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Universal Hash Proofs and a Paradigm for Adaptive Chosen

Ciphertext Secure Public-Key Encryption

Ronald Cramer∗ Victor Shoup†

October 12, 2001

Abstract

We present several new and fairly practical public-key encryption schemes and prove them
secure against adaptive chosen ciphertext attack. One scheme is based on Paillier’s Decision
Composite Residuosity (DCR) assumption [7], while another is based in the classical Quadratic
Residuosity (QR) assumption. The analysis is in the standard cryptographic model, i.e., the
security of our schemes does not rely on the Random Oracle model.

We also introduce the notion of a universal hash proof system. Essentially, this is a special
kind of non-interactive zero-knowledge proof system for an NP language. We do not show that
universal hash proof systems exist for all NP languages, but we do show how to construct very
efficient universal hash proof systems for a general class of group-theoretic language membership
problems.

Given an efficient universal hash proof system for a language with certain natural cryp-
tographic indistinguishability properties, we show how to construct an efficient public-key en-
cryption schemes secure against adaptive chosen ciphertext attack in the standard model. Our
construction only uses the universal hash proof system as a primitive: no other primitives are re-
quired, although even more efficient encryption schemes can be obtained by using hash functions
with appropriate collision-resistance properties.

We show how to construct efficient universal hash proof systems for languages related to the
DCR and QR assumptions. ¿From these we get corresponding public-key encryption schemes
that are secure under these assumptions. We also show that the Cramer-Shoup encryption
scheme (which up until now was the only practical encryption scheme that could be proved
secure against adaptive chosen ciphertext attack under a reasonable assumption, namely, the
Decision Diffie-Hellman assumption) is also a special case of our general theory.

1 Introduction

It is generally considered that the “right” notion of security for security for a general-purpose
public-key encryption scheme is that of security against adaptive chosen ciphertext attack.

This notion was introduced by Rackoff and Simon [8]. While there are weaker notions of security,
such as that defined by Naor and Yung [6], experience in the design and analysis of cryptographic
protocols has shown that security against adaptive chosen ciphertext attack is both necessary and
sufficient in many applications. Dolev, Dwork, and Naor [4] introduced the notion of non-malleable
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encryption, which turns out to be equivalent to the notion of security against adaptive chosen
ciphertext attack (at least, when one considers the strongest possible type of adversary).

Although Rackoff and Simon defined the notion of security against adaptive chosen ciphertext
attack, they did not actually present a scheme that satisfied this property. Indeed, although they
present an encryption scheme, it requires the involvement of a trusted third party that plays a special
role. Dolev, Dwork, and Naor present a scheme that can be proven secure against adaptive chosen
ciphertext attack under a reasonable intractability assumption. However, although their scheme is
polynomial time, it is horrendously impractical, and so although their scheme is a valuable proof
of concept, it appears that it has no practical significance.

Up until now, the only practical scheme that has been proposed that can be proven secure
against adaptive chosen ciphertext attack under a reasonable intractability assumption is that of
Cramer and Shoup [3]. This scheme is based on the Decision Diffie-Hellman (DDH) assumption,
and is not much less efficient than traditional ElGamal encryption.

Other practical schemes have been proposed and heuristically proved secure against adaptive
chosen ciphertext. More precisely, these schemes are proven secure under reasonable intractability
assumptions in the Random Oracle model [1]. The Random Oracle model is an idealized model of
computation in which a cryptographic hash function is modeled as a black box, access to which is
allowed only through explicit oracle queries. While the Random Oracle model is a useful heuristic,
it does not rule out all possible attacks: a scheme proven secure in this model might still be subject
to an attack “in the real world,” even though the stated intractability assumption is true, and even
if there are no particular weaknesses in the cryptographic hash function.

1.1 Our Contributions

We present several new and fairly practical public-key encryption schemes and prove them secure
against adaptive chosen ciphertext attack. One scheme is based on Paillier’s Decision Composite
Residuosity (DCR) assumption [7], while another is based in the classical Quadratic Residuosity
(QR) assumption. The analysis is in the standard cryptographic model, i.e., the security of our
schemes does not rely on the Random Oracle model.

We also introduce the notion of a universal hash proof system. Essentially, this is a special
kind of non-interactive zero-knowledge proof system for an NP language. We do not show that
universal hash proof systems exist for all NP languages, but we do show how to construct very
efficient universal hash proof systems for a general class of group-theoretic language membership
problems.

Given an efficient universal hash proof system for a language with certain natural cryptographic
indistinguishability properties, we show how to construct an efficient public-key encryption schemes
secure against adaptive chosen ciphertext attack in the standard model. Our construction only
uses the universal hash proof system as a primitive: no other primitives are required, although
even more efficient encryption schemes can be obtained by using hash functions with appropriate
collision-resistance properties.

We show how to construct efficient universal hash proof systems for languages related to the
DCR and QR assumptions. ¿From these we get corresponding public-key encryption schemes that
are secure under these assumptions.

The DCR-based scheme is very practical. It uses an n-bit RSA modulusN (with, say, n = 1024).
The public and private keys, as well as the ciphertexts, require storage for O(n) bits. Encryption
and decryption require O(n) multiplications modulo N2.

2



The QR-based scheme is somewhat less practical. It uses an n-bit RSA modulus N as above, as
well as an auxiliary parameter t (with, say, t = 128). The public and private keys require O(nt) bits
of storage, although ciphertexts require just O(n + t) bits of storage. Encryption and decryption
require O(nt) multiplications modulo N .

We also show that the original Cramer-Shoup scheme follows from of our general construction,
when applied to a universal hash proof system related to the DDH assumption.

1.1.1 Organization of the paper

The sections of this paper are organized as follows:

§2 recalls some basic terminology;

§3 recalls the classical notion of “universal hashing,” and introduces a generalization which we
call “universal projective hashing.”

§4 formalizes the notion of a “subset membership problem”;

§5 introduces the notion of a “universal hash proof system,” which is based on “universal pro-
jective hashing,” and “subset membership problems”;

§6 presents a generic construction for building a secure public-key encryption scheme using a
“universal hash proof system” for a “hard subset membership problem.”

§7 shows how to build practical “universal hash proof systems” for a general class of group-
theoretic “subset membership problems.”

§8 presents several new and fairly practical encryption schemes based on the preceding general
constructions, including one based on the DCR assumption, and one based on the QR as-
sumption, and also shows that the original Cramer-Shoup encryption scheme follows from
these general constructions as well.

2 Some Preliminaries

We recall some basic cryptographic terminology.
A function f(k) mapping non-negative integers to non-negative reals if called negligible (in k)

if for all c ≥ 1, there exists k0 > 0 such that f(k) ≤ 1/kc for all k ≥ k0.
Let X and Y be random variables taking values in a finite set S. The statistical difference

between X and Y is defined to be

Dist(X,Y ) =
1
2
·
∑

s∈S

|Pr[X = s] − Pr[Y = s]| .

Equivalently,
Dist(X,Y ) = max

S′⊂S

∣∣Pr[X ∈ S′] − Pr[Y ∈ S′]
∣∣ .

Let X = {Xk}k≥0 and Y = {Yk}k≥0 be sequences of random variables, where for each k ≥ 0, Xk

and Yk take values in a finite set Sk. Then we say that X and Y are statistically indistinguishable
if Dist(Xk, Yk) is a negligible function in k. For computational purposes, we will generally work in
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a setting where the sets Sk can be encoded as bit strings whose length is polynomial in k. For any
probabilistic algorithm A that outputs 0 or 1, we define the distinguishing advantage for A (with
respect to X and Y) as the function

DistX,Y
A (k) =

∣∣∣Pr[A(1k,Xk) = 1] − Pr[A(1k, Yk) = 1]
∣∣∣ .

Here, the notation 1k denotes the unary encoding of k as a sequence of k copies of 1, and the
probability distribution comprises the random coin tosses of the algorithm A and the distributions
of Xk and Yk. We say that X and Y are computationally indistinguishable if for all probabilistic,
polynomial-time A, the function DistX,Y

A (k) is negligible in k.

3 Universal Projective Hashing

Before defining universal projective hash functions, we present various basic definitions of families
of hash functions related to the general notion of “universal hashing” [2, 9].

3.1 Universal Hashing

Let H, X, Π be non-empty finite sets, and let F : H ×X → Π be a function. We write Fh(x) for
F applied to (h, x); moreover, it will often be natural to view h ∈ H as a function from X to Π,
defined (in terms of F ) as h(x) = Fh(x).1 Such a function h is called a hash function. With F
implicitly understood, H = (H,X,Π) is called a family of hash functions, and each h ∈ H a hash
function.

Definition 1 A family H = (H,X,Π) of hash functions is pair-wise independent if the following
holds. Let h ∈ H be selected uniformly at random. Then, for all x, x∗ ∈ X with x 6= x∗, the values
h(x) and h(x∗) are uniformly and independently distributed in Π.

Let H = (H,X,Π) be a family of hash functions. Let h ∈ H be selected uniformly at random.
For all x ∈ X and π ∈ Π, define p1(x, π) as the probability that h(x) = π when h ∈ H is chosen

at random. Define p1(H) as the maximum of p1(x, π), taken over all x ∈ X and all π ∈ Π.
Similarly, for all x, x∗ ∈ X such that x 6= x∗ and for all π, π∗ ∈ Π, define p2(x, π|x∗, π∗) as

the conditional probability that h(x) = π, given that h(x∗) = π∗. Finally, define p2(H) as the
maximum of p2(x, π|x∗, π∗), taken over all x, x∗ ∈ X such that x 6= x∗ and all π, π∗ ∈ Π.

Definition 2 Let ε ≥ 0 be a real number. A family H of hash functions is ε-universal if p1(H) ≤ ε.

Definition 3 Let ε ≥ 0 be a real number. A family H of hash functions is ε-universal2 if p1(H) ≤ ε
and p2(H) ≤ ε.

Note that by setting ε = 1/|Π|, Definition 1 is a special case of Definition 3.
The following lemma is an alternative characterization of Definition 2 that will be useful in the

sequel.

Lemma 1 Let H = (H,X,Π) be a family of hash functions. For h ∈ H and for x ∈ X, define
b(h, x) as the number of h′ ∈ H such that h′(x) = h(x). Then for ε ≥ 0, H is ε-universal if and
only if for all x ∈ X and for all h ∈ H it holds that b(h, x) ≤ ε · |H|.

1Note that different elements of H may represent the same function.
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3.2 Definition of Universal Projective Hashing

We now introduce the concept of universal projective hashing. Let (H,X,Π) be a family of hash
functions. Let L be a non-empty, proper subset of X, and let X − L denote the set X with
the exclusion of L. Let S be a finite, non-empty set, and let α : H → S be a function. Set
H = (H,X,L,Π, S, α).

Definition 4 H = (H,X,L,Π, S, α), defined as above, is called a family of projective hash func-
tions (for (X,L)) if for all h ∈ H, the action of h on L is determined by α(h).

In other words, for all h ∈ H, the element α(h) “encodes” the action of h on L (and possibly
more than that), so that given α(h) and x ∈ L, the value h(x) is uniquely determined.

For all h ∈ H, let Hh denote as the collection of all h′ ∈ H with α(h′) = α(h). Note that, in
particular, h ∈ Hh. We also define the family of hash functions Hh = (Hh,X − L,Π).

Definition 5 Let ε ≥ 0 be a real number. A family of projective hash functions H =
(H,X,L,Π, S, α) is ε-universal (respectively, ε-universal2) if for all h ∈ H, it holds that Hh =
(Hh,X − L,Π) is a family of ε-universal (respectively, ε-universal2) hash functions.

We will sometimes refer to the value of ε in the above definition as the “error” or “error rate”
of H.

We now discuss the motivation for Definition 5. Let H be a family of ε-universal projective
hash functions. Suppose h ∈ H is chosen uniformly at random. ¿From the projective property
from Definition 4, if α(h) is given, the value h(x) is completely determined for all x ∈ L, yet the
action of h on X − L is still unpredictable. More precisely, if h ∈ H is chosen at random, and
if an adversary is given α(h), he cannot guess the value of h(x) for x ∈ X − L with probability
better than ε. If H is a family of ε-universal2 projective hash functions, then it holds additionally
that even given h(x∗) for x∗ ∈ X of the adversary’s choice, he cannot guess the value of h(x) for
x ∈ X − L with x 6= x∗ with probability better than ε.

Note that Definition 5 does not rule out the possibility that α(h) decreases the uncertainty
about the action of h on X − L: some information about this action may leak when α(h) is given,
as long as the above conditional guessing probabilities for the action on X − L are at most ε.

Families satisfying Definition 5 are trivial to construct, at least from a combinatorial point of
view. For instance, let H = (H,X,Π) be a universal family, and L be a subset of X, and let c ∈ Π
be a constant. Then define S = {c}, and for all h ∈ H, define α(h) = c, and re-define h by setting
h ≡ c on L. The resulting family H = (H,X,Π,Π, α) of projective hash functions is 1/|Π|-universal.
However, in our applications later on, we want these hash functions to be efficiently computable on
all of X, even if L is hard to distinguish from X −L. Therefore, the trivial “solution” above is not
useful in that scenario of interest.

We will need a variation of universal projective hashing, which we call smooth projective hash-
ing.

Let H = (H,X,L,Π, S, α) be a family of projective hash functions. We define two distributions.
Distribution U(H) is the distribution on triples (x, s, π) ∈ (X − L) × S × Π obtained by sampling
x ∈ X −L at random, h ∈ H at random, and π ∈ Π at random, and setting s = α(h). Distribution
V (H) is the distribution on triples (x, s, π) ∈ X × S × Π obtained by sampling x ∈ X − L at
random, and h ∈ H at random, and setting s = α(h) and π = h(x).
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Definition 6 Let ε ≥ 0 be a real number. A family H of projective hash functions is ε-smooth if
the statistical difference between U(H) and V (H) is at most ε.

We point out a couple of obvious facts. Let H = (H,X,L,Π, S, α) be family of projective hash
functions. First, if H is 1/|Π|-universal, then it is 0-smooth, i.e., “perfectly” smooth. Second,
if L ⊂ X ′ ⊂ X with |X ′ − L|/|X − L| = 1 − δ, and (H,X ′, L,Π, S, α) is ε-smooth, then H is
(ε+ δ)-smooth.

3.3 Some Elementary Reductions

We show some elementary reductions among the various notions introduced. Most of the reductions
given here are primarily theoretically motivated. Later on, in a specialized context, we present
reductions that are considerably more efficient.

3.3.1 Reducing the error rate

Let H = (H,X,L,Π, S, α) be a family of ε-universal (ε-universal2) projective hash functions. The
construction below reduces ε to εt, by simple t-fold “parallelization.”

Let t be a positive integer, and define H = (Ht,X,L,Πt, St, α) as follows.
For h = (h1, . . . , ht) ∈ Ht, the action of h on X is defined as

h : X → Πt,

x 7→ (h1(x), . . . , ht(x)),

and
α(h) = (α(h1), . . . , α(ht)).

The proof of the following lemma is straightforward.

Lemma 2 Let H = (H,X,L,Π, S, α) be a family of ε-universal (ε-universal2) projective hash func-
tions, and let t be a positive integer. Then H = (Ht,X,L,Πt, St, α), as defined above, is a family
of εt-universal (εt-universal2) projective hash functions.

3.3.2 From universal projective to universal2 projective

Let H = (H,X,L,Π, S, α) be a family of ε-universal projective hash functions. The next construc-
tion turns H into a family of ε-universal2 projective hash functions for (X,L).

Suppose that for positive integers n and m, each element x ∈ X has a unique encoding as an
n-bit string, and that each element π ∈ Π has a unique encoding as an m-bit string. Hence, we may
view X as a subset of {0, 1}n and Π as a subset of {0, 1}m. Then H = (H2n,X,L, {0, 1}m, S2n, α)
is defined as follows.

For h = ((h1,0, h1,1), . . . , (hn,0, hn,1)) ∈ H2n, the action of h on X is defined as

h : X → {0, 1}m,

x 7→ ⊕n
i=1hi,xi(x),

where x = (x1, . . . , xn) ∈ {0, 1}n is the bit representation of x ∈ X, and

α(h) = (α(h1,0), α(h1,1), . . . , α(hn,0), α(hn,1)).

6



Lemma 3 Let H = (H,X,L,Π, S, α) be a family of ε-universal projective hash functions. Suppose
that elements of X are uniquely coded as n-bit strings and that elements of Π are uniquely coded as
m-bit strings. Then H = (H2n,X,L, {0, 1}m, S2n, α), as defined above, is a family of ε-universal2
projective hash functions.

Proof. It is immediate that Definition 4 is satisfied. As to Definition 5, let h ∈ H2n be chosen
uniformly random.

First, we have to show, for all x ∈ X − L, it holds that given α(h), the value π = h(x) can be
guessed with probability at most ε.

Let (x1, . . . , xn) be the bit representation of x. Suppose, for the sake of the argument, that in
addition to α(h), also h1,x1 , . . . , hn−1,xn−1 are given. In this setting, to guess h(x), it remains to
guess hn,xn . Since all of the hi,xi ’s are chosen uniformly random and independently from H, this
task is equivalent to guessing hn,xn(x), given just α(hn,xn). Since H is ε-universal, this guessing
probability is at most ε.

To finish the proof, it is sufficient to extend the setting above so that in addition (x∗, π∗) ∈
X×{0, 1}m such that h(x∗) = π∗ is given, and to show that, for all x ∈ X−L with x 6= x∗, the value
h(x) = π cannot be guessed with probability better than ε. But this follows by the same argument
as above, when using the fact that H is ε-universal2, and assuming without loss of generality that
x and x∗ differ in the last bit, i.e., xn 6= x∗n.

4

The following construction is a variation on Lemma 3. It extends the sets X and L by taking
the Cartesian product of these sets with a fixed finite set E. Such extensions will prove useful in
the sequel.

Let E be a finite set, and suppose that X × E is identified with a subset of {0, 1}n by some
injective encoding function. Similarly, suppose that Π is identified with a subset of {0, 1}m.

We set H = (H2n,X × E,L× E, {0, 1}m, S2n, α). The action is defined as follows.
Let h = ((h1,0, h1,1), . . . , (hn,0, hn,1)) ∈ H2n. The action of h on X × E is defined as follows.

h : X × E → {0, 1}m,

(x, e) 7→ ⊕n
i=1hi,yi(x),

where (x, e) = (y1, . . . , yn) ∈ {0, 1}n is the bit representation of (x, e). The definition of α is the
same as in Lemma 3.

The proof of the following lemma is essentially the same as the proof of Lemma 3.

Lemma 4 Let H = (H,X,L,Π, S, α) be a family ε-universal projective hash functions. Let E
be a finite set, and suppose that X × E is identified with a subset of {0, 1}n by some injective
encoding function. Similarly, suppose that Π is identified with a subset of {0, 1}m. Then the family
H = (H2n,X × E,L × E, {0, 1}m, S2n, α) of projective hash functions, with the action as defined
above, is ε-universal2

3.3.3 From universal projective to smooth projective

Let H = (H,X,L,Π, S, α) be a family of ε-universal projective hash functions. The next construc-
tion turns H into a family H of δ-smooth projective hash functions for (X,L), where the hash
outputs are l-bit strings, provided ε and l are not too big, and δ is not too small.

7



The construction is a simple application of the Leftover Hash Lemma (a.k.a., Entropy Smoothing
Lemma; see, e.g., [5, p. 86]).

Fix an integer l ≥ 1, and let F = (F ,Π, {0, 1}l) be a pair-wise independent family of hash
functions. Such a family can easily be constructed using well-known and quite practical techniques
based on arithmetic in finite fields. We do not discuss this any further here.

We define the family H = (H,X,L, {0, 1}l , S, α) as follows. The collection H of hash functions
is F ×H, where the value of (f, h) ∈ F ×H on x ∈ X is defined to be f(h(x)). Also, S = F × S.
The map α sends (f, h) ∈ F ×H to (f, α(h)) ∈ F × S.

It is clear that H satisfies the basic requirements of a family of projective hash functions.

Lemma 5 Let H be an ε-universal family of projective hash functions, and let H be the corre-
sponding family of projective hash functions as defined above, whose outputs are l-bit strings. For
any integer e ≥ 0 such that l + 2e ≤ log2(1/ε), H is a 2−(e+1)-smooth family of projective hash
functions.

Proof. Let U(H) and V (H) be the distributions defined in the paragraph preceding Defini-
tion 6. Each of these is a distribution on triples (x, (f, s), z) ∈ X × (F × S) × {0, 1}l. In both
distributions, x is randomly sampled from X − L, h is randomly sampled from H, f is randomly
sampled from F , and s = α(h). In the first distribution, z is a random bit string, while in the
second, z = f(h(x)).

For fixed values x ∈ X − L and s ∈ S, consider the corresponding conditional distributions
U(H | x, s) and V (H | x, s). Now, conditioning on a fixed x and s as above, by the definition of
ε-universal projective hashing, the distribution of h(x) in this conditional probability space has
min-entropy at least log2(1/ε); further, f is still independently and uniformly distributed over F .
The Leftover Hash Lemma then directly implies that the statistical difference between U(H | x, s)
and V (H | x, s) is at most 2−(e+1). Since this bound holds uniformly for all x, s, it follows that the
statistical difference between U(H) and V (H) is also at most 2−(e+1).

4

4 Subset Membership Problems

In this section we define a class of NP languages with some natural cryptographic indistinguisha-
bility properties. The definitions below capture the natural properties of well-known cryptographic
problems such as the Quadratic Residuosity and Decision Diffie-Hellman problems, as well as
others.

A subset membership problem L is a collection {Lk}k≥0 of distributions. For every value of a
security parameter k ≥ 0, Lk is a probability distribution of instance descriptions.

An instance description Λ specifies the following:

• Finite sets X and L, such that L is a proper, non-empty subset of X.

• A finite, non-empty set W .

• A binary relation R ⊂ X ×W such that for all x ∈ X, we have (x,w) ∈ R for some w ∈ W
if and only if x ∈ L.

8



We write Λ[X,L,W,R] to indicate that the instance Λ specifies X, L, W and R as above. When
x ∈ L and w ∈W with (x,w) ∈ R, we say that w is a witness for x ∈ L. For all k ≥ 0, [Lk] denotes
the instances that are assigned non-zero probability in the distribution Lk.

A subset membership problem also provides several algorithms. For this purpose, we require
that instance descriptions, as well as elements of the sets X and W , can be uniquely encoded as
bit strings of length polynomially bounded in k.

The following algorithms are provided:

• a probabilistic, polynomial time sampling algorithm that on input 1k samples an instance Λ
according to the distribution Lk.

Note that for technical reasons, we shall only require that the output distribution of the
sampling algorithm on input 1k be statistically indistinguishable from Lk; in particular, with
negligible probability, the sampling algorithm may output something that is not even an
element of [Lk].

• a deterministic, polynomial time algorithm that takes as input 1k for k ≥ 0, an instance
Λ[X,L,W,R] ∈ [Lk], and x ∈ {0, 1}∗, and checks correctly whether x is a valid binary
encoding of an element of X.

• a deterministic, polynomial time algorithm that takes as input 1k for k ≥ 0, an instance
Λ[X,L,W,R] ∈ [Lk] and x ∈ X and w ∈W and correctly decides whether (x,w) ∈ R.

• a probabilistic, polynomial time sampling algorithm that takes as input 1k for k ≥ 0 and an
instance Λ[X,L,W,R] ∈ [Lk], and outputs a random x ∈ L, together with a witness w ∈ W
for it.

We only require that the distribution of the value x output by the algorithm be statistically
close to the uniform distribution on L.

This completes the definition of a subset membership problem.
We next define the notion of a hard subset membership problem. Intuitively, this means that

it is computationally hard to distinguish random elements of L from random elements of X − L.
We now formulate this notion more precisely.

Let L = {Lk}k≥0 be a subset membership problem. We define two sequences of distributions,
{UL

k }k≥0 and {V L
k }k≥0, as follows. Fix k ≥ 0. The distribution UL

k is the distribution on pairs
(Λ, x), where Λ[X,L,W,R] is sampled from from Lk, and x is sampled at random from L. The
distribution V L

k is the same distribution on pairs (Λ, x), except that x is sampled at random from
X − L.

Definition 7 Let L be a subset membership problem. We say that L is hard if the two sequences
of distributions {UL

k }k≥0 and {V L
k }k≥0 are computationally indistinguishable.

5 Universal Hashing Proof Systems

5.1 Hash proof systems

Let L = {Lk}k≥0 be a cryptographic subset membership problem as defined in §4.
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Briefly, a hash proof system (HPS) H for L associates with each instance Λ[X,L,W,R] of L a
family HΛ = (H,X,L,Π, S, α) of projective hash functions for (X,L).

The system also provides efficient algorithms to carry out basic operations we have defined for
the families of projective hash functions, such as sampling a random hash function h ∈ H and
computing α(h) given h, as well as computing h(x) given h and x. We call this latter algorithm the
private evaluation algorithm for H. Moreover, a crucial property is that the system provides an
efficient algorithm to compute h(x), given α(h), x, and w, where x ∈ L and w is a corresponding
witness. We call this algorithm the public evaluation algorithm for H.

To be more precise, for each k ≥ 0 and for each Λ = Λ[X,L,W,R] ∈ [Lk], a hash proof system
H for L specifies a family HΛ = (H,X,L,Π, S, α) of projective hash functions.

Furthermore, the system provides the algorithms briefly mentioned above, and which we now
characterize in more detail.

These algorithms work with polynomially bounded bit strings to represent elements of H, Π
and S. We also assume that these algorithms use the same encodings of the sets X, L and W as
the algorithms from the subset membership problem L.

The following algorithms are provided:

• a probabilistic, polynomial time algorithm that takes as input 1k and an instance Λ ∈ [Lk],
and outputs a uniformly random hash function h ∈ H.

Actually, it is technically convenient to only require that the output of the sampling algorithm
is statistically indistinguishable from the uniform distribution.

• a deterministic, polynomial time algorithm that takes as input 1k, an instance Λ ∈ [Lk],
h ∈ H, and outputs s ∈ S such that α(h) = s, where HΛ = (H,X,L,Π, S, α).

• a deterministic, polynomial time algorithm that takes as input 1k, an instance Λ ∈ [Lk],
h ∈ H and x ∈ X, and outputs π ∈ Π such that h(x) = π, where HΛ = (H,X,L,Π, S, α).

This is the private evaluation algorithm.

• a deterministic, polynomial time algorithm that takes as input 1k, an instance Λ ∈ [Lk], s ∈ S
such that α(h) = s for some h ∈ H, and x ∈ L together with a witness w ∈ W for it, and
outputs π ∈ Π such that h(x) = π, where HΛ = (H,X,L,Π, S, α).

This is the public evaluation algorithm.

• a deterministic, polynomial time algorithm that takes as input 1k, an instance Λ ∈ [Lk],
and π ∈ {0, 1}∗, and determines if π is a valid encoding of an element of Π, where HΛ =
(H,X,L,Π, S, α).

5.2 Universal Hash Proof Systems

Definition 8 Let ε(k) be a function mapping non-negative integers to non-negative reals. We say
that a given HPS H for L for is ε(k)-universal (respectively, ε(k)-universal2, ε(k)-smooth) if for all
k ≥ 0 and for all Λ ∈ [Lk], the associated family of projective hash functions HΛ is ε(k)-universal
(respectively, ε(k)-universal2, ε(k)-smooth).

Moreover, if this is the case, and ε(k) is a negligible function, then we say that H is strongly
universal (respectively, universal2, smooth).
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It is perhaps worth remarking that if a hash proof system is strongly universal, and the under-
lying subset membership problem is hard, then the problem of evaluating a random hash function
h : X → Π on an arbitrary x ∈ X, given α(h) alone, must be hard.

We also need an extension of this notion. Let E = {EΛ : k ≥ 0, Λ ∈ [Lk]} be a family of finite
sets. Further, assume that elements of EΛ can be encoded as bit strings of polynomial length and
are easy to recognize.

The definition of an E-extended HPS for L is the same as that of ordinary HPS for L, except
that for each k ≥ 0 and for each Λ = Λ[X,L,W,R] ∈ [Lk], an E-extended hash proof system H
specifies a family HΛ = (H,X×EΛ, L×EΛ,Π, S, α) of projective hash functions. Note that in this
setting, to compute h(x, e) for x ∈ L and e ∈ EΛ, the public evaluation takes as input α(h), x, e,
and a witness w ∈W for x ∈ L, and the private evaluation algorithm takes as input h, x, and e.

Definition 8 can be modified in the obvious way to define E-extended ε(k)-universal2 HPS’s (we
do not need any of the other notions, nor are they particularly interesting).

5.2.1 Constructions

Note that based on the constructions in Lemmas 2, 3, 4, and 5, given an HPS that is (say) 1/2-
universal, we can construct a strongly universal HPS, a (possibly extended) strongly universal2
HPS, and a strongly smooth HPS. However, in many special cases of practical interest, there may
well be much more efficient constructions.

6 Secure Public-Key Encryption Schemes

6.1 Adaptive Chosen Cipher-Text Security

Below we first recall the standard definition of security against adaptive chosen ciphertext attack
for a public-key encryption scheme.

Consider the following game, played against an arbitrary, polynomial time, probabilistic adver-
sary.

1. Key-Generation Phase. Let k be the security parameter. We run the key-generation algorithm
of the public-key encryption scheme on input 1k, and get a key-pair (pk, sk).

We equip an encryption oracle with the public-key pk, and a decryption oracle with the secret
key sk.

The public-key pk is presented to the adversary.

2. Probing-Phase I. In this phase, the attacker gets to interact with the decryption oracle in an
arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, specified
by the adversary.

More precisely, in each round of this interaction, the adversary sends a query σ to the de-
cryption oracle. A query is a string chosen by the adversary.

The decryption oracle in turn runs the decryption algorithm on input of the secret-key sk
and the query σ, and responds to the query by returning the output to the adversary.

11



Note that a query is not required to represent an encryption (under pk) of some plaintext
message; a query can indeed be any string designed to probe the behavior of the decryption
oracle.

The interaction is adaptive in the sense that the next query may depend on the history so
far, in some way deemed advantageous by the adversary.

3. Target-Selection Phase. The adversary selects two plaintexts m0 and m1 from the message
space of the encryption scheme, and presents (m0,m1) to the encryption oracle.

The encryption oracle selects a random bit b, and runs the encryption algorithm on input of
the public-key pk and the target plaintext mb.

The resulting encryption σ∗, the target ciphertext, is presented to the adversary.

4. Probing-Phase II. This phase is as Probing-Phase I, the only difference being that the de-
cryption oracle only responds to queries σ that are different from the target ciphertext σ∗.

5. Guessing-Phase. The adversary outputs a bit b̂.

The adversary is said to win the game if b̂ = b. We define the advantage (over random guessing)
of the adversary as the absolute value of the difference of the probability that he wins and 1/2.

A public key encryption scheme is said to be secure against adaptive chosen ciphertext attack, if
for all polynomial time, probabilistic adversaries, the advantage in this guessing game is negligible
as a function of the security parameter.

6.2 The Scheme and its Analysis

The scheme makes use of a subset membership problem L = {Lk}k≥0, as well as two HPS’s G and
H for L.

In any context where k ≥ 0 and Λ[X,L,W,R] ∈ [Lk] are fixed, we write GΛ = (G,X,L,K, T, β).
We will require that G is a strongly smooth HPS (see Definition 8), and that for a given k and Λ,
the associated set K of hash outputs forms an Abelian group which supports efficient computation.
We will use multiplicative notation for the group operation of K. Also, we define EΛ as EΛ = K,
and define the family E of finite sets as E = {EΛ : k ≥ 0,Λ ∈ [Lk]}.

We require that H is an E-extended strongly universal2 HPS (see Definition 8 and the para-
graphs following it), where E is as defined in the previous paragraph. In any context where k ≥ 0
and Λ[X,L,W,R] ∈ [Lk] are fixed, we write HΛ = (H,X ×K,L ×K,Π, S, α), where K = EΛ, as
defined in the previous paragraph.

We remark that all we really need is is a 1/2-universal HPS, since we can convert this into ap-
propriate strongly smooth and strongly universal2 HPS’s using the general constructions discussed
in §5.2.1. Indeed, the Leftover Hash construction in Lemma 5 gives us a strongly smooth HPS
whose hash outputs are bit strings of a given length l, and so we can take the group K in the above
construction to be the the group of l-bit strings with “exclusive or” as the group operation.

We now describe the key generation, encryption, and decryption algorithms for the scheme, as
they behave for a fixed value of the security parameter k.

12



Key Generation
First, sample Λ[X,L,W,R] from Lk. Second, sample g at random from G and h at random
from H. Third, compute t = β(g) and s = α(h).

Note that all of these operations can be efficiently performed using the algorithms provided
by L, G, and H.

The public key is (Λ, t, s), and the secret key is (Λ, g, h).

The message space is K.

Encryption
To encrypt a message m ∈ K under a public key as above, one does the following.

First, generate a random x ∈ L, together with a corresponding witness w ∈W . This can be
done using the algorithm provided by L.

Second, compute κ = g(x) ∈ K. This is done using the public evaluation algorithm for G on
inputs t, x, and w.

Third, compute e = m · κ ∈ K.

Fourth, compute π = h(x, e) ∈ Π. This is done using the public evaluation algorithm for H
on inputs s, x, e, and w.

The ciphertext is the triple (x, e, π).

Decryption
To decrypt a ciphertext (x, e, π) ∈ X × K × Π under a secret key as above, one does the
following.

First, compute π = h(x, e) ∈ Π, using the private evaluation algorithm for H on inputs h, x,
and e. Check whether π = π; if not, then output a default error message and halt.

Third, compute κ = g(x) ∈ K, using the private evaluation algorithm for G on inputs g and
x.

Fourth, compute m = e · κ−1 ∈ K, and output the message m.

Theorem 1 The above scheme is secure against adaptive chosen ciphertext attack, assuming L is
a hard subset membership problem.

Proof. We show that the existence of an efficient adaptive chosen ciphertext attack with non-
negligible advantage implies the existence of an efficient distinguisher for L, thereby contradicting
the hardness of L.

We define the following game between a simulator and an adversary that carries out an adaptive
chosen ciphertext attack. Let k be fixed. The simulator takes as input Λ[X,L,W,R] sampled
from Lk, along with x∗ ∈ X, where x∗ is either drawn from the uniform distribution on L or the
uniform distribution on X − L.

The simulator provides a “simulated environment” for the adversary as follows.
In the Key-Generation Phase, the simulator runs the key-generation as usual, except that the

given value of Λ is used.
In both Probing Phases I and II, the simulator runs the decryption algorithm, as usual, using

the secret key generated in the Key-Generation Phase.
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In the Target-Selection Phase, the attacker presents messages m0 and m1 of his choice to the
simulator. The simulator flips a random coin b, and computes the target ciphertext (x∗, e∗, π∗)
in the following way. It first computes κ∗ = g(x∗) using its input x∗, and using the private
evaluation algorithm for G on inputs g and x∗. It then computes e∗ = mb ·κ∗. Finally, it computes
π∗ = h(x∗, e∗), using the private evaluation algorithm for H on inputs h, x∗, and e∗.

In the Guessing Phase, the adversary outputs a bit b̂. The simulator outputs 1 if b = b̂, and 0
otherwise, after which, the simulator halts.

We now analyze the advantage of the adversary in this game, making a distinction between the
cases x∗ ∈ L and x∗ ∈ X − L.

Case x∗ ∈ L. In this case, the simulation is perfect, or at least, statistically close to perfect
(since some of the sampling algorithms provided by L, G, and H may only be statistically close
to perfect). Thus, if the adversary has a non-negligible advantage, the simulator outputs a 1 with
probability bounded away from 1/2 by a non-negligible amount.

Case x∗ ∈ X − L. We call a ciphertext (x, e, π) a valid ciphertext if x ∈ L, and otherwise we call
it invalid. Note that the output of the encryption oracle in this case is an invalid ciphertext.

Consider now a slightly modified simulator which simply rejects all invalid ciphertext submitted
to the decryption oracle. Let F be the event that with this modified simulator, some invalid
ciphertext (x, e, π) is rejected by the decryption oracle but h(x, e) = π. It is easily seen that the
probability that F occurs is negligible. This follows from fact that H is an strongly universal2 HPS,
and the fact that this modified simulator leaks no information to the adversary about h, other than
α(h) and h(x∗, e∗).

Now, the adversary’s interaction with the original and modified simulators proceeds identically
until the event F occurs. ¿From this, and the fact that F occurs with negligible probability, we
conclude that the probability that b = b̂ with the modified simulator differs from the probability
that b = b̂ with the original simulator by a negligible amount.

Let us modify the simulator yet again. This time, in the encryption oracle, instead of computing
κ∗ as g(x∗), the simulator generates κ∗ at random. ¿From the fact that G is a strongly smooth
HPS, and the fact that the modified simulator leaks no information about g to the adversary, other
than β(g), this transformation yields only a negligible change in the probability that b = b̂.

Note, however, in this modified game, the probability that b = b̂ is precisely 1/2, since the
random value of κ∗ perfectly hides mb. This implies that in the interaction between the original
simulator and the adversary, the probability that b = b̂ is within a negligible distance from 1/2.

It follows that the above simulator, using an adversary with non-negligible advantage, provides
an effective statistical test for distinguishing L from X − L. 4

The security reduction for this scheme is quite tight. Suppose that H is ε(k)-universal2 and
that G is δ(k)-smooth. Suppose that an adversary makes at most qD(k) probing queries and has
an advantage of γ(k). The running time of the statistical test implied in the above proof is roughly
the same as that of the adversary. Let γ′(k) be the advantage that this statistical test has in
distinguishing L from X − L. then we have

γ(k) ≤ γ′(k) + qD(k) · ε(k) + δ(k) + ε′(k),

where the term ε′(k) absorbs the statistical differences from the uniform distributions for the sam-
pling algorithms provided by L, G, and H.
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7 Universal Projective Families: Constructions

We now construct universal projective hash functions using group-theory.

7.1 Diverse Group Systems

Let X, L and Π be finite Abelian groups, where L is a proper subgroup of X. We will use
multiplicative notation for these groups.

Let Hom(X,Π) denote the group of all homomorphisms φ : X → Π. We will use additive
notation for Hom(X,Π): for φ,ψ ∈ Hom(X,Π), x ∈ X, and a ∈ ZZ, we have (φ+ψ)(x) = φ(x)·ψ(x),
(φ−ψ)(x) = φ(x) ·ψ(x)−1, and (a ·φ)(x) = φ(x)a. The zero (neutral) element υ sends all elements
of X to 1 ∈ Π.

Let H be a subgroup of Hom(X,Π).
Fix a set of generating elements B = {g1, . . . , gs} for the group L. Define

α : H → Πs,

φ 7→ (φ(g1), . . . , φ(gs)).

Note that for all φ ∈ H, the action of φ on L is determined by α(φ) (and vice-versa). Namely,
given x ∈ L and integers r1, . . . , rs such that

x =
s∏

i=1

gri
i ,

we have

φ(x) = φ(
s∏

i=1

gri
i ) =

s∏

i=1

φ(gi)ri .

By abuse of notation, we will sometimes identify α(φ) with φ|L, the functional restriction of φ
to L.

Also note that with α as defined above, Hφ (as defined in the paragraph preceding Definition 5)
consists of all φ′ ∈ H that are identical to φ on L, i.e., φ|L ≡ φ′|L. In particular, φ ∈ Hφ.

Definition 9 We call (H,X,L,Π,Πs, α) as defined above a group system.

Clearly, any group system is a family of projective hash functions.
Our first goal is to investigate the conditions under which a group system constitutes a family

of ε-universal projective hash functions for some ε < 1. By definition, (Hφ,X − L,Π) must be
ε-universal, for all φ ∈ H. Therefore, it is a necessary condition on Hφ, that no x ∈ X − L is sent
to the same π ∈ Π by all ψ ∈ Hφ. This is formally expressed in the following Definition.

Definition 10 Let H = (H,X,L,Π,Πs, α) be a group system. We say that H is diverse if for all
φ ∈ H and for all x ∈ X − L, there exists φ′ ∈ Hφ such that φ′(x) 6= φ(x).

We will show below in Theorem 2 in §7.2 that a diverse group system forms a family ε-universal
projective hash functions, where ε = 1/p, and p is the smallest prime dividing |X|/|L|.
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7.2 An ε-Universal Projective Family

We start with a definition and two lemmas.

Definition 11 Let H = (H,X,L,Π,Πs, α) be a group system. Let U be a subset of X. Then
AH

U = {φ ∈ H : φ(U) = 1}, i.e., the collection of all φ ∈ H that annihilate all of U .

Note that AH
U is a sub-group of H (even though U may not be group). Also note that if U ⊂ V

then AH
V is a sub-group of AH

U . In the following, we write AH
U,V for AH

U∪V .

Lemma 6 Let H = (H,X,L,Π,Πs, α) be a group system. Then, for all φ ∈ H, it holds that Hφ is
equal to the co-set φ + AH

L , i.e., it consists of all element of the form φ+ ξ, for some ξ ∈ AH
L . In

particular, |Hφ| = |AH
L |.

Proof. We identify α(φ) with φ|L. Consider the equation ψ|L = φ|L, in the unknown ψ ∈ H.
If ψ0, ψ1 are both solutions, then ψ0 − ψ1 ∈ AH

L . Namely, for all x ∈ L, we have (ψ0 − ψ1)(x) =
ψ0(x) ·ψ1(x)−1 = φ(x) ·φ(x)−1 = 1. On the other hand, if ξ ∈ AH

L , then φ+ξ is a solution. Namely,
for all x ∈ L, we have (φ + ξ)(x) = φ(x) · ξ(x) = φ(x) · 1 = φ(x). The cardinality claim follows
trivially.

4
The following is a straightforward re-statement of Definition 10.

Lemma 7 A group system H = (H,X,L,Π,Πs, α) is diverse if and only if AH
L,{x} is a proper

sub-group of AH
L .

Proof. As remarked earlier, AH
L,{x} is a sub-group of AH

L in any case. Fix φ ∈ H and x ∈ X−L
arbitrarily for the entire proof. Suppose that H is diverse. Let φ′ ∈ H be as guaranteed by
Definition 10. Then (φ−φ′) ∈ AH

L but (φ−φ′) 6∈ AH
L,{x}. Namely, (φ−φ′)(x) = φ(x) ·φ′(x)−1 6= 1,

since φ(x) 6= φ′(x) by definition. Also, for all y ∈ L, we have (φ − φ′)(y) = φ(y) · φ′(y)−1 =
φ(y) · φ(y)−1 = 1, since by definition φ|L ≡ φ′|L. In the other direction, let ψ ∈ AH

L be such that
ψ 6∈ AH

L,x. Then φ′ = φ− ψ is as required by Definition 10. Namely, φ′(x) = φ(x) · ψ(x)−1 6= φ(x),
since ψ(x) 6= 1 by definition. Finally, for all y ∈ L, φ′(y) = φ(y) ·ψ(y)−1 = φ(y), since ψ annihilates
L by definition. 4

Theorem 2 Let H = (H,X,L,Π,Πs, α) be a diverse group system. Recall that s is the size of a
set of generators chosen for L, and that the action is application of a homomorphism. Let p denote
the smallest prime divisor of |X|/|L|. Then H is 1/p-universal projective.

Proof. We have to show that, for all φ ∈ H, it holds that (Hφ,X − L,Π) is 1/p-universal.
By Lemma 1, the latter is equivalent to showing that for all ψ ∈ Hφ and for all x ∈ X −L, the

collection of ψ′ ∈ Hφ with ψ′(x) = ψ(x) comprises at most a 1/p-fraction of Hφ.
Fix φ ∈ H, ψ ∈ Hφ and x ∈ X − L arbitrarily. Consider the equation

ψ′(x) = ψ(x),

in the unknown ψ′ ∈ Hφ. Using exactly the same style of reasoning as in the proof of Lemma 6,
the set of solutions is the co-set

ψ + AH
L,{x}.
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Therefore, the number of ψ′ ∈ Hφ such that ψ′(x) = ψ(x), equals

|ψ + AH
L,{x}| = |AH

L,{x}|.
It remains to show that this is at most a 1/p-fraction of |Hφ|.

By Lemma 6, |Hφ| = |AH
L |. Therefore we must show that

|AH
L,{x}|
|AH

L | ≤ 1/p.

By Lemma 7, AH
L,{x} is a proper sub-group of AH

L . Therefore, the fraction on the left-hand side
is at most 1/q, where q is the smallest prime divisor of |AH

L |.
We finally show that q divides the order |X|/|L| of the factor group X/L, so that we may

conclude that 1/q ≤ 1/p.
Let ξ ∈ AH

L be of order q. 2 Define m = |X|/|L|, and note that for all x ∈ X, we have that
xm ∈ L. For all x ∈ X, it holds that (m · ξ(x)) = ξ(xm) = 1, since xm ∈ L and ξ annihilates L.
Therefore, q divides |X|/|L|, as desired.

4

7.3 Examples

Proposition 1 Let H = (H,X,L,Π,Πs, α) be a group system such that X, L and Π are all
isomorphic to vector-spaces over GF(q) for some prime q, and such that H is isomorphic the group
of all linear maps from X to Π. Then H is diverse, and forms a 1/q-universal family of projective
hash functions.

Proof. We show diversity of H using Lemma 7, so that the proposition follows from Theorem 2.
Define K = GF(q). For the sake of the argument, define X = Ka, Π = Kb, and define H as

the collection of all a× b-matrices with entries in K. By definition, L is a proper sub-space of X.
Let x ∈ Ka −L. Fix a basis for L, and extend this basis to a basis for Ka that includes x. This

is always possible.
Then define the linear map φ by sending all elements in the chosen basis of L to 0 ∈ Kb, while

sending x to a non-zero element of Kb, and the remaining basis elements (if any) to arbitrary
elements.

Thus the conditions of Lemma 7 are satisfied, and Theorem 2 applies.
4

The conditions of Proposition 1 can be weakened, but we choose the form above for its simplicity
and for its usage in later examples.

Definition 12 The exponent of a finite Abelian group is the largest integer d such that there exists
an element with order d in the group. Equivalently, it is the least common multiple of all integer d
such that there exists an element with order d in the group.

Definition 13 A power-map is a homomorphism φ : X → Π such that there is an integer r with
φ(x) = xr for all x ∈ X. We call this the r-th power-map.

2It is a basic fact that in an Abelian group, for each prime that divides its order, there is an element of that order.
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Note that the group of homomorphisms from X to X contains exactly e distinct power-maps, where
e is the exponent of X. Namely xr = xr′ for all x ∈ X if and only if r − r′ is a multiple of e.

Proposition 2 Let H = (H,X,L,Π,Πs, α) be a group system such that for all x ∈ X − L the
order of x does not divide the exponent e of the group L and H contains the e-th power-map (for
example, H is the group of all power-maps). Then H is diverse, and forms a 1/p-universal family
of projective hash functions, where p is the smallest prime divisor of |X|/|L|.

Proof. We show diversity of H using Lemma 7, so that the proposition follows from Theorem 2.
We claim that for all x ∈ X − L, the e-th power-map satisfies the conditions of Lemma 7.
Namely, for all x ∈ L, we have xe = 1, since e is a multiple of the order of x. On the other

hand, for all x ∈ X − L, we have xe 6= 1, since for those x, e is not a multiple of the order of x. 4

Corollary 1 Let H = (H,X,L,Π,Πs, α) be a group system. Let e be the exponent of L. Suppose
that H contains the e-th power-map (for example, H is the group of all power-maps), and that X
is the direct internal product of L with a group G whose order is co-prime to that of L. Then H
is diverse, and forms a 1/p-universal family of projective hash functions, where p is the smallest
prime divisor of |X|/|L|.

7.4 Projective ε-Universal2 Family

It is important to note that no “interesting” group system is universal2 projective, even if it is
diverse.

More precisely, let H = (H,X,L,Π, S, α) be a diverse group system. Assume that it is not
degenerate, in the sense that there exists φ ∈ H such that φ does not annihilate all of L. 3 Let
y ∈ L be such that φ(y) 6= 1. In particular, y 6= 1. Let x∗ ∈ X − L be arbitrary, and define
x = x∗ · y. Clearly, x 6= x∗, and x ∈ X − L. These x∗ and x can trivially be used to show that
(Hφ,X − L,Π) is not universal2, thereby contradicting Definition 5. Namely, if ψ ∈ Hφ is chosen
uniformly at random, and π∗ = ψ(x∗) is given, then choose an arbitrary ψ′ ∈ Hφ, and simply
compute π∗ · ψ′(y) = ψ(x∗) · ψ(y) = ψ(x∗ · y) = ψ(x) = π.

7.4.1 Construction

Let H = (H,X,L,Π,Πs, α) be a diverse group system, and let p be the smallest prime divisor of
|X|/|L|.

Recall from Definition 9 that, for φ ∈ H, the value α(φ) is defined as the s-vector
(φ(g1), . . . , φ(gs)) ∈ Πs, where s is the size of a set B of generators {g1, . . . , gs} chosen for L.

We now construct a 1/p-universal2 projective family H for (X × E,L × E), where E is an
arbitrary finite set. It is much like the group system H it is constructed from, except that we will
work with a vector of homomorphisms, that acts in a specially tailored way on X.

Fix a positive integer τ ≤ p. Fix an injective encoding function

Γ : X × E → {0, . . . , τ − 1}n,

be given, where n is sufficiently large.
3In that case, at least half of φ ∈ H have this property.
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We define how Φ = (φ0, φ1, . . . , φn) ∈ Hn+1 acts as a function on an element (x, e) ∈ X × E.
We first define φx,e ∈ H as

φx,e = φ0 +
n∑

i=1

yi · φi,

where (y1, . . . , yn) = Γ(x, e).
Then the action of Φ ∈ Hn+1 on X × E is defined as

Φ(x, e) = φx,e(x) ∈ Π.

Define

α : Hn+1 → Πs(n+1),

Φ 7→ ((φ0(g1), . . . , φ0(gs)), . . . , ((φn(g1), . . . , φn(gs))) ,

where Φ = (φ0, . . . , φn).
Equivalently, we have Φ(x, e) = φ0(x) · ∏n

i=1 φi(x)yi , and α(Φ) = (α(φ0), . . . , α(φn)).
Set H = (Hn+1,X × E,L × E,Π,Πs(n+1), α). In Theorem 3 we show that H is a family of

1/p-universal2 projective hash functions, with the action defined as above.
In the construction above, the difference in efficiency compared to Lemma 4 is in the fact that

roughly logp n functions φi are required here, as opposed to log2 n in Lemma 4, where n is the
number of bits needed to encode elements of X × E. The savings are considerable when p is very
large.

Theorem 3 Let H = (H,X,L,Π,Πs, α) be a diverse group system, let p denote the smallest prime
divisor of |X|/|L|, and let 0 < τ ≤ p be an integer. Let s denotes the size of a set of generators
chosen for L. Let E be an arbitrary finite set. Assume that X × E is identified with a subset
of {0, . . . , τ − 1}n for some integer n, via an injective encoding. Then H = (Hn+1,X × E,L ×
E,Π,Πs(n+1), α) is a family of 1/p-universal2 projective hash functions, with the action as defined
above.

Proof. We have to show that ((Hn+1)Φ, (X − L) × E,Π) is 1/p-universal2, for all Φ ∈ Hn+1.
This follows quite straightforwardly by combining Theorem 2 and Proposition 3 (below), as we now
show.

For the rest of the proof, fix an arbitrary

Φ = (φ0, φ1, . . . , φn) ∈ Hn+1,

and fix arbitrary, distinct (x, e), (x∗, e∗) ∈ (X − L) × E. Write

(y1, . . . , yn) = Γ(x, e) , (y∗1 , . . . , y
∗
n) = Γ(x∗, e∗).

Using the same kind of argument as in the proof of Theorem 2, and taking into account the
definition of α, it follows that (Hn+1)Φ consists of all

Ψ = (φ0 + ξ0, φ1 + ξ1, . . . , φn + ξn) ∈ Hn+1, with

ξ0, ξ1, . . . , ξn ∈ AH
L .
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Defining φ = φx,e and φ∗ = φx∗,e∗ (which are constants, since Φ is constant), we have

ψx,e = φ+ (ξ0 +
n∑

i=1

yi · ξi),

ψx∗,e∗ = φ∗ + (ξ0 +
n∑

i=1

y∗i · ξi)

To select Ψ ∈ (Hn+1)Φ at random is the same as selecting ξ0, ξ1, . . . , ξn ∈ AH
L uniformly at

random and setting Ψ = (φ0 + ξ0, φ1 + ξ1, . . . , φn + ξn).
Using an argument from the proof of Theorem 2, all primes dividing |AH

L | are greater than or
equal to p. It follows by immediate application of Proposition 3 (applying the case t = 1 in that
proposition) that ψx,e − φ and ψx∗,e∗ − φ∗ are uniformly and independently distributed in AH

L .
As an immediate consequence, ψx,e and ψx∗,e∗ are uniformly and independently distributed in

the respective co-sets φ+ AH
L = Hφ and φ∗ + AH

L = Hφ∗ .
This immediately implies the theorem, as follows. H is diverse, so, by Theorem 2, it follows

that H is 1/p-universal projective. In particular, (Hφ,X − L,Π) is 1/p-universal. Since ψx,e is
uniformly distributed in Hφ, it follows that Ψ(x, e) = ψx,e(x) cannot be guessed with probability
better than 1/p. We conclude that ((Hn+1)Φ, (X − L) × E,Π) is 1/p-universal.

Similarly, since ψx,e is also independently distributed from ψx∗,e∗ , it holds that when Ψ(x∗, e∗) =
ψx∗,e∗(x) is given, Ψ(x, e) = ψx,e(x) cannot be guessed with probability better than 1/p. Therefore,
((Hn+1)Φ, (X − L) × E,Π) is 1/p-universal2, as desired.

We conclude that H is 1/p-universal2 projective. 4
If p is small, then Lemma 2 can be used to reduce the error to at most 1/pt in a generic

fashion. This comes at the cost of a multiplicative blow-up of a factor t in efficiency. In the
family constructed above, this would lead to t(n+ 1) homomorphisms φij ∈ H, st(n+ 1) elements
φij(gl) ∈ Π to describe the action of these t(n+ 1) homomorphisms on L, and finally, t values πi in
Π to describe the image of some pair (x, e).

We show a variant of the construction above that has error at most 1/pt, but that requires
n + 2t − 1 homomorphisms in H instead of t(n + 1), and s(n + 2t − 1) elements in Π to describe
the actions on L, instead of st(n+ 1).

The injective function Γ and the integer n are defined as before. We define how Φ =
(ψ1, . . . , ψt, φ1, . . . , φn+t−1) ∈ Hn+2t−1 acts as a function on an element (x, e) ∈ X × E.

For j = 1 . . . t, we define
Φj = (ψj , φj , . . . , φn+j−1),

Then Φj(x, e) is defined as in the construction above. The action of Φ is defined as

Φ(x, e) = (Φ1(x, e), . . . ,Φt(x, e)).

Finally, α̂(Φ) consists of all values ψi(gj), φl(gj) for i = 1 . . . t, j = 1 . . . s, l = 1 . . . n+ t− 1.

Theorem 4 Let H = (H,X,L,Π,Πs, α) be a diverse group system, let p denote the smallest
prime divisor of |X|/|L|, and let 0 < τ ≤ p be an integer. Let s denotes the size of a set of
generators chosen for L. Let E be an arbitrary finite set. Assume that X × E is identified with
a subset of {0, . . . , τ − 1}n for some integer n, via an injective encoding. Let t ≥ 1 be given.
Then Ĥ = (Hn+2t−1,X × E,L × E,Π,Πs(n+2t−1), α̂) is a family of 1/pt-universal2 projective hash
functions, with the action as defined above.
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Proof. The proof is essentially the same as the proof of Theorem 3, with the difference that
the general case of Proposition 3 (see below) is applied. 4

We review a well-known construction of a family of hash functions based on Toeplitz matrices,
that is pair-wise independent according to Definition 1. The pair-wise independence property of
this family is used in the proofs of Theorems 3 and 4, and proved in Proposition 3 below. However,
we need to state a variant that is slightly more general than the usual one.

Let G be a finite Abelian group, and write its group operation as addition.

Definition 14 Let n, t be arbitrary positive integers, and let ξ ∈ Gn+t−1. Write ξ =
(ξ1, . . . , ξn+t−1). The Toeplitz matrix Tξ is the t × n-matrix whose j-th row is the vector
(ξj , . . . , ξn+j−1), j = 1 . . . t.

Let p be the smallest prime divisor of |G|. For

(ω, ξ) ∈ Gt × Gn+t−1,

define

Fω,ξ : {0, . . . , p− 1}n → Gt,

y 7→ ω + Tξ · y,
where Tξ · y is defined as standard multiplication of the matrix Tξ by the column vector y. Mul-
tiplication of an integer and an element of an Abelian group is defined in the usual way. More
precisely, if we set

ω = (ω1, . . . , ωt) ∈ Gt , ξ = (ξ1, . . . , ξn+t−1) ∈ Gn+t−1,

y = (y1, . . . , yn) ∈ {0, . . . , p − 1}n,

then Fω,ξ(y) ∈ Gt, and its j-th coordinate (Fω,ξ(y))j satisfies

(Fω,ξ(y))j = ωj + y1 · ξj + · · · + yn · ξn+j−1,

Proposition 3 Let G be a finite Abelian group, and let p be the smallest prime divisor of |G|. Let
n, t be positive integers. Then the family T = (Gt × Gn+t−1, {0, . . . , p − 1}n,Gt) of hash functions,
with the action defined as above, is pair-wise independent. 4

Proof. The proof is just basic linear algebra, with some small adjustments to deal with the
more general scenario. We first prove the case t = 1. Fix arbitrary, distinct y, y∗ ∈ {0, . . . , p− 1}n.
Consider the equations

Tξ0,ξ(y) = ψ , Tξ0,ξ(y∗) = ψ∗,

in the unknowns ξ0 ∈ G, ξ = (ξ1, . . . , ξn) ∈ Gn and for some ψ,ψ∗ ∈ G. Equivalently,

ξ0 + y1 · ξ1 + · · · + yn · ξn = ψ,

ξ0 + y∗1 · ξ1 + · · · + y∗n · ξn = ψ∗.
4As an aside, as can be easily seen from the proof, if G is a finite field, then {0, . . . , p − 1}n can be replaced by

Gn. The more usual form of this proposition corresponds to this setting.
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To prove pair-wise independence of the family, it is sufficient to show that for each pair (ψ,ψ∗),
the system has a solution (ξ0, ξ1, . . . , ξn) and that the total number of solutions is the same in each
case.

Clearly, if the system has a solution for some given pair (ψ,ψ∗), then the complete set of
solutions (ξ0, ξ1, . . . , ξn) is a co-set in the group Gn+1, where the size of the co-set does not depend
on the choice of (ψ,ψ∗).

By assumption, y 6= y∗. Without loss of generality, say yn 6= y∗n. By definition of the prime
p, the integer yn − y∗n is invertible modulo |G|. Let a be an integer such that a · (yn − y∗n) ≡ 1
(mod |G|).

For 1 ≤ j ≤ n− 1, set ξj ∈ G to an arbitrary value, and define ψ = ψ− y1 · ξ1 − · · ·− yn−1 · ξn−1,
and ψ∗ = ψ∗ − y∗1 · ξ1 − · · · − y∗n−1 · ξn−1.

By Gaussian Elimination it follows that (ξ0, ξ1, . . . , ξn−1, ξn) is a solution, where

ξ0 = (1 − ayn) · ψ + (ayn) · ψ∗
, ξn = a · (ψ − ψ

∗).

This settles the case t = 1.

The case t > 1 is implied by the previous case, as argued below. Using the same approach to
proving pair-wise independence as above, we now have, for j = 1 . . . t, the following equations:

ωj + y1 · ξj + · · · + yn · ξn+j−1 = ψj ,

ωj + y∗1 · ξj + · · · + y∗n · ξn+j−1 = ψ∗
j ,

in the unknowns (ω1, . . . , ωt, ξ1, . . . , ξn+t−1) ∈ Gn+2t−1, and for some choice of (ψ1, ψ
∗
1 , . . . , ψt, ψ

∗
t ) ∈

G.
For essentially the same reason as above, for all choices such that the system has a solution, it

has the same number of solutions. To show that for each choice there is a solution, we iterate with
the case t = 1, as follows.

Suppose first that yn 6= y∗n, We start with the first pair of equations (j = 1), and apply case
t = 1 to it. This gives us a solution where ω1 and ξ1, . . . , ξn are set to some values.

In the next step (j = 2), the variables are ω2 and ξ2, . . . , ξn+1. For ξ2, . . . , ξn we use the settings
from the previous step, and apply case t = 1. This gives us a value for ω2 and ξn+1. Thus, so far
we have values for ω1, ω2 and ξ1, . . . , ξn+1 that satisfy the first two pairs of equations. It is clear
that this can be iterated until a solution to the complete system is defined.

If yn = y∗n, let r be the smallest integer such that yr = y∗r , . . . , yn = y∗n. For j = 1 . . . t, we then
define new variables

ω′
j = ωj + yr · ξr+j−1 + · · · + yn · ξn+j−1.

With this substitution, we get a smaller system of the same form, but now with yr−1 6= y∗r−1. Thus,
it can be solved as above. This gives values for all ω′

j and for a subset of the ξi’s. Next, give
arbitrary values to the ξi’s which haven’t been set. The ωj’s are now determined, and we have a
solution for the complete system.

4
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8 Concrete Encryption Schemes

We present two new public-key encryption schemes secure against adaptive chosen ciphertext attack.
All follow the general construction from §6.

The first scheme is based on Paillier’s Decision Composite Residuosity assumption. Ours is the
first practical public-key encryption scheme secure against adaptive chosen ciphertext attack under
this assumption.

The second is based on the classical Quadratic Residuosity assumption. Ours is the first public-
key encryption schemes secure against adaptive chosen ciphertext attack under this assumption,
that is quite practical, as opposed to theoretical constructions such as [4].

Before presenting the new schemes, we show how the public-key encryption scheme from [3] can
be viewed as a special case of our general construction.

8.1 Schemes based on the DDH Assumption

LetG be a group of given large prime order q, and with a given generator g, such that the basic group
operations can be performed efficiently. Let logg : G → ZZq denote the usual discrete logarithm
function in G to the basis g. The Decision Diffie-Hellman (DDH) assumption is the assumption
that the following two distributions are hard to distinguish:

1. the uniform distribution on all triples (c, d, f) ∈ G3;

2. the uniform distribution on all triples (c, d, f) ∈ G3 such that logg f = logg c · logg d.

To be completely formal, one should actually specify a sequence of distributions of groups, such
that for each value of a security parameter k ≥ 0, a description of a group G, together with g
and q, can be efficiently sampled from some distribution parameterized by k. We assume that 1/q
is bounded by ε(k) for all groups associated with security parameter k, where ε(k) is a negligible
function in k.

There are many possible realizations of suitable groups G. For instance, let p be a large random
prime, and let q be a large prime factor of p− 1. Then G is the unique sub-group of order q in ZZ∗

p.
With G, g, and q given, we now define an instance of a subset membership problem as follows.

Set g0 = g and let g1 be a random element of G. Define X = G × G, and let L be the subgroup
of X generated by µ = (g0, g1) ∈ G × G. A witness for x ∈ L is w ∈ ZZq such that x = µw. The
description of the subset membership problem instance consists of descriptions of G, q, g0, and g1.

Obviously, one can efficiently sample a random element of L, together with a corresponding
witness, by generating w ∈ ZZq at random, and computing x = µw.

It is clear that this defines a subset membership problem, and that the hardness of this subset
membership problem is implied by the DDH assumption for G.

Now it remains to construct appropriate strongly smooth and strongly universal2 HPS’s for
the construction in §6.2. To do this, we first construct a diverse group system (see Definition 10),
from which we can then derive the required HPS’s. Let G = Hom(X,G). The elements of G can be
identified with ZZq×ZZq, where each pair φ = (φ0, φ1) ∈ ZZq×ZZq determines the homomorphism from
X to G that sends (h0, h1) ∈ X to hφ0

0 hφ1
1 ∈ G. So we have a group system G = (G,X,L,G,G,α),

where α is the map that sends φ = (φ0, φ1) ∈ ZZq × ZZq to gφ0
0 gφ1

1 .
By Proposition 1, the group system G is diverse and forms a a 1/q-universal family of projective

hash functions. By the observations in the paragraph following Definition 6, it follows that G is
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a 0-smooth family of projective hash functions. This immediately yields strongly smooth HPS Ĝ
corresponding to G — one simply needs to verify that all the algorithms that must be provided by
an HPS are available. This is rather straightforward. For example, the public evaluation function
is given x ∈ L with a witness w ∈ ZZq, along with α(φ) ∈ G for some φ ∈ G, and can compute
φ(x) = α(φ)w.

So now we have a strongly smooth HPS Ĝ as needed for the construction in §6.2.
Applying the construction in Theorem 3 to the group system G, we obtain a 1/q-universal2

projective hash family H for (X × G,L × G), and from this, a corresponding strongly universal2
HPS Ĥ. Again, it is straightforward to verify that all the necessary algorithms required by an HPS
are available.

8.1.1 The Encryption Scheme

We now present in detail the encryption algorithm obtained from the HPS’s Ĝ and Ĥ above.
We describe the scheme in terms of a fixed group of G of order q and with generator g = g0.

The message space for the scheme is the group G.
Let Γ : G×G×G→ ZZn

q be an efficiently computable injective map for an appropriate n ≥ 1.

Key Generation
First, generate g1 ∈ G at random. Second, choose z0, z1 ∈ ZZq at random, and set h = gz0

0 g
z1
1 ∈

G. Third, choose
y0,0, y0,1, . . . , yn,0, yn,1 ∈ ZZq

at random, and set ci = g
yi,0

0 g
yi,1

1 ∈ G for i = 0, . . . , n.

The public key is (g1, h, c0, . . . , cn), and the private key is

(z0, z1, y0,0, y0,1, . . . , yn,0, yn,1).

Encryption
To encrypt a message m ∈ G under a public key as above, one does the following.

First, choose r ∈ ZZq at random, and compute

u0 = gr
0 ∈ G, u1 = gr

1 ∈ G, e = m · hr ∈ G.

Second, compute v =
∏n

i=0 c
γir
i ∈ G, where γ0 = 1 and (γ1, . . . , γn) = Γ(u0, u1, e) ∈ ZZn

q .

The ciphertext is (u1, u2, e, v).

Decryption
To decrypt a ciphertext (u1, u2, e, v) ∈ G4 under a secret key as above, one does the following.

First, check that

v = u

∑n

i=0
γiyi,0

0 u

∑n

i=0
γiyi,1

1 ,

where γ0 = 1 and (γ1, . . . , γn) = Γ(u0, u1, e) ∈ ZZn
q ; if not, then output a default error message

and halt.

Second, compute m = e/(uz0
0 u

z1
1 ) ∈ G, and output m.
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Note that in the decryption algorithm, we are assuming that u1, u2, e, v are elements of G. This
implicitly means that the decryption algorithm should test that this is the case, and otherwise
reject the ciphertext. However, there is some room for optimization; that is, some of these tests
may be omitted without affecting the functionality of the decryption algorithm.

This is precisely the scheme that our general construction in §6.2 yields, although we have
changed the notation somewhat, and simplified a few expressions using trivial algebraic identities.
Thus, the scheme is secure against adaptive chosen ciphertext attack, provided the DDH assumption
holds.

This scheme is essentially the encryption scheme presented in §5.3 of [3], with just a few very
minor differences.

To obtain a more efficient scheme, one could drop the requirement that Γ is injective. This
would allow us to use a smaller value of n, possibly n = 1, thereby obtaining a much more compact
and efficient scheme. It is straightforward to adapt our general theory to show that if Γ is collision
resistant, then we still get a scheme that is secure against adaptive chosen ciphertext attack. With
a somewhat more refined analysis, one can show that a universal one-way hash function suffices.
When n = 1, the resulting encryption scheme is the main encryption scheme presented in [3], with
just a few very minor differences.

8.2 Schemes based on the Decision Composite Residuosity Assumption

Let p, q, p′, q′ be distinct odd primes with p = 2p′ + 1 and q = 2q′ + 1, and where p′ and q′ are both
λ bits in length. For convenience, we assume that p < q. Let N = pq and N ′ = p′q′. Consider the
group ZZ∗

N2 and the subgroup P of ZZ∗
N2 consisting of all N -th powers of elements in ZZ∗

N2 .
Paillier’s Decision Composite Residuosity (DCR) assumption is that given only N , it is hard to

distinguish random elements of ZZ∗
N2 from random elements of P .

To be completely formal, one should specify specify a sequence of bit lengths λ(k), parameterized
by a security parameter k, and to generate an instance of the problem for security parameter k,
the primes p′ and q′ should be distinct, random primes of length λ = λ(k), such that p = 2p′ + 1
and q = 2q′ + 1 are also primes.

The primes p′ and q′ are called Sophie Germain primes by mathematicians, while p and q are
called strong primes by cryptographers. It has never been proven that there are infinitely many
Sophie Germain primes. Nevertheless, it is widely conjectured, and amply supported by empirical
evidence, that the probability that a random λ-bit number is Sophie Germain prime is Ω(1/λ2).
We shall assume that this conjecture holds, so that we can assume that problem instances can be
efficiently generated.

Note that Paillier did not make the restriction to strong primes in originally formulating the
DCR assumption. As will become evident, we need to restrict ourselves to strong primes for
technical reasons. However, it is easy to see that the DCR assumption without this restriction
implies the DCR assumption with this restriction, assuming that strong primes are sufficiently
dense, as we are here.

We can decompose ZZ∗
N2 as an inner direct product

ZZ∗
N2 = Gp ·Gq ·Gp′ ·Gq′ ·G2 · S,

where each group Gτ is a cyclic group of order τ , and S is the subgroup of ZZ∗
N2 generated by

(−1 mod N2). Note that the element ξ = (1 + N2 mod N) ∈ ZZ∗
N2 has order N , i.e., it generates

GpGq, and that ξm = (1 +mN mod N) for 0 ≤ m < N .
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Define the map

θ : ZZ∗
N2 → {±1},

(a mod N2) 7→ (a | N),

where (· | ·) is the Jacobi symbol. It is clear that θ is a group homomorphism.
Let X be the kernel of θ. It is easy to see that X = GpGqGp′Gq′S, since |ZZ∗

N2/X| = 2 and
S ⊂ X. In particular, X is a cyclic group. Let L be the subgroup of N -th powers of X. Then
evidently, L = Gp′Gq′S. These groups X and L will define our subset membership problem.

Our instance description will contain N , along with a random generator g for L. It is easy
to generate such a g: choose a random µ ∈ ZZ∗

N2 , and set g = −µ2N . With overwhelming proba-
bility, such a g will generate L, and so the output distribution of this sampling algorithm will be
statistically close the uniform distribution over all generators.

Let us define the set of witnesses as W = {0, . . . , bN/2c}. Clearly, x ∈ L if and only if x = gw

for some w ∈ W . To generate x ∈ L at random together with a corresponding witness, we simply
generate w ∈W at random, and compute x = gw. The output distribution of this algorithm is not
the uniform distribution over L, but one that is statistically close to it.

This completes the description of our subset membership problem. It is easy to see that it
satisfies all the basic requirements specified in §4. The reason for using (X,L) instead of (ZZ∗

N2 , P )
is that ZZ∗

N2 and P are not cyclic, which is inconvenient for a number of technical reasons.

Next, we argue that the DCR assumption implies that this subset membership problem is hard.
Suppose we are given x sampled at random from ZZ∗

N2 (respectively, P ). If we choose b ∈ {0, 1}
at random, then x2(−1)b is uniformly distributed over X (respectively, L). This implies that
distinguishing X from L is at least as hard as distinguishing ZZ∗

N2 from P , and so under the DCR
assumption, it is hard to distinguish X from L. It is easy to see that this implies that it is hard to
distinguish X − L from L as well.

Now it remains to construct appropriate strongly smooth and strongly universal2 HPS’s for the
construction in §6.2. To do this, we first construct a diverse group system (see Definition 10), from
which we can then derive the required HPS’s. Let G = Hom(X,X). The elements of G can be
identified with ZZ2NN ′ , where each φ ∈ ZZ2NN ′ determines the homomorphism from X to X that
sends h ∈ X to hφ. So we have a group system G = (G,X,L,X,L, α), where the map α sends
φ ∈ ZZ2NN ′ to gφ.

By Corollary 1, the group system G is diverse, and forms a 1/p-universal family of pro-
jective hash functions. This group system yields a corresponding ε(k)-universal HPS Ĝ, where
ε(k) = 2−λ(k). To see this, we have to verify that we can effectively sample G and that we can
effectively implement the public evaluation function. Although we cannot easily sample the uni-
form distribution of G, we can sample the uniform distribution on the power maps {0, . . . , bN2/2c},
which yields a distribution on G that is statistically close to the uniform distribution. To imple-
ment the public evaluation function, given x ∈ L and a corresponding witness w ∈ W , along with
α(φ) ∈ L for φ ∈ G, we can compute φ(x) as α(φ)w.

Now, we could easily convert Ĝ into a strongly smooth HPS by applying the Leftover Hash
Lemma construction in Lemma 5 to the underlying family G of projective hash functions. However,
this is not the most practical way to proceed. We get a more practical scheme by using the following
observation.

26



Proposition 4 For any x ∈ X − L with order divisible by N , and any y ∈ L, the distribution of
φ(x) for a random φ ∈ G subject to α(φ) = y is precisely the uniform distribution on a particular
coset of GpGq in X (the exact coset depends on x and y). If the order of x is divisible by only p
(respectively, q), then we get the uniform distribution over a coset of Gp (respectively, Gq) in X.

Proof. Any x ∈ X can be expressed uniquely as x = gaξb for a ∈ ZZ2N ′ and b ∈ ZZN . Also, any
φ ∈ G can be uniquely identified with a′ ∈ ZZ2N ′ and b′ ∈ ZZN , where φ sends x = gaξb ∈ X as above
to gaa′

ξbb′ . If φ corresponds to (a′, b′) as above, then α(φ) = ga′
; thus, the distribution of b′ for a

random φ ∈ G subject to α(φ) = ga′
is precisely the uniform distribution on ZZN . If x = gaξb, then

conditioning on α(φ) = ga′
, we see that the distribution of φ(x) is the uniform distribution on the

coset gaa′ 〈 ξb 〉, where 〈 ξb 〉 denotes the subgroup generated by ξb. One sees that 〈 ξb 〉 is either
GpGq (respectively, Gp, Gq), according to whether the order of x is divisible by N (respectively,
only p, only q).

4
Based on Proposition 4, we can construct a 2/p-smooth family G× of projective hash functions

as follows. Define the map

χ : ZZN2 → ZZN ,

(a+ bN mod N2) 7→ (b mod N) (0 ≤ a, b < N).

This map does not preserve any algebraic structure; however, it is easy to verify that the restriction
of χ to any coset of GpGq in X is a one-to-one map from that coset onto ZZN . We define G× =
(G×,X,L,ZZN , L, α

×), where G× = {χ ◦φ : φ ∈ G}, and α× sends χ ◦φ to α(φ). That is, G× is the
same as G, except that to hash a value, we pass the output of the hash function for G through the
function χ. Since a random x ∈ X − L has order divisible by N with probability at least 1 − 2/p,
Proposition 4 implies that G× is a 2/p-smooth family of projective hash functions.

¿From G× we get a corresponding (2ε(k))-smooth HPS Ĝ×.
We can apply the construction in Theorem 3 to G, obtaining a 1/p-universal2 family H of

projective hash functions for (X × ZZN , L × ZZN ). This yields a corresponding extended ε(k)-
universal2 HPS Ĥ. We could build our encryption scheme directly using Ĥ; however, we get
more compact ciphertexts if we modify H by passing its hash outputs through χ, just as we did in
building G×, obtaining the analogous family H× of projective hash functions for (X×ZZN , L×ZZN ).
Combining the main observations from the proofs of Theorem 3 and Proposition 4, it is easy to
see that the appropriate analog of Proposition 4 holds for H as well, and so we see that H× is
a 1/p-universal2 family of projective hash functions for (X × ZZN , L × ZZN ). ¿From this, we get a
corresponding extended ε(k)-universal2 HPS Ĥ×.

8.2.1 The Encryption Scheme

We now present in detail the encryption scheme obtained from the HPS’s Ĝ× and Ĥ× above.
We describe the scheme for a fixed value of N that is the product of two (λ + 1)-bit strong

primes. The message space for this scheme is ZZN .
Let X, L, θ, and χ be as defined above. Let R = {0, . . . , 2λ − 1}, and let Γ : ZZN2 × ZZN → Rn

be an efficiently computable injective map for an appropriate n ≥ 1. For sufficiently large λ, n = 7
suffices.
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Key Generation
Choose µ ∈ ZZ∗

N2 at random and set g = −µ2N ∈ L.

Choose
z, y0, . . . , yn ∈ {0, . . . , bN2/2c}

at random, and set h = gz ∈ L and ci = gyi ∈ L for i = 0, . . . , n.

The public key is (g, h, c0, . . . , cn), and the private key is (z, y0, . . . , yn).

Encryption
To encrypt a message m ∈ ZZN under a public key as above, one does the following.

First, choose r ∈ {0, . . . , bN/2c} at random, and compute

u = gr ∈ L, e = m+ χ(hr) ∈ ZZN .

Second, compute v = χ(
∏n

i=0 c
γir
i ) ∈ ZZN , where γ0 = 1 and (γ1, . . . , γn) = Γ(u, e) ∈ Rn.

The ciphertext is (u, e, v).

Decryption
To decrypt a ciphertext (u, e, v) ∈ X × ZZN × ZZN under a secret key as above, one does the
following.

First, check that
v = χ(u

∑n

i=0
γiyi),

where γ0 = 1 and (γ1, . . . , γn) = Γ(u, e) ∈ Rn; if not, then output a default error message
and halt.

Second, compute m = e− χ(uz) ∈ ZZN , and output m.

Note that in the decryption algorithm, we are assuming that u ∈ X, which implicitly means that
the decryption algorithm should check that u ∈ ZZ∗

N2 and that θ(u) = 1, and reject the ciphertext
if this does not hold.

This is precisely the scheme that our general construction in §6.2 yields, although we have
changed the notation somewhat. Thus, the scheme is secure against adaptive chosen ciphertext
attack, provided the DCR assumption holds.

As in §8.1.1, if we replace Γ by a collision resistant hash function we get an even more efficient
scheme with a smaller value of n, possibly even n = 1. In fact, just a universal one-way hash
function suffices.

Note that in this scheme, the factorization of N is not a part of the private key. This would
allow, for example, many parties to work with the same modulus N , which may be convenient in
some situations. Alternatively, if we allow the decryptor to know the factorization of N , a number
of optimizations are possible. For example, Chinese Remaindering techniques can be used to speed
up the computation in the decryption algorithm.
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8.2.2 A Variation

We now present a variation of the above encryption scheme.
The key generation algorithm is exactly the same as in the above scheme, and the message

space is {0, . . . ,N − 1}. Let R = {0, . . . , 2λ − 1}, and let Γ : ZZN2 × ZZN2 → Rn be an efficiently
computable injective map for an appropriate n ≥ 1.

Recall that ξ = (1 + N mod N2) ∈ ZZ∗
N2 has order N , and that ξm = (1 + mN mod N2) for

m ∈ {0, . . . ,N − 1}.

Encryption
To encrypt a message m ∈ {0, . . . ,N−1} under a public key as above, one does the following.

First, choose r ∈ {0, . . . , bN/2c} at random, and compute

u = gr ∈ L, e = ξm · hr ∈ X.

Second, compute v =
∏n

i=0 c
γir
i ∈ L, where γ0 = 1 and (γ1, . . . , γn) = Γ(u, e) ∈ Rn.

The ciphertext is (u, e, v).

Decryption
To decrypt a ciphertext (u, e, v) ∈ X × X × X under a secret key as above, one does the
following.

First, check that
v = u

∑n

i=0
γiyi ,

where γ0 = 1 and (γ1, . . . , γn) = Γ(u, e) ∈ Rn; if not, then output a default error message
and halt.

Second, compute e/uz ∈ X; if this is of the form ξm for m ∈ {0, . . . ,N − 1}, then output m;
otherwise, a default error message.

Although this scheme does not follow directly from our general constructions, it is easy to see,
based on Proposition 4, that it is also secure against adaptive chosen ciphertext attack under the
DCR assumption. We leave the details of this as an exercise for the reader.

As usual, we get a more efficient scheme if we replace Γ by a collision resistant hash function
(or universal one-way hash function), and use a smaller value of n, possibly even n = 1.

While the ciphertexts in this variation are less compact than in the previous scheme, they have
more algebraic structure, and so we expect this scheme to be of use in protocols where a participant
needs to prove that ciphertexts satisfy particular properties.

8.3 Schemes based on the Quadratic Residuosity Assumption

Let p, q, p′, q′ be distinct odd primes with p = 2p′ + 1 and q = 2q′ + 1, and where p′ and q′ are
both λ bits in length. Let N = pq and let N ′ = p′q′. Consider the group ZZ∗

N , and let X be the
subgroup of elements (a mod N) ∈ ZZ∗

N with Jacobi symbol (a | N) = 1, and let L be the subgroup
of squares (a.k.a., quadratic residues) of ZZ∗

N . Note that L is a subgroup of X of index 2. These
groups X and L will define our subset membership problem.
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The Quadratic Residuosity (QR) assumption is that given only N , it is hard to distinguish
random elements of X from random elements of L. This implies that it is hard to distinguish
random elements of X − L from random elements of L.

To be completely formal, one should specify specify a sequence of bit lengths λ(k), parameterized
by a security parameter k, and to generate an instance of the problem for security parameter k,
the primes p′ and q′ should be distinct, random primes of length λ = λ(k), such that p = 2p′ + 1
and q = 2q′ + 1 are also primes.

As in §8.2, we shall assume that strong primes (such as p and q) are sufficiently dense. Note
that the original QR assumption was not restricted to strong primes. However, the QR assumption
without this restriction implies the QR assumption with this restriction, assuming that strong
primes are sufficiently dense, as we are here.

We can decompose ZZ∗
N as an inner direct product

ZZ∗
N = Gp′ ·Gq′ ·G2 · S,

where each group Gτ is a cyclic group of order τ , and S is the subgroup of ZZ∗
N generated by

(−1 mod N).
It is easy to see that X = Gp′Gq′S, so it is a cyclic group, and that L = Gp′Gq′ .
Our instance description will contain N , along with a random generator g for L. It is easy to

generate such a g: choose a random µ ∈ ZZ∗
N , and set g = µ2. With overwhelming probability, such

a g will generate L, and so the output distribution of this sampling algorithm will be statistically
close the uniform distribution over all generators.

Let us define the set of witnesses as W = {0, . . . , bN/4c}. Clearly, x ∈ L if and only if x = gw

for some w ∈ W . To generate x ∈ L at random together with a corresponding witness, we simply
generate w ∈W at random, and compute x = gw. The output distribution of this algorithm is not
the uniform distribution over L, but is statistically close to it.

This completes the description of our subset membership problem. It is easy to see that it
satisfies all the basic requirements specified in §4. As already mentioned, the QR assumption
implies that this is a hard subset membership problem.

Now it remains to construct appropriate strongly smooth and strongly universal2 HPS’s for the
construction in §6.2. To do this, we first construct a diverse group system (see Definition 10), from
which we can then derive the required HPS’s. Let G = Hom(X,X). The elements of G can be
identified with ZZ2N ′ , where each φ ∈ ZZ2N ′ determines the homomorphism from X to X that sends
h ∈ X to hφ. So we have a group system G = (G,X,L,X,L, α), where the map α sends φ ∈ ZZ2N ′

to gφ.
By Corollary 1, this group system is diverse, and forms a 1/2-universal family of projective

hash functions. This group system immediately yields a corresponding 1/2-universal HPS Ĝ. To
see this, we have to verify that we can effectively sample G and that we can effectively implement
the public evaluation function. Although we cannot easily sample the uniform distribution of G, we
can sample the uniform distribution on the power maps {0, . . . , bN/2c}, which yields a distribution
on G that is statistically close to the uniform distribution. To implement the public evaluation
function, given x ∈ L and a corresponding witness w ∈W , along with α(φ) ∈ L for φ ∈ G, we can
compute φ(x) as α(φ)w.

We can apply the construction in Lemma 2 to get a 2−t-universal family G∗ of projective hash
functions, where t = t(k) is an auxiliary parameter, along with a corresponding 2−t(k)-universal
HPS Ĝ∗.
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Now, we could easily convert Ĝ∗ into a strongly smooth HPS by applying the Leftover Hash
Lemma construction in Lemma 5 to the underlying family G∗ of projective hash families. However,
this is not the most practical way to proceed. We get a more practical scheme by using the following
observation.

Proposition 5 For any x ∈ X − L and any y ∈ L, the distribution of φ(x) for a random φ ∈ G
subject to α(φ) = y is precisely the uniform distribution on {±z}, for some particular z ∈ X (the
exact value of z depends on x and y).

Proof. Any x ∈ X can be expressed uniquely as x = ga(−1)b for a ∈ ZZN ′ and b ∈ ZZ2. Also,
any φ ∈ G can be uniquely identified with a′ ∈ ZZN ′ and b′ ∈ ZZ2, where φ sends x = ga(−1)b ∈ X
as above to gaa′

(−1)bb
′
. If φ corresponds to (a′, b′) as above, then α(φ) = ga′

; thus, the distribution
of b′ for a random φ ∈ G subject to α(φ) = ga′

is precisely the uniform distribution on ZZ2. If
x ∈ X − L, then x = ga(−1)b with b = 1, and so conditioning on α(φ) = ga′

, we see that the
distribution of φ(x) is the uniform distribution {±gaa′}.

4
Based on Proposition 5, we can construct a 0-smooth family G× of projective hash functions

as follows. Define the map χ : ZZN → ZZ2 as follows: for x = (a mod N) ∈ ZZ∗
N , with 0 ≤ a < N ,

let χ(x) = 1 if a > N/2, and χ(x) = 0 otherwise. Then by Proposition 5, for any x ∈ X − L and
any y ∈ L, the distribution of χ(φ(x)) for a random φ ∈ G subject to α(φ) = y is precisely the
uniform distribution on ZZ2. We define G× = (G×,X,L,ZZ2, L, α), where G× = {χ ◦ φ : φ ∈ G), and
α× sends χ ◦ φ to α(φ). That is, G× is that same as G, except that we pass the output of a hash
function for G through the function χ. It is clear from the above discussion that G× is 0-smooth.

Now, we can apply the construction in Lemma 2 to G× with the parameter t = t(k) to get a
0-smooth family G×∗ of projective hash functions whose hash output space is ZZt

2. ¿From this, we
get an corresponding 0-smooth HPS Ĝ×∗ .

We can apply the construction in Theorem 4 to G, obtaining a 2−t′ -universal2 family H∗ of
projective hash functions for (X × ZZt

2, L × ZZt
2). Here, t′ = t′(k) is an auxiliary parameter. The

hash outputs for H∗ consist of t′-tuples of elements of X. This yields a corresponding extended
2−t′(k)-universal2 HPS Ĥ∗. We could build our encryption scheme directly using Ĥ∗; however, we
get more compact ciphertexts if we modify H∗ by passing each component of its hash output
through χ, just as we did in building G×, obtaining the analogous family H×∗ of projective hash
functions for (X×ZZt

2, L×ZZt
2). Combining the main observations from the proofs of Theorem 4 and

Proposition 5, it is easy to see that the appropriate analog of Proposition 5 holds for H∗ as well,
and so we see that H×∗ is a 2−t′-universal2 family of projective hash functions for (X×ZZt

2, L×ZZt
2).

¿From this, we get a corresponding extended 2−t′(k)-universal2 HPS Ĥ×∗ .

8.3.1 The Encryption Scheme

We now present in detail the encryption obtained using the HPS’s Ĝ×∗ and Ĥ×∗ above.
We describe the scheme for a fixed value of N that is product of two (λ+ 1)-bit strong primes.

The message space for this scheme is ZZt
2, where t = t(k) is an auxiliary parameter. Note that t may

be any size — it need not be particularly large. We also need an auxiliary parameter t′ = t′(k).
The value of t′ should be large; more precisely, 2−t′(k) should be a negligible function in k.

Let X, L, and χ be as defined above. Also, let Γ : ZZN × ZZt
2 → {0, 1}n be an efficiently

computable injective map for an appropriate n ≥ 1.
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Key Generation
Choose µ ∈ ZZ∗

N at random and set g = µ2 ∈ L.

Randomly choose

z0, . . . , zt−1, x0, . . . , xt′−1, y0, . . . , yn+t′−2 ∈ {0, . . . , bN/2c}.

Then compute
hi = gzi ∈ L (i = 0, . . . , t− 1),
ci = gxi ∈ L (i = 0, . . . , t′ − 1),
di = gyi ∈ L (i = 0, . . . , n+ t′ − 2).

The public key is (g; h0, . . . , ht−1; c0, . . . , ct′−1; d0, . . . , dn+t′−2).

The private key is (z0, . . . , zt−1; x0, . . . , xt′−1; y0, . . . , yn+t′−2).

Encryption
To encrypt a message m ∈ ZZt

2 under a public key as above, one does the following.

First, choose r ∈ {0, . . . , bN/4c} at random, and compute u = gr ∈ L as well as

h̃i = hr
i ∈ L (i = 0, . . . , t− 1).

Second, compute
e = m+ (χ(h̃0), . . . , χ(h̃t−1)) ∈ ZZt

2.

Third, compute

c̃i = cri ∈ L (i = 0, . . . , t′ − 1),
d̃i = dr

i ∈ L (i = 0, . . . , n+ t′ − 2),
vi = c̃i

∏n−1
j=0 (d̃i+j)γj ∈ L (i = 0, . . . , t′),

where (γ0, . . . , γn−1) = Γ(u, e) ∈ {0, 1}n.

Fourth, compute
v = (χ(v0), . . . , χ(vt′−1)) ∈ ZZt′

2 .

The ciphertext is (u, e, v).

Decryption
To decrypt a ciphertext (u, e, v) ∈ X × ZZt

2 × ZZt′
2 under a private key as above, one does the

following.

First, compute

v̂i = u
xi+

∑n−1

j=0
γjyi+j ∈ X (i = 0, . . . , t′ − 1),

where (γ0, . . . , γn−1) = Γ(u, e) ∈ {0, 1}n.

Second, check that
v = (χ(v̂0), . . . , χ(v̂t′−1));

if not, then output a default error message and halt.
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Third, compute
ĥi = uzi ∈ X (i = 0, . . . , t− 1).

Fourth, compute
m = e− (χ(ĥ0), . . . , χ(ĥt−1)) ∈ ZZt

2

and output m.

Note that in the decryption algorithm, we are assuming that u ∈ X, which implicitly means
that the decryption algorithm should check that u = (a mod N) with Jacobi symbol (a | N) = 1.

This is precisely the scheme that our general construction in §6.2 yields, although we have
changed the notation somewhat. Thus, the scheme is secure against adaptive chosen ciphertext
attack, provided the QR assumption holds.

As in §8.1.1, if we replace Γ by a collision resistant hash function we get an even more efficient
scheme with a smaller value of n. In fact, just a universal one-way hash function suffices.

Note that in this scheme, the factorization of N is not a part of the private key. This would
allow, for example, many parties to work with the same modulus N , which may be convenient in
some situations. Alternatively, if we allow the decryptor to know the factorization of N , a number
of optimizations are possible. For example, Chinese Remaindering techniques can be used to speed
up the computation in the decryption algorithm.

While this scheme is not nearly as efficient as our schemes based on the DDH and DCR as-
sumptions, it is based on an assumption that is perhaps qualitatively weaker than either of these
assumptions. Moreover, the scheme may just be practical enough for some applications. Let us
consider some concrete security parameters. We might choose N to be a 1024-bit number. If we
use this scheme just to encrypt a symmetric encryption key, then t = 128 is a reasonable value.
Setting t′ = 128 is also reasonable. If we implement Γ using a hash function like SHA-1, then we
can take n = 160.

With these choices of parameters, the size of a public or private key will be less than 70KB.
Ciphertexts are quite compact, requiring 160 bytes. An encryption takes less than 600 1024-bit
exponentiations moduloN ; this will take about 10 seconds or so on typical a 1GHz PC. A decryption
will require about half as many exponentiations modulo N , and so without any optimizations, this
would take roughly half as much time as encryption; however, if we use the Chinese Remaindering
optimizations mentioned above, this should cut the running time further by a factor of between 3
and 4; also, if we exploit the fact that all exponentiations in the decryption algorithm are to the
same basis, further significant optimizations are possible, bringing the time for a decryption down
to around one second or less.

So clearly, this scheme is not suitable for, say, implementation on a smart card. However, it is
not astronomically impractical, either.
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