exists a large subset L of all executions of
Wn in R-Reduce(t,Wn) for which independently of each other, predicates
hI(b`, s), ` ∈ L cannot be guessed with arbitrary precision given the out-
put of any polynomial size circuit.

Lemma 7. Assume the security parameters n and t in R-Reduce(t,Wn)
are polynomially related. Then,

(∀δ > 0)(∀γ > 0)(∀ promising Ã = {(Cn,t, ·)}n,t>0)
(∃L ⊆ {1, . . . , t} : #L ≥ (1 − γ)t)(∀` ∈ L)(∀I ∈ In)
(∃s ∈ {0, 1})(∀{Gn,t}n,t>0 ∈ QPoly(n,t))


Pr ( hI(b(`), s) 6= out{Gn,t(Cn,t b〉θ) ⊗ θ〉}|{(b(j), θ(j))}j 6=` )

≥
1 −

√
2δ + 1

poly(n)

10


 ,

(64)

where the probability is computed over b = b(1), . . . , b(t), and θ =
θ(1), . . . , θ(t) for b(i) ∈R {0, 1}n and θ(i) ∈R {0, 1}n for all i ∈ {1, . . . , t}.
The proof can easily be obtained using Lemma 6.From Lemma 7, we would
like to conclude that given any announcement I = (I(0), I(1), . . . , I(t))
during R-Reduce(t,Wn), the amplification function

gI(b(1), . . . , b(t), s) ≡
t⊕

i=1

hI(i)(b(i), s) ∈ {0, 1} (65)

is such that for s̃ ∈ {0, 1}, the value gI(b(1), . . . , b(t), s̃) cannot be guessed
with bias non-negligible in t. Next theorem follows from Lemma 7 and is
equivalent to Theorem 3:

Theorem 4. Let n and t be polynomially related security parameters in
R-Reduce(t,Wn). Then,

(∀δ > 0)(∀γ > 0)(∀ promising Ã = {(Cn,t, ·)}n,t>0)(∀I ∈ It
n)

(∃s ∈ {0, 1})(∀{Gn,t}n,t>0 ∈ QPoly(n,t))[
Pr

(
gI(b(1), . . . , b(t), s) 6= out {Gn,t (Cn,t b〉θ) ⊗ θ〉}

)
≥ 1

2
− 2−αt

]
,

for α = (1−γ)
2 log 5

4+
√

δ
and where the probability is computed over b =

b(1), . . . , b(t), and θ = θ(1), . . . , θ(t) for b(i) ∈R {0, 1}n and θ(i) ∈R {0, 1}n

for all i ∈ {1, . . . , t}.
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