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Expansion Factor

Ivan Damg̊ard Jesper B. Nielsen
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Abstract

Canetti and Fischlin have recently proposed the security notion uni-
versal composability for commitment schemes and provided two examples.
This new notion is very strong. It guarantees that security is maintained
even when an unbounded number of copies of the scheme are running
concurrently, also it guarantees non-malleability, resilience to selective
decommitment, and security against adaptive adversaries. Both of their
schemes uses Θ(k) bits to commit to one bit and can be based on the
existence of trapdoor commitments and non-malleable encryption.

We present new universally composable commitment schemes based
on the Paillier cryptosystem and the Okamoto-Uchiyama cryptosystem.
The schemes are efficient: to commit to k bits, they use a constant num-
ber of modular exponentiations and communicates O(k) bits. Further
more the scheme can be instantiated in either perfectly hiding or per-
fectly binding versions. These are the first schemes to show that constant
expansion factor, perfect hiding, and perfect binding can be obtained for
universally composable commitments.

We also show how the schemes can be applied to do efficient zero-
knowledge proofs of knowledge that are universally composable.
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1 Introduction

The notion of commitment is one of the most fundamental primitives in both
theory and practice of modern cryptography. In a commitment scheme, a
committer chooses an element m from some finite set M , and releases some
information about m through a commit protocol to a receiver. Later, the
committer may release more information to the receiver to open his commit-
ment, so that the receiver learns m. Loosely speaking, the basic properties
we want are first that the commitment scheme is hiding: a cheating receiver
cannot learn m from the commitment protocol, and second that it is bind-
ing: a cheating committer cannot change his mind about m, the verifier can
check in the opening that the value opened was what the committer had in
mind originally. Each of the two properties can be satisfied unconditionally or
relative to a complexity assumption.

A very large number of commitment schemes are known based on various
notions of security and various complexity assumptions. Although commit-
ment schemes can be implemented as a game between more than two players,
we will concentrate here on the two-player case with standard digital commu-
nication. This immediately implies that we cannot build schemes where both
the binding and the hiding properties are satisfied unconditionally.

In [CF01] Canetti and Fischlin proposed a new security measure for com-
mitment schemes called universally composable commitments. This is a very
strong notion: it guarantees that security is maintained even when an un-
bounded number of copies of the scheme are running concurrently in an asyn-
chronous way. It also guarantees non-malleability and resilience to selective
decommitment, and finally it maintains security even if an adversary can de-
cide adaptively to corrupt some of the players and make them cheat. The new
security notion is based on the framework for universally composable security
in [Can01]. In this framework one specifies desired functionalities by specifying
an idealized version of them. An idealized commitment scheme is modeled by
assuming a trusted party to which both the committer and the receiver have a
secure channel. To commit to m, the committer simply sends m to the trusted
party who notifies the receiver that a commitment has been made. To open,
the committer asks the trusted party to reveal m to the receiver. Security of
a commitment scheme now means that the view of an adversary attacking the
scheme can be simulated given access to just the idealized functionality.

It is clearly important for practical applications to have solutions where
only the two main players need to be active. However, in [CF01] it is shown
that universal composability is so strong a notion that no universally compos-
able commitment scheme for only two players exist. However, if one assumes
that a common reference string with a prescribed distribution is available to
the players, then two-player solutions do exist and two examples are given in
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[CF01]. Note that common reference strings are often available in practice,
for instance if a public key infrastructure is given.

The commitment scheme(s) from [CF01] uses Ω(k) bits to commit to one
bit, where k is a security parameter, and it guarantees only computational
hiding and binding. In fact, as detailed later, one might even get the impres-
sion from the construction that perfect hiding, respectively binding cannot be
achieved. Here, by perfect, we mean that an unbounded receiver gets zero
information about m, respectively an unbounded committer can change his
mind about m with probability zero.

Our contribution is a new construction of universally composable commit-
ment schemes, which uses O(k) bits of communication to commit to k bits.
The scheme can be set up such that it is perfectly binding, or perfectly hid-
ing, without loosing efficiency1. The construction is based on a new primitive
which we call a mixed commitment scheme. We give two efficient implementa-
tions of mixed commitments, one based on the Paillier cryptosystem and one
based on the Okamoto-Uchiyama cryptosystem. Our commitment protocol
has three moves, but the two first messages can be computed independently
of the message committed to and thus the latency of a commitment is still one
round as in [CF01].

As a final contribution we show that if a mixed commitment scheme comes
with protocols in a standard 3-move form for proving in zero-knowledge rela-
tions among committed values, the resulting UCC commitment scheme inher-
its these protocols, such that usage of these is also universally composable. For
our concrete example schemes, this results in efficient protocols for proving bi-
nary Boolean relations among committed values and also (for the version based
on Paillier encryption) additive and multiplicative relations modulo N among
committed values. We discuss how this can be used to construct efficient uni-
versally composable zero-knowledge proofs of knowledge for NP, improving
the complexity of a corresponding protocol from [CF01].

2 An Intuitive Explanation of some Main Ideas

In the simplest type of commitment scheme, both committing and opening
are non-interactive, so that committing just consists of running an algorithm
commitK , keyed by a public key K, taking as input the message m to be
committed to and a uniformly random string r. The committer computes
c ← commitK(m, r), and sends c to the receiver. To open, the committer
sends m and r to the receiver, who checks that c = commitK(m, r). For this

1[CF01] also contains a scheme which is statistically binding and computationally hiding,
the scheme however requires a new setup of the common reference string per commitment and
is thus mostly interesting because it demonstrates that statistically binding can be obtained
at all.
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type of scheme, hiding means that given just c the receiver does not learn m
and binding means that the committer cannot change his mind by computing
m′, r′, where c = commit(m′, r′) and m′ 6= m.

In a trapdoor scheme however, to each public key K a piece of trapdoor
information tK is associated which, if known, allows the committer to change
his mind. Note that the existence of such trapdoor information implies that
the scheme can never be unconditionally binding. Most trapdoor schemes even
have the property that from tK , one can compute commitments that can be
opened in any way desired. Such trapdoor schemes are called equivocable.

One may also construct schemes where a different type of trapdoor infor-
mation dK exists, such that given dK , one can efficiently compute m from
commit(m, r). Such schemes are called extractable and clearly cannot be un-
conditionally hiding.

As mentioned, the scheme in [CF01] guarantees only computational bind-
ing and computational hiding. Actually this is important to the construction:
recall that to prove security, we must simulate an adversary’s view of the real
scheme with access to the idealized model only. Now, if the committer is
corrupted by the adversary and sends a commitment c, the simulator must
find out which message was committed to, and send it to the trusted party
in the ideal model. The universally composable framework makes very strict
demands to the simulation implying that rewinding techniques cannot be used
for extracting the message. A solution is to use an extractable scheme, have
the public key K in the reference string, and set things up such that the
simulator knows the trapdoor dk. A similar consideration leads to the conclu-
sion that if instead the receiver is corrupt, the scheme must be equivocable
with trapdoor known to the simulator, because the simulator must generate
a commitment on behalf of the honest committer before finding out from the
trusted party which value was actually committed to. So to build universally
composable commitments it seems we must have a scheme that is simulta-
neously extractable and equivocable — although such a scheme can of course
only be computationally secure. This is precisely what Canetti’s and Fischlin’s
ingenious construction provides.

In this paper, we propose a different technique for universally composable
commitments based on what we call a mixed commitment scheme. A mixed
commitment scheme is basically a commitment scheme which on some of the
keys is perfectly hiding and equivocable, we call these keys the E-keys, and on
some of the keys is perfectly binding and extractable, we call these keys the
X-keys. Clearly, no key can be both an X- and an E-key, so if we were to put
the entire key in the common reference string, either extractability or equiv-
ocability would fail and the simulation could not work. We remedy this by
putting only a part of the key, the so-called system key, in the reference string.
The rest of the key is set up once per commitment using a two-move protocol.
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This allows the simulator to force the key used for each commitment to be
an E-key or an X-key depending on whether equivocability or extractability
is needed. In other words, our observation is that successful simulation does
not really require a scheme that is globally extractable and simulatable at the
same time, it is enough if the simulator can decide between extractability and
equivocability on a per commitment basis.

Our basic construction is neither perfectly binding nor perfectly hiding
because the set-up of keys is randomized and is not guaranteed to lead to
any particular type of key. However, one may add to the reference string an
extra key that is guaranteed to be either an X- or an E-key. Using this in
combination with the basic scheme, one can obtain either perfect hiding or
perfect binding.

3 Mixed Commitments

We now give a more formal description of mixed commitment schemes. The
most important difference to the intuitive discussion above is that the system
key N comes with a trapdoor tN that allows efficient extraction for all X-keys.
The E-keys, however, each come with their own trapdoor for equivocability.

Definition 1 By a mixed commitment scheme we mean a commitment scheme
commitK with some global system key N , which determines the message space
MN and the key space KN of the commitments. The key space contains two
sets, the E-keys and the X-keys, for which the following holds:

Key generation One can efficiently generate a system key N along with the
so-called X-trapdoor tN . One can, given the system key N , efficiently
generate random commitment keys and random X-keys. Given the sys-
tem key, one can efficiently generate an E-key K along with the so-called
E-trapdoor tK .

Key indistinguishability Random E-keys and random X-keys are both com-
putationally indistinguishable from random keys as long as the X-trapdoor
is not known.

Equivocability Given E-key K and E-trapdoor tK one can generate fake
commitments c, distributed exactly as real commitments, which can later
be open arbitrarily, i.e. given a message m one can compute uniformly
random r for which c = commitK(m, r).

Extraction Given a commitment c = commitK(m, r), where K is an X-
key, one can given the X-trapdoor tN efficiently compute m, where m is
uniquely determined by the perfect binding.
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Note that the indistinguishability of random E-keys, random X-keys, and
random keys implies that as long as the X-trapdoor is not known the scheme is
computationally hiding for all keys and as long as the neither the X-trapdoor
nor the E-trapdoor is known the scheme is computationally binding for all
keys.

For the construction in the next section we will need a few special require-
ments on the mixed commitment scheme.

First of all we will assume that the message space MN and the key space
KN are finite groups in which we can compute efficiently. We will denote
the group operation by +. There are no special requirements on the group
structure; If e.g. the key space is the set of all bit-strings of some fixed length l,
the group operation could be the xor operation on strings or addition modulo
2l. Second we need that the number of E-keys over the total number of keys
is negligible and that the number of X-keys over the total number of keys is
negligible close to 1. Note that this leaves only a negligible fraction which is
neither X-keys nor E-keys. We call a mixed commitment scheme with these
properties a special mixed commitment scheme.

The last requirement is that the scheme is on a particular form. We ensure
this be a transformation. The keys for the transformed scheme will be of the
form (K1,K2). We let the E-keys be the pairs of E-keys and let the X-keys be
the pairs of X-keys. Note that this leaves a negligible fraction of the keys which
is neither E-keys nor X-keys. The message space will be the same. Given a
message m we commit as (commitK1(m1), commitK2(m2)), where m1 and m2

are uniformly random values for which m = m1 +m2. Note that if both keys
are X-keys, then m1 and m2 and thus m can be computed by extraction. It
is trivial to check that all other properties of a special mixed commitment
scheme are also maintained under this transformation.

3.1 Σ-protocols

For the mixed commitment schemes we exhibit later, there are efficient pro-
tocols for proving in zero-knowledge relations among committed values. De-
pending on the mixed commitment scheme used, a number of relations between
committed values could be considered, e.g equality, additive, or multiplicative
relations between committed values. As we shall see, it is possible to have the
derived universally composable commitment schemes inherit these protocols
while maintaining universal composability. In order for this to work, we need
the protocols to have a special form:

A non-erasure Σ-protocol for relation R is a protocol for two parties, called
the prover P and the verifier V . The prover gets as input (x,w) ∈ R, the
verifier gets as input x, and the goal is for the prover to convince the verifier
that he knows w such that (x,w) ∈ R, without revealing information about w.
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We require that it is done using a protocol of the following form. The prover
first computes a message a ← A(x,w, ra), where ra is a uniformly random
string, and sends a to V . Then V returns a random challenge e of length l.
The prover then computes a responds to the challenge z ← Z(x,w, ra, e), and
sends z to the verifier. The verifier then runs a program B on (x, a, e, z) which
outputs b ∈ {0, 1} indicating where to believe that the prover knows a valid
witness w or not.

Besides the protocol being of this special three-move form we furthermore
require that the following requirements hold, in order for the protocol to be
called a non-erasure Σ-protocol for R.

Completeness If (x,w) ∈ R, then the verifier always accepts (b = 1).

Special Honest Verifier Zero-Knowledge There exists a PPT algorithm,
the honest verifier simulator hvs, which given instance x (where there
exists w such that (x,w) ∈ R) and any challenge e ∈ {0, 1}l generates
(a, z) ← hvs(x, e, r), where r is a uniformly random string, such that
(x, a, e, z) is distributed identically to a successful conversation, where e
occurs as challenge.

State Construction Given (x,w, a, e, z, r), where (a, z) = hvs(x, e, r) and
(x,w) ∈ R it should be possible to compute uniformly random ra for
which a = A(x,w, ra) and z = Z(x,w, ra, e).

Special Soundness There exists a PPT algorithm extract, which given x,
(a, e, z), and (a, e′, z′), where e 6= e′, B(x, a, e, z) = 1, andB(x, a, e′, z′) =
1, outputs w ← extract(x, a, e, z, e′ , z′) such that (x,w) ∈ R.

In [Dam00] it is shown how to use Σ-protocols in a concurrent setting. This
is done by letting the first message be a commitment to a and then letting the
third message be (a, r, z), where (a, r) is an opening of the commitment and z is
computed as usual. If the commitment scheme used is a trapdoor commitment
scheme this will allow for simulation using the honest verifier simulator. In an
adaptive non-erasure setting, where an adversary can corrupt parties during
the execution, it is also necessary with the State Construction property as
the adversary is entitled to see the internal state of a corrupted party. In the
following we call ra the internal state of the Σ-protocol.

3.2 Proof of Relation between Mixed Commitments

In order to use non-erasure Σ-protocols in our context, it is convenient to
specialize the above definition somewhat. We therefore now review the notion
of a Σ-protocol in the context of mixed commitment schemes.
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Let MN be the message space for system key N and let RM ⊂ Ma
N be

a a-ary relation over M . We denote a commitment by (K1, c1,K2, c2), where
K1,K2 ∈ KN and c1 and c2 are commitments in the base scheme under K1

respectively K2. From a relation on Ma
N we can define a binary relation on

commitments, where

(((K1, c1,K2, c2), . . . , (K2a−1, c2a−1,K2a, d2a)), (m1, r1, . . . ,m2a, r2a)) ∈ R
iff (

2a∧
i=1

ci = commitKi(mi, ri)

)
∧ (m1 +m2, . . . ,m2a−1 +m2a) ∈ RM .

The instance is x = (K1, c1,K2, c2, . . . ,K2a, c2a) and the witness is w =
(m1, r1,m2, r2, . . . ,m2a, r2a).

Because of the particular context in which we will be using the proofs, it is
enough that the special honest verifier zero-knowledge and the state construc-
tion holds for E-keys and fake commitments, and that the special soundness
holds for X-keys. More precisely, we assume that

1. In the honest verifier simulator and the state construction

(a) All the keys K1,K2, . . . ,K2a are E-keys and the E-trapdoors of the
keys Kb,K2+b, . . . ,K2(a−1)+b are known, where b is either 1 and 2
and is not known before the simulation.

(b) The commitments cb, c2+b, . . . , c2(a−1)+b are fake commitments (un-
der the above keys) and the random bits used to construct them are
known and the commitments c2−b, c4−b, . . . , c2a−b are commitments
to random values and their openings are known.

(c) The witnesses given in the state construction are consistent with the
above information. One can think of the input to the state construc-
tion as a real opening of the fake commitments cb, c2+b, . . . , c2(a−1)+b,
where for the given opening (m1+m2, . . . ,m2a−1+m2a) ∈ RM . The
job of the state construction is then to come up with an internal
state consistent with these openings.

2. In the special soundness, given two accepting conversations one must
compute either a valid witness or a proof that one of the involved keys
is not an X-key. The proof must point to the key which is not an X-key.

3.3 Security under Lunchtime Opening

In the following constructions, we will need to use a mixed commitment scheme
in a coin-flip protocol for generating random keys, and also for committing to

10



the first message in Σ-protocols. In order for this to work, we need that
the scheme satisfies the following: an adversary who sees a number of fake
commitments under E-keys and is allowed adaptively to specify how they
should be opened, is nevertheless unable to produce such an arbitrary opening
himself. It is advantageous to prove this as a lemma at the current abstraction
level.

So let A be a PPT algorithm and consider the following game, which we
call the lunchtime opening game. First we generate a system key N and hand
N to A. Let E denote a subset of MN for which |E|

|MN | is negligible. Then
during the game A can issue the following types of requests.

Generate Key If A requests a key generation we generate a random E-key
K = (K1,K2) along with the E-trapdoor tKb

of either K1 or K2 and
hand K to A. The same b is used for all keys.

Generate Commitment If A requests a commitment generation for a key
K = (K1,K2) earlier generated in a Generate Key request, we generate a
random fake commitment c = (c1, c2) under K = (K1,K2) using tKb

and
hand c to A. The fake commitment is generated by committing honestly
to a random message under K2−b, c2−b = commitK2−b

(m2−b, r2−b), and
faking under Kb.

Open c If A requests to open a commitment c to message m, where c was
generated in a Generate Commitment request and has not earlier been
requested opened, then we let mb = m −m2−b and generate uniformly
random bits rb for which cb = commitK(mb, rb) and hand (m1,m2, r1, r2)
to A.

Prove Relation R((K1, c1), . . . , (Ka, ca)) using K If A requests receiving a
proof of R((K1, c1), . . . , (Ka, ca)) using key K = (K1,K2), where K was
generated due to a Generate Key request and c1, . . . , ca was generated
due to Generate Commitment requests, then using a non-erasure Σ-
protocol for the relation we do as follows: Generate a fake commitment
c using tKb

and send it to A. Receive a challenge from A and using the
honest verifier simulator compute (a, z) and using tKb

compute uniformly
random r for which c = commitK(a, r). Then send (a, r, z) to A.

It must be possible to open any unopened commitment among (c1, . . . , ca)
in a way consistent with the relation R and A must never request opened
any unopened commitment in a way inconsistent with the relation R.

If A later has requested all of c1, . . . , ca opened, then by the above re-
striction the openings are a witness for the relation and using the state
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construction property we can compute the internal state ra of the Σ-
protocol and hand it to A.2

Test on c using K If A requests a test on commitment c and key K, where c
can either be a commitment generated for K due to a Generate Commit-
ment request or by A alone, we hand A as challenge a uniformly random
element m1 from MN . Then A returns m2, r2. If c = commitK(m2, r2)
and m1 +m2 ∈ E, then A scores one point.

Test on R((K1, c1), . . . , (Ka, ca)) using K On a proof of relation test A proves
the relation as in the proof of relation test (with the roles changed). We
require that K was generated due to a Generate Key request and that
each of the Ki was either generated due to a Generate Key request or is
an X-key.

If A succeeds in the proof and can ever come up with openings cj =
commitKj(mj , rj) of the E-commitments such that R(m1, . . . ,ma) does
not hold, where the value mi for the X-commitments are defined by
extraction, then he scores one point.

We allow the interactions between A and the game to be scheduled arbitrarily
by A, meaning that e.g. two proofs of relation can be run concurrently. How-
ever, we enforce a two phase structure on the game by requiring that after the
first test request is issued by A, only test requests can be issued in the follow-
ing. Further more, after the first test request is issued, all proof of relation
requests that are not ended yet is terminated, meaning that if A returns the
challenge after the first test request, the challenge will not be answered. Note
that this means that after the first test request, the game does not need the
trapdoors tKb

anymore. This is essential in proving the following lemma.

Lemma 1 Any special mixed commitment scheme has the property that the
expected score of any PPT algorithm A in the lunchtime opening game against
the scheme is negligible.

Proof: Assume for the sake of contradiction that there exists some PPT
algorithm A which has an expected score which is significant3. Now consider
the following experiment. We run the game with A as specified above with
two modifications.

First of all, each time A sends m2, r2, where c = commitK(m2, r2) in a Test
on c usingK, save the state of A and rewind it to the point, wherem1 was send.
Then repeat the following until A returns m′

2, r
′
2, where c = commitK(m′

2, r
′
2):

2Note that the honest verifier simulator and the state construction were used in a context
meeting the relaxations we put on the protocols in the previous section.

3We are using significant to denote ’not negligible’.
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Generate a new random m′
1 and give it to A. Then run A until either A

returns m′
2, r

′
2 or A stops. When the challenge has been answered correctly

again, continue the game at the saved state.
Further more, each time A answers a challenge correctly in a proof of

relation test save the state of A and rewind to the point where that challenge
was send. Then repeat the following until a challenge for that particular proof
of relation test is answered correctly again: Generate a new random challenge
and give it to A and run A until either the challenge is answered correctly again
or A stops. When the challenge has been answered correctly again continue
the game at the saved state.

We will argue that the expected running time of this experiment is poly-
nomial in k. The experiment is of the form that each time certain challenges
are answered correctly by A we replay until a challenge is answered correctly
again. It is enough to prove that the expected running time of each of these
replays is polynomial. For this purpose let E denote the event that challenge
l is answered correctly and let Pr[E|s] denote the probability that challenge
l is answered correctly given that the experiment is in state s at the time
the challenge is given. Let Pr[s|E] denote the probability that the exper-
iment was in state s at the time challenge l was given conditioned on the
event that the challenge was answered correctly. Let T (s) be the expected
running time of the game given that it is in state s at the time challenge l
is given, let T1(s) denote the expected running time of the game from chal-
lenge l is given to the end of the game given that the challenge is not an-
swered correctly and let T2(s) denote the running time from challenge l is
given until it is answered correctly (given that it is answered correctly). Then
T (s) ≥ (1− Pr[E|s])T1(s) + Pr[E|s]T2(s) and the time spend in loop l is

Pr[E]
∑

s

Pr[s|E]

( ∞∑
i=1

(1− Pr[E|s])i−1 Pr[E|s]((i − 1)T1(s) + T2(s))

)

= Pr[E]
∑

s

Pr[s|E] Pr[E|s]
(1− Pr[E|s])

∞∑
i=1

(iT1(s) + (T2(s)− T1(s)))(1 − Pr[E|s])i

= Pr[E]
∑

s

Pr[s|E]
(
T1(s)

Pr[E|s] + (T2(s)− T1(s))
)

= Pr[E]
∑

s

Pr[s|E]
Pr[E|s] ((1− Pr[E|s])T1(s) + Pr[E|s]T2(s))

≤
∑

s

Pr[s]T (s) = T ,

which is polynomial.
By the linearity of expectation there must be an opening challenge l where

the challenge is answered correctly and m1 +m2 ∈ E with significant proba-
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bility or there must be a successful proof of relation test for which A returns
a contradictory opening with significant probability. We will argue that this
means that the experiment generates a double opening with significant prob-
ability.

Consider the first case. Let p be a polynomial for which the probability
that m1 +m2 ∈ E is larger than p−1(k) for infinitely many k and consider a
value of k for which this is the case. Assume that the challenge is answered
correctly and m1+m2 ∈ E. Let E = m2⊕E. Since |E|

|M | = |E|
|M | is negligible and

the expected number of iterations in the loop is less than p(k) we have that
when a challenge m′

1 is answered correctly again Pr[m′
1 6∈ E] = 1− ε, where ε

is negligible. Further more Pr[m′
1 ⊕m′

2 ∈ E] ≥ p−1(k). Thus Pr[m′
1 ⊕m′

2 ∈
E∧m′

1 6∈ E] ≥ (1− ε)+p−1(k)−1 = p−1(k)− ε. Since m′
1⊕m′

2 ∈ E∧m′
1 6∈ E

implies that m2 6= m′
2 we thus have a significant probability of obtaining a

double opening.
In the second case we have that since the proof was successful we ran a

loop after the proof until a challenge e′ was answered successfully again. We
can assume without lose of generality that the two challenges answered in
the loop are different. If the commitment to a is opened differently in the
two cases we are done. Assume therefore that it is opened to the same value
a. This means that we have (a, e, e′, z, z′), where (a, e, z) and (a, e′, z′) are
both accepting conversations. This allows us to either extract witnesses or get
(K,P ), where K is not an X-key and P is a proof that K is not an X-key.4 If
no witness is obtained, let b′ ∈ {1, 2} indicate whether K is a left or a right
key and give up the experiment and output (b′,K, P ). If a witness is obtained,
the witness contains an opening of each of the commitments to values in the
relation. Thus one of the openings of the E-commitments must be different
than the contradictory ones provided by A.

Assume that the game is never given up and consider the following experi-
ment. We are given as input a system key N and an E-key K. Assume without
loose of generality that we know the index l of a key for which A produces a
double opening with a significant probability. We are going to embed K in the
l’th key requested by A. To do this we pick a random bit b and let Kb = K
and generate K1−b as a random E-key with known E-trapdoor. For all other
key we learn both of the trapdoors.

We then do the above experiment with A using (K0,K1) as the l’th key.
With a significant probability this produces a double opening for the key
(K0,K1), which contains a double opening for K0 or K1. Since all values
handed to A are independent of b, including those handed to A during the
rewinding (because of the two phase structure of the game), this means that
with at least half the probability of generating a double opening for (K0,K1)

4See the relaxation of the extraction in the previous section.
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it will produce a double opening according to the key Kb, a contradiction to
the computational binding.

This means that the game must be given up with significant probability.
Since the values send to A is independent of b the probability that b = b′ is
1
2 . Now consider the following experiment. We run the game as usual except
that the sub keys K1−b for which the trapdoor is not used is replaced by
random X-keys. By the indistinguishability of E-keys and X-keys the game is
still given up with significant probability, but as a proof of K not being an
X-key is output along with K it must now be the case that the probability
that b′ = b is 1 when the game is given up. This essentially makes the game
a distinguisher of E-keys and X-keys, a contradiction. The reduction is left to
the reader. �

In the next sections we will build universally composable commitments
from mixed commitments. To the reader who likes to have a concrete example
of a mixed commitment scheme in mind during the reading, we recommend
reading Section 7.

4 Universally Composable Commitments

4.1 The General Framework

In the framework from [Can01] the security of a protocol is defined in three
steps. First the real-life execution of the protocol is defined. Here the protocol
π is modeled by n interactive Turing Machines P1, . . . , Pn called the parties of
the protocols. Also present in the execution is an adversary A and an environ-
ment Z modeling the environment in which A is attacking the protocol. The
environment gives inputs to honest parties, receives outputs from honest par-
ties, and can communication with A at arbitrary points in the execution. Both
A and Z are PPT interactive Turing Machines. Second an ideal evaluation is
defined. In the ideal evaluation an ideal functionality F is present to which
all the parties have a secure communication line. The ideal functionality is
an interactive Turing Machine defining the desired input-output behavior of
the protocol. Also present is an ideal adversary S, the environment Z, and n
so-called dummy parties P̃1, . . . , P̃n — all PPT interactive Turing Machines.
The only job of the dummy parties is to take inputs from the environment and
send them to the ideal functionality and take messages from the ideal func-
tionality and output them to the environment. This basically makes the ideal
process a trivially secure protocol with the same input-output behavior as the
ideal functionality. The security of the protocol is then defined by requiring
that the protocol emulates the ideal process.

The framework also defines the hybrid models, where the execution pro-
ceeds as in the real-life execution, but where the parties in addition have access
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to an ideal functionality. An important property of the framework is that these
ideal functionalities can securely be replaced with sub-protocols securely real-
izing the ideal functionality. The real-life model including access to an ideal
functionality F is called the F-hybrid model.

Below we add a few more details. For a more elaborate treatment of the
general framework, see [Can01].

The framework as we will be using it models asynchronous authenticated
communication over point-to-point channels, erasure free computation, and
an active adaptive adversary. In the real-life execution all parties are assumed
to share an open point-to-point channel. In the ideal evaluation all parties are
assumed to have a secure channel to the ideal functionality. These assumptions
are modeled by the way the execution proceeds. The environment Z is the
driver of the execution. It can either provide a honest party, Pi or P̃i, with an
input or send a message to the adversary. If a party is given an input, that
party is then activated. The party can then, in the real-life execution, send a
message to another party or give an output to the environment. In the ideal
evaluation an activated party just copies its input to the ideal functionality
and the ideal functionality is then activated, sending messages to the parties
and the adversary according to it program. After the party and/or the ideal
functionality stops, the environment is activated again. If the adversary, A or
S, is activated it can do several things. It can corrupt a honest party, send a
message on behalf of a corrupt party, deliver any message send from one party
to another, or communicate with the environment. On corrupting a party
the adversary sees the entire communication history of that party including
the random bits used in the execution. After the corruption the adversary
sends and receives messages on behalf of the corrupted party. The adversary
controls the scheduling of the message delivery. In the real-life execution
the adversary A can see the contents of all message and may decide which
messages should be delivered and when — it can however not change or add
messages to a channel. In the ideal evaluation the adversary S cannot see the
contents of the messages as the channels are assumed to be secure. It can
only see that a message has been send and can then decide when the message
should be delivered, if ever. If the adversary delivers a message to some party,
then this party is activated and the environment resumes control when the
party stops. At the beginning of the protocol all parties, the adversary, and
the environment is given as input the security parameter k and random bits.
Furthermore the environment is given an auxiliary input z. At some point the
environment stops activating parties and outputs some bit. This bit is taken
to be the output of the execution. We use REALπ,A,Z(k, z) to denote the
random variable describing the real-life execution and use IDEALF ,S,Z(k, z)
to denote the random variable describing the ideal evaluation.

We are now ready to state the definition of securely realizing an ideal
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functionality. For this purpose let REALπ,A,Z denote the distribution ensem-
ble {REALπ,A,Z(k, z)}k∈N ,z∈{0,1}∗ and let IDEALF ,S,Z(k, z) denote the dis-
tribution ensemble {IDEALF ,S,Z(k, z)}k∈N ,z∈{0,1}∗ . We recall the definition
of computationally indistinguishable distribution ensembles over {0, 1}.

Definition 2 (indistinquishable ensembles) We say distribution ensem-
bles X = {X(k, z)}k∈N ,z∈{0,1}∗ and Y = {Y (k, z)}k∈N ,z∈{0,1}∗ over {0, 1} are

indistinguishable (written X
c≈ Y ) if for any c ∈ N there exists k0 ∈ N such

that |Pr[X(k, z) = 1]− Pr[Y (k, z) = 1]| < k−c for all k > k0 and all z.

Definition 3 ([Can01]) We say that π securely realizes F if for all real-life
adversaries A there exists an ideal-evaluation adversary S such that for all
environments Z we have that IDEALF ,S,Z

c≈ REALπ,A,Z .

An important fact about the above security notion is that it is maintained
even if an unbounded number of copies of the protocol (and other protocols)
are carried out concurrently — see [Can01] for a formal statement and proof.
In proving the composition theorem it is used essentially that the environment
and the adversary can communicate at any point in an execution. The price
for this strong security notion, which is called universally composability in
[Can01], is that rewinding cannot be used in the simulation.

4.2 The Commitment Functionality

We now specify the task that we want to implement as an ideal functionality.
We look at a slightly different version of the commitment functionality than
the one in [CF01]. The functionality in [CF01] is only for committing to one
bit. Here we generalize. The domain of our commitments will be the domain
of the special mixed commitment used in the implementation. Therefore the
ideal functionality must specify the domain by giving a system key N . An
important point related to this is that the X-trapdoor of N is revealed to the
adversary in the ideal evaluation. This is to model the fact that the job of the
commitment functionality is to hide the contents the commitments, not to hide
the X-trapdoor of N ; the value N so to say only has the job of specifying the
domain of the commitment scheme. An implementation is therefore entitled to
reveal the X-trapdoor of the N used to specify the domain of the commitment
scheme — as long as commitments hides the values committed to. That the
implementation which we are going to give actually keeps the X-trapdoor of
N hidden relies only on the fact that this X-trapdoor is actually a trapdoor
of the computational assumption on which the security of the implementation
is based. The ideal functionality for homomorphic commitments is named
FHCOM and is as follows.
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0. Generate a uniformly random system key N along with the X-trapdoor
tN . Send N to all parties and send (N, tN ) to the ideal adversary S.

1. Upon receiving (commit, sid, cid, Pi, Pj ,m) from P̃i, where m is in
the domain of system key N , record (cid, Pi, Pj ,m) and send the
message (receipt, sid, cid, Pi, Pj) to P̃j and S. Ignore subsequent
(commit, sid, cid, . . .) messages.

2. Upon receiving (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) from P̃i,
where (cid1, Pi, Pj ,m1), . . . , (cida, Pi, Pj ,ma) has been recorded, R is
an a-ary relation, and (m1,m2, . . . ,ma) ∈ R, send the message
(prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) to P̃j and S.

3. Upon receiving a message (open, sid, cid, Pi, Pj) from P̃i, where (cid, Pi,
Pj ,m) has been recorded, send the message (open, sid, cid, Pi, Pj ,m) to
P̃j and S.

It should be noted that a version of the functionality where N and tN are
not specified by the ideal functionality could be used. We could then let the
domain of the commitments be a domain contained in the domain of all the
system keys.

4.3 The Common Reference String Model

As mentioned in the introduction we cannot hope to construct two-party UCC
in the plain real-life model. We need a that a common reference string (CRS)
with a prescribed distribution is available to the players. In [CF01] the CRS
is modeled by the FCRS-hybrid model, where the ideal functionality FD

CRS,
parameterized by distribution ensemble D = {D(k)}k∈N , proceeds as follows.

1. When initialized, choose a value d from the distribution D(k).

2. When activated on input (value, sid), send d back to the activating
party and the adversary.

This functionality is a slightly modified version of the one from [CF01]. The
difference is that we send d to the adversary. This only makes a difference
if all parties are honest, but in that case it makes an important difference.
The implication of this formulation is that a protocol implementing the FCRS

functionality (e.g. by a multi-party protocol) does not have to guarantee
privacy.

5 UCC with Constant Expansion Factor

We now describe how to construct universally composable commitments from
special mixed commitments.
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5.1 The Commitment Scheme

Given a special mixed commitment scheme com we construct the following
protocol UCCcom.

The CRS The CRS is (N,K1, . . . ,Kn), where N is a random system key
and K1, . . . ,Kn are n random E-keys for the system key N , Ki for Pi.

Committing

C.1 On input (commit, sid, cid, Pi, Pj ,m) party Pi generates a random
commitment key K1 for system key N and commits to it as c1 =
commitKi

(K1, r1), and sends (com1, sid, cid, c) to Pj .5

R.1 The party Pj replies with (com2, sid, cid,K2) for random commit-
ment key K2.

C.2 On a message (com2, sid, cid,K2) from Pj the party Pi computes
K = K1 + K2 and c2 = commitK(m, r2) for random r2. Then
Pi records (sid, cid, Pj ,K,m, r2) and sends the message
(com3, sid, cid,K1, r1, c2) to Pj .

R.2 On a message (com3, sid, cid,K1, r1, c2) from Pi, where c1 =
commitKi

(K1, r1), the party Pj computes K = K1 + K2, records
(sid, cid, Pj ,K, c2), and outputs (receipt, sid, cid, Pi, Pj).

Opening

C.3 On input (open, sid, cid, Pi, Pj), Pi sends (open, sid, cid,m, r2) to
Pj .

R.3 On message (open, sid, cid,m, r2) from Pi party Pj checks if c2 =
commitK(m, r2). If so party Pj outputs (open, sid, cid, Pi, Pj ,m).

Proving Relation

C.4 On input (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida), where
(sid, cid1, Pj ,K1,m1, r1), . . ., (sid, cida, Pj ,Ka,ma, ra) are recorded
commitments, compute a from the recorded witnesses and
compute c3 = commitKi

(a, r3) for random r3 and send
(prv1, sid, cid,R, cid1, . . . , cida, c3) to Pj .

R.4 Generate a random challenge e and send (prv2, sid, cid, Pj , e) to Pi.
C.5 Compute the answer z and send (prv3, sid, cid, a, r3, z) to Pj .
R.5 Check that c3 = commitKi

(a, r3) and that (a, e, z) is an accepting
conversation. If so output (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida).

5We assume that the key space is a subset of the message space. If this is not the case
the message space can be extended to a large enough Ml

N by committing to l values in the
original scheme.
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5.2 The Simulator

Let A be an adversary attacking UCCcom in the Fcom-hybrid model. We
construct a simulator S such that no environment Z can distinguish between A
attacking UCCcom in the CRS-hybrid model and S attacking the ideal process
for FHCOM.

The CRS The CRS is (N,K1, . . . ,Kn), where N is the system key obtained
(along with its X-trapdoor) from the ideal functionality FHCOM and
K1, . . . ,Kn are n random E-keys for the system key N . The keys are
set up such that S knows the E-trapdoors of K1, . . . ,Kn.

Relaying All message from Z to S are relayed to A and all message from A
intended for the environment are relayed to Z.

Committing On input (receipt, sid, cid, Pi, Pj) from the ideal functionality,
where Pi is honest, we know that Z has given P̃i input
(commit, sid, cid, Pi, Pj ,m) for some m ∈ Zns . We have to simulate
Pi’s behavior on the input (commit, sid, cid, Pi, Pj ,m) without knowing
m. We do this as follows.

C.1 Using the E-trapdoor of Ki generate a fake commitment c1 and
proceed as in the protocol.
If Pi is corrupted before the next step, then corrupt Pi in the ideal
evaluation. Then generate random K1 and compute r1 such that
c1 = commitKi

(K1, r1).

C.2 On a message (com2, sid, cid,K2) from Pj generate a random E-key
K for system key N with known E-trapdoor and let K1 = K −
K2. Then compute r1 such that c1 = commitKi

(K1, r1). Finally
generate a fake commitment c2 using the E-trapdoor of K and send
(com3, sid, cid,K1, r1, c2) to Pj .
If Pi is corrupted by A after this step and before Step C.3, then cor-
rupt Pi in the ideal evaluation and learn m. Then construct consis-
tent random bits by generating r2 such that c2 = commitK(m, r2).

Opening (C.3) On input (open, sid, cid, Pi, Pj ,m) from the ideal functional-
ity, where Pi is honest, we know that Z has given P̃i input
(open, sid, cid, Pi, Pj). To simulate this construct r2 as specified in step
C.2 and send (open, sid, cid,m, r2) to Pj .

Receiving a commitment This is how to simulate a honest receiver Pj re-
ceiving a commitment.

R.1 Generate K2 as in the protocol.
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R.2 On receiving the message (com3, sid, cid,K1, r1, c2) from Pi, where
c1 = commitKi

(K1, r1), we have to make P̃j output the value
(receipt, sid, cid, Pi, Pj) in the ideal evaluation.

(a) If the com3-message was send by S, then it was send because
S received a (receipt, sid, cid, Pi, Pj) message from the ideal
functionality and thus P̃j has also been send a
(receipt, sid, cid, Pi, Pj) message from the ideal functionality,
so simply deliver the receipt to P̃j which makes it output the
receipt.

(b) If the com3-message was send by A and K is an X-key, then
use the X-trapdoor of N to decrypt c2 and let m′ denote the
obtained value. If K is an E-key, then let m′ = 0. Then input
(commit, sid, cid, Pi, Pj ,m

′) to the ideal functionality on behalf
of P̃i. Then deliver the receipt to P̃j which makes it output the
receipt.

Receiving an opening (R.3)

This is how to simulate a honest receiver Pj receiving an opening. On
receiving a message (open, sid, cid,m′, r′2) from Pi check whether c2 =
commitK(m′, r′2). If so we must make P̃j output (open, sid, cid, Pi, Pj ,m

′)
in the ideal evaluation.

(a) If the open-message was send by S, then (open, sid, cid, Pi, Pj ,m
′)

has already been send to P̃j by the ideal functionality, so simply
deliver that message and activate P̃j to make it output the message.

(b) If the open-message was send by the adversary, then P̃i is
corrupt and we can input (open, sid, cid, Pi, Pj) on behalf of P̃i to
the ideal functionality. As response S receives a message
(open, sid, cid, Pi, Pj ,m) from the ideal functionality. If m = m′,
then deliver the open-message send to P̃j which makes it output
the message.

(c) If in Case (b) m 6= m′, then give up the simulation.

Proving Relation

C.4 On input (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) from the ideal
functionality we know that the ideal functionality has
recorded (sid, cid1, Pi, Pj ,m1), . . . , (sid, cida, Pi, Pj ,ma), where
(m1, . . . ,ma) ∈ R. Since we do not know the messages m1, . . . ,
ma, we send a fake commitment c3 under key Ki. If Pi is corrupted
before Step C.5, then corrupt P̃i in the ideal evaluation and learn
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the messages m1,m2, . . . ,ma and generate a as in the protocol and
compute r3 such that c2 = commitKi

(a, r3).

C.5 Receive a challenge e. Then compute (a, z) using the honest verifier
simulator and compute r3 such that c3 = commitKi

(a, r3). Then
send (a, z, r3). If Pi is corrupted later, then corrupt P̃i in the ideal
evaluation and learn the message m1,m2, . . . ,ma and use the state
construction property of the Σ-protocol to construct an internal
state consistent with the conversation (a, e, z).

Receiving a Proof of Relation

R.4 Send a random challenge e.

R.5 Check as in the protocol. If the proof is accepted, then we need
to make P̃j output (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida). If the
proof was initiated by the simulator on receiving the value
(prove, sid, cid, Pi, Pj , R, cid1, . . . , cida), then P̃i has received
(prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) as input from Z and de-
livered it to the ideal functionality, which has send the message
(prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) to P̃j and S. We then sim-
ply deliver (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) to P̃j , which
makes P̃j output the desired value. If the proof was initiated by
the adversary, then P̃i is corrupt and we can input (prove, sid, cid,
Pi, Pj , R, cid1, . . . , cida) to the ideal functionality on behalf of it. If
the ideal functionality has recorded (cid1, Pi, Pj ,m1), . . . ,
(cida, Pi, Pj ,ma), where (m1,m2, . . . ,ma) ∈ R, then it sends
(prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) to P̃j and S. If S receives
this message deliver the one send to P̃j as above. If S does not
receive this message, then give up the simulation.

5.3 Analysis

Let REAL(A,Z) denote the distribution of an execution of the protocol and
let IDEAL(S,Z) denote the distribution of the simulation. In order to prove
that REAL(A,Z)

c≈ IDEAL(S,Z) we are going to define two hybrid dis-
tributions HYB1(A,Z) and HYB2(A,Z) and prove the following relations:
REAL(A,Z)

c≈ HYB1(A,Z)
c≈ HYB2(A,Z)

c≈ IDEAL(S,Z).
To produce HYB1(A,Z) we execute the protocol with adversary A and

environment Z with one difference: When generating the keys K1, . . . ,Kn we
learn the E-trapdoors and then generate the values K1 in step C.2 as in the
simulator, i.e. generate them as K1 = K −K2 for random E-key K and then
do a fake opening of c1 to make a consistent state. Further more we do the
proofs of relations as in the simulator.
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To produce HYB2(A,Z) we execute the simulator, but without the knowl-
edge of the X-trapdoor of N . As we cannot do the decryption in R.2.b, we then
always use m = 0. Then in R.3.b instead of delivering (open, sid, cid, Pi, Pj , 0)
to P̃j , we patch the simulation and deliver (open, sid, cid, Pi, Pj ,m

′′), where
m′′ is computed as follows. If the com3-message was send by the simulator,
then since Pi is now corrupt it was corrupted after Step C.2 and S has con-
structed an opening c2 = commitK(m, r2) as specified in Step C.2. We then
take m′′ = m. If the com3-message was send by A, then we take m′′ = m′,
where m′ is the value send by A in the opening. Further more, each time S
is about to give up the simulation in Step R.5, we patch the simulation and
deliver (prove, sid, cid, Pi, Pj , R, cid1, . . . , cida) anyway.

5.3.1 REAL(A,Z) vs. HYB1(A,Z)

The difference between REAL(A,Z) and HYB1(A,Z) is that in HYB1(A,Z)
the keys K used by honest parties in Step C.2 are random E-keys and not
random keys. However random E-keys and random keys are assumed to be
indistinguishable and thus this difference should not be detectable by the
adversary. To prove this rigorously consider the following distinguisher.

The distinguisher is given as input keys K which are either all random
keys or random E-keys. It then generates the keys K1, . . . ,Kn with known
E-trapdoors. Then using these trapdoors it runs a real execution except that
for honest parties the value of K in step C.2 is replaced by a random key
from the distinguisher game and K1 and r1 are computed as in HYB1(A,Z).
Further more, the proofs of relations are done as in the simulator.

Then note that if the keys K from the distinguisher game are all random
keys, then all values are distributed exactly as in a real execution. If on the
other hand the keys K are random E-keys, then all values are distributed
exactly as in HYB1(A,Z). This proves that REAL(A,Z) and HYB1(A,Z)
are computationally indistinguishable.

5.3.2 HYB1(A,Z) vs. HYB2(A,Z)

The only difference between HYB1(A,Z) and HYB2(A,Z) is the following.
In HYB1(A,Z) the (open, sid, cid, Pi, Pj ,m) value output by honest Pj when
receiving correct opening message (open, sid, cid,m′, r′2) in R.3 always hasm =
m′. In HYB2(A,Z) this is also the case if the com3-message was send by S.
However, if the com3-message was send by the adversary, then the m output is
the one for which an opening c2 = commitK(m, r2) was computed in Step C.2
when Pi was corrupted. Note however, that if m 6= m′, then S knows its own
opening c2 = commitK(m, r2) and the new opening c2 = commitK(m′, r′2)
send by the adversary. Since the X-key of N is not used when producing
HYB1(A,Z) and HYB2(A,Z) one can easily prove that m 6= m′ therefore
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only occurs with negligible probability using Lemma 1. This reduction is an
easier case of the one done in the next section and we leave the details to the
reader.

5.3.3 HYB2(A,Z) vs. IDEAL(S,Z)

There are two differences between HYB2(A,Z) and IDEAL(S,Z). First of all
in IDEAL(S,Z) the simulator S might give up in R.5, whereas in HYB2(A,Z)
the simulation is patched. To prove that this difference is negligible it is enough
to prove that the simulator gives up in IDEAL(S,Z) only with negligible
probability. For the second difference, in HYB2(A,Z), when a honest Pj

receives a correct opening message (open, sid, cid,m′, r′2) in R.3 and when the
com3-message was send by A, then the (open, sid, cid, Pi, Pj ,m) value output
has m = m′, where m′ is the value send by A in the opening. In IDEAL(S,Z)
the value of m is the one computed in Step R.2.b. To prove that this difference
is negligible it is enough to prove that these two values are different only with
negligible probability. Observe that to be different it must be the case that
the key K used is an E-key as X-keys are perfect binding. All in all, it is
therefore enough to prove that when the com3-message is send by A, then the
key K is an X-key except with negligible probability and that the simulation
is only given up in R.5 with negligible probability.

For sake of contradiction assume that an E-key is used with probability
p1 and that the probability that no E-key is used, but the simulation is given
up in R.5 is p2, where p1 + p2 is significant. Then consider the following
lunchtime opening game, where we set the set E to be the set of E-keys. We
get a random system key N . Then request a key generation and get E-key
K. Then uniformly pick one of the parties Ps and use the key received as
the key Ks for Ps. For the remaining parties we generate keys and learn the
corresponding E-trapdoors. We then generate HYB2(A,Z) with the following
differences: First of all we request a trapdoor commitment for Ks from the
game each time we would have used the E-trapdoor of Ks in Step C.1 and
we ask for an opening each time such is needed in Step C.1 or C.2. Second,
the proofs of relation are done with the game for key Ks. Finally, the random
E-key K generated in C.2 is generated by requesting a key generation in the
game and the fake commitment under K in C.2 is generated by requesting a
commitment generation, and when a fake opening is needed for K in C.2 or
C.3 we ask for this opening in the game. Finally all the proofs of relations
(C.4 and C.5) are done by having the adversary doing them with the game.

If Ps is ever corrupted we go to the test phase in the lunchtime opening
game and each time a com1-message is received from the now corrupt Ps we
give the commitment c from the message to the lunchtime opening game and
receive as a challenge a uniformly random K2 and send K2 to Ps, and if c
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is ever opened, then if the value K1 opened to is such that K1 + K2 is an
E-key, we score one point in the game. Also, all the proofs of relation done
by the adversary (R.4 and R.5) are done with the game as proof of relation
tests (this requires that the keys in the test are either generated due to key
generation requests or are X-key, which is proven to be the case except with
negligible probability in the following paragraph). Each time the simulation
is given up in R.5, then if an opening is known for all the commitments and
these openings are in the relation, then give them to the game and score one
point.

That p1 is negligible follows directly from the assumption that the score
in the lunchtime opening game is negligible. We prove that p2 is negligible.
Assume for the sake of contradiction that p2 is significant. This means that
with a significant probability the simulation is given up and an opening is
known for all E-commitments in the relation given up on. This is so as for the
E-commitments generated by S, S generated an opening, and a commitment
generated by the adversary is never an E-commitment. Further more the value
of the openings of the E-commitments together with the values extractable6

from the X-commitments are exactly those recorded in the ideal simulator,
and since the simulation is given up we thus conclude that the openings are
not in the relation. Since we only give up if the proof of relation succeeded
we can hand the contradictory openings of the E-commitments to the game
and scored one point. This implies that the expected score is significant in
contradiction to Lemma 1.

We have proven the following theorem.

Theorem 1 If com is a special mixed commitment scheme, then the protocol
UCCcom securely realizes FHCOM in the CRS-hybrid model.

5.4 Perfect Hiding and Perfect Binding

The scheme described above has neither perfect binding nor perfect hiding.
Here we construct a version of the commitment scheme with both perfect
hiding and perfect binding. The individual commitments are obviously not
simultaneously perfect hiding and perfect binding, but it can be chosen at
the time of commitment whether a commitment should be perfect binding or
perfect hiding and proofs of relations can include both types of commitments.
We sketch the scheme and the proof of its security. The details are left to the
reader.

In the extended scheme we add to the CRS a random E-key KE and a ran-
dom X-key KX (both for system key N). Then to do a perfect binding com-

6Observe that we need not actually extract the values, as the lunchtime opening game
only requires to see openings of the E-commitments. This is an important detail as we do
not know the X-trapdoor.
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mitment to m the committer will in Step C.2 compute c2 = commitK(m, r2)
as before, but will in addition compute c3 = commitKX

(m, r3). To open the
commitment the committer will then have to send both a correct opening
(m, r2) of c2 and a correct opening (m, r3) of c3. This is perfect binding as the
X-key commitment is perfect binding.

To do a perfect hiding commitment the committer computes a uniformly
random message m and commits with c2 = commitK(m + m, r2) and c3 =
commitKE

(m, r3). To open to m the committer must then send a correct
opening (m2, r2) of c2 and a correct opening (m3, r3) of c3 for which m2 =
m3 +m. This is perfect hiding because c3 hides m perfectly and m+m thus
hides m perfectly.

To do the simulation simply let the simulator make the excusable mistake
of letting KE be a random X-key and letting KX be a random E-key. This
mistake will allow to simulate and cannot be detected by the assumption
that both E-keys and X-keys are indistinguishable from random keys, the
switch can be handled between REAL(A,Z) and HYB1(A,Z). In the perfect
binding version both K and KX will then be E-keys when the simulator does
a commitment, which allows to fake. When the adversary does a commitment
K will (except with negligible probability p1) be an X-key and the simulator
can extract m from commitK(m). In the perfect hiding version both K and
KE will (except with negligible probability p1) be X-keys when the adversary
does a commitment, which allows to extract. When the simulator commits,
K will be an E-key, which allows to fake an opening by faking commitK(m).

In the version with perfect binding the proofs of relation can be used
directly for the modified version by doing the proof on the commitK(m) values.
In the version with perfect hiding there is no general transformation that will
carry proofs of relations over to the modified system. If however there is a proof
of additive relation, then one can publish commitK(m) and prove that the sum
of the values committed to by commitK(m) and commitKE

(m) is committed
to by commitK(m + m), and then use the commitment commitK(m) when
doing the proofs of relation.

To see that this is secure assume that the adversary succeeds in proving a
relation which is not meet by the values input to the ideal functionality by the
simulator. We can safely exclude the case where an E-key has been generated
by the adversary as it occurs with negligible probability p1. This means that
the simulator knows the opening of all the commitK(m) commitments and
the opening of the commitKE

(m) and commitK(m+m) commitments for the
perfect hiding commitments, and that the value of these openings were those
used to compute the input to the ideal functionality. This means that either
1) the adversary has proven a relation for the commitK(m) commitments and
the simulator knows contradictory openings or 2) the adversary has proven an
additive relation among commitK(m), commitKE

(m), and commitK(m +m)
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and the simulator knows a contradictory opening. In both cases the simulator
scores one point in the lunchtime opening game and both cases must thus
occur with negligible probability.

6 A Special Mixed Commitment Scheme based on
the p-Subgroup Assumption

In this section we provide our first construction of a special mixed commitment.
It is build on the encryption scheme from [OU98].

6.1 Key Space, Message Space, and Committing

Let p and q be random k-bit primes, where p 6= q and gcd(p− 1, q) = gcd(q −
1, p) = 1. Let n = pq and let N = pn. The system key will be (N, g), where
g = (1 + n)mgrg

p mod N for random rg ∈ Z∗
N . The X-trapdoor will be (p, q).

The key space will be Z∗
N and the message space will be {0, 1}k−1, both have

the necessary group structure. The E-keys will be P = {rp mod N |r ∈ Z∗
N}

and the X-keys will be Z∗
N \ P . The density of both E-keys and X-keys are

obviously as required.
To sample an E-key simply let K = rN mod N for random r ∈ Z∗

N . It
is clear that P is a subgroup of Z∗

N of size φ(n) = (p − 1)(q − 1). Since
r 7→ rp mod N is a homomorphism from Z∗

N to P it is p to 1, and since
gcd(p− 1, q) = gcd(q− 1, q) = 1, the map r 7→ rpq mod N is an automorphism
on P . Therefore the map r 7→ rN = (rp)pq is p to 1 in Z∗

N . Thus rN mod N
is a random E-key for random r ∈ Z∗

N .
To sample a random X-key let m be a random element from Z∗

p, let r be
a random element for Z∗

N , and let K = gmrN mod N . It is easy to see that
(1 + n)i ≡ 1 + in (mod N). Thus (n + 1) has order p in Z∗

N and Z∗
N/P =

{(1 + n)iP |i ∈ Z∗
p}. Thus gmrN = (1 + n)mgm(rgmprN ) is a random element

from Z∗
N \ P .

The key spaces are indistinguishable relative to the p-subgroup assumption,
that uniformly random elements from P are indistinguishable from uniformly
random elements from Z∗

N . For details, see [OU98].
We commit as c = commitK(m, r) = KmrN mod N .

6.2 Equivocability

Assume that K is an E-key K = rN
K mod N . Then c = (rm

Kr)
N . Assume that

we are given any message m ∈ ZNs and let r = rm−m
K r mod N .

Then commitK(m, r) ≡ KmrN ≡ KmrN (mod N). Further more it is
easy to see that if c = commitK(m, r̃), then r̃ = r. This proves that rK gives
equivocability.
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6.3 Extraction

Let K = (n + 1)mgmK (rmK
g rK)N mod N be an X-key, i.e. mK ∈ Z∗

p. Assume
that c can be opened to m ∈ {0, 1}k−1. I.e. there exists r ∈ Z∗

N such that
c ≡ KmrN ≡ (n+ 1)mgmKm(rmKm

g rm
Kr)

N (mod N). Let λ = lcm(p− 1, q − 1)
and let

d = cλ mod N

= (n + 1)λmgmKm((rmKm
g rm

Kr)
pλ(p−1,q−1))pq mod N

= 1 + (λmgmKm)n mod N .

Since λmgmK ∈ Z∗
p we can efficiently compute α, β ∈N such that

α(d − 1) mod N = (1 + βp)mn mod N
= mn mod N
= mn

and from this number we can compute m. This proves that (p, q) allows
extraction.

6.4 The Transformation

The transformed scheme has keys which are pairs of keys and commits as
(C1, C2) = (Km1

1 rN
1 mod N,Km2

2 rN
2 mod N), where r1, r2 are random in Z∗

N ,
m1 is random in {0, 1}k−1, and m = m1 ⊕m2, where ⊕ denotes bit-wise xor.

In the following we are going to provide proofs of relations for the trans-
formed scheme with message space {0, 1}.

6.5 Proof of Commitment to 0 (Base Scheme)

To prove that a commitment C in the base scheme commits to 0 (i.e. C ∈ P )
one has to prove knowledge of r such that C = rN mod N . Here is a protocol
for doing that.

1. The prover is given r ∈ Z∗
N , computes D = sN mod N for random

s ∈ Z∗
N , and sends D to the verifier.

2. The verifier sends random e < 2k−1.

3. The prover sends t = sre mod N .

4. The verifier checks that tN ≡ DCe (mod N).
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The correctness is obvious. For the special soundness note that if two
different challenges e1, e2 are answered correctly, we have

tN1 ≡ DCe1 (mod N), tN2 ≡ DCe2 (mod N) ,

which allows us to compute r ∈ Z∗
N such that

C = rN mod N .

For the special honest verifier zero-knowledge, given a challenge e pick
t ∈ Z∗

N at random and let D = tNC−e mod N . When given r such that
C = rN mod N in the state construction, let s = tr−1 mod N . Then s is
uniform in Z∗

N and sN ≡ tN (rN )−1 ≡ D (mod N) as desired.

6.6 Proof of Commitment to 1 (Base Scheme)

To prove that a commitment C commits to 1 under the key K (i.e. C ∈ KP )
simply prove that C/K ∈ P using the above proof.

6.7 Monotone Logical Combination of Non-Erasure Σ-Proto-
cols

Using techniques from [CDS94] we can now combine the proofs of committing
to 0 and the proof of committing to 1 using monotone logical circuits to ob-
tain proof of relations between the transformed commitments. We review the
construction for disjunction here and verify that it preserves the non-erasure
property.

Assume that we are given non-erasure Σ-protocols for relations R0 and R1

and that we want a non-erasure Σ-protocol for the relation ((x0, x1), (b, w)) ∈
R⇔ (xb, w) ∈ Rb.

1. The input of the prover is (x0, x1, b, w), where b ∈ {0, 1} and (xb, w) ∈
Rb. Compute a random challenge e1−b < 2k−1 and using the honest
verifier simulator compute a1−b, z1−b such that (x1−b, a1−b, e1−b, z1−b) is
an accepting conversation. Then using (xb, w) compute the first message
ab in the protocol for Rb and send (a0, a1) to the verifier.

2. The verifier sends random e < 2k−1.

3. The prover sets eb = e − e1−b mod 2k−1 and computes zb such that
(xb, ab, eb, zb) is an accepting conversation, and sends (e0, e1, z0, z1) to
the verifier.

4. The verifier checks that e0 + e1 = e mod 2k−1 and (x0, a0, e0, z0) and
(x1, a1, e1, z1) are accepting conversations.
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The correctness is obvious. For the special soundness assume that two
challenges e, e′ are answered correctly, with e = e0 + e1 mod 2k−1 and e′ =
e′0 + e′1 mod 2k−1. This means that either e0 6= e′0 or e1 6= e′1, which allows to
extract a witness.

For the special honest verifier zero-knowledge assume that we are given
challenge e. Then pick e0 and e1 as random values for which e = e0 + e1 mod
2k−1 and using the honest verifier simulator compute accepting conversations
(x0, a0, e0, z0) and (x1, a1, e1, z1). When given (b, w) in the state construction
e1−b is uniformly random and eb = e − e1−b mod 2k−1 and (a1−b, z1−b) was
generated using the honest verifier simulator as required. To construct an
internal state consistent with (ab, zb) being generated as in the protocol with
challenge eb, use the state construction property of Rb.

6.8 Proof of Binary Boolean Relations

We show how to combine the proof of committing to 0 and the proof of com-
mitting to 1 using a monotone logical circuit to obtain proofs of binary Boolean
relations by using the conjunctive relation as an example. We are given com-
mitments (C1, C2), (C3, C4), (C5, C6), where

C1 = Km1
1 rNs

1 mod N s+1, C2 = Km2
2 rNs

2 mod N s+1

C3 = Km3
3 rNs

3 mod N s+1, C4 = Km4
4 rNs

4 mod N s+1

C5 = Km5
5 rNs

5 mod N s+1, C6 = Km6
6 rNs

6 mod N s+1

(m1 ⊕m2) ∧ (m3 ⊕m4) = (m5 ⊕m6) .

To prove knowledge, simply prove

[(m1 ∈ P ∧m2 ∈ P ∨m1 ∈ K1P ∧m2 ∈ K2P )
∨

(m3 ∈ P ∧m4 ∈ P ∨m3 ∈ K3P ∧m4 ∈ K4P ]
∧

(m5 ∈ P ∧m6 ∈ P ∨m5 ∈ K5P ∧m6 ∈ K6P )∨
(m1 ∈ P ∧m2 ∈ K2P ∨m1 ∈ K1P ∧m2 ∈ P )

∧
(m3 ∈ P ∧m4 ∈ K4P ∨m3 ∈ K3P ∧m4 ∈ P )

∧
(m5 ∈ P ∧m6 ∈ K6P ∨m5 ∈ K5P ∧m6 ∈ P ) .

As a final remark on verifying Boolean relations, note that if (C1, C2) is
a commitment to m, then (K1C

−1
1 , C2) is a commitment to 1 − m, so this
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implements Boolean negation assuming m is a 0/1 value. This, together with
the monotone logical combinations of proofs we have seen above is clearly
enough to verify any relation defined by a binary Boolean function f , i.e., we
obtain a proof that committed values m1,m2,m3 are 0/1 values and satisfy
f(m1,m2) = m3. Summarizing, we have:

Theorem 2 Relative to the p-subgroup assumption, the above is a special
mixed commitment scheme. When restricted to message space {0, 1} the scheme
has proofs of relations between committed values for all relations of the form
m3 = f(m1,m2), where f is a binary Boolean function.

7 A Special Mixed Commitment Scheme based on
the DCRA

In this section we describe another special mixed commitment scheme. It is
based on the decisional composite residuosity assumption (DCRA) introduced
in [Pai99]. The scheme has a constant expansion factor and allows efficient
proofs of additive and multiplicative relations.

7.1 Key Space, Message Space, and Committing

LetN = pq be an RSA modulus and let s ≥ 0 be some fixed constant. Consider
the map ψ : ZNs×Z∗

N → Z∗
Ns+1 given by (m, r) 7→ (N+1)mrNs

mod N s+1. In
[DJN01] it is proven that ψ is an isomorphism, where ψ(m1, r1)eψ(m2, r2) mod
N s+1 = ψ(em1 +m2 mod N s, re

1r2 mod N), and that it can be efficiently in-
verted given the factorization of N . Further more it is proven that if the
DCRA holds, then elements of the form ψ(0, r) cannot be distinguished from
elements of the form ψ(m, r), where r is uniformly random from Z∗

N and m
is any fixed element m ∈ ZNs . We will use this to construct a special mixed
commitment scheme.

The system key will be a random RSA-modulus N = pq, where p and q
are k-bit primes, and some fixed s and the X-trapdoor will be (p, q). The
key space will be Z∗

Ns+1 and the message space will be ZNs , both have the
necessary group structure. The E-keys will be elements of the form ψ(0, r)
and the E-trapdoor will be r. The X-keys will be the elements of the form
ψ(m, r), where m ∈ Z∗

Ns . The density in the key space of both the E-keys
and the X-keys are obviously as required and the keys can be sampled as
required. Further more random E-keys, random X-keys, and random keys are
computationally indistinguishable by the DCRA as discussed above.

Given a key K ∈ Z∗
Ns+1 and a message m ∈ ZNs , let r be a uniformly

random element from Z∗
N and commit as c = commitK(m, r) = KmrNs

mod
N s+1.
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7.2 Equivocability

Assume that K is an E-key K = ψ(0, rK). Then c = ψ(0, rK)mψ(0, r) =
ψ(0, rm

Kr mod N). Assume that we are given any messagem ∈ ZNs and let r =
rm−m
K r mod N . Then commitK(m, r) = ψ(0, rm

Kr mod N) = ψ(0, rm
Kr mod

N) = c. Further more commitK(m, r̃) = c implies that r̃ = r. This proves
that rK gives equivocability.

7.3 Extraction

Assume that K is an X-key K = ψ(mK , rK). Assume that c can be opened
to m, i.e. there exists r such that c = ψ(mK , rK)mψ(0, r) = ψ(mmK mod
N s, rm

Kr mod N). Given the X-trapdoor (p, q) we can by [DJN01] invert ψ on
K and c and compute mK and mmK mod N s. Since mK ∈ Z∗

Ns this allows
us to compute m. This proves that (p, q) allows extraction.

7.4 The Transformation

The transformed scheme has keys (K1,K2), which are pairs of keys, and com-
mits as

commitK1,K2(m, (r1, r2,m1)) = (Km1
1 rNs

1 mod N s+1,Km2
2 rNs

2 mod N s+1)

where r1, r2 are random in Z∗
N , m1 is random in ZNs , and m2 = m−m1 mod

N s.

7.5 Proof of Multiplicative Relation

We are given commitments (C1, C2), (C3, C4), (C5, C6), where

C1 = Km1
1 rNs

1 mod N s+1, C2 = Km2
2 rNs

2 mod N s+1

C3 = Km3
3 rNs

3 mod N s+1, C4 = Km4
4 rNs

4 mod N s+1

C5 = Km5
5 rNs

5 mod N s+1, C6 = Km6
6 rNs

6 mod N s+1

(m1 +m2)(m3 +m4) ≡ (m5 +m6) (mod N s) .

To prove knowledge we send

C7 = Km3
5 rNs

7 mod N s+1, C8 = Km4
6 rNs

8 mod N s+1

C1 = Km1
1 rNs

1 mod N s+1, C2 = Km2
2 rNs

2 mod N s+1

C3 = Km3
5 rNs

3 mod N s+1, C4 = Km4
6 rNs

4 mod N s+1

C7 = Km3
5 rNs

7 mod N s+1, C8 = Km4
6 rNs

8 mod N s+1

C5 = K
m3(m1+m2)+m
5 rNs

5 mod N s+1

C6 = K
m4(m1+m2)−m
6 rNs

6 mod N s+1 ,
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where the values r7, r8,mi, ri,m are chosen at random in the respective do-
mains. After receiving e < 2k−1 we let l = m6+m5−(m1+m2)(m3+m4)

Ns and send
the following values (except m̃1, m̃2, m̃3, m̃4, m̃):

m̃1 = em1 +m1, m̃
(r)
1 = m̃1 mod N s, r̃1 = Km̃1 div Ns

1 re
1r1 mod N

m̃2 = em2 +m2, m̃
(r)
2 = m̃2 mod N s, r̃2 = Km̃2 div Ns

2 re
2r2 mod N

m̃3 = em3 +m3, m̃
(r)
3 = m̃3 mod N s

r̃3 = Km̃3 div Ns

3 re
3r3 mod N, r̃7 = Km̃3 div Ns

5 re
7r7 mod N

m̃4 = em4 +m4, m̃
(r)
4 = m̃4 mod N s

r̃4 = Km̃4 div Ns

4 re
4r4 mod N, r̃8 = Km̃4 div Ns

6 re
8r8 mod N

m̃ = em5 +m3(m1 +m2 − m̃1 − m̃2) +m, m̃(r) = m̃ mod N s

r̃5 = Km̃ div Ns

5 r5r
e
5r

−(m̃1+m̃2)
7 mod N

r̃6 = K
−(m̃ div Ns)+[el+(m3+m4)((m̃1 div Ns)+(m̃2 div Ns))]
6 r6r

e
6r

−(m̃1+m̃2)
8 mod N .

The verifier checks that

Ce
1C1 ≡ Km̃

(r)
1

1 r̃Ns

1 , Ce
2C2 ≡ Km̃

(r)
2

2 r̃Ns

2 (mod N s+1)

Ce
3C3 ≡ Km̃

(r)
3

3 r̃Ns

3 , Ce
4C4 ≡ Km̃

(r)
4

4 r̃Ns

4 (mod N s+1)

Ce
7C7 ≡ Km̃

(r)
3

5 r̃Ns

7 , Ce
8C8 ≡ Km̃

(r)
4

6 r̃Ns

8 (mod N s+1)

Ce
5C5 ≡ Cm̃

(r)
1 +m̃

(r)
2

7 Km̃(r)

5 r̃Ns

5 (mod N s)

Ce
6C6 ≡ Cm̃

(r)
1 +m̃

(r)
2

8 K−m̃(r)

6 r̃Ns

6 (mod N s) .

7.5.1 Correctness

We check the last equivalence. The other equivalences are checked using sim-
pler computations. To check the equivalence it is enough to prove that

Ce
6C6K

m̃(r)

6 r̃−Ns

6 C
−(m̃

(r)
1 +m̃

(r)
2 )

8 ≡
Kem6

6 re
6
Ns

K
m4(m1+m2)−m
6 rNs

6 Km̃(r)

6 r̃−Ns

6 K
−m4(m̃

(r)
1 +m̃

(r)
2 )

6 (rm̃
(r)
1 +m̃

(r)
2

8 )−Ns ≡
1 (mod N s+1) .
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By collecting terms in the exponent of K6, this follows from the following
computation

m4(m1 +m2) + em6 −m−m4(m̃
(r)
1 + m̃

(r)
2 )

+N s(m̃ divN s − [el + (m3 +m4)((m̃1 divN s)

+ (m̃2 divN s))]) + m̃(r)

≡m4(m1 +m2) + em6 −m+ m̃−m4(m̃
(r)
1 + m̃

(r)
2 )

−N s[el + (m3 +m4)((m̃1 divN s) + (m̃2 divN s))]
≡m4(m1 +m2) + e(m6 +m5)

+m3(m1 +m2 − m̃1 − m̃2)−m4(m̃
(r)
1 + m̃

(r)
2 )

−N sel − (m3 +m4)(N s(m̃1 divN s) +N s(m̃2 divN s))
≡m4(m1 +m2) + e(m6 +m5) +m3(m1 +m2)

−N sel − (m3 +m4)(m̃1 + m̃2)
≡(m3 +m4)(−em1 +−em2) + e(m6 +m5)−N sel

≡e[−(m3 +m4)(m1 +m2) + (m6 +m5)− lN s] ≡ 0 (mod N s) .

7.5.2 Special Soundness

Assume that two different challenges ẽ, e are answered correctly. This gives us

C ẽ
1C1 ≡ Km̃1

1 r̃Ns

1 , C
e
1C1 ≡ Km1

1 rNs

1

and thus

C
ẽ−e
1 ≡ Km̃1−m1

1 (r̃1r−1
1 )N

s
.

Since ẽ − e < p, q we can using the extended Euclid’s algorithm compute α
and β s.t.

1 = αN s + β(ẽ− e) .
Now let

m1 = β(m̃1 −m1) mod N s, u1 = β(m̃1 −m1) divN s

r1 = (r̃1r−1
1 )βCα

1 K
u1
1 mod N .

Then it is easy to see that C1 = Km1
1 rNs

1 mod N s+1. In the same way we can
write

C1 = Km1
1 rNs

1 mod N s+1, C2 = Km2
2 rNs

2 mod N s+1

C3 = Km3
3 rNs

3 mod N s+1, C4 = Km4
4 rNs

4 mod N s+1

C7 = Km3
5 rNs

7 mod N s+1, C8 = Km4
6 rNs

8 mod N s+1

C5 = Km5
5 rNs

5 mod Bs+1, C6 = Km6
6 rNs

6 mod Bs+1
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where

m1 = β(m̃1 −m1) mod N s, m2 = β(m̃2 −m2) mod N s

m3 = β(m̃3 −m3) mod N s, m4 = β(m̃4 −m4) mod N s

m5 = β(m3((m̃1 + m̃2)− (m1 +m2) + m̃−m)) mod N s

m6 = β(m4((m̃1 + m̃2)− (m1 +m2) +m− m̃)) mod N s .

This is exactly what we want as

m6 +m5 ≡ (m3 +m4)(β(m̃1 −m1) + β(m̃2 −m2))
≡ (m3 +m4)(m1 +m3) (mod N s) .

7.5.3 Special Honest Verifier Zero-Knowledge

We can assume without lose of generality that we know m3 and that we know
t6 such that K6 = tN

s

6 mod N s+1. Now pick r7, v8, m̃
(r)
1 , r̃1, m̃

(r)
2 , r̃2, m̃

(r)
3 , r̃3,

m̃
(r)
4 , r̃4, r̃7, r̃8, m̃

(r), r̃5, r̃6 at random, and then let

C7 = Km3
5 rNs

7 , C8 = vNs

8

C1 = K
m̃

(r)
1

1 r̃Ns

1 C−e
1 , C2 = K

m̃
(r)
2

2 r̃Ns

2 C−e
2

C3 = K
m̃

(r)
3

3 r̃Ns

3 C−e
3 , C4 = K

m̃
(r)
4

4 r̃Ns

4 C−e
4

C7 = K
m̃

(r)
3

5 r̃Ns

7 C−e
7 , C8 = K

m̃
(r)
4

6 r̃Ns

8 C−e
8

C5 = C
m̃

(r)
1 +m̃

(r)
2

7 Km̃(r)

5 r̃Ns

5 C−e
5 , C6 = C

m̃
(r)
1 +m̃

(r)
2

8 K−m̃(r)

6 r̃Ns

6 C−e
6

7.5.4 State Construction

After the special honest verifier simulation we are given

C1 = Km1
1 rNs

1 , C2 = Km2
2 rNs

2

C3 = Km3
1 rNs

3 , C4 = Km4
2 rNs

4

C5 = Km5
1 rNs

5 , C6 = Km6
2 rNs

6

where
(m1 +m2)(m3 +m4) ≡ (m5 +m6) (mod N s) .

Let l = m6+m5−(m1+m2)(m3+m4)
Ns and let r8 = v8t

−m4
6 mod N such that

C7 = Km3
5 rNs

7 , C8 = Km4
6 rNs

8 .
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Then let

m1 = m̃
(r)
1 − em1 mod N s, m̃1 = em1 +m1

r1 = r̃1r
−e
1 K

−(m̃1 div Ns)
1 mod N

m2 = m̃
(r)
2 − em2 mod N s, m̃2 = em2 +m2

r2 = r̃2r
−e
2 K

−(m̃2 div Ns)
2 mod N

m3 = m̃
(r)
3 − em3 mod N s, m̃3 = em3 +m3

r3 = r̃3r
−e
3 K

−(m̃3 div Ns)
3 mod N

m4 = m̃
(r)
4 − em4 mod N s, m̃4 = em4 +m4

r4 = r̃4r
−e
4 K

−(m̃4 div Ns)
4 mod N

r7 = r̃7r
−e
7 K

−(m̃3 div Ns)
5

r8 = r̃8r
−e
8 K

−(m̃4 div Ns)
6

m = m̃(r) − em5 −m3(m1 +m2 − m̃1 − m̃2) mod N s

m̃ = em5 +m3(m1 +m2 − m̃1 − m̃2) +m

r5 = r̃5r
−e
5 rm̃1+m̃2

7 K
−(m̃ div Ns)
5

r6 = r̃6r
−e
6 rm̃1+m̃2

8 K
(m̃ div Ns)−[el+(m3+m4)((m̃1 div Ns)+(m̃2 div Ns))]
6 .

It is straightforward to verify that these values all have the required distribu-
tion.

7.6 Proof of Identity and Proof of Additive Relation

A proof of identity between committed values can be extracted from the above
proof of multiplicative relation, by setting m3 = 1 and m4 = 0. The proof can
be somewhat simplified by eliminating the unnecessary values C3, C4, C7, C8.

A proof of additive relation between commitments using the same key,
(Km1

1 rNs

1 ,Km2
2 rNs

2 ), (Km3
1 rNs

3 ,Km4
2 rNs

4 ), and (Km5
1 rNs

1 ,Km6
2 rNs

2 ), where (m1+
m2)+(m3+m4) = m5+m6, can be constructed by proving that the base com-
mitments C1 = Km1+m3−m5

1 (r1r3r−1
5 )N

s
and C2 = Km6−m2−m4

2 (r6r−1
2 r−1

4 )N
s

commit to the same value. Arbitrary commitments can be brought on this re-
stricted form by recommitting in some common key and then using the proof
of identity to check that this was done correctly. A proof that C1 and C2

commit to the same value can be constructed in line with the proof of identity
of the transformed scheme.
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7.7 Proof of Binary Boolean Relations

The proof that two committed values are identical implies a proof that a com-
mitted value equals a public constant, and hence, using the same techniques
as in Section 6.7, a proof that a committed value equals 0 or 1. It is well
known that multiplication and addition in any ring can be used to simulate
Boolean operations efficiently, when the input is constrained to 0/1 values, so
we obtain therefore immediately proofs for any relation defined by a binary
Boolean function f , i.e., a proof that committed values m1,m2,m3 are 0/1
values and satisfy f(m1,m2) = m3.

Theorem 3 Relative to the DCRA, the above commitment scheme is a spe-
cial mixed commitment scheme with proofs of relations between committed
values for identity, additive relation, multiplicative relation ( modN s), and for
Boolean relations defined by any binary Boolean function.

8 Efficient Universally Composable Zero-Knowledge
Proofs

In [CF01] Canetti and Fischlin showed how universally composable commit-
ments can be used to construct simple Zero-Knowledge (ZK) protocols which
are universally composable. This is a strong security property, which implies
concurrent and non-malleable ZK proof of knowledge.

The functionality FR
ZK for universally composable zero-knowledge (for bi-

nary relation R) is as follows.

1. Wait to receive a value (verifier, id, Pi, Pj , x) from some party Pi.
Once such a value is received, send (verifier, id, Pi, Pj , x) to S, and
ignore all subsequent (verifier, . . .) values.

2. Upon receipt of a value (prover, id, Pj , Pi, x
′, w) from Pj , let v = 1 if

x = x′ and R(x,w) holds, and v = 0 otherwise. Send (id, v) to Pi and
S, and halt.

In [CF01] a protocol for Hamiltonian-Cycle (HC) is given and proven to
securely realize FHC

ZK .

8.1 Exploiting the Multi-Bit Commitment Property

First we show how the fact that we can commit to k bits using O(k) bits of
communication can be used to reduce the communication complexity of known
solutions.

Before describing this optimization we demonstrate the technique from
[CF01] to get a similar protocol for satisfiability of Boolean circuits (SAT).
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Parts of the following treatment will be very close in structure and text to the
one in [CF01], but we include it for completeness.

A Boolean circuit C consists of l inputs and m binary gates. (For no-
tational reason we only consider binary gates.) The binary gates are named
Gl+1, . . . , Gl+m. The binary gate Gi is a tuple (i1, i2, Gi,0,0, Gi,0,1, Gi,1,0, Gi,1,1),
where i1, i2 < i and Gi,0,0, Gi,0,1, Gi,1,0, Gi,1,1 ∈ {0, 1}. An evaluation
eval(C, x) = (G1(x), . . . , Gl+m(x)) ∈ {0, 1}l+m of C on input x ∈ {0, 1}l
is given by Gi(x) = xi for i = 1, . . . , l, Gi(x) = Gi,Gi1

(x),Gi2
(x) for i =

l + 1, . . . , l +m. We let C(x) denote Gl+m(x).
A scrambler is a value S ∈ {0, 1}l+m, where Sl+m = 0. An S-scrambling of

circuit C is a circuit S(C), where for i = l + 1, . . . , l +m the gate G′
i is given

by G′
i = (i1, i2, G′

i,0,0, G
′
i,0,1G

′
i,1,0G

′
i,1,1), where Gi,b1,b2 = Gi,b1⊕Si1

,b2⊕Si2
⊕ Si.

An S-scrambling of input x is S(x) = (x1 ⊕ S1, . . . , xl ⊕ Sl). Note that
eval(S(G), S(x)) = eval(G,x) ⊕ S.

The protocol, which we name SAT, proceeds as follows.

1. Given input (Prover, id, P, V,C, x), where C is a circuit and x is an
input for the circuit the prover proceeds as follows. If C(x) = 0, then
P sends a message reject to V . Otherwise, P proceeds as follows for
j = 1, . . . , t.

(a) Pick a uniformly random scrambler Sj and compute xj = Sj(x)
and Cj = Sj(C).

(b) Using Fcom commit to the bits of the scrambler.

(c) Using Fcom commit to xj and under commitment id (j, i, b1, b2)
commit to Gj

i,b1,b2
for i = l+1, . . . , l+m, b1 ∈ {0, 1}, and b2 ∈ {0, 1}.

2. Given input (Verifier, id, V, P,C), the verifier waits to receive either
reject from P , or receipts from Fcom. If reject is received, then V
outputs (id, 0) and halts. Otherwise, once all the receipts are received
V randomly chooses t bits c1, . . . , ct and sends these to P .

3. Upon receiving c1, . . . , ct from V , P proceeds as follows for j = 1, . . . , t.

(a) If cj = 0, then reveal Sj and Cj.

(b) If cj = 1, then reveal xj and for each gate Gj
i = (i1, i2, G

j
i,0,0, G

j
i,0,1,

Gj
i,1,0, G

j
i,1,1) open the commitment with id (j, i,Gj

i1
(xj), Gj

i1
(xj)).

4. Upon receiving the appropriate (Open, . . .) messages from Fcom the ver-
ifier V verifies the following for all j = 1, . . . , t. If cj = 0, then it
holds that Cj = Sj(C). If cj = 1, then it holds that the revealed
xj, vl+1, . . . , vl+m are consistent with a acceptance, i.e. if gate i1 was
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open to v1 and gate i2 was open to v2, then for gate i the commitment
with id (j, i, v1, v2) was opened, and further more gate l+m was opened
to 1.

Theorem 4 The protocol SAT securely realizes FSAT
ZK in the Fcom-hybrid model.

Proof (sketch): Let A be an adversary attacking SAT in the Fcom-hybrid
model. We construct a simulator S such that no environment Z can distinguish
between A attacking SAT in the Fcom-hybrid model and S attacking the ideal
process for FSAT

ZK .
The simulator S runs a simulated copy of A. Messages from Z are relayed

to A and messages from A to its environment are relayed to Z. Other types
of messages are handled as follows.

1. If A, controlling a corrupted party P , starts an interaction as a prover
with an uncorrupted party V , then S records the values that A sends
to Fcom, sends challenges c1, . . . , ct as in the protocol, and records A’s
responses. Now S simulates V ’s decision and if V accepts, then S tries
to find a witness x and hands it to the ideal functionality. If such a
witness cannot be found the simulator aborts.

To find the witness S finds a j, where cj = 1 and Cj = Sj(C). It is
proven below that the probability of not finding such j is less than 2−t/2.
Let xj and vl+1, . . . , vl+m be the values revealed by A and let x be given
by xi = xj

i ⊕ Sj
i . Then eval(C, x) = (xj

1, . . . , x
j
l , vl+1, . . . , vl+m) ⊕ Sj.

To see this observe that for i = 1, . . . , l we have that Gi(x) = xi =
xj

i ⊕ Sj
i and for i = l + 1, . . . , l + m we inductively have that Gi(x) =

Gi,Gi1
(x),Gi2

(x) = G
i,vi1

⊕Sj
i1

,vi2
⊕Sj

i2

= Gi,vi1
,vi2
⊕ Sj

i = vi⊕ Sj
i . Especially

we have that C(x) = vl+m ⊕ Sj
l+m = 1⊕ 0 = 1 and thus x is a witness.

2. If an uncorrupted party P starts an interaction with a corrupted party
V , then S learns from the ideal functionality FSAT

ZK whether V should
accept or reject, and simulates the view of A accordingly. Note that
S has no problem carrying out the simulation since it simulates for A
an interaction with Fcom where Fcom is played by S. Thus, S is not
bound by the “commitments” and can “open” them in whichever way it
pleases.

3. If two uncorrupted parties P and V interact, then S simulates for A
the appropriate protocol messages. This is very similar to the case of
corrupted verifier, since the protocol is a Σ-protocol.

4. Party corruptions are dealt with in a straightforward way. Since the
protocol is a Σ-protocol, corrupting the verifier provides the adversary
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with no extra information. When the prover is corrupted S corrupts the
prover in the ideal process, obtains x, and generates an internal state of
the prover that matches the protocol stage. Generating such a state is
not problematic since S is not bound by any “commitments”, and it can
freely choose the remaining values to match the (simulated) conversation
up to the point of corruption.

Given that S does not abort in Step 1, the validity of the simulation is
straightforward. We prove that the probability that a proof is accepted and
there does not exist j, where cj = 1 and Cj = Sj(C), is less than 2−t/2.

Assume that the expected number of indices j where Cj = Sj(C) is at
least t/2. Then the probability that cj = 0 for all these indices is less than
2−t/2 and thus the probability that there does not exist j, where cj = 1 and
Cj = Sj(C), is less than 2−t/2. Assume on the contrary that the expected
number of indices j, where Cj = Sj(C), is less than t/2. Then with probability
less than 2−t/2 we have cj = 1 on all the indices where Cj 6= Sj(C) and thus
the probability of acceptance is less than 2−t/2. �

We now show how to use our new universally composable commitments to
make the protocol more efficient.

For each value of j the protocol commits to 2l + 5m − 1 bits. Of these,
the 2l + m − 1 bits of xj and Sj are always either revealed or not. We can
therefore efficiently commit to them using the multi-bit commitments.

We cannot however not commit to the remaining 4m commitments using
multi-bit commitments. The reason for this is that if cj = 0 all the bits should
be revealed and if cj = 1, then only a subset S of them should be revealed,
and more importantly, revealing the subset S in case cj = 0 would effectively
reveal x.

In [KMO89] Kilian, Micali, and Ostrovski presented a general technique
for transforming a multi-bit commitment scheme into a multi-bit commitment
scheme with the property that individual bits can be open independently.
Unfortunately their technique adds one round of interaction. However, we
do not need the full generality of their result. This allows us to modify the
technique to avoid the extra round of interaction. Let m ∈ {0, 1}4m denote the
bits to be committed to and let S ∈ {0, 1}4m denote the subset {i|Si = 1} of the
entries of m which should be revealed if cj = 1. Then m should be revealed if
cj = 0 and (S,m∧S) should be revealed if cj = 1. Then do the commitment by
generating a uniformly random pad m′ ∈ {0, 1}4m and committing to the four
values m′, m⊕m′, S, and m′ ∧ S individually using multi-bit commitments.
The verifier then challenges uniformly with dj ∈ {0, 1, 2}. If dj = 0, then
reveal m and m⊕m′. If dj = 1, then reveal m⊕m′, S and m′∧S and thereby
m ∧ S = (m ⊕m′) ∧ S ⊕ (m′ ∧ S). If dj = 2, then reveal m′, S, and m′ ∧ S
and let the verifier check the consistency of these values.
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The extension of the above analysis to consider the modified protocol is
straightforward. In Step 1 find a j, where dj = 1 and Cj = Sj(C) and the
committed values are consistent. Then proceed as before. It is easy to see
that the probability that such a j does not exist is less than 2−t/3.

It is clear that we can achieve the same error probability as in the original
protocol by increasing t by a constant factor of 3/2. Furthermore, the number
of bits committed to for each scrambling is the same up to a constant fac-
tor. Therefore, if we implement the modified protocol using our commitment
scheme, we get communication complexity O((l+m+ k)t), where k is the se-
curity parameter of the commitment scheme and t is the number of iterations
in the zero-knowledge proof. This follows because we can commit to O(l+m)
bits by sending O(l+m+ k) bits. This can be compared to the O((l+m)kt)
bits we would need for SAT using the commitments from [CF01]; this is an
improvement by a factor θ( (l+m)k

(l+m)+k ).

8.2 Exploiting Efficient Proofs of Relations

Here we show how we can use the homomorphic properties and/or efficient
proofs of relations on committed values to reduce the communication complex-
ity and the round complexity in a different way. This is done by “evaluating”
the circuit using the proofs of relations.

1. Given input (Prover, id, P, V,C, x), where C is a circuit and x is an input
for the circuit, the prover proceeds as follows. If C(x) = 0, then P sends
a message reject to V . Otherwise, compute eval(G,x) = (v1, . . . , vl+m)
and using FHCOM commit to the bits of eval(G,x), except vl+m.

Then for each gate Gi = (i1, i2, Gi,0,0, Gi,1,0, Gi,0,1, Gi,1,1), i = l+1, . . . , l+
m−1, P proves (using FHCOM) that the commitments to vi, vi1 , and vi2

are in the binary Boolean relation specified by (Gi,0,0, Gi,1,0, Gi,0,1, Gi,1,1).
And for Gl+m = (i1, i2, Gl+m,0,0, Gl+m,1,0, Gl+m,0,1, Gl+m,1,1), proves
that vi1 and vi2 are in the relation Gl+m,vi1

,vi2
= 1. This can be done by

committing to 1 (using FHCOM) and then doing a proof on the commit-
ments.

2. Given input (Verifier, id, V, P,C), the verifier waits to receive either
reject from P , or receipts and proofs from FHCOM. If reject is re-
ceived, then V outputs (id, 0) and halts. Otherwise, once all the appro-
priate receipts and proofs are received V outputs (id, 1).

The following theorem is straightforward.

Theorem 5 The protocol SAT2 securely realizes FSAT
ZK in the FHCOM-hybrid

model.
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This protocol has no messages of its own. All interaction is done through
FHCOM. The security notion guarantees that the security is preserved under
any scheduling of the messages of the underlying FHCOM protocol. This es-
pecially allows us to run the overall zero-knowledge proof as a Σ-protocol by
bundling the messages when our implementation of the commitment protocol
is used. This protocol requires O(l + m) commitments to single bits, each
of which require O(k) bits of communication. Then we need to do O(l +m)
proofs of relations, each of which require O(k+ t) bits of communication using
our implementation and assuming that we want an overall error probability of
2−Ω(t). This amounts to O((l + m)(k + t)) bits of communication, and is an
improvement over the O((l +m)kt) bits for the original protocol, namely by
a factor O( kt

k+t).
This is incomparable to the optimization using multi-bit commitments.

But note that in the theory of zero-knowledge protocols, sometimes one only
considers the case where all parameters are linear in the size m of the common
input. In this case, both optimizations improve from O(m3) to O(m2) bits.
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