
B
R

IC
S

R
S

-01-9
B

rabrand
etal.:

S
tatic

V
alidation

ofD
ynam

ically
G

enerated
H

T
M

L

BRICS
Basic Research in Computer Science

Static Validation of
Dynamically Generated HTML

Claus Brabrand
Anders Møller
Michael I. Schwartzbach

BRICS Report Series RS-01-9

ISSN 0909-0878 February 2001

Copyright c© 2001, Claus Brabrand & Anders Møller & Michael I.
Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/9/

Static Validation of
Dynamically Generated HTML

Claus Brabrand Anders Møller
Michael I. Schwartzbach

BRICS∗, Department of Computer Science
Ny Munkegade, building 540

8000 Aarhus C, Denmark
{brabrand,amoeller,mis }@brics.dk

Abstract

We describe a static analysis of<bigwig> programs that effi-
ciently decides if all dynamically computed XHTML documents pre-
sented to the client will validate according to the official DTD. We em-
ploy two interprocedural flow analyses to construct a graph summariz-
ing the possible documents. This graph is subsequently analyzed to
determine validity of those documents.

1 Introduction

Increasingly, HTML documents are dynamically generated by scripts running
on a Web server, for instance using PHP, ASP, or Perl. This makes it much
harder for authors to guarantee that such documents are reallyvalid, meaning
that they conform to the official DTD for HTML 4.01 or XHTML 1.0 [7].
Static HTML documents can easily be validated by tools made available by
W3C and others. So far, the best possibility for a script author is to validate
the dynamic HTML documents after they have been produced at runtime.
However, this is an incomplete and costly process which does not provide any
static guarantees about the behavior of the script. Alternatively, scripts may
be restricted to use a collection of pre-validated templates, but this is generally
not sufficiently expressive.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

We present a novel technique for static validation of dynamic XHTML
documents that are generated by a script. Our work takes place in the con-
text of the<bigwig> language [1, 8], which is a full-fledged programming
language for developing interactive Web services. In<bigwig> , XHTML
documents are first-class citizens that are subjected to computations like all
other data values. We instrument the compiler with an interprocedural flow
analysis that extracts a grammatical structure covering the class of XHTML
documents that a given program may produce. Based on this information, the
compiler statically determines if all documents in the given class conform to
the DTD for XHTML 1.0. To accomplish this, we need to reformulate DTDs
in a novel way that may be interesting in its own right. The analysis has ef-
ficiently handled all available examples. Our technique can be generalized to
more powerful grammatical descriptions.

2 XHTML Documents in <bigwig>

XHTML documents are just XML trees. In the<bigwig> language, XML
fragmentsare first-class data values. Fragments are more general since they
may containgaps, which are named placeholders that can bepluggedwith
fragments and strings. When a complete document has been built, it can
be shown to the client who subsequently continues the session. This very
expressive plug-and-show mechanism is described in [8, 1]. Note that the
number of gaps may both grow and shrink as the result of a plug operation.
Also, gaps may appear in a non-local manner, as exemplified by thewhat gap
being plugged with the fragmentBRICS in the following simple
example in the<bigwig> syntax:

service {
html Cover = < html >

<head><title>Welcome</title></head>
<body bgcolor=[color]>

<[contents]>
</body>

</ html >;

html Greeting = < html >
Hello <[who]>, welcome to <[what]>.

</ html >;

html Person = < html >

2

<i>Stranger</i>
</ html >;

session Welcome() {
html H;
H = Cover<[color="#9966ff",

contents=Greeting<[who=Person]];
show H<[what=< html >BRICS</ html >];

}
}

Here, color is anattribute gapwhich can only be plugged with a string
value. Fragments are delimited by<html >. . .</ html >. For compatibility,
we do not distinguish between HTML and XHTML.

The<bigwig> compiler already contains an interprocedural flow analy-
sis that keeps track of gaps and input fields in fragments to enable type check-
ing [8]. However, the validity of the resulting documents has not been con-
sidered before. Note that<bigwig> is as general as all other languages for
producing XML trees, since it is possible to define for each different element
a tiny fragment like:

<html ><ul type=[type]><[items]></ html >

that corresponds to a constructor function. The typical use of larger fragments
is mostly a convenience for the<bigwig> programmer.

XML Fragments

We now formally define an abstract XML fragment. We are given an alphabet
Σ of characters, an alphabetE of element names, an alphabetA of attribute
names, an alphabetG of fragment gap names, and an alphabetH of attribute
gap names. For simplicity, all alphabets are assumed to be disjoint. AnXML
fragmentis generated byΦ in the following grammar:

Φ → ε
→ •
→ g g ∈ G
→ e(∆)Φ e ∈ E
→ Φ1Φ2

∆→ ε
→ (a = s) a ∈ A, s ∈ Σ∗

→ (a = h) a ∈ A, h ∈ H
→ ∆1∆2

3

Element attributes are generated by∆. The• symbol represents an arbitrary
sequence of character data. We ignore the actual data, since those are never
constrained by DTDs, unlike attribute values which we accordingly represent
explicitly. We introduce a function:

gaps : (Φ ∪ ∆) → 2G∪H

which gives the set of gap names occurring in a fragment or attribute list:

gaps(ε) = ∅
gaps(•) = ∅
gaps(g) = {g}

gaps(e(δ)φ) = gaps(δ) ∪ gaps(φ)
gaps(φ1φ2) = gaps(φ1) ∪ gaps(φ2)
gaps(a = s) = ∅
gaps(a = h) = {h}

gaps(δ1δ2) = gaps(δ1) ∪ gaps(δ2)

Programs

We represent a<bigwig> program abstractly as a flow graph with atomic
statements at each program point. The actual syntax for<bigwig> is very
liberal and resembles C or Java code with control structures and functions.
However, it is a simple task to extract the normalized representation. A pro-
gram uses a setX of XML fragment variables and a setY of string variables.
The atomic statements are:

xi = xj ; (fragment variable assignment)
xi = φ; (fragment constant assignment)
yi = yj; (string variable assignment)
yi = s; (string constant assignment)
yi = •; (arbitrary string assignment)
xi = xj<[g=xk]; (fragment gap plugging)
xi = xj<[h=yk]; (attribute gap plugging)
show xi; (client interaction)

wherex ∈ X andy ∈ Y for eachx andy. The assignments have the obvious
semantics. The plug statement replaces all occurrences of a named gap with
the given value. Theshow statement implicitly plugs all remaining gaps with
ε before the fragment is displayed to the client.

4

3 Summary Graphs

A program contains a finite collection of XML fragments that are identified
through a mapping function:

f : N → Φ

whereN is a finite set of fragment indices. A program also contains a finite
collection of string constants, which we shall denote byC ⊆ Σ∗. We now
define asummary graphas a triple:

G = (R,E, α)

whereR ⊆ N is a set ofroots, E ⊆ N × G × N is a set ofedges, and
α : N × H → S is a labeling function, whereS = 2C ∪ {•}. Intuitively, •
denotes the set of all strings.

Each summary graphG defines a set of XML fragments, denotedL(G) ⊆
Φ. Intuitively, this set is obtained by unfolding the graph from each root
while performing all possible pluggings enabled by the edges and the labeling
function. Formally, we define:

L(G) = {φ ∈ Φ | ∃r ∈ R : G, r ` f(r) ⇒ φ}
where the derivation relation⇒ is defined for templates as:

G, n ` ε⇒ ε G, n ` • ⇒ •

(n, g,m) ∈ E G,m ` f(m) ⇒ φ

G, n ` g ⇒ φ

G ` δ ⇒ δ′ G, n ` φ⇒ φ′

G, n ` e(δ)φ⇒ e(δ′)φ′

G, n ` φ1 ⇒ φ′
1 G, n ` φ2 ⇒ φ′

2

G, n ` φ1φ2 ⇒ φ′
1φ

′
2

and for attribute lists as:
α(h) 6= • s ∈ α(h)

G ` (a = h) ⇒ (a = s)

α(h) = • s ∈ Σ∗

G ` (a = h) ⇒ (a = s)

G ` δ1 ⇒ δ′1 G ` δ2 ⇒ δ′2
G ` δ1δ2 ⇒ δ′1δ

′
2

5

4 Gap Track Analysis

To obtain sufficient precision of the validation analysis, we first perform an
initial analysis that tracks the origins of gaps. The lattice is simply:

T = (G ∪H) → 2N

ordered by pointwise subset inclusion. For each program point` we wish to
compute an element of the derived lattice:

TrackEnv ` : X → T

which inherits its structure fromT . Each atomic statement defines a transfer
functionTrackEnv ` → TrackEnv ` which models its semantics in a forward
manner. If the argument isχ, then the results are:

xi = xj ; χ[xi 7→ χ(xj)]
xi = φ; χ[xi 7→ tfrag(φ, n)], whereφ has indexn
xi = xj<[g=xk]; χ[xi = tplug(χ(xj), g, χ(xk))]
xi = xj<[h=yk]; χ[xi = tplug(χ(xj), h, λp.∅)]

where we make use of some auxiliary functions:

tfrag(φ, n) = λp.if p ∈ gaps(φ) then {n} else ∅

tplug(τ1, p, τ2) = λq.if p=q then τ2(q) else τ1(q) ∪ τ2(q)

The tfrag function states that all gaps in the given fragment originates from
just there. Thetplug function adds all origins from the fragment being in-
serted and removes the existing origins for the gap being plugged. For the
remaining statement types, the transfer function is the identity function. It is
easy to see that all transfer functions are monotonic, so we can compute the
least fixed point in the usual manner [6]. The end result is for each program
point ` an environmenttrack ` : X → T , which we use in the following as a
conservative, upper approximation of the origins of the gaps.

5 Summary Graph Analysis

We wish to compute for every program point and for every variable a sum-
mary of its possible values. A set of XML fragments is represented by a
summary graph and a set of string values by an element ofS.

6

Lattices

To perform a standard data flow analysis, we need both of these representa-
tions to be lattices. The setS is clearly a lattice, ordered by set inclusion and
with • as an extra top element. The set of summary graphs, calledG, is also a
lattice with the ordering defined by:

G1 v G2 ⇔ R1 ⊆ R2 ∧ E1 ⊆ E2 ∧ α1 v α2

where the ordering onS is lifted pointwise to labeling functionsα. Clearly,
bothS andG are finite lattices. For each program point we wish to compute
an element of the derived lattice:

Env ` = (X → G) × (Y → S)

which inherits its structure from the constituent lattices.

Transfer Functions

Each atomic statement defines a transfer functionEnv ` → Env `, which mod-
els its semantics. If the argument is the pair of functions(χ, γ) and` is the
entry program point of the statement, then the results are:

xi = xj ; (χ[xi 7→ χ(xj)], γ)
xi = φ; (χ[xi 7→ frag(n)], γ), whereφ has indexn
yi = yj; (χ, γ[yi 7→ γ(yj)])
yi = s; (χ, γ[yi 7→ {s}])
yi = •; (χ, γ[yi 7→ •])
xi = xj<[g=xk]; (χ[xi 7→ gplug(χ(xj), g, χ(xk),

track `(xj))], γ)
xi = xj<[h=yk]; (χ[xi 7→ hplug(χ(xj), h, γ(yk),

track `(xj))], γ)
show xi; (χ, γ)

where we make use of some auxiliary functions:

frag(n) = ({n}, ∅, λ(m, h).∅)

gplug(G1, g, G2, τ) = (R1,
E1 ∪E2 ∪
{(n, g,m) | n ∈ τ(g) ∧ m∈R2},
α1 t α2)

7

hplug(G, h, s, τ) = (R,E,
λ(n, h′).if n ∈ τ(h) then α(n, h′) t s

else α(n, h′))

whereGi = (Ri, Ei, αi) andG = (R,E, α). Thefrag function constructs a
tiny summary graph whose language contains only the given fragment. The
gplug function joins the two summary graphs and adds edges from all relevant
fragment gaps to the roots of the summary graph being inserted. Thehplug
function adds additional string values to the relevant attribute gaps. A careful
inspection shows that all transfer functions are monotonic.

The Analysis

Since we are working with monotonic functions on finite lattices, we can use
standard techniques to compute a least fixed point [6]. The proof of soundness
is omitted here, but it is similar to the one presented in [8]. The end result is
for each program point̀ an environmentsummary` : X → G such that
L(summary`(xi)) contains all possible XML fragments thatxi may contain
at `. Those fragments that are associated withshow statements are required
to validate. First, we must model the implicit plugging of empty fragments
and strings into the remaining gaps, so for the statement:

show xi;

with entry program pointq, the summary graph that must validate with respect
to the XHTML DTD is:

close(summary `(xi), track `(xi))

whereclose is defined by:

close(G, τ) = (R,
E ∪ {(n, g,mε) |n ∈ τ(g)},
λ(n, h).if n ∈ τ(h) then α(n, h) t {ε}

else α(n, h))

whereG = (R,E, α) and it is assumed thatf(mε) = ε. Theclose function
adds edges to an empty fragment for all remaining fragments gaps, and adds
the empty string as a possibility for all remaining attribute gaps.

8

The Example Revisited

For the small<bigwig> example in Section 2, the summary graph describ-
ing the document being shown to the client is inferred to be:

#9966ff
color

who

what

<head><title>Welcome</title></head>
<body bgcolor=[color]>
 <[contents[>
</body>

<html>

</html>

BRICS

<i>Stranger</i>

Hello <[who]>, welcome to <[what]>.

contents

As expected for this simple case, the language of the summary graph contains
exactly the single fragment actually being computed. Note that the XHTML
fragment is implicitly completed with the<html> element.

6 An Abstract DTD for XHTML

XHTML 1.0 is described by an official DTD [7]. We use a more abstract
formalism which is in some ways more restrictive and in others strictly more
expressive. In any case, the DTD for XHTML 1.0 can be captured along with
some restrictions that merely appear as comments in the official version. We
define an abstract DTD to be a quintuple:

D = (N , ρ,A, E ,F)

whereN ⊆ E is a set ofdeclaredelement names,ρ ∈ N is a root element
name,A : N → 2A is anN -indexed family of attribute name declarations,
E : N → 2N

•
a family of element name declarations, andF : E → Ψ

a family of formulas. Here,N • = N ∪ {•}, where• represents arbitrary
character data. A formula has the syntax:

Ψ → Ψ ∧ Ψ
→ Ψ ∨ Ψ
→ ¬Ψ
→ true
→ attr(a) a ∈ A
→ elem(e) e ∈ N •

→ value(a, {s1, . . . , sk}) a ∈ A, k ≥ 1, si ∈ Σ∗

→ order(e1, e2) ei ∈ N •

9

We define the language ofD as follows:

L(D) = {ρ(δ)φ | D |= ρ(δ)φ}

where the acceptance relation|= on fragments is defined by:

D |= ε D |= • D |= g

D |= φ1 D |= φ2

D |= φ1φ2

names(δ)⊆A(e) D, δ, φ |= F(e)
set(φ)⊆E(e) D |= φ

D |= e(δ)φ

On formulas, the|= relation is defined by:

D, δ, φ |= ψ1 D, δ, φ |= ψ2

D, δ, φ |= ψ1 ∧ ψ2

D, δ, φ |= ψ1

φ |= ψ1 ∨ ψ2

D, δ, φ |= ψ2

φ |= ψ1 ∨ ψ2

D, δ, φ |= true

D, δ, φ 6|= ψ

D, δ, φ |= ¬ψ

a ∈ names(δ)

D, δ, φ |= attr(a)

before(word(φ), e1, e2)

D, δ, φ |= order(e1, e2)

a /∈ names(δ)

D, δ, φ |= value(a, {s1, . . . , ak})

(a, si) ∈ atts(δ) 1 ≤ i ≤ k

D, δ, φ |= value(a, {s1, . . . , sk})

exists(word(φ), e)

D, δ, φ |= elem(e)

The functionnames is:

names(ε) = ∅
names(a = s) = {a}
names(a = h) = {a}

names(δ1δ2) = names(δ1) ∪ names(δ2)

10

the functionatts is:

atts(ε) = ∅
atts(a = s) = {(a, s)}
atts(a = h) = {(a, h)}

atts(δ1δ2) = atts(δ1) ∪ atts(δ2)

the functionset is:

set(ε) = ∅
set(•) = {•}
set(g) = ∅

set(e(δ)φ) = {e}
set(φ1φ2) = set(φ1) ∪ set(φ2)

the functionword is:

word(ε) = ε
word(•) = •
word(g) = ε

word(e(δ)φ) = e
word(φ1φ2) = word(φ1)word(φ2)

and the auxiliary predicates are:

exists(w1 · · ·wk, e) ≡ ∃1 ≤ i ≤ k : wi =e
before(w1 · · ·wk, e1, e2) ≡ ∀1 ≤ i, j ≤ k :

wi =e1 ∧ wj =e2 ⇒ i ≤ j

Two common abbreviations areunique(e) ≡ order(e, e) (“e occurs at most
once”) andexclude(e1, e2) ≡ ¬ (elem(e1) ∧ elem(e2)) (“e1 ande2 exclude
each other”).

Standard DTDs use restricted regular expressions to describe content se-
quences. Instead, we use boolean combinations of four basic predicates, each
of which corresponds to a simple regular language. This is less expressive,
since for example we cannot express that a content sequence must have ex-
actly three occurrences of a given element. It is also, however, more expres-
sive than DTDs since we allow the requirements on contents and attributes
to be mixed in a formula. While the two formalism are thus theoretically in-
comparable, our experience is that actual DTDs are within the scope of our
abstract notion.

11

Examples for XHTML

The DTD for XHTML 1.0 can easily be expressed in our formalism. The root
elementρ is html and some examples of declarations and formulas are:

A(html) = {xmlns , lang , xml:lang , dir }
E(html) = {head , body }
F(html) = value(dir , {ltr , rtl }) ∧ elem(head) ∧

elem(body) ∧ unique(head) ∧
unique(body) ∧ order(head , body)

A(head) = {lang , xml:lang , dir , profile }
E(head) = {script , style , meta , link , object , isindex

title , base }
F(head) = value(dir , {ltr , rtl }) ∧ elem(title) ∧

unique(title) ∧ unique(base)

A(input) = {id , class , style , title , lang , xml:lang ,
dir , onclick , ondblclick , onmousedown,
onmouseup , onmouseover , onmousemove,
onmouseout , onkeypress , onkeydown ,
onkeyup , type , name, value , checked ,
disabled , readonly , size , maxlength ,
src , alt , usemap, tabindex , accesskey ,
onfocus , onblur , onselect , onchange ,
accept , align }

E(input) = ∅
F(input) = value(dir , {ltr , rtl }) ∧

value(checked , {checked }) ∧
value(disabled , {disabled }) ∧
value(readonly , {readonly }) ∧
value(align , {top , middle , bottom , left , right }) ∧
value(type , {text , password , checkbox , radio ,

submit , reset , file , hidden , image ,
button }) ∧

(value(type , {submit , reset }) ∨ attr(name))

In five instances we were able to express requirements that were only stated
as comments in the official DTD, such as the last conjunct inF(input). The
full description of XHTML is available athttp://www.brics.dk/bigwig/xhtml/ .

12

Exceptions in<bigwig>

In one situation does<bigwig> allow non-standard XHTML notation. In
the official DTD, theul element is required to contain at least oneli ele-
ment. This is inconvenient, since the items of a list are often generated iter-
atively from a vector that may be empty. To facilitate this style of program-
ming, <bigwig> allows emptyul elements but removes them at runtime
before the XHTML is sent to the client. Accordingly, the abstract DTD that
we employ differs from the official one in this respect. Similar exceptions are
allowed for other kinds of lists and for tables.

7 Validating Summary Graphs

For everyshow statement, the flow analysis computes a summary graphG =
(R,E, α). We must now for all such graphs decide the validation requirement:

L(G) ⊆ L(D)

for an abstract DTDD = (N , ρ,A, E ,F). The root element name require-
ment ofD is first checked separately by verifying that:

∀r ∈ R : ∃δ ∈ ∆, φ ∈ Φ : f(r) = ρ(δ)φ

Then for each sub-ragmente(δ)φ of a fragment with indexn inG we perform
the following checks:

• e ∈ N (the element is defined)

• names(δ) ⊆ A(e) (the attributes are declared)

• occurs(n, φ) ⊆ E(e) (the content is declared)

• D ` F(e) (the constraint is satisfied)

The relatioǹ is given by:

D ` ψ1 D ` ψ2

D ` ψ1 ∧ ψ2

D ` ψ1

D ` ψ1 ∨ ψ2

D ` ψ2

D ` ψ1 ∨ ψ2

D 6` ψ
D ` ¬ ψ

13

a ∈ names(δ)

D ` attr(a)

e ∈ occurs(n, φ)

D ` elem(e)

a 6∈ names(δ)

D ` value(a, s1, . . . , sk)

(a, si) ∈ atts(δ) 1 ≤ i ≤ k

D ` value(a, s1, . . . , sk)

(a, h) ∈ atts(δ) α(n, h) ⊆ {s1, . . . , sk}
D ` value(a, s1, . . . , sk)

order(n, φ, e1, e2)

D ` order(e1, e2)

whereoccurs is the least function satisfying:

occurs(n, ε) = ∅
occurs(n, •) = {•}
occurs(n, g) =

⋃

(n,g,m)∈E

occurs(m, f(m))

occurs(n, e(δ)φ) = {e}
occurs(n, φ1φ2) = occurs(n, φ1) ∪ occurs(n, φ2)

andorder is the most restrictive function satisfying:

order(n, ε, e1, e2) = true
order(n, •, e1, e2) = true
order(n, g, e1, e2) =

∧

(n,g,m)∈E

order(m, f(m), e1, e2)

order(n, e(δ)φ, e1, e2) = true
order(n, φ1φ2, e1, e2) = order(n, φ1, e1, e2)∧

order(n, φ2, e1, e2)∧
¬ (e2∈occurs(n, φ1)∧
e1∈occurs(n, φ2))

In the implementation we ensure termination by applying memoization to the
numerous calls tooccurs andorder .

Note that the validation algorithm is sound and complete with respect to
summary graphs: if a graph is rejected, then its language contains a fragment
that is not in the language of the abstract DTD. Thus, in the whole validation
analysis the only source of imprecision is the flow analysis that constructs the
summary graph.

14

8 Experiments

The validation analysis has been fully implemented as part of the<bigwig>
system. It has then been applied to all available benchmarks, some of which
are shown in the following table:

Name Lines Fragments Size Shows Sec

chat 65 3 (0,5) 2 0.1
guess 75 6 (0,3) 6 0.1
calendar 77 5 (8,6) 2 0.1
xbiff 561 18 (4,12) 15 0.1
webboard 1,132 37 (34,18) 25 0.6
cdshop 1,709 36 (6,23) 25 0.5
jaoo 1,941 73 (49,14) 17 2.4
bachelor 2,535 137 (146,64) 15 8.2
courses 4,465 57 (50,45) 17 1.3
eatcs 5,345 133 (35,18) 114 6.7

The entries for each benchmark are its name, the lines of code derived from a
pretty print of the source with all macros expanded, the number of fragments,
the size(|E|, |α|) of the largest summary graph, the number of program points
with show statements, and the analysis time in seconds (on an 800 MHz
Pentium III Linux PC).

The analysis found numerous validation errors in all benchmarks, which
could then be fixed to yield flawless services. No false errors were reported.
As seen in the table above, the enhanced compiler remains efficient and prac-
tical. Thebachelor service constructs unusually complicated documents,
which explains its high complexity.

Error Diagnostics

The <bigwig> compiler provides detailed diagnostic messages in case of
validation errors. For the flawed example:

service {
html Cover = < html >

<head><title>Welcome</title></head>
<body bgcolo=[color]>

<table><[contents]></table>
</body>

</ html >;

15

html Greeting = < html >
<td>Hello <[who]>,<br clear=[clear]>

welcome to <[what]>.
</td>

</ html >;

html Person = < html >
<i>Stranger</i>

</ html >;

session Welcome() {
html H;
H = Cover<[color="#9966ff",

contents=Greeting<[who=Person],
clear="righ"];

show H<[what=< html >BRICS</ html >];
}

}

the compiler generates the following messages:

brics.wig:4:
warning: illegal attribute ’bgcolo’ in ’body’
fragment: <body bgcolo=[color]><form>...</form></body>

brics.wig:5:
warning: possible illegal subelement ’td’ of ’table’
fragment: <table><[contents]></table>
contents: td

brics.wig:10:
warning: possible element constraint violation at ’br’
fragment: <br clear=[clear]/>
constraint: value(clear,{left,all,right,clear,none})

9 Related Work

There are other languages for constructing XML documents that also consider
validity. The Xduce language [2, 3] is a functional language in which XML
fragments are data types, with a constructor for each element name and pattern
matching for deconstruction. A type is a regular expression overE•. Type
inference for pattern variables is supported. In comparison, we have a richer
language and consequently need more expressive types that also describe the
existence and capabilities of gaps. It seems unlikely that anything simpler
than summary graphs would work. Also, we do not rely on type annotations.

16

Since we perform an interprocedural flow analysis, we obtain a high degree
of polymorphism that is difficult to express in a traditional type system. The
XMλ language [5] compares similarly to our approach.

10 Extensions and Future Work

Instead of our four basic predicates we could allow general regular expres-
sions over the alphabetE•. We could then still validate a summary graph, but
this would reduce to deciding if a general context-free language is a subset of
a regular language, which has an unwieldy algorithm compared to the simple
transitive closures that we presently rely upon. Fortunately, our restricted reg-
ular languages appear sufficient. It is also possible to include many features
from a richer XML schema language such as DSD [4], in particular regular
expression constraints on attribute values and context dependency. Finally,
we could enrich<bigwig> with a set of operators for combining and decon-
structing XML fragments. All such ideas readily permit analysis by means of
summary graphs.

11 Conclusion

We have combined a standard interprocedural flow analysis with a generalized
validation algorithm to enable the<bigwig> compiler to guarantee that all
HTML or XHTML documents shown to the client are valid according to the
official DTD. Our technique generalizes in a straightforward manner to arbi-
trary XML languages that can be described by DTDs. In fact, we can even
handle more expressive grammatical formalisms. The analysis has proved to
be feasible for programs of realistic sizes. All this lends further support to the
unique design of dynamic documents in<bigwig> . Since our algorithm is
parameterized with an abstract DTD, it is possible to customize the validation.
A useful example is an abstract DTD that describes the subset of XHTML that
works safely on both the Explorer and Netscape browser.

References

[1] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The
<bigwig> project. Submitted for publication. Available from
http://www.brics.dk/bigwig/ .

17

[2] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing
language. InWorkshop on the Web and Databases (WebDB2000), 2000.

[3] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern
matching for XML. InSymposium on Principles of Programming Lan-
guages (POPL’01). ACM, 2001.

[4] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. DSD: A
schema language for XML. InWorkshop on Formal Methods in Software
Practice (FMSP’00). ACM, 2000.

[5] Erik Meijer and Mark Shields. XMλ: A functional language for con-
structing and manipulating XML documents. Draft, 1999.

[6] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of
Program Analysis. Springer, 1999.

[7] Steven Pemberton et al. XHTML 1.0: The Extensible HyperText
Markup Language. W3C, January 2000. W3C Recommendation,
http://www.w3.org/TR/xhtml1 .

[8] Anders Sandholm and Michael I. Schwartzbach. A type system for
dynamic Web documents. InPrinciples of Programming Languages
(POPL’00). ACM, 2000.

18

Recent BRICS Report Series Publications

RS-01-9 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
Static Validation of Dynamically Generated HTML. February
2001. 18 pp.

RS-01-8 Ulrik Frendrup and Jesper Nyholm Jensen.Checking for Open
Bisimilarity in the π-Calculus. February 2001. 61 pp.

RS-01-7 Gregory Gutin, Khee Meng Koh, Eng Guan Tay, and Anders
Yeo. On the Number of Quasi-Kernels in Digraphs. January
2001. 11 pp.

RS-01-6 Gregory Gutin, Anders Yeo, and Alexey Zverovich. Travel-
ing Salesman Should not be Greedy: Domination Analysis of
Greedy-Type Heuristics for the TSP. January 2001. 7 pp.

RS-01-5 Thomas S. Hune, Judi Romijn, Marïelle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Checking of
Timed Automata. January 2001. 44 pp. To appear inTools
and Algorithms for The Construction and Analysis of Systems:
7th International Conference, TACAS ’01 Proceedings, LNCS,
2001.

RS-01-4 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, and Judi Romijn. Efficient Guiding
Towards Cost-Optimality inUPPAAL. January 2001. 21 pp.
To appear in Tools and Algorithms for The Construction and
Analysis of Systems: 7th International Conference, TACAS ’01
Proceedings, LNCS, 2001.

RS-01-3 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaan-
drager. Minimum-Cost Reachability for Priced Timed Automata.
January 2001. 22 pp. To appear inHybrid Systems: Computa-
tion and Control, 2001.

RS-01-2 Rasmus Pagh and Jakob Pagter.Optimal Time-Space Trade-
Offs for Non-Comparison-Based Sorting. January 2001.
ii+20 pp.

RS-01-1 Gerth Stølting Brodal, AnnaÖstlin, and Christian N. S. Peder-
sen. The Complexity of Constructing Evolutionary Trees Using
Experiments. 2001.

