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Syntactic Accidents in Program Analysis:

On the Impact of the CPS Transformation ∗

Daniel Damian† and Olivier Danvy

BRICS ‡

Department of Computer Science
University of Aarhus §

December 2001

Abstract

We show that a non-duplicating transformation into continuation-passing
style (CPS) has no effect on control-flow analysis, a positive effect on binding-
time analysis for traditional partial evaluation, and no effect on binding-time
analysis for continuation-based partial evaluation: a monovariant control-flow
analysis yields equivalent results on a direct-style program and on its CPS coun-
terpart, a monovariant binding-time analysis yields less precise results on a
direct-style program than on its CPS counterpart, and an enhanced monovari-
ant binding-time analysis yields equivalent results on a direct-style program and
on its CPS counterpart. Our proof technique amounts to constructing the CPS
counterpart of flow information and of binding times.

Our results formalize and confirm a folklore theorem about traditional binding-
time analysis, namely that CPS has a positive effect on binding times. What
may be more surprising is that the benefit does not arise from a standard re-
finement of program analysis, as, for instance, duplicating continuations.

The present study is symptomatic of an unsettling property of program anal-
yses: their quality is unpredictably vulnerable to syntactic accidents in source
programs, i.e., to the way these programs are written. More reliable program
analyses require a better understanding of the effect of syntactic change.

∗Extended version of an article to appear in the Journal of Functional Programming.
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1 Introduction

1.1 Motivation

Program analyses are vulnerable to syntactic accidents in source programs in that
innocent-looking, meaning-preserving transformations may substantially alter the pre-
cision of an analysis.

For a simple example, binding-time analysis (BTA) is vulnerable to re-association:
given two static expressions s1 and s2 and one dynamic expression d, it makes a
difference whether the source program is expressed as (s1 + s2)+d or as s1 +(s2 +d).
In the former case, the inner addition is classified as static and the outer one is
classified as dynamic. In the latter case, both additions are classified as dynamic.

With the exception of BTA (and of region inference, see Section 8.1.1), little
is known about the effect of programming style on program analyses. BTA is an
exception because its output critically determines the amount of specialization carried
out by an offline partial evaluator [6, 22]. Therefore, the output of binding-time
analyses has been intensively studied, especially in connection with syntactic changes
in their input. As a result, “binding-time improvements” have been developed to milk
out extra precision from binding-time analyses [22, Chapter 12], to the point that
partial-evaluation users are encouraged to write programs in a particular style [21].
That said, binding-time-improvements are not specific to offline partial evaluation—
they are also routine in staging transformations [23] and in the formal specification
of programming languages for semantics-directed compiling [30, Section 8.2].

Since one of the most effective binding-time improvements is the transformation
of source programs into continuation-passing style (CPS) [4, 42], people have won-
dered whether CPS may help program analysis in general. Nielson’s early work on
data-flow analysis [29] suggests so, since it shows that for a non-distributive analysis,
a continuation semantics yields more precise results than a direct semantics. The
CPS transformation is therefore a Good Thing, since for a direct semantics, it gives
the effect of a continuation semantics. In the early 1990’s, Muylaert-Filho and Burn’s
work [28] was starting to provide further indication of the value of the CPS transfor-
mation for abstract interpretation when Sabry and Felleisen entered the scene.

In their stunning article “Is continuation-passing useful for data-flow analysis?”
[39], Sabry and Felleisen showed that for constant propagation, analyzing a direct-
style program and analyzing its CPS counterpart yields incomparable results. They
showed that CPS might increase precision by duplicating continuations, and also that
CPS might decrease precision by confusing return points. These results are essentially
confirmed by Palsberg and Wand’s recent CPS transformation of flow information [37].
At any rate, except for continuation-based partial evaluation [16], there seems to have
been no further work about the effect of CPS on the precision of program analysis in
general.

The situation is therefore that the CPS transformation is known to have an unpre-
dictable effect on constant propagation and is also believed to have a positive effect
on binding-time analysis. Still, we do not know for sure whether this positive effect is
truly positive, or whether it worsens binding times elsewhere in the source program.
One may also wonder whether, besides distributive monotone frameworks, there exist
other program analyses on which CPS has no effect.
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In this article, we answer these two questions by studying the effect of a non-
duplicating CPS transformation on two off-the-shelf constraint-based program anal-
yses—control-flow analysis (CFA) and BTA. Using a uniform proof technique, we
formally show that:

(1) CPS has no effect on CFA, i.e., analyzing a direct-style program and analyzing
its CPS counterpart yields equivalent results.

(2) CPS does not make BTA yield less precise results, and for the class of examples
for which continuation-based partial evaluation was developed, it makes BTA
yield results that are strictly more precise.

(3) CPS has no effect on an enhanced BTA which takes into account continuation-
based partial evaluation.

This increased precision entailed by CPS also concerns analyses that have been
noticed to be structurally similar to BTA, such as security analysis, program slicing,
and call tracking [1]. These analyses display a similar symptom: for example, we are
told that, in practice, users tend to find security analyses too conservative, without
quite knowing what to do to obtain more precise results. (Here, “more precise results”
means that more parts of the source program can be classified as low security.)

In the next section, we point out how the dependency induced by let-expressions
leads to a loss of precision.

1.2 A loophole: the let rule

Offline partial evaluation [22] is a staged technique for specializing programs. In a first
phase, the binding times of a source program, i.e., which parts are static (and should
be evaluated at partial-evaluation time) and which parts are dynamic (and should
be part of the specialized program) are analyzed. In a second phase, specialization
proper takes place (i.e., the static parts are evaluated and the dynamic parts are
residualized). Binding-time analysis is thus a data-flow analysis and when source
programs are higher-order, it is driven by control-flow information. Such information
is in turn obtained by a control-flow analysis.

A partial evaluator is correct when the meaning of the residual program is the
same as the meaning of the source program applied to the static input. In particular,
if the source language includes computational effects (for instance non-termination),
the specializer must ensure that all the dynamic side effects of the source program
are identically exhibited by the residual program.

To ensure this contextual coherence, a binding-time analysis classifies a let ex-
pression to be dynamic if its header is dynamic, because of possible side effects in
the header and regardless of the binding time of the body. (Similarly, if a let header
is classified to be of high security, the whole let expression is also classified to be of
high security, regardless of the security level of its body.) Therefore, the body of the
following λ-abstraction is classified as dynamic if e is dynamic:

λx.let v = e in b

5



The CPS counterpart of this λ-abstraction reads as follows:

λx.λk.e′ (λv.b′ k)

where e′ and b′ are the CPS counterparts of e and b, respectively. Now, assume that
b naturally yields a static result independently of x, but is coerced to be dynamic be-
cause of the let rule. In the CPS term, e′ also yields a dynamic result, i.e., intuitively,
v is classified to be dynamic. (This intuition is formalized in the rest of this article.)
Intuitively, b′ also yields a static result and sends it to its continuation k. Therefore,
in direct style, b yields a dynamic result whereas in CPS, it yields a static result.

Two observations need to be made at this point:

(1) The paragraph above is the standard motivation for improving binding times
by CPS transformation [4] (see Section 8.2 for further detail). Nevertheless,
what this paragraph leaves unsaid—and what actually has always been left
unsaid—is whether this local binding-time improvement corresponds to a global
improvement as well, or whether it may make things worse elsewhere in the
source program. (In Section 7, we prove that this local improvement actually is
a global improvement as well.)

(2) In their core calculus of dependency [1], Abadi et al. make a point that any
function classified as d → s (resp. h → l, etc.) is necessarily a constant function.
Nevertheless, as argued above, given a direct-style function classified to be d →
d because of the let rule, its CPS counterpart may very well be classified as
d → (s → o) → o and not be a constant function in continuation-passing style
(i.e., a function applying its continuation to a constant).

Together, these two observations tell us that the let rule is overly conservative in
BTA, security analysis, etc. CPS makes it possible to exploit the untapped precision
of this rule non-trivially by providing a local improvement which—and this is a point
of this article—is also a global improvement.

This global improvement is distinct from the common method of improving pre-
cision of program analysis by duplicating the analysis over the same program points.
Sabry and Felleisen, for example, said that any improvement in precision provided
by CPS is solely due to continuation duplication [39]. This assessment is true for
their analysis, but it does not hold in general, as we have just shown for binding-time
analysis.

Other approaches to improving analysis results amount to refining the definition
of the analysis by including more information, such as, for instance, context infor-
mation [20, 31, 32, 41]. In contrast, CPS-transforming the source program naturally
provides a representation of the context as a syntactic support for refinement to the
(unchanged) analysis.

In his work on data-flow analysis [29], Nielson shows that duplicating the analysis
over conditional branches improves the analysis results. Let us point out that the CPS
transformation also leads to binding-time improvements for conditional expressions.
Indeed, to ensure contextual coherence for conditionals, the binding-time analysis
makes conditional branches dynamic if the test is dynamic. This approximation can
be circumvented with a CPS transformation. Therefore, the improvement is not
produced by duplicating the analysis, but merely by the context relocation induced
by the CPS transformation. This point is developed further in Section 7.4.

6



Λ Λml Λmnf Λcps
call-by-value

encoding
// normalization

let .assoc + let .β
// introduction of

continuations
//

Figure 1: Staged CPS transformation

1.3 Overview

In this work we use a staged CPS transformation. Several equivalent methods exist
for performing a global CPS transformation of a program. For example, one can use
a Plotkin-style CPS transformation with administrative reductions [38], or one can
stage the CPS transformation as normalization to a monadic normal form followed by
introduction of continuations [15]. Palsberg and Wand use the former method [37],
which can be extended to account for administrative reductions [8, 9]. We use the
latter method here.

Elsewhere [8, 10], we have connected Danvy and Nielsen’s CPS transformation [13]
with program analysis. We have constructed the corresponding CPS transformation
of control-flow information and confirmed the results reported in the present paper.

Therefore, we use a CPS transformation obtained as follows:

1. call-by-value embedding of the input program into Moggi’s computational met-
alanguage [15, 27],

2. normalization under let .assoc and let .β (as defined in Hatcliff and Danvy’s ac-
count of CPS [15]), and

3. introduction of continuations.

The staged transformation is visualized in the diagram of Figure 1.
The rest of this article is organized as follows: in Section 2 we define the input

language, the transformation steps leading to CPS, and the program analyses. More
specifically, in Section 2.1 we present the labeled language of input programs. In
Section 2.2 we review the computational metalanguage and the corresponding call-
by-value encoding of the input language. In Section 2.3 we recall the monadic let-
reductions.

We continue by introducing the constraint-based analyses for the computational
metalanguage. In Section 2.5 we specify the control-flow analysis. In Section 2.6 we
specify the binding-time analysis corresponding to traditional partial evaluation. In
Section 2.7 we specify the binding-time analysis corresponding to continuation-based
partial evaluation.

In Section 3 we outline how to compare the results of a constraint-based program
analysis across a program transformation.

In Section 4 we evaluate the effect on constraint-based analyses incurred by the
normalization of the source program with respect to let-reductions: we investigate
the effect of let .β (Section 4.1) and let .assoc (Section 4.2) reductions over each of the
analyses. We conclude (Section 4.3) that linear let-reductions and let flattening do
not change the result of the control-flow analysis, while they do improve the results
of the traditional binding-time analysis.

In the remainder of the article, we evaluate the effect of introducing continuations
(Section 5) over the result of control-flow analysis (Section 6), binding-time analysis

7



e ∈ Exp ::= x | n | λx.e | rec f(x).e | e0 e1 | op(e) | if0 e e0 e1

x, f ∈ Ide (identifiers)
n ∈ Int (integers)

op ∈ (an unspecified set of base-type operators)

Figure 2: The language Λ

for traditional partial evaluation (Sections 7.1 to 7.3) and binding-time analysis for
continuation-based partial evaluation (Section 7.4). In Section 8 we review related
work. In Section 9 we conclude and discuss further issues.

2 Constraint-based analyses for a computational meta-
language

We introduce the language of input programs and the individual transformations
performed by the CPS transformation. We then present the three program analyses:
CFA, BTA and BTA?.

2.1 The language Λ

We consider that programs are given in an untyped λ-language Λ. The terms of the
language are expressions given by the grammar of Figure 2. The language includes
literals, λ-abstractions, recursive function definitions, conditionals and base-type op-
erators (for simplicity, we only consider unary operators here). We focus on call by
value. Since the evaluation of terms in the language may not terminate, programs in
Λ may exhibit non-termination as a computational effect.

A program p is a closed expression.

2.2 The computational metalanguage

The computational metalanguage Λml [15] enforces the order of evaluation by intro-
ducing a let construct for naming intermediate computations and a unit construct
for lifting a value into a computation.

e ::= . . . | let x = e1 in e2 | unit e

The computational metalanguage comes with a set of sound reasoning principles
about programs which may have computational effects, such as non-termination. Such
principles can be used to validate program transformations performed, for instance,
inside a compiler. They can also be used to validate, for instance, a partial evalua-
tor [16].

In order to make use of such principles, an input program in the language Λ is
encoded into the computational metalanguage, enforcing its order of evaluation. For
call by value, the encoding into the monadic metalanguage is defined in Figure 3.

Notice that, in addition to other known call-by-value encodings [2, 15, 40], we
name the result of the application of two values (x1 and x2 in the translation of
an application). This cosmetic change (indeed, it is only a let .η expansion in the

8



V [[x]] = unit x
V [[n]] = unit n

V [[λx.e]] = unit λx.V [[e]]
V [[rec f(x).e]] = unit rec f(x).e

V [[e0 e1]] = let x0 = V [[e0]]
in let x1 = V [[e1]]

in let x2 = x0 x1

in unit x2

V [[op(e)]] = let x0 = V [[e]] in let x1 = op(x0) in unit x1

V [[if0 e e0 e1]] = let x0 = V [[e]]
in let x1 = if0 x0 V [[e0]] V [[e1]]

in unit x1

(where the xi are fresh)

Figure 3: Call-by-value encoding into the computational metalanguage

let x = unit t in e →let.β e[t/x]
let x = e in unit x →let.η e

let x2 = let x1 = e1 in e2 in e →let.assoc let x1 = e1 in let x2 = e2 in e

Figure 4: The monadic let reductions

computational metalanguage) is part of our development of the CPS transformation
of flow information.

2.3 The monadic let reductions

The call-by-value encoding leads to a separation of terms into two categories: trivial
terms (noted with t) and serious terms (noted with s). Trivial terms represent val-
ues: constants, variables, λ-abstractions and recursive function definitions. Serious
terms represent computations: applications, basic operations, conditionals, nesting of
computations by naming intermediate results.

We recall the monadic let-reductions. Normalization under the let-reductions is
the first step in a staged CPS transformation [15]. The let-β reduction, let-η reduction
and the let-flattening reduction are presented in Figure 4.

2.4 Λv : a call-by-value subset of the computational metalan-
guage

In this paper, we focus on the call-by-value embedding. Therefore, we restrict our-
selves to the subset of Λml that forms the image of the call-by-value embedding of
Λ. The language Λv of labeled terms is defined in Figure 5. Indeed, the call-by-value
embedding produces either trivial terms (t ∈ Triv) or let-expressions. All serious
terms (s ∈ Step) are named. Since for the call-by-value embedding the occurrences
of the unit construct can be deduced from the context, we omit them in Λv terms.

Note that the language is such that the final result of a computation is also named,
since we no longer perform let .η reductions in Λv before introducing continuations.

9



p ∈ Pgm ::= e`

e ∈ Exp ::= t | let x = s in e`

s ∈ Step ::= t` | t`00 t`11 | op(t`) | if0 t` e`0
0 e`1

1 | (let x = s in e`1)`2

t ∈ Triv ::= n | x | λπx.e` | recπf(x).e`

x ∈ Ide (identifiers)
n ∈ Int (integers)
` ∈ Lab (term labels)
π ∈ Lam (λ-abstraction labels)

op ∈ an unspecified set of base-type operators

Figure 5: Λv : The call-by-value subset of the computational metalanguage

This aspect is part of our development of the CPS transformation of flow information,
and will be illustrated further in Section 6.

For the purpose of program analysis, terms are labeled with labels ` taken from a
countable set Lab. In addition, λ-abstractions and recursive functions are identified
by labels π from another set Lam , so that, for example, in (λπx.e`1)`0 , `0 and `1

belong to Lab and π belongs to Lam.

Definition 1 A properly labeled expression is a labeled expression in which all labels
are distinct and all variables are distinct.

We should note that, for the purpose of control-flow analysis or binding-time
analysis, it is not essential that the input program is properly labeled. But the
precision of the analysis is increased if distinct program points have distinct labels,
and distinct variables have distinct names. Since we want to compare the absolute
precision of an analysis before and after program transformation, we consider the best
results that the analysis can give over the program. For this reason, we consider only
properly labeled programs and only transformations that lead to properly labeled
programs.

2.5 Control-flow analysis for Λv

We consider a constraint-based, monovariant control-flow analysis (CFA) over pro-
grams in Λv . The constraint-based version [14, 20, 31, 34] is known to be equivalent
to other versions, based on different methods such as set-based analysis [17] and type
inference [35]; it is also known to be an instance of abstract interpretation [7]. For
uniformity, we adopt the same definition and notation as in Nielson, Nielson and
Hankin’s recent textbook on program analysis [32].1

The flow information computed by the analysis is a pair consisting of an abstract
cache Ĉcf mapping terms to abstract values and an abstract environment ρ̂cf mapping
variables to abstract values. Abstract values are sets of labels of λ-abstractions to
which a term can be reduced and a variable can be bound. The constraint-based
control-flow analysis is specified as a relation �cf on caches, environments and terms.

1Nielson, Nielson and Hankin’s CFA is developed for a call-by-value language with recursion and
let-constructs. It is thus compatible with the language subset considered here.
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Lamp The set of λ-abstraction labels in p
Varp The set of identifiers in p
Labp The set of term labels in p

Valpcf = P(Lamp) Abstract values
Ĉcf ∈ Cachep

cf = Labp → Valpcf Abstract cache
ρ̂cf ∈ Envp

cf = Varp → Valpcf Abstract environment

�p
cf ⊆ (Cachep

cf × Envp
cf) × Labp

Figure 6: CFA relation for a program p

(Ĉcf , ρ̂cf) �p
cf n` ⇐⇒ true

(Ĉcf , ρ̂cf) �p
cf x` ⇐⇒ ρ̂cf(x) ⊆ Ĉcf(`)

(Ĉcf , ρ̂cf) �p
cf (λπx.e`1)` ⇐⇒ {π} ⊆ Ĉcf(`) ∧ (Ĉcf , ρ̂cf) �p

cf e`1

(Ĉcf , ρ̂cf) �p
cf (recπf(x).e`1)` ⇐⇒ {π} ⊆ Ĉcf(`) ∧ {π} ⊆ ρ̂cf(f) ∧

(Ĉcf , ρ̂cf) �p
cf e`1

(Ĉcf , ρ̂cf) �p
cf (let x = t` in e`1)`2 ⇐⇒ (Ĉcf , ρ̂cf) �p

cf t` ∧ (Ĉcf , ρ̂cf) �p
cf e`1 ∧

Ĉcf(`) ⊆ ρ̂cf(x) ∧ Ĉcf(`1) ⊆ Ĉcf(`2)
(Ĉcf , ρ̂cf) �p

cf (let x = t`00 t`11
in e`2)`3

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t`00 ∧ (Ĉcf , ρ̂cf) �p

cf t`11 ∧
(Ĉcf , ρ̂cf) �p

cf e`2 ∧ Ĉcf(`2) ⊆ Ĉcf(`3) ∧
∀(λπy.e`

1) ∈ Ĉcf(`0).
(Ĉcf(`1) ⊆ ρ̂cf(y) ∧ Ĉcf(`) ⊆ ρ̂cf(x))

(Ĉcf , ρ̂cf) �p
cf (let x = op(t`)

in e`1)`2

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t` ∧ (Ĉcf , ρ̂cf) �p

cf e`1 ∧
Ĉcf(`1) ⊆ Ĉcf(`2)

(Ĉcf , ρ̂cf) �p
cf (let x =

if0 t` e`0
0 e`1

1

in e`2)`3

⇐⇒ (Ĉcf , ρ̂cf) �p
cf t` ∧ (Ĉcf , ρ̂cf) �p

cf e`0
0 ∧

(Ĉcf , ρ̂cf) �p
cf e`1

1 ∧ (Ĉcf , ρ̂cf) �p
cf e`2 ∧

Ĉcf(`0) ⊆ ρ̂cf(x) ∧ Ĉcf(`1) ⊆ ρ̂cf(x) ∧
Ĉcf(`2) ⊆ Ĉcf(`3)

(Ĉcf , ρ̂cf) �p
cf (let x = (let x1 = s

in e`1
1 )`2

in e`3)`4

⇐⇒ (Ĉcf , ρ̂cf) �p
cf (let x1 = s in e`1

1 )`2 ∧
(Ĉcf , ρ̂cf) �p

cf e`3 ∧ Ĉcf(`2) ⊆ ρ̂cf(x) ∧
Ĉcf(`3) ⊆ Ĉcf(`4)

Figure 7: Control-flow analysis (CFA)

Given a term e, (Ĉcf , ρ̂cf) �cf e means that (Ĉcf , ρ̂cf) is a result of the control-flow
analysis of e.2

In this work we use the syntax-directed variant of the analysis [32, Chapter 3],
and we restrict its analysis relation to a relation �p

cf associated to each program p
being analyzed. Given a properly labeled program p ∈ Λml , the functionality of
the associated relation �p

cf is defined in Figure 6. The analysis relation is defined in
Figure 7 by induction over the syntax of the program.

Any solution (Ĉcf , ρ̂cf) accepted by the relation �p
cf (i.e., such that the state-

2In the notation of Nielson, Nielson, and Hankin [32], �cf is simply �.

11



ment (Ĉcf , ρ̂cf) �p
cf p holds) is a conservative approximation of the exact flow informa-

tion [32, Chapter 3]. Furthermore, the analysis relation �p
cf has a model-intersection

property, i.e., the set of solutions accepted by �p
cf is closed under intersection. The

model-intersection property ensures the existence of a least solution of the analysis,
i.e., a most precise one. (Here, the order relation is given by the pointwise ordering of
functions induced by set inclusion.) In practice, a work-list based algorithm computes
the least solution.

2.6 Binding-time analysis for Λv and traditional partial evalu-
ation

We consider a constraint-based binding-time analysis (BTA) for the call-by-value sub-
set Λv of the computational metalanguage. The analysis is an adaptation of Hatcliff
and Danvy’s BTA for the computational metalanguage [16], presented in constraint
form [33, 34, 36]. The analysis determines binding times of program points and
program variables. The binding-time information is used in offline partial evalua-
tion [6, 22, 33]: the result of the analysis determines the static computations per-
formed at specialization time.

The constraint-based BTA uses flow information to determine the binding times of
the operators and operands of applications. Alternatively, we could have considered an
analysis computing both flow and binding-time information at the same time, which
is known to give equivalent results [34]. We have chosen to separate the control-flow
analysis from the binding-time analysis in order to investigate separately the effect of
CPS on flow information and on binding times.

The formal definition of the analysis is similar to the definition of the CFA of
Section 2.5. The analysis is a relation defined on essentially the same domains (Fig-
ure 8); the difference is that the domain of abstract values is now the standard lattice
{S v D} of static and dynamic annotations. The analysis relation is defined induc-
tively over the syntax (Figure 9). At application points, the definition of the BTA
refers to the flow information (Ĉcf , ρ̂cf), which is considered to be the least solution
of the control-flow analysis of Section 2.5.

In contrast to the CFA of Section 2.5, the BTA accepts non-closed terms. Following
the tradition, we consider the program to be dynamic and its free variables to be
dynamic as well. The flow information for the free variables is considered to be
empty, which is the result of applying the CFA to the program closed by abstraction
over the free variables. Another difference with the CFA of Section 2.5 is that the
constraints generated by the BTA are equality constraints.

Finally, additional constraints are generated for λ-abstractions, conditionals and
let-expressions. For example, the argument and body of an abstraction are dynamic if
the abstraction itself is dynamic. As mentioned in Section 1.2, the following binding-
time constraints ensure contextual coherence. In each let expression, the body is
constrained to be dynamic if the header is dynamic. In each conditional expression,
both branches are constrained to be dynamic if the test is dynamic. Note that we allow
static operations in dynamic contexts so that static computations can take place at
partial-evaluation time. A proof of correctness of a specializer using the annotations
obtained by this traditional BTA can be found in Hatcliff and Danvy’s work [16].
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Valbt = {S,D} Abstract values
Ĉbt ∈ Cachep

bt = Labp → Valbt Abstract cache
ρ̂bt ∈ Envp

bt = Varp → Valbt Abstract environment

�p
bt ⊆ (Cachep

bt × Envp
bt) × Labp

Figure 8: BTA relation for a program p

(Ĉbt, ρ̂bt) �p
bt n` ⇐⇒ true

(Ĉbt, ρ̂bt) �p
bt x` ⇐⇒ ρ̂bt(x) = Ĉbt(`)

(Ĉbt, ρ̂bt) �p
bt (λπx.e`1)` ⇐⇒ (Ĉbt, ρ̂bt) �p

bt e`1 ∧
(Ĉbt(`) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt (recπf(x).e`1)` ⇐⇒ (Ĉbt, ρ̂bt) �p

bt e`1 ∧ Ĉbt(`) = ρ̂bt(f) ∧
(Ĉbt(`) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt (let x = t`

in e`1)`2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t` ∧ (Ĉbt, ρ̂bt) �p

bt e`1 ∧
Ĉbt(`) = ρ̂bt(x) ∧ Ĉbt(`1) = Ĉbt(`2) ∧
ρ̂bt(x) = D ⇒ Ĉbt(`1) = D

(Ĉbt, ρ̂bt) �p
bt (let x = t`00 t`11

in e`2)`3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t`00 ∧ (Ĉbt, ρ̂bt) �p

bt t`11 ∧
(Ĉbt, ρ̂bt) �p

bt e`2 ∧ Ĉbt(`2) = Ĉbt(`3) ∧
(Ĉbt(`0) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D) ∧
(ρ̂bt(x) = D ⇒ Ĉbt(`2) = D) ∧
∀(λπy.e`

1) ∈ Ĉcf(`0).(Ĉbt(`1) = ρ̂bt(y) ∧
Ĉbt(`) = ρ̂bt(x))

(Ĉbt, ρ̂bt) �p
bt (let x = op(t`)

in e`1)`2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t` ∧ (Ĉbt, ρ̂bt) �p

bt e`1 ∧
Ĉbt(`) v ρ̂bt(x) ∧ Ĉbt(`1) = Ĉbt(`2) ∧
(ρ̂bt(x) = D ⇒ Ĉbt(`1) = D)

(Ĉbt, ρ̂bt) �p
bt (let x =

if0 t` e`0
0 e`1

1

in e`2)`3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt t` ∧ (Ĉbt, ρ̂bt) �p

bt e`0
0 ∧

(Ĉbt, ρ̂bt) �p
bt e`1

1 ∧ (Ĉbt, ρ̂bt) �p
bt e`2 ∧

Ĉbt(`0) = Ĉbt(`1) = ρ̂bt(x) ∧
(Ĉbt(`) = D ⇒ Ĉbt(`0) = Ĉbt(`1) = D) ∧
(ρ̂bt(x) = D ⇒ Ĉbt(`2) = D) ∧
Ĉbt(`2) = Ĉbt(`3)

(Ĉbt, ρ̂bt) �p
bt (let x =

(let x1 = s

in e`1
1 )`2

in e`3)`4

⇐⇒ (Ĉbt, ρ̂bt) �p
bt (let x1 = s in e`1

1 )`2 ∧
(Ĉbt, ρ̂bt) �p

bt e`3 ∧ Ĉbt(`2) = ρ̂bt(x) ∧
(ρ̂bt(x) = D ⇒ Ĉbt(`1) = D) ∧
Ĉbt(`3) = Ĉbt(`4)

(Ĉbt, ρ̂bt) �p
bt p ⇐⇒ (∀x.x free in p ⇒ ρ̂bt(x) = D) ∧

(p = e` ⇒ Ĉbt(`) = D)

Figure 9: Binding-time analysis for traditional partial evaluation (BTA)

2.7 Binding-time analysis for Λv and continuation-based par-
tial evaluation

As mentioned in Section 1.2, the traditional binding-time analysis from Section 2.6 is
overly conservative because of the context coherence constraint imposed in the let rule.

13



Valbt = {S,D} Abstract values
Ĉbt ∈ Cachep

bt = Labp → Valbt Abstract cache
ρ̂bt ∈ Envp

bt = Varp → Valbt Abstract environment

�p
bt? ⊆ (Cachep

bt × Envp
bt) × Labp

Figure 10: BTA? relation for a program p

(Ĉbt, ρ̂bt) �p
bt? n` ⇐⇒ true

(Ĉbt, ρ̂bt) �p
bt? x` ⇐⇒ ρ̂bt(x) = Ĉbt(`)

(Ĉbt, ρ̂bt) �p
bt? (λπx.e`1)` ⇐⇒ (Ĉbt, ρ̂bt) �p

bt? e`1 ∧
(Ĉbt(`) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt? (recπf(x).e`1)` ⇐⇒ (Ĉbt, ρ̂bt) �p

bt? e`1 ∧ Ĉbt(`) = ρ̂bt(f) ∧
(Ĉbt(`) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D)

(Ĉbt, ρ̂bt) �p
bt? (let x = t`

in e`1)`2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? t` ∧ (Ĉbt, ρ̂bt) �p

bt? e`1 ∧
Ĉbt(`) = ρ̂bt(x) ∧ Ĉbt(`1) = Ĉbt(`2)

(Ĉbt, ρ̂bt) �p
bt? (let x = t`00 t`11

in e`2)`3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? t`00 ∧ (Ĉbt, ρ̂bt) �p

bt? t`11 ∧
(Ĉbt, ρ̂bt) �p

bt? e`2 ∧ Ĉbt(`2) = Ĉbt(`3) ∧
(Ĉbt(`0) = D ⇒ Ĉbt(`1) = ρ̂bt(x) = D) ∧
∀(λπy.e`

1) ∈ Ĉcf(`0).(Ĉbt(`1) = ρ̂bt(y) ∧
Ĉbt(`) = ρ̂bt(x))

(Ĉbt, ρ̂bt) �p
bt? (let x = op(t`)

in e`1)`2

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? t` ∧ (Ĉbt, ρ̂bt) �p

bt? e`1 ∧
Ĉbt(`) v ρ̂bt(x) ∧ Ĉbt(`1) = Ĉbt(`2)

(Ĉbt, ρ̂bt) �p
bt? (let x =

if0 t` e`0
0 e`1

1

in e`2)`3

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? t` ∧ (Ĉbt, ρ̂bt) �p

bt? e`0
0 ∧

(Ĉbt, ρ̂bt) �p
bt? e`1

1 ∧ (Ĉbt, ρ̂bt) �p
bt? e`2 ∧

Ĉbt(`0) = Ĉbt(`1) = ρ̂bt(x) ∧
Ĉbt(`2) = Ĉbt(`3)

(Ĉbt, ρ̂bt) �p
bt? (let x =

(let x1 = s

in e`1
1 )`2

in e`3)`4

⇐⇒ (Ĉbt, ρ̂bt) �p
bt? (let x1 = s in e`1

1 )`2 ∧
(Ĉbt, ρ̂bt) �p

bt? e`3 ∧ Ĉbt(`2) = ρ̂bt(x) ∧
Ĉbt(`3) = Ĉbt(`4)

(Ĉbt, ρ̂bt) �p
bt? p ⇐⇒ (∀x.x free in p ⇒ ρ̂bt(x) = D) ∧

(p = e` ⇒ Ĉbt(`) = D)

Figure 11: Binding-time analysis for continuation-based partial evaluation (BTA?)

(Compared to Figure 9, we disabled the context coherence constraints in the 5th, 6th,
7th, 8th and 9th case.)

The constraint reflects the concern about which reductions can be safely performed
by the specializer. Indeed, in the computational metalanguage [16], a named dynamic
computation cannot be discarded due to possible computational effects. Similarly, the
contextual coherence constraint over the conditional branches is introduced because
one cannot decide statically which conditional branch should be selected. We will
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show in Sections 4 and 7 that these context coherence constraints are the source of
binding-time improvements by CPS transformation.

The context coherence constraint on the body of a let-expression can be relaxed if
one uses a continuation-based program specializer [3, 16, 25]. The context coherence
constraint connecting the conditional branches with the test can be relaxed as well if
one allows the same continuation-based specializer to lift the test above the context,
either by duplicating the context or by naming the continuation with a let-expression.

We consider a binding-time analysis which takes into account a continuation-based
specializer. More formally, we consider the BTA of Figure 9, without the context
coherence constraints mentioned above. The functionality of the new relation �p

bt? is
defined in Figure 10, and it is identical to the functionality of the traditional BTA
relation �p

bt (Figure 8). To define the new BTA relation, we replace the rules for
let-expressions and conditional expressions as specified in Figure 11. The result is
BTA?.

3 Comparing analysis results across program trans-
formations

How do we compare the results of a program analysis before and after a program
transformation? The result of an analysis is a function mapping labels and program
variables to analysis information. For simplicity, we expect that the transformation
preserves some of the labels and variables of the initial program. Under this as-
sumption, we relate the results of the analysis by comparing the analysis information
associated with the labels and variables preserved by the transformation.

Let us say that the program p is transformed into the program p′. Let us assume
that the points (labels and variables) common to p and p′ are identified as a set L. Let
S be an arbitrary solution of the analysis of p and S′ be an arbitrary solution of the
analysis of p′. We consider that the solutions S and S′ are equivalent if S′|L = S|L,
where S|L is the restriction of the mapping S to the set L of common program points.

To establish a relationship between the two best analysis results we use a con-
structive technique. Given an arbitrary solution S of a constraint-based analysis of
a program p, we show how to construct an equivalent solution S′ of the analysis of
the transformed program p′. We then show that the construction is valid, i.e., that
S′ is a valid solution of the analysis. Our construction induces a monotone mapping
Φ between the two spaces of solutions. From the model-intersection property of the
constraint-based analyses we conclude that the best result of the analysis of p′ is at
least as good as the results of the analysis of p. This situation is pictured in Figure 12.

In some cases, given a solution of the analysis of p′, we are also able to construct
an equivalent solution of the analysis of p, inducing an inverse mapping Ψ. When Φ
and Ψ are both monotone and their composition in both ways leads to contractions
(similarly to a Galois connection), we are able to show that the best result of the
analysis of p is equivalent to the best result of the analysis of p′. In such cases we
conclude that the specific program transformation has no impact on the result of the
analysis.

15



S•
S′
•

p p′

solutions solutions

• •

analysis

OO

transformation //

Φ
..

analysis

OO

Φ ..

Figure 12: Comparing results of constraint-based analyses

4 Control-flow analysis, binding-time analysis and
monadic let reductions

In order to avoid generating administrative redexes when introducing continuations,
Λml-programs need to be normalized with respect to the monadic let-reductions [15].
The Λv language is closed under the let .β and let .assoc reductions. In this section, we
investigate the effect of each of the two reductions over the constraint-based analyses
defined in Section 2.

According to the subject-reduction property of the control-flow or binding-time
analyses [32, 33], a valid result of an analysis will also be a valid result of the anal-
ysis after a let-reduction (though not necessarily the least one). What is not clear,
however, is whether the least (i.e., the best) result of the analysis is also the least
result of the analysis after such reductions. We rely on the linearity of the trans-
formations to show that flow information is not improved. We also show that let
reductions may lead to strict binding-time improvements; we also show that the con-
text coherence constraints are the cause of such improvements: disabling them leads
to no improvements after a let reduction.

The let-expressions introduced by the call-by-value embedding of Figure 3 are lin-
ear: they do not duplicate or throw away code. Moreover, their linearity is preserved
by the let .β and let .assoc reductions. In the following sections, we formalize the no-
tion of linearity (Section 4.1), and use it to characterize the effect of the let .β and
let .assoc reductions over CFA, BTA and BTA? (Sections 4.1.1 through 4.2.3).

4.1 Linear let-reduction

We formalize the notion of linear let-reduction as a let .β reduction such that the let
body contains a unique occurrence of the variable named in the let header. The key
observation, which we will prove in Section 4.1.1, is that linear reductions have no
effect on the control-flow analysis. Linearity is essential: it is simple to show that
non-linear (code-duplicating) reductions may improve the result of the control-flow
analysis.
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Definition 2 A linear context is an expression with a unique hole [·]. Linear contexts
are defined by the following grammar:

E ::= T | (let x = S in e`1)` | (let x = s in E)`

S ::= T | T t`11 | t`00 T | op(T ) | if0 T e`0
0 e`1

1 | if0 t` E e`1
1 | if0 t` e`0

0 E |
(let x = S in e`1)` | (let x = s in E)`

T ::= [·] | (λπx.E)` | (recπf(x).E)`

We use linear contexts to identify contexts which are filled as the result of a let .β
reduction. Note that linear contexts as defined in Definition 2 are more expressive
than contexts that may result from the call-by-value embedding: the CPS transforma-
tion does not extract terms from inside lambda-expressions and conditional branches.
Nevertheless, the results we are presenting hold in this enlarged setting.

We also formalize the notion of a let-context as a context where a let-reduction
might take place.

Definition 3 A let context is an expression which contains a unique hole [·] in the
place of a let-expression. Let-contexts are defined by the following grammar:

E ::= [·] | T | (let x = S in e`1)` | (let x = s in E)`

S ::= [·] | T | T t`11 | t`00 T | op(T ) | if0 T e`0
0 e`1

1 | if0 t` E e`1
1 |

if0 t` e`0
0 E | (let x = S in e`1)` | (let x = s in E)`

T ::= (λπx.E)` | (recπf(x).E)`

Given a linear context E and a trivial term t` , we use E[t` ] to denote the context
E with the hole [·] replaced with t` . It is trivial to see that E[t` ] is a well-formed
expression. We use the same notation for plugging a labeled let-expression into a let
context. Again, the operation is well defined.

We use FV (e) to denote the set of free variables of the expression e. This notation
naturally extends to contexts, by considering the hole [·] to contain no free variables.
We also use L as the function extracting the label of an expression. By definition, for
any labeled expression e` , L(e`) = `.

Definition 4 A linear let is an expression of the form let x = s in e` such that e`

contains a unique free occurrence of x.

It is immediate to see that if a let-expression let x = s in e` is linear, then there
exists a linear context E and a label `1 such that e` = E[x`1 ].

Definition 5 A linear let .β reduction is a let .β reduction of a linear let.

It is relevant to notice that all the let .β redexes introduced by the call-by-value
embedding are linear and that reducing any of these redexes does not change this
property.

4.1.1 Linear let .β reduction and CFA

Let us show that a linear let .β reduction does not alter the results of the CFA. Let
p be a properly labeled program such that there exist a let context E and a linear
context E1 such that

p = E[(let x = t` in E1[x`1 ])`2 ]
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Let p′ be the program p after performing the linear let .β reduction:

p′ = E[E1[t` ]]

It is immediate to see that p′ is a properly labeled program.
We show that the least solution of the flow analysis of p is equivalent to the

least solution of the analysis of p′. In fact, the least solution for p′ is obtained from
the least solution for p by projection on the labels and variables preserved by the
transformation.

We define the following functions:

• Φlet.β
cf : (Cachep

cf × Envp
cf) → (Cachep′

cf × Envp′
cf ) such that

Φlet.β
cf (Ĉcf , ρ̂cf) = (Ĉcf |Labp′ , ρ̂′cf |Varp′ )

• Ψlet.β
cf : (Cachep′

cf × Envp′
cf) → (Cachep

cf × Envp
cf) such that, if Ψlet.β

cf (Ĉ′
cf , ρ̂

′
cf) =

(Ĉcf , ρ̂cf), then

– Ĉcf = Ĉ′
cf t [`1 7→ Ĉ′

cf(`), `2 7→ Ĉ′
cf(L(E1[t` ]))]

– ρ̂cf = ρ̂′cf t [x 7→ Ĉ ′
cf(`)].

The two functions mediate between solutions for p and p′.

Lemma 4.1 If (Ĉcf , ρ̂cf) �p
cf p then Φlet.β

cf (Ĉcf , ρ̂cf) �p′
cf p′, and if (Ĉ′

cf , ρ̂
′
cf) �p′

cf p′ then
Ψlet.β

cf (Ĉ′
cf , ρ̂

′
cf) �p

cf p.

It is immediate to show that Φlet.β
cf and Ψlet.β

cf form an embedding/projection pair.
The following lemma is a direct consequence.

Lemma 4.2 If (Ĉcf , ρ̂cf) is the least solution of the CFA of p and (Ĉ′
cf , ρ̂

′
cf) is the

least solution of the CFA of p′, then Φlet.β
cf (Ĉcf , ρ̂cf) = (Ĉ′

cf , ρ̂
′
cf) and Ψlet.β

cf (Ĉ′
cf , ρ̂

′
cf) =

(Ĉcf , ρ̂cf).

Lemma 4.2 says that the result of the CFA is preserved by a linear let .β reduction.

4.1.2 Linear let .β reduction and BTA

We show that a linear let .β reduction may improve the results of the BTA. Let p and
p′ be as defined in the previous section. We show that the least binding times of p′

are as good and possibly better than the binding times of p.
We define the function Φlet.β

bt : (Cachep
bt × Envp

bt) → (Cachep′
bt × Envp′

bt) as

Φlet.β
bt (Ĉbt, ρ̂bt) = (Ĉbt|Labp′ , ρ̂′bt|Varp′ )

Lemma 4.3 If (Ĉbt, ρ̂bt) �p
cf p then Φlet.β

bt (Ĉbt, ρ̂bt) �p′
cf p′.

Lemma 4.3 says that the binding times are not worsened by a linear let .β reduction.
Yet the analysis can yield strictly better results after a linear let .β reduction. In some
cases, the binding times of the reduced program are strictly better than the binding
times of the initial program.
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For example, the call-by-value embedding of the term (λx.2) z followed by one
linear let .β reduction yields the term:

let x1 = z in
let x2 = (λx.2) x1 in x2

Considering z to be dynamic, the let-rule forces the variable x2 to be dynamic. There-
fore, the constant 2 has to be dynamic as well, and, consequently, it will be residualized
at specialization time. In contrast, after one more (linear) let .β reduction we obtain
the term

let x2 = (λx.2) z in x2

and we can see that, in a global static context, the value 2 is no longer coerced to be
dynamic.

The context coherence constraint seems unjustified in the above case since evalu-
ating the variable z has no side effects. But it is the call-by-value embedding which
forces the variable z into a computation. The BTA has to impose the constraint
in such cases as well [16]. At any rate, this initial loss of precision is avoided by
performing the second let .β reduction.

In the next section we show that disabling the context coherence constraints leads
to no loss or gain in the precision of the binding times.

4.1.3 Linear let .β reduction and BTA?

Let us show that the context coherence constraints from the standard BTA are the
source of the benefit obtained by a linear let .β reduction. To do so, we show that
a linear let .β reduction does not alter the results of the binding-time analysis for
continuation-based partial evaluation, BTA?. We use the constructive technique out-
lined in Section 3. The function Φlet.β

bt? : (Cachep
bt × Envp

bt) → (Cachep′
bt × Envp′

bt) is
identical to the one from Section 4.1.2. The function Ψlet.β

bt? : (Cachep′
bt × Envp′

bt) →
(Cachep

bt × Envp
bt) is defined similarly to Ψlet.β

cf in Section 4.1.1. It is immediate to
show that Ψlet.β

bt? ◦Φlet.β
bt? = id and Φlet.β

bt? ◦Ψlet.β
bt? = id. The following lemma is a direct

consequence:

Lemma 4.4 If (Ĉbt, ρ̂bt) is the least solution of the BTA? of p and (Ĉ ′
bt, ρ̂

′
bt) is the

least solution of the BTA? of p′, then Φlet.β
bt? (Ĉbt, ρ̂bt) = (Ĉ′

bt, ρ̂
′
bt) and Ψlet.β

bt? (Ĉ′
bt, ρ̂

′
bt)

= (Ĉbt, ρ̂bt).

Lemma 4.4 says that the binding times obtained with BTA? are preserved by a linear
let .β reduction.

4.2 Let flattening

We show that a let .assoc reduction has no effect on the CFA and on BTA?, and that
it can improve and will not degrade the results of the standard BTA.
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4.2.1 Let flattening and CFA

Let us show that a let .assoc reduction does not alter the results of the CFA. Let p be
a properly labeled program as a let context E such that

p = E[(let x1 = (let x = s in e`1
1 )` in e`2

2 )`3 ]

Let p′ be the program p after reassociating the let constructs:

p′ = E[(let x = s in (let x1 = e`1
1 in e`2

2 )`4)`3 ]

It is immediate to see that p′ is a properly labeled program.
Again, we show that the least solution of the flow analysis of p is equivalent to

the least solution of the analysis of p′. The least solution for p′ is obtained from
the least solution for p by projection on the labels and variables preserved by the
transformation.

As in Section 4.1.1, we define the following functions:

• Φlet.assoc
cf : (Cachep

cf × Envp
cf) → (Cachep′

cf × Envp′
cf ) such that

Φlet.assoc
cf (Ĉcf , ρ̂cf) = (Ĉcf |Labp\{`} t [`4 7→ Ĉcf(`2)], ρ̂cf).

• Ψlet.assoc
cf : (Cachep′

cf × Envp′
cf ) → (Cachep

cf × Envp′
cf ) such that

Ψlet.assoc
cf (Ĉ′

cf , ρ̂
′
cf) = (Ĉ′

cf |Labp′\{`4} t [` 7→ Ĉ′
cf(`1)], ρ̂′cf).

The two functions mediate between solutions of the analysis of p and p′.

Lemma 4.5 If (Ĉcf , ρ̂cf) �p
cf p then Φlet.assoc

cf (Ĉcf , ρ̂cf) �p′
cf p′, and if (Ĉ′

cf , ρ̂
′
cf) �p′

cf p′

then Ψlet.assoc
cf (Ĉ′

cf , ρ̂
′
cf) �p

cf p.

Following the constructive technique from Section 3, we can easily prove the following
lemma.

Lemma 4.6 If (Ĉcf , ρ̂cf) is the least solution of the CFA of p and (Ĉ′
cf , ρ̂

′
cf) is the

least solution of the CFA of p′, then Φlet.assoc
cf (Ĉcf , ρ̂cf) = (Ĉ′

cf , ρ̂
′
cf) and Ψlet.assoc

cf (Ĉ′
cf ,

ρ̂′cf) = (Ĉcf , ρ̂cf).

Lemma 4.6 says that the result of the CFA is preserved by let flattening.

4.2.2 Let flattening and BTA

Let us show that an isolated let flattening may improve the results of the BTA. Let
p and p′ be as defined in Section 4.2.1.

Again, we show that for any binding times of p there exist equivalent binding times
of p′. We define the function Φlet.assoc

bt : (Cachep
bt×Envp

bt) → (Cachep
bt×Envp

bt) such
that

Φlet.assoc
bt (Ĉbt, ρ̂bt) = (Ĉbt|Labp\{`} t [`4 7→ Ĉbt(`2)], ρ̂bt).

Obviously Φlet.assoc
bt (Ĉbt, ρ̂bt) is the equivalent of (Ĉbt, ρ̂bt). The following lemma

shows that Φlet.assoc
bt constructs valid solutions.
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Lemma 4.7 If (Ĉbt, ρ̂bt) �p
bt p then Φlet.assoc

bt (Ĉbt, ρ̂bt) �p′
bt p′.

Since Φlet.assoc
bt constructs valid equivalent solutions, by the considerations of Sec-

tion 3, it follows that the binding times are not worsened by a let-flattening. The
analysis, however, can yield strictly better results. In some cases, the binding times
after a let-flattening are strictly better than the binding times of the initial program.

For example, the call-by-value embedding of the program succ((λx.2) (pred(z))),
after a few let .β and one let .assoc reductions, leads to:

let x1 = let x2 = pred(z)
in let x3 = (λx.2) x2 in x3

in let x4 = succ(x1) in x4

The program above reassociates to:

let x2 = pred(z)
in let x1 = let x3 = (λx.2) x2 in x3

in let x4 = succ(x1) in x4

In the first program, the let rule forces x1 to be dynamic and the succ(x1) computation
is dynamic. In the second program x1 can be static, and the succ(x1) computation
may be performed statically, and only its result (3) will be residualized.

4.2.3 Let flattening and BTA?

Let us show that for the let .assoc reduction (similarly to the let .β reduction in Sec-
tion 4.1.3), all binding-time improvements come from the context coherence con-
straints. To do so, we show that a let .assoc reduction has no effect on the binding-time
analysis for continuation-based partial evaluation BTA?.

Taking p and p′ as defined in Section 4.2.1, we define two functions Φlet.assoc
bt? :

(Cachep
bt × Envp

bt) → (Cachep′
bt × Envp′

bt) and Ψlet.assoc
bt? : (Cachep′

bt × Envp′
bt) →

(Cachep
bt × Envp

bt) which map solutions of BTA? for p into solutions of BTA? for
p′ and vice-versa. The functions are essentially defined as in Section 4.2.1. One can
show that Φlet.assoc

bt? ◦ Ψlet.assoc
bt? = id and Φlet.assoc

bt? ◦ Ψlet.assoc
bt? = id. The following

lemma is an immediate consequence:

Lemma 4.8 If (Ĉbt, ρ̂bt) is the least solution of the BTA? of p and (Ĉ ′
bt, ρ̂

′
bt) is the

least solution of the BTA? of p′, then Φlet.assoc
bt? (Ĉbt, ρ̂bt) = (Ĉ′

bt, ρ̂
′
bt) and

Ψlet.assoc
bt? (Ĉ′

bt, ρ̂
′
bt) = (Ĉbt, ρ̂bt).

4.3 Summary and conclusions

We have shown that, once the input program is embedded into the computational met-
alanguage, let .β and let .assoc-normalization can yield binding-time improvements. At
the same time linear let .β and let .assoc preserve the quality of flow information. This
property confirms that monadic normal forms are a valuable intermediate represen-
tation in a program transformer and in an optimizing compiler.
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p ∈ Pgm ::= e`

e ∈ Exp ::= t | let x = s in e`

s ∈ Step ::= t`00 t`11 | op(t`) | if0 t` e`0
0 e`1

1

t ∈ Triv ::= n | x | λπx.e` | recπf(x).e`

Figure 13: Λmnf : The subset of Λv normalized with respect to let .β and let .assoc

[[e]]Pgm = λk.[[e]]Expk where k is fresh

[[n]]Triv = n
[[x]]Triv = x

[[λx.e]]Triv = λx.λk.[[e]]Expk where k is fresh
[[rec f(x).e]]Triv = rec f(x).λk.[[e]]Expk where k is fresh

[[t]]Expk = k [[t]]Triv

[[let x = t0 t1 in e]]Expk = [[t0]]Triv [[t1]]Triv λx.[[e]]Expk
[[let x = op(t) in e]]Expk = õp [[t]]Triv λx.[[e]]Expk

[[let x = if0 t e0 e1 in e]]Expk = let k1 = λx.[[e]]Expk
in if0 [[t]]Triv ([[e0]]Expk1) ([[e1]]Expk1)

where k1 is fresh

Figure 14: Introducing continuations

5 Introducing continuations

The language resulting from normalizing terms in Λv under the let .β and let .assoc
reductions is the language Λmnf defined in Figure 13. The effect of the normalization is
to eliminate naming of trivial values and to flatten all nested computations. Therefore,
in Λmnf a computational step can no longer be a trivial value or a nested computation.

The language Λmnf is the support for introducing continuations by the trans-
formation shown in Figure 14. Introducing continuations leads to terms in a CPS
language.3 CPS is a restriction of direct style. In order to use the same program
analysis, we therefore embed the CPS language into the Λv language. For example,
applications are transformed into let-expressions that name partially applied CPS
λ-abstractions and intermediate computations. Figure 15 displays the corresponding
CPS transformation and embedding.4 (We have omitted the labels, because they only
matter in the following sections. Suffice it to say that we label each CPS trivial term
with the same label as its direct-style counterpart.)

We can apply now the constraint-based analyses of Section 2 on both the (let .β +
let .assoc)-normalized program and on its CPS counterpart given by the transforma-
tion of Figure 15.

3In Figure 14, õp is the CPS counterpart of op, to ensure evaluation-order independence [38].
4In Figure 15, we use op instead of õp since the direct-style language is call-by-value.
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[[e]]Pgm = λk.[[e]]Expk where k is fresh

[[n]]Triv = n
[[x]]Triv = x

[[λx.e]]Triv = λx.λk.[[e]]Expk where k is fresh
[[rec f(x).e]]Triv = rec f(x).λk.[[e]]Expk where k is fresh

[[t]]Expk = let x = k [[t]]Triv in x where x is fresh

[[let x = t0 t1 in e]]Expk = let x0 = [[t0]]Triv [[t1]]Triv

in let x1 = x0 λx.[[e]]Expk in x1

where x0 and x1 are fresh

[[let x = op(t) in e]]Expk = let x = op([[t]]Triv ) in [[e]]Expk

[[let x = if0 t e0 e1 in e]]Expk = let k1 = λx.[[e]]Expk in
let x1 = if0 [[t]]Triv ([[e0]]Expk1) ([[e1]]Expk1)
in x1

where k1 and x1 are fresh

Figure 15: Introducing continuations and embedding into the Λv language

6 Control-flow analysis and the introduction of con-

tinuations

In order to compare the results of the CFA before and after introducing continuations,
we follow the constructive technique outlined in Section 3. Therefore, the rest of this
section is organized as follows. First, we show how to CPS-transform control-flow
information (Section 6.1). Given a direct-style program p and an arbitrary solution
of its associated analysis (Ĉcf , ρ̂cf), we construct a solution (Ĉ′

cf , ρ̂
′
cf) of the analysis

associated to p′, the CPS counterpart of p. We ensure that the construction ΦCPS
cf

builds a valid solution (Section 6.2). We present a converse transformation, ΨCPS
cf

(Section 6.3), which we also prove to be correct (Section 6.4). We then show that the
two constructions preserve leastness (Section 6.5).

6.1 CPS transformation of control flow

Given a solution (Ĉcf , ρ̂cf) of the analysis of a program p (i.e., a cache-environment
pair such that (Ĉcf , ρ̂cf) �p

cf p holds), we now construct in linear time a solution
(Ĉ′

cf , ρ̂
′
cf) of the analysis of p′ = [[p]]Pgm , the CPS counterpart of p (i.e., such that

(Ĉ ′
cf , ρ̂

′
cf) �p′

cf p′ holds). By analogy, we refer to the construction of (Ĉ′
cf , ρ̂

′
cf) out of

(Ĉcf , ρ̂cf) as the CPS transformation of (Ĉcf , ρ̂cf) into (Ĉ′
cf , ρ̂

′
cf).

As mentioned in Section 2.1, we have designed the CPS transformation on labeled
terms so that it preserves the labels of each trivial term. In addition, each direct-
style λ-abstraction is annotated with the same label as its CPS counterpart. As a
consequence, the abstract values in direct style are included into the abstract values
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in CPS, i.e., Lamp ⊆ Lamp′
and Valpcf ⊆ Valp

′
cf . When introducing continuations,

all the variables defined in the original direct-style program are preserved. Therefore
Varp ⊆ Varp′

. In essence, we construct a solution for the CPS program such that the
flow information assigned to the variables and to the trivial terms preserved by the
transformation is identical to the information found in the direct-style solution.

We also assign flow information to the newly introduced terms and variables, in
particular to continuation abstractions and continuation identifiers. To this end, we
use two auxiliary functions γ and ξ.

• γ extracts the labels of partially applied CPS λ-abstractions. Formally, given A a
set of λ-abstractions from the program p′, γ(A) is defined as the set of λ-abstrac-
tions λπ1

k.e` such that λπx.λπ1
k.e` ∈ A or such that recπf(x).λπ1

k.e` ∈ A.

• ξ assigns flow information to each continuation identifier k introduced by the
CPS transformation of p (at λ-abstractions and recursive function definitions).
This information can be obtained from the direct-style flow information, since
we can syntactically identify the continuation of the CPS counterpart of any
direct-style application.
Given p, Ĉcf , ρ̂cf , and a continuation identifier k introduced by the transforma-
tion of a λ-abstraction from p:

[[λπ1x.e]]Triv = λπ1x.λk.[[e]]Expk

we gather in ξ(k) all the continuations that are passed at the program points
where λπ1x.e can be applied. Formally, ξ(k) is defined as the set of all labels π
such that in the CPS transformation of p into p′ there exists a transformation
step

[[let x = t`00 t1 in e]]Expk1 = let x0 = [[t`00 ]]Triv [[t1]]Triv

in let x1 = x0 λπx.[[e]]Expk1 in x1

such that π1 ∈ Ĉcf(`0). We make a similar definition for the continuation iden-
tifiers introduced at recursive function definitions.

Using γ and ξ, we define (Ĉ′
cf , ρ̂

′
cf) inductively, following Figure 16. In the right

part, for each CPS-transformation step, we assign flow values into Ĉ′
cf and ρ̂′cf using

previously defined values.
The construction of flow information defines a function

ΦCPS
cf : (Cachep

cf × Envp
cf) → (Cachep

cf × Envp
cf).

It is easy to show that ΦCPS
cf is monotone.

6.2 Correctness of the transformation

Let us show that the cache-environment pair constructed by ΦCPS
cf is indeed a valid

solution of the analysis of the CPS counterpart of p.

Theorem 6.1 Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm ,
let (Ĉcf , ρ̂cf) be a solution of the CFA of p (i.e., such that (Ĉcf , ρ̂cf) �p

cf p holds) and
let (Ĉ ′

cf , ρ̂
′
cf) = ΦCPS

cf (Ĉcf , ρ̂cf). Then (Ĉ′
cf , ρ̂

′
cf) �p′

cf p′ holds.
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[[e` ]]Pgm = (λπk.[[e` ]]Expk)`0 Ĉ′
cf(`0) = {π} ρ̂′cf(k) = ∅

[[n` ]]Triv = n` Ĉ′
cf(`) = Ĉcf(`)

[[x` ]]Triv = x` Ĉ′
cf(`) = Ĉcf(`)

[[(λπx.e`0)` ]]Triv = (λπx.(λπ1k.[[e`0 ]]Expk)`2)`

Ĉ′
cf(`) = Ĉcf(`) Ĉ′

cf(`2) = {π1}
ρ̂′cf(x) = ρ̂cf(x) ρ̂′cf(k) = ξ(k)

[[(recπf(x).e`0)` ]]Triv = (recπf(x).(λπ1k.[[e`0 ]]Expk)`2)`

Ĉ′
cf(`) = Ĉcf(`) Ĉ′

cf(`2) = {π1}
ρ̂′cf(x) = ρ̂cf(x) ρ̂′cf(f) = ρ̂cf(f) ρ̂′cf(k) = ξ(k)

[[t` ]]Expk = (let x = k`0 [[t` ]]Triv in x`1)`2

Ĉ′
cf(`0) = ρ̂′cf(k)

Ĉ′
cf(`2) = Ĉ′

cf(`1) = ρ̂′cf(x) = ∅
[[

(let x = t`00 t`11
in e`)`2

]]Exp

k = (let x0 = [[t`00 ]]Triv [[t`11 ]]Triv in
(let x1 = x`3

0 (λπx.[[e` ]]Expk)`4 in x`5
1 )`6)`7

Ĉ′
cf(`3) = ρ̂′cf(x0) = γ(Ĉcf(`0))

Ĉ′
cf(`4) = {π} ρ̂′cf(x) = ρ̂cf(x)

Ĉ′
cf(`7) = Ĉ′

cf(`6) = Ĉ′
cf(`5) = ρ̂′cf(x1) = ∅

[[
(let x = op(t`)
in e`0)`1

]]Exp

k = (let x = op([[t` ]]Triv ) in [[e`0 ]]Expk)`2

ρ̂′cf(x) = ρ̂cf(x) Ĉ′
cf(`2) = ∅




(let x =

if0 t` e`0
0 e`1

1

in e`2)`3






Exp

k =
(let k1 = (λπx.[[e`2 ]]Expk)`4 in
(let x1 = if0 [[t` ]]Triv ([[e`0

0 ]]Expk1) ([[e`1
1 ]]Expk1)

in x`5
1 )`6)`7

ρ̂′cf(k1) = Ĉ′
cf(`4) = {π} ρ̂′cf(x) = ρ̂cf(x)

Ĉ′
cf(`7) = Ĉ′

cf(`6) = Ĉ′
cf(`5) = ρ̂′cf(x1) = ∅

Figure 16: Transformation of control flow from direct style to CPS

Under the assumptions of the theorem, we start by observing three immediate
properties of the flow transformation.

Lemma 6.2 For all variables x in p, ρ̂′cf(x) = ρ̂cf(x); for all trivial terms t` in p,
Ĉ′

cf(`) = Ĉcf(`); and for all expressions e` in p′, Ĉ′
cf(`) = ∅.

For an arbitrary expression, we define the notion of return label to capture the
return point from which CFA collects flow information, as shown just below in
Lemma 6.3.

Definition 6 Given a labeled expression e` ∈ Exp, we define the return label R[[e` ]]
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of e` by structural induction as follows:

R[[t` ]] = `
R[[(let x = s in e`1)` ]] = R[[e`1 ]]

Lemma 6.3 Let e` be an arbitrary subexpression of p. Then Ĉcf(R[[e` ]]) ⊆ Ĉcf(`).

A return label identifies the point where a continuation is called in the CPS-
transformed program. Return labels thus provide a syntactic connection between the
points where flow information is collected in direct style and the points where flow
information is sent to continuations in CPS.

Lemma 6.4 Let k be a continuation identifier introduced by the CPS transformation
of a λ-abstraction from p:

[[λπ1x1.e
`0 ]]Triv = λπ1x1.λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉcf(R[[e`0 ]]) ⊆ ρ̂′cf(x). Let k be a continuation
identifier introduced by the CPS transformation of a recursive function definition from
p:

[[recπ1f(x1).e`0 ]]Triv = recπ1f(x1).λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉcf(R[[e`0 ]]) ⊆ ρ̂′cf(x).

Let us consider the first case. By the definition of ξ, the only possibility such
that λπx.e`1 ∈ ρ̂′cf(k) is that the function is the continuation of an application point
where λπ1x1.e

`0 is applied. Focusing on the application point, we show that Ĉcf(`0) ⊆
ρ̂cf(x) = ρ̂′cf(x). From Lemma 6.3, Ĉcf(R[[e`0 ]]) ⊆ Ĉcf(`0).

The proof of Theorem 6.1 is sketched in Appendix A.

6.3 Reversing the transformation

In the previous section we have shown that direct-style flow information can be trans-
formed into CPS flow information. We can also show that any result of the analysis of
a CPS-transformed program can be matched by a result of the analysis of its direct-
style counterpart. Using again the structure given by the CPS transformation, we
exhibit a direct-style flow transformation. Given a direct-style program p and its CPS
counterpart p′, and given (Ĉ′

cf , ρ̂
′
cf) a valid solution of the analysis on p′, we recover

in linear time a valid solution (Ĉcf , ρ̂cf) of the analysis of p.
Recovering a direct-style solution is straightforward. For variables and trivial

terms in p, we are only “filtering out” the labels of continuations from the results
of the analysis of p′. We define the direct-style solution by induction on the CPS
transformation, following Figure 17. In the right part, for each CPS-transformation
step, we assign flow values into Ĉcf and ρ̂cf . The left parts of Figures 16 and 17 are
identical.

We can show that Figure 17 defines another function

ΨCPS
cf : (Cachep

cf × Envp
cf) → (Cachep

cf × Envp
cf).

It is also easy to show that, like ΦCPS
cf in Section 6.2, ΨCPS

cf is monotone.
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[[e` ]]Pgm = (λπk.[[e` ]]Expk)`0

[[n` ]]Triv = n` Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp

[[x` ]]Triv = x` Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp

[[(λπx.e`0)` ]]Triv = (λπx.(λπ1k.[[e`0 ]]Expk)`2)`

Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp

[[(recπf(x).e`0)` ]]Triv = (recπf(x).(λπ1k.[[e`0 ]]Expk)`2)`

Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp

ρ̂cf(f) = ρ̂′cf(f) ∩ Lamp

[[t` ]]Expk = (let x = k`0 [[t` ]]Triv in x`1)`2

[[
(let x = t`00 t`11
in e`)`2

]]Exp

k =
(let x0 = [[t`00 ]]Triv [[t`11 ]]Triv in
(let x1 = x`3

0 (λπx.[[e` ]]Expk)`4 in x`5
1 )`6)`7

Ĉcf(`2) = Ĉcf(`) ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp

[[
(let x = op(t`)
in e`0)`1

]]Exp

k = (let x = op([[t` ]]Triv ) in [[e`0 ]]Expk)`2

Ĉcf(`1) = Ĉcf(`0) ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp




(let x =

if0 t` e`0
0 e`1

1

in e`2)`3






Exp

k =
(let k1 = (λπx.[[e`2 ]]Expk)`4 in
(let x1 = if0 [[t` ]]Triv ([[e`0

0 ]]Expk1) ([[e`1
1 ]]Expk1)

in x`5
1 )`6)`7

Ĉcf(`3) = Ĉcf(`2) ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp

Figure 17: Transformation of control flow from CPS to direct style

6.4 Correctness of the reverse transformation

Let us show that the reverse transformation indeed yields a valid solution of the
analysis of the original program.

Theorem 6.5 Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm ,
let (Ĉ ′

cf , ρ̂
′
cf) be a solution of the CFA of p′ (i.e., such that (Ĉ′

cf , ρ̂
′
cf) �p′

cf p′ holds) and
let (Ĉcf , ρ̂cf) = ΨCPS

cf (Ĉ′
cf , ρ̂

′
cf). Then (Ĉcf , ρ̂cf) �p

cf p holds.

As in Section 6.2, we use intermediate results to prove Theorem 6.5. Working
under the assumptions of the theorem, we observe two immediate properties of the
reverse transformation:

Lemma 6.6 For all x ∈ Varp, ρ̂cf(x) = ρ̂′cf(x) ∩ Lamp; and for all trivial terms t`

in p, Ĉcf(`) = Ĉ′
cf(`) ∩ Lamp.

For an arbitrary expression, the new solution collects all the flow information from
the return point of the expression.

Lemma 6.7 Let e` be an expression in p. Then Ĉcf(`) = Ĉcf(R[[e` ]]).
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As a parallel of Lemma 6.4, the following lemma connects the flow at the return
points of functions with the flow collected for the variables declared by continuations.

Lemma 6.8 Let k be a continuation identifier introduced by the transformation of a
λ-abstraction from p:

[[λπ1x1.e
`0 ]]Triv = λπ1x1.λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉcf(R[[e`0 ]]) ⊆ ρ̂′cf(x). Let k be a continuation
identifier introduced by the transformation of a recursive function definition from p:

[[recπ1f(x1).e`0 ]]Triv = recπ1f(x1).λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉcf(R[[e`0 ]]) ⊆ ρ̂′cf(x).

The proof of Theorem 6.5 is sketched in Appendix A.

6.5 Equivalence of flow

Let p be an arbitrary direct-style program and p′ = [[p]]Pgm its CPS counterpart. By
simple unfoldings of definitions, we prove the following lemma.

Lemma 6.9 Given (Ĉcf , ρ̂cf) a solution of the CFA of p (i.e., such that (Ĉcf , ρ̂cf) �p
cf p

holds), ΨCPS
cf (ΦCPS

cf (Ĉcf , ρ̂cf)) ⊆ (Ĉcf , ρ̂cf). Given (Ĉ′
cf , ρ̂

′
cf) a solution of the CFA of

p′, (i.e., such that (Ĉ′
cf , ρ̂

′
cf) �p′

cf p′ holds), then it holds that ΦCPS
cf (ΨCPS

cf (Ĉ′
cf , ρ̂

′
cf)) ⊆

(Ĉ ′
cf , ρ̂

′
cf).

From these two properties the following main theorem follows directly.

Theorem 6.10 (Equivalence of flow) Given a direct-style program p and its CPS
counterpart p′ = [[p]]Pgm , let (Ĉcf , ρ̂cf) be the least solution of the CFA of p and let
(Ĉ ′

cf , ρ̂
′
cf) be the least solution of the CFA of p′. Then ΦCPS

cf (Ĉcf , ρ̂cf) = (Ĉ′
cf , ρ̂

′
cf) and

ΨCPS
cf (Ĉ′

cf , ρ̂
′
cf) = (Ĉcf , ρ̂cf).

6.6 Summary and conclusions

Theorem 6.10 shows that the best flow information obtainable by a constraint-based
control-flow analysis on a direct-style program is equivalent to the best flow informa-
tion obtainable by the same analysis on the CPS counterpart of this program and vice
versa. Lemma 6.2 and Lemma 6.6 show that the two solutions are equal on the vari-
ables and program points common to the two programs. We conclude that, for CFA
as defined in Figure 7, no information is lost or gained by the CPS transformation.

7 Binding-time analysis and the introduction of con-
tinuations

We describe the effect of the introduction of continuations on the result of the BTA
of a program in Λmnf . First, we define a CPS transformation of binding times (Sec-
tion 7.1), which we show to be correct and to preserve the quality of the binding times
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(Section 7.2). Unlike for CFA, however, we show examples where BTA on CPS terms
gives more precise results than on the corresponding direct-style terms, thus showing
that introducing continuations may lead to more specialization opportunities (Sec-
tion 7.3). Finally (Section 7.4) we show that if we relax the constraints of the BTA to
take into account continuation-based partial evaluation, then, just like CFA, no loss
and no gain of information can be observed after the introduction of continuations.

7.1 CPS transformation of binding times

We show that the binding times obtained by analyzing the CPS counterpart of a
program are at least as good as the ones obtained by analyzing the original program.
We construct in linear time a solution of the BTA over the CPS-transformed program
from a solution of the BTA over the original program, such that the quality of the
binding times is preserved.

Given the program p and (Ĉbt, ρ̂bt) a solution of the BTA over p, we define
(Ĉ ′

bt, ρ̂
′
bt) as a solution of the BTA over p′, the CPS counterpart of p. The defi-

nition is by induction on the introduction of continuations and is given in Figure 18,
where the left parts are identical to the left parts of Figures 16 and 17. In the right
part, we assign binding times into Ĉ′

bt and ρ̂′bt. As in Section 6, we use ΦCPS
bt to

denote the function induced by the transformation:

ΦCPS
bt : (Cachep

bt × Envp
bt) → (Cachep′

bt × Envp′
bt).

7.2 Correctness of the transformation

Let us show that the solution defined in Figure 18 is indeed a valid solution of the BTA.
We follow the same technique as in Section 6.2. The correctness of the transformation
is established by the following theorem.

Theorem 7.1 Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm ,
let (Ĉbt, ρ̂bt) be an arbitrary solution of the BTA of p (i.e., such that (Ĉbt, ρ̂bt) �p

bt p

holds). If (Ĉ′
bt, ρ̂

′
bt) = ΦCPS

bt (Ĉbt, ρ̂bt) then (Ĉ′
bt, ρ̂

′
bt) �p′

bt p′ holds.

Under the assumption of the theorem, we first observe immediate properties of
the CPS transformation of binding times, similar to the ones stated in Lemma 6.2.
For instance, the binding time for expressions in CPS is equal to the binding time of
the result of the program, which, as mentioned in Section 2.6, is dynamic.

Lemma 7.2 For all variables x in p, ρ̂′bt(x) = ρ̂bt(x); for all trivial terms t` in p,
Ĉ′

bt(`) = Ĉbt(`); and for all expressions e in p′, Ĉ′
bt(e) = D.

The binding time of an expression in p is equal to the binding time of its return
point.

Lemma 7.3 Let e` be an arbitrary subexpression of p. Then Ĉbt(R[[e` ]]) = Ĉbt(`).
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[[e` ]]Pgm = (λπk.[[e` ]]Expk)`0 Ĉ′
bt(`0) = ρ̂′bt(k) = D

[[n` ]]Triv = n` Ĉ′
bt(`) = Ĉbt(`)

[[x` ]]Triv = x` Ĉ′
bt(`) = Ĉbt(`)

[[(λπx.e`0)` ]]Triv = (λπx.(λπ1k.[[e`0 ]]Expk)`2)`

Ĉ′
bt(`2) = Ĉbt(`) Ĉ′

bt(`) = Ĉbt(`)
ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(k) = Ĉbt(`)

[[(recπf(x).e`0)` ]]Triv = (λπx.(recπ1f(k).[[e`0 ]]Expk)`2)`

Ĉ′
bt(`2) = Ĉbt(`) Ĉ′

bt(`) = Ĉbt(`)
ρ̂′bt(f) = ρ̂bt(f) ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(k) = Ĉbt(`)

[[t` ]]Expk = (let x = k`0 [[t` ]]Triv in x`1)`2

Ĉ′
bt(`0) = ρ̂′bt(k)

Ĉ ′
bt(`2) = Ĉ′

bt(`1) = ρ̂bt(x) = D

[[
(let x = t`00 t`11
in e`)`2

]]Exp

k =
(let x0 = [[t`00 ]]Triv [[t`11 ]]Triv in
(let x1 = x`3

0 (λπx.[[e` ]]Expk)`4 in x`5
1 )`6)`7

Ĉ′
bt(`4) = Ĉ′

bt(`3) = ρ̂′bt(x0) = Ĉbt(`0)
ρ̂′bt(x) = ρ̂bt(x) ρ̂′bt(x1) = D

Ĉ ′
bt(`7) = Ĉ′

bt(`6) = Ĉ′
bt(`5) = D

[[
(let x = op(t`)
in e`0)`1

]]Exp

k = (let x = op([[t` ]]Triv ) in [[e`0 ]]Expk)`2

ρ̂′bt(x) = ρ̂bt(x) Ĉ′
bt(`2) = D




(let x =

if0 t` e`0
0 e`1

1

in e`2)`3






Exp

k =
(let k1 = (λπx.[[e`2 ]]Expk)`4 in
(let x1 = if0 [[t` ]]Triv ([[e`0

0 ]]Expk1) ([[e`1
1 ]]Expk1)

in x`5
1 )`6)`7

ρ̂′bt(k1) = Ĉ′
bt(`4) = ρ̂′bt(x) = ρ̂bt(x)

Ĉ ′
bt(`7) = Ĉ′

bt(`6) = Ĉ′
bt(`5) = ρ̂′bt(x1) = D

Figure 18: Transformation of binding times from direct style to CPS

The flow of the continuation abstractions connects the binding times of the re-
turn point of expressions and continuation variables. The binding time of the value
abstracted by a continuation is equal to the binding time of any expression that the
continuation can be passed to.

Lemma 7.4 Let k be a continuation identifier introduced by the transformation of a
λ-abstraction from p:

[[λπ1x1.e
`0 ]]Triv = λπ1x1.λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉbt(R[[e`0 ]]) = ρ̂′bt(x). Let k be a continuation
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identifier introduced by the transformation of a recursive function definition from p:

[[recπ1f(x1).e`0 ]]Triv = recπ1f(x1).λk.[[e`0 ]]Expk

Then, for each λπx.e`1 ∈ ρ̂′cf(k), Ĉbt(R[[e`0 ]]) = ρ̂′bt(x).

The proof of Theorem 7.1 is sketched in Appendix A.
Theorem 7.1 and Lemma 7.2 show that we can transform any binding-time solution

of a direct-style program into a solution of its CPS counterpart in such a way that the
binding times of variables and trivial terms are preserved. This preservation implies
that no values are forced to be dynamic just by introducing continuations. It also
implies that the static computations (applications, tests or base-type operations) in a
direct-style program remain static as well in its CPS counterpart. We thus conclude
that the same amount of specialization of the input program can be achieved after
introducing continuations.

7.3 Reversing the transformation

We show that it is not always possible to reverse the CPS transformation of bind-
ing times. There are cases when the least analysis of a CPS-transformed program
produces strictly more static annotations than the least analysis of its direct-style
counterpart. Here is a canonical example [16], where succ is the successor function,
and the free variable f and z are considered to be dynamic (f might denote a poten-
tially diverging function):

let r = (λπy.let v = f z in 2) 1 in let r1 = succ(r) in r1

In the least solution of the BTA on this term, even if the application of λπy. . . . to
1 is classified as static, its result is classified as dynamic because of the dynamic
application in the header of its inner let-expression. Thus r is dynamic. Since the
second increment operation depends on r, it is dynamic as well. Simply discarding
the dynamic computation f z is not meaning-preserving since the computation may
diverge.

The CPS counterpart of the canonical example above reads as follows (without
embedding it into direct style, for readability):

λk.(λπy.λk1.f z (λv.k1 2)) 1 (λr.let r1 = succ(r) in k r1)

The continuation denoted by k1 is static, and thus the application k1 2 is per-
formed statically (even if its result is dynamic). Thus, r is static as well, and further
computation based on r can be performed at specialization time.

Other binding-time improvements can be obtained when a dynamic test disables
further computations based on its result. The canonical example is as follows:

let v = if0 z 0 1 in let v1 = succ(v) in v1

It is true that one benefits from such an improvement only by allowing code duplica-
tion. But the code duplication takes place at specialization time, not at BTA time.
Thus in contrast to Sabry and Felleisen’s analysis [39], the improvement in precision
is not due to duplicating the analysis on the two branches.
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7.4 Continuation-based partial evaluation

In the two examples above the binding-time improvements come from the context
coherence constraints in the specification of the BTA (Figure 9): the body of a
let-expression has to be dynamic if the header is dynamic, and both branches of
a conditional have to be dynamic if the test is dynamic.

In this section, we show that these contextual coherence constraints are the only
ones leading to binding-time improvements. Using the same proof technique as in
Section 6, we formally show that introducing continuations has no effect on BTA?,
i.e., it entails no local increase and also no loss of precision elsewhere in the program:
the best binding times in direct style are the best binding times in CPS as well.

More precisely, we can define ΦCPS
bt? , the CPS transformation of the binding times

obtained by BTA?. The definition is only a slight modification of the definition of
ΦCPS

bt in Section 7.1. Given the program p and a solution (Ĉbt? , ρ̂bt?) of BTA? (i.e.,
such that (Ĉbt? , ρ̂bt?) �p

bt? p holds), we can show that ΦCPS
bt? (Ĉbt? , ρ̂bt?) �p′

bt? p′ holds.
We can also define the reverse binding-time transformation ΨCPS

bt? , which is essentially
the same as the reverse flow transformation of Section 6.3 and also operates in linear
time: for each term we just extract the binding time of its CPS counterpart. We can
show that given a solution (Ĉ′

bt? , ρ̂
′
bt?) of BTA? for p′ (i.e., such that (Ĉ′

bt? , ρ̂′bt?) �p′
bt? p′

holds), ΨCPS
bt? (Ĉ′

bt? , ρ̂′bt?) �p
bt? p holds too.

We are now in position to connect the binding times in direct style and in CPS as
obtained by BTA?:

Theorem 7.5 Given a direct-style program p and its CPS counterpart p′ = [[p]]Pgm ,
let (Ĉbt? , ρ̂bt?) be the least solution of BTA? for p and let (Ĉ′

bt? , ρ̂′bt?) be the least
solution of BTA? for p′. Then for all variables x in p, ρ̂bt?(x) = ρ̂′bt?(x) and for all
trivial terms t` in p, Ĉbt?(`) = Ĉ′

bt?(`).

We thus conclude that introducing continuations has no effect on the amount of
specialization that can be performed when using continuation-based partial evalua-
tion.

7.5 Summary and conclusions

We have shown that, given an input program as a call-by-value encoding of a Λ-
program, introducing continuations does not degrade and may improve the results
of the BTA for traditional partial-evaluation. We have also shown that introducing
continuations does not affect the results of the BTA for continuation-based partial
evaluation.

We therefore conclude that, unless one is willing to use continuation-based partial
evaluation, a complete CPS transformation of the program is beneficial to the quality
of the results of the BTA.
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8 Related work

8.1 Program analysis in general

Even though the issue of syntactic accidents is not treated in textbooks and tutorials
on program analysis, it appears to be folklore in the program-analysis community.
An outstanding recent example is region inference (Section 8.1.1). To some extent, a
similar situation occurs in programming practice: who has never modified a program
with the sole purpose of improving its performance?

We are only aware of three other studies of the effect of continuations on program
analysis: an early work by Nielson [29], Sabry and Felleisen’s PLDI’94 paper [39], and
Palsberg and Wand’s recent work [37].

Nielson’s work compares the precision of two data-flow analyses: one based on
a direct-style semantics and the other on a continuation semantics. In contrast, we
compare the precision of the (same) analysis of a program and of its CPS counterpart.
Sabry and Felleisen’s work shows that a CPS transformation leads to incomparable
results for a constant propagation analysis (Section 8.1.2). Palsberg and Wand’s
work is similar to ours since it involves a CPS transformation of flow information
(Section 8.1.3).

8.1.1 Region inference and the CPS transformation

Region inference [44] aims at detecting program points where run-time storage can be
deallocated—typically at exit points for blocks and at return points for functions. To
overcome syntactic accidents, a programming discipline has therefore been developed
to make region inference yield better results.

We note that region improvements and binding-time improvements may come at
cross purpose. For example, consider let reassociation:

let x2 = let x1 = e`1

in e`2

in e`3

let flattening // let x1 = e`1

in let x2 = e`2

in e`3

let “deepening”
oo

Let flattening allows the region for x1 to be released after the region for x2. Let
deepening allows the region for x1 to be released earlier and requires the region for
x2 to be allocated earlier. Therefore, let deepening provides a region improvement,
especially if e`3 contains a recursive call. But on the other hand, and as pointed
out by an anonymous reviewer, if e`1 contains a recursive call, it is let flattening
that provides a region improvement. Similarly, for functions, the CPS transformation
yields a binding-time improvement whereas the direct-style transformation yields a
region improvement (since in CPS, functions “never return”).

8.1.2 Data-flow analysis and the CPS transformation

In their PLDI’94 paper [39], Sabry and Felleisen have shown that after a CPS trans-
formation, a data-flow analysis may confuse the continuations used at return points,
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as already noted by Shivers [41, page 33]. An example of confusion of return points
is given by the term

let x1 = f 1
in let x2 = f 2

in x1

and its CPS counterpart

λk.f 1 (λπ1x1.f 2 (λπ2x2.k x1))

analyzed in contexts where f is bound to λx.x and to its CPS counterpart λx.λk1.k1 x,
respectively. The analysis of the direct-style term starts by examining the first ap-
plication and detects that x and afterwards x1 evaluate to the constant 1. Then, by
analyzing the second application, the analysis approximates that the value of x is
not constant (it can evaluate to both 1 and 2). The value of x2 is also considered
unknown. Nevertheless, x1 is still considered constant, and the analysis is able to
deduce that the whole expression evaluates to the constant 1.

In the CPS program, the analysis of the first application determines that the
continuation k1 evaluates to π1, and, afterwards, that x1 evaluates to 1. After the
analysis of the second application, the continuation k1 evaluates to both π1 and π2.
The variable x evaluates to both 1 and 2 and is approximated as unknown. The
approximation is passed by the application k1 x, into both x1 and x2. Therefore, a
loss of precision occurs: the result of the whole expression is no longer detected as
being a constant.

One can observe, however, that in a constant-propagation analysis the chrono-
logical order of the two applications may affect the result. In direct style, the first
application of the function f is analyzed in a different context than the second appli-
cation. Interchanging the two let bindings leads to a different result of the analysis,
for an essentially equivalent program. Therefore a limited form of context dependency
is built in the constant-propagation analysis considered by Sabry and Felleisen. In
contrast, the constraint-based analyses (in the monovariant case) propagate the result
of a function at once to all the application sites of this function. These analyses do
not exhibit the sequentiality dependency of the constant propagation, and therefore,
no precision is lost after a source CPS transformation.

Sabry and Felleisen also present examples where the analysis of a program is im-
proved after the CPS transformation, reflecting that the constant-propagation anal-
ysis is not distributive [24, 29]. The improvements are attributed to the fact that
the constant-propagation analysis is duplicated over conditional branches (and their
corresponding continuations). In contrast, the constraint-based analyses propagate
results from one branch of a conditional to another, and therefore, no precision is
gained by the CPS transformation.

To summarize, Sabry and Felleisen’s analysis depends on the order in which the
source program is traversed and it is duplicated over conditional branches. These two
properties led Sabry and Felleisen to conclude that the CPS transformation does not
preserve the result of constant propagation. In contrast, our monovariant constraint-
based analyses do not depend on the order in which constraints are solved and the
analyses are not duplicated over conditional branches. These two properties led us to
conclude that the CPS transformation does preserve the results of CFA and of BTA?.
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8.1.3 CPS transformation of flow information

Recently, Palsberg and Wand have conducted a study of CFA [37], supporting Sabry
and Felleisen’s conclusion that the extra precision enabled by the CPS transformation
is due to the duplication of the analysis. They developed a CPS transformation of
flow information comparable to the one of Figure 16, but independently and prior to
us. Palsberg and Wand also mention that least solutions may or may not be preserved
by administrative reductions of CPS-transformed programs. In that, they implicitly
share our concern about syntactic accidents, even though their primary goal was to
transfer Wand’s pioneer results on the CPS transformation of types [26, 45] to the
CPS transformation of flow types. Since then, we have shown that least solutions are
preserved by administrative reductions of CPS-transformed programs [8, 9].

8.2 Binding-time analysis and the CPS transformation

Binding-time improvements have always been customary for users of binding-time
analysis [22, 30]. One of them amounts to considering source programs in CPS [5, 11],
which suggests that source programs should be systematically CPS-transformed [4].
(Muylaert-Filho and Burn take the same stand for strictness analysis and the call-by-
name CPS transformation [28].)

Essentially, the CPS transformation relocates potentially static contexts inside
definitely dynamic contexts (let expressions and conditionals), thereby providing a
binding-time improvement. To this end, the CPS transformation itself is continu-
ation-based [12], which paved the way to continuation-based partial evaluation [3, 25].

Hatcliff and Danvy have characterized the full effect of continuation-based partial
evaluation as online let flattening in Moggi’s computational metalanguage [16]. This
characterization justifies why offline let flattening is also, partially, a binding-time
improvement [19]. In any case, offline let flattening is known to be part of the CPS
transformation [15].

What had not been shown before, however, and what we have addressed here, is
whether such “improvements” worsen binding times elsewhere in a source program.

9 Conclusion and issues

Observing that program analyses are vulnerable to syntactic accidents, we have con-
sidered a radical syntactic change: a transformation into CPS. We have studied the
interaction between a non-duplicating CPS transformation and two program analyses:
control-flow analysis (CFA) and binding-time analysis. Through a systematic con-
struction of the CPS counterpart of flow information, we have found that constraint-
based CFA is insensitive to continuation-passing, and that the CPS transformation
does improve binding times for traditional partial evaluation. Using the same tech-
nique, we have also found that the binding-time analysis for continuation-based partial
evaluation is insensitive to the CPS transformation.

These results suggest two further avenues of study:

• In BTA, the beneficial effect of the CPS transformation can be accounted for
by disabling the context coherence constraints for let expressions (and for con-
ditionals as well, if one is willing to duplicate static contexts at specialization

35



time). The price of this change, however, is that the corresponding program spe-
cializer has to be made continuation-based [16]. We conjecture that the situation
is similar, e.g., for security analysis, which has similar let and case rules. Just
like BTA, a security analysis thus ought to yield more precise results over CPS-
transformed programs. We therefore also conjecture that the beneficial effect of
the CPS transformation can be accounted for by disabling the context coherence
constraints in the let and case rules, if one is willing to develop a corresponding
continuation-based processor of security information.

• More generally, as a step towards more robust program analyses that are less
vulnerable to syntactic accidents, we need to understand better the program-
analysis perspective over syntactic landscapes. Two key questions arise which
may be general to program analysis or specific to individual program analy-
ses: which program transformations affect precision? And among those that
do, which ones affect precision monotonically? Answering these questions would
enable one to develop more reliable program analyses, i.e., program analyses en-
dowed with invariants under program change (be such change a particular type
of reduction or other kind of meaning-preserving transformations). Henglein’s
invariance properties of polymorphic typing judgments with respect to let un-
folding and folding and η-reduction [18] is a step in this direction. Alternatively,
one could develop an intermediate language for reasoning about program analysis
and program transformation.
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Torben Mogensen, Lasse R. Nielsen, Morten Rhiger, Olin Shivers, Zhe Yang, and the
anonymous reviewers for their feedback.

A Proofs

Proof: 1 (Proof of Theorem 6.1) The proof proceeds by induction on the trans-
formation of p into p′. We sketch the induction steps.

We show that (Ĉ′
cf , ρ̂

′
cf) �p′

cf (let x = k`0 [[t` ]]Triv in x`1)`2 holds. For an arbitrary
continuation λπy.e`3 in the set Ĉ′

cf(`0) = ρ̂′cf(k), we show that two flow constraints
are satisfied.

The first constraint is Ĉ′
cf(`) ⊆ ρ̂′cf(y). By Lemma 6.2, Ĉ′

cf(`) = Ĉcf(`). We make
a case analysis on the introduction of k by the CPS transformation.

If k is the top-level continuation, then the constraints are vacuously satisfied. If k
is introduced by the transformation of a named conditional, then ` is the return point
of one of the two branches of the test. Obviously Ĉcf(`) ⊆ ρ̂′cf(y). Otherwise, k comes
from the transformation of a λ-abstraction λπ1x1.e

`4 from p, such that ` = R[[e`4 ]].
We apply Lemma 6.4.

The second constraint is Ĉ′
cf(`3) ⊆ ρ̂′cf(x). Following Lemma 6.2, it amounts to

∅ ⊆ ∅.
For the rest of the induction steps, the induction hypotheses and the definition of

γ suffice to show that the constraints are satisfied.
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Proof: 2 (Proof of Theorem 6.5) The proof is by induction on the transforma-
tion of p into p′. We sketch the induction steps.

For the transformation step [[t` ]]Triv , the constraints follow from the induction
hypothesis. The same applies for the transformation step [[t` ]]Expk.

For the transformation of a named application:

[[let x = t`30 t1 in e2]]Expk = let x0 = [[t`30 ]]Triv [[t1]]Triv

in let x1 = x0 λπx.e`2 in x1

let λπ1y.e`4
1 be an arbitrary λ-abstraction from p such that π1 ∈ Ĉcf(`3). Let the

CPS transformation of the λ-abstraction be λπ1y.λk1.e2. Then π ∈ ρ̂′cf(k1). From
Lemma 6.7 and Lemma 6.8 we obtain that Ĉcf(`4) ⊆ ρ̂cf(x).

Proof: 3 (Proof of Theorem 7.1) The proof is an adaptation of the proof of The-
orem 6.1 to equality constraints. In addition, we need to prove the satisfaction of the
additional constraints introduced by BTA. We sketch the induction steps.

We show that (Ĉ′
cf , ρ̂

′
cf) �p′

cf (let x = k`0 [[t` ]]Triv in x`1)`2 holds. For this purpose,
given an arbitrary λπx.e`3 ∈ Ĉ′

cf(`0) = ρ̂′cf(k) we must show that two equality con-
straints are satisfied. Similarly to the proof of Theorem 6.10, we make a case analysis
on the introduction of k, using Lemma 7.3 and Lemma 7.4 to prove the satisfaction
of the constraints.

We also need to show that Ĉ′
bt(`0) = D ⇒ Ĉ′

bt(`) = D. Again, we make a case
analysis on the introduction of k. The top-level case is trivial. The case where k is
introduced by the transformation of a function (λy.e`5

1 )`4 implies that Ĉbt(`4) = D.
Thus Ĉbt(`5) = D and then Ĉ′

bt(`) = D, since ` = R[[e`5
1 ]]. The same reasoning

follows for the case where k comes from the transformation of a named conditional.
The remaining cases follow directly from the induction hypotheses and the defini-

tion of Ĉ ′
bt, ρ̂′bt, Ĉcf and γ.
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