
B
R

IC
S

R
S

-01-35
M

.G
oldberg:

A
G

eneralS
chem

a
for

C
onstructing

O
ne-P

ointB
ases

in
the

Lam
bda

C
alculus

BRICS
Basic Research in Computer Science

A General Schema for
Constructing One-Point Bases in
the Lambda Calculus

Mayer Goldberg

BRICS Report Series RS-01-35

ISSN 0909-0878 September 2001



Copyright c© 2001, Mayer Goldberg.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/35/



A General Schema For Constructing

One-Point Bases in the Lambda

Calculus

Mayer Goldberg (gmayer@cs.bgu.ac.il)
Department of Computer Science

Ben Gurion University, Beer Sheva 84105, Israel

Abstract

In this paper, we present a schema for constructing one-point bases for
recursively enumerable sets of lambda terms. The novelty of the approach
is that we make no assumptions about the terms for which the one-point
basis is constructed: They need not be combinators and they may con-
tain constants and free variables. The significance of the construction is
twofold: In the context of the lambda calculus, it characterises one-point
bases as ways of “packaging” sets of terms into a single term; And in the
context of realistic programming languages, it implies that we can define
a single procedure that generates any given recursively enumerable set of
procedures, constants and free variables in a given programming language.
Keywords: Lambda calculi; Bases; Constants; Scheme Programming Lan-
guage.

1 Introduction

Intuitively, a basis is a set of λ-terms that generates, by application, all other
λ-terms modulo α, β, and η reductions. For example, the set {S,K}, where S ≡
λabc.ac(bc) and K ≡ λab.a, is one of the best known bases for the λK-calculus [1,
3, 4, 8]. Historically, the focus on bases has been on how to generate the set
of all combinators [2, 3, 4], although it might also be interesting to consider
bases for the λ-calculus extended by constants and free variables, because of
the presence of literals in real programming languages.

One-point bases (i.e., bases consisting of a single λ-term) constitute classical
material by now, addressed, e.g., in Barendregt’s textbook on the λ-calculus [1,
Chapter 8, Section 5]. They are, however, still something of a Black Art, prac-
tised in one of two scenarios:

• Show that a given λ-term X generates S and K.

• Define a λ-term X that satisfies some given generations of S and K from
X (e.g., X(X(XX)) =βη K, X(X(X(XX))) =βη S). (See Example 3.3.iii

1



in Section 3.)

There is no systematic way of tackling these two scenarios in general. Depend-
ing on the specifics of each problem and the constraints they impose, varying
degrees of intuition, educated guesswork and knowledge about solving systems
of equations are required.

In this paper we present a systematic way by which a one-point basis can
be constructed from a recursively enumerable set S of λ-terms. The particular
choice of terms in S is not important: They can be combinators, or can contain
constants and free variables. We make no assumptions about their type or
structure, and consequently, we generate them without ever applying them to
other terms. The one-point basis we construct is thus a kind of “syntactic
packaging” of the terms of S, and this syntactic packaging is the novelty and
generality of our approach.

Since our one-point bases can be defined to generate λ-terms that have
constants, they are suitable for implementation in programming languages such
as Scheme [6] or LISP [7], where they can be used to generate numbers, strings,
symbols, procedures, file ports, etc. In Section 5 we define a Scheme procedure
make-one-point-generator implementing our construction. The procedure
packages its arguments into the corresponding one-point basis. For example,
the following interaction with a Scheme system illustrates how we generate a
one-point basis for the numeral 0 and the successor procedure:

> (define X (make-one-point-generator 0 (lambda (n) (+ n 1))))

We can now use X to generate 0 and the successor procedure, and to apply one
to the other:

> (X (X X)) ; generating 0
0
> (X ((X X) X)) ; generating the successor procedure
#<procedure>
> ((X ((X X) X))

(X (X X))) ; applying the successor procedure to 0
1

The details of the Scheme implementation are given in Section 5.

2 Prerequisites and Notation

We assume some familiarity with the untyped λ-calculus [1, 2]. The one-step
βη-reduction is denoted −→, its reflexive and transitive closure is denoted −→→,
and the induced equivalence relation is denoted =βη. The set of all λ-terms
is denoted by Λ and the set of all closed λ-terms, i.e., λ-terms with no free
variables, also known as combinators, is denoted by Λ0. The Boolean values

2



true and false are given by

True ≡ λxy.x

False ≡ λxy.y

respectively. They embed a selection mechanism so that

(True doIfTrue doIfFalse) −→→ doIfTrue
(False doIfTrue doIfFalse) −→→ doIfFalse

For all positive integers n, cn denotes the n-th Church numeral. The Succc

combinator computes the successor function. The IsZero?c combinator com-
putes the zero predicate, and the IsEqual?c combinator computes the equality
predicate. The ordered pair [x, y] is defined as λz.(zxy).

3 Bases

The set of terms generated by some set S is the closure of S under application
(see [1, Item 8.1.1 (i), Page 165]):

3.1 Definition: The set of terms generated by some set. Let S ⊆ Λ be
some set of λ-terms. The set S+ of terms generated by S is the smallest set W
that satisfies:

• S ⊆ W.

• For all M, N ∈ W, MN ∈ W.

3.2 Definition: Basis. (Barendregt [1, Page 165, Definition 8.1.1 (ii)])
A set B is a basis for a set W if for all M ∈ W there exists N ∈ B+ such that
M =βη N .

Note that it follows from this definition of a basis that it is possible for a
set B to be a basis for a set W, and generate λ-terms that are not in W.

3.3 Examples:

i. Let S ≡ λxyz.xz(yz),K =βη λxy.x. The set {S,K} is a basis for the set
of combinators in the λK-calculus.

ii. Let I ≡ λx.x,J ≡ λxyzt.xy(xtz). The set {I,J} is a basis for the set of
combinators in the λI-calculus.

iii. Let X ≡ λx.xSK. The set {X} is a one-point basis for the set of combi-
nators in the λK-calculus [5, Page 48]. Note that X(X(XX))−→→K and
X(X(X(XX)))−→→S.

3



4 Constructing a One-Point Basis

4.1 Theorem: Let S = {Sk}k≥1 be a recursively enumerable set of (not
necessarily closed) terms, containing at most finitely many constants and free
variables. There exists a singleton X = {X} that generates S.

Proof: Since S is recursively enumerable, there exists a computable surjection
f : N → S such that f(k) = Sk. Let F be a λ-term that computes f on Church
numerals. (Therefore Fck−→→Sk.)

We make use of the following property:1

[P, a][P, b] −→→ PPba (1)

We define

P ≡ λpba.(IsZero?c b [p, (Succc a)] (F b)) (2)
Mk ≡ [P, ck] (3)

For all k ≥ 0, we have

MkM0 ≡ [P, ck][P, c0]
≡ (λx.xPck)(λx.xPc0)
−→→ PPc0ck

−→→ [P, (Succc ck)]
=βη [P, ck+1]
=βη Mk+1

M0Mk+1 ≡ [P, c0][P, ck+1]
−→→ (λx.xPc0)(λx.xPck+1)
−→→ PPck+1c0

−→→ Fck+1

−→→ Sk+1

We now define X ≡ M0. The set ={X} is a one-point basis for S, since for
all k > 0:

X(X · · ·X
︸ ︷︷ ︸

k+1

) −→→ M0(M0 · · ·M0
︸ ︷︷ ︸

k+1

)

=βη M0Mk

=βη Sk (4)

�

4.2 Example: Generating a one-point basis for the λ-calculus extended
with n constants. Let Const = {constj}1≤j≤n be a set of constants. A basis

1In Exercise 6.8.15 (ii) in Barendregt’s textbook [1, Page 149], this property is given as a
hint for finding a set {Xk}k∈N, given a recursive function f : N2 → N such that XnXm =
Xf(n,m).

4



for this extended calculus is given by S = {S,K}∪Const. We define the λ-term
F , which enumerates the terms of S, as follows:

F ≡ λr.(IsEqual?c r c1 S
(IsEqual?c r c2 K

(IsEqual?c r c3 const1
. . .

(IsEqual?c r cn+1 constn−1 constn))))

We now proceed to define the one-point basis as in the theorem.

In Example 3.3.iii, we presented a one-point basis for the λK-calculus that
uses the S and K combinators. That basis made use of the specific properties
of S and K. In contrast, the one-point bases generated in the following example
merely “dispatch” on S and K without applying them, and hence make no use
of their properties.

4.3 Example: Defining one-point bases for the λK-calculus. As already
mentioned, the set {S,K} is a basis for the λK-calculus. There are two ways
to enumerate the terms in this basis, given by F1 and F2:

F1 ≡ λr.(IsEqual?c r c1 S K)
F2 ≡ λr.(IsEqual?c r c1 K S)

Using F1 to define the corresponding one-point basis {X1}, we have:

X1(X1X1) =βη S
X1(X1X1X1) =βη K

And using F2 to define the corresponding one-point basis {X2}, we have:

X2(X2X2) =βη K
X2(X2X2X2) =βη S

5 Constructing a One-Point Basis in Scheme

The functional subset of languages such as Scheme and Common LISP provides
a suitable setting for working with a one-point basis in the λ-calculus extended
by finitely many constants:

• Both languages are modelled on the untyped λ-calculus, and so we can
code λ-expressions directly in them.

5



• Our particular construction of a one-point basis works under any reduc-
tion strategy and calling convention, and in particular under Scheme and
Common LISP’s applicative order.

The λ-term F from Example 4.2 can be encoded directly in Scheme for any
n terms, be they numbers, strings, procedures, etc, and the resulting one-point
basis is specific to the given F . The following procedure takes the Scheme
equivalent of F and returns the term corresponding one-point basis (we have
in-lined the construction of ordered pairs):

(define make-one-point-generator-lc
(lambda (F)

(let ((P (lambda (p)
(lambda (b)

(lambda (a)
(if (= b 0)

(lambda (x) ((x p) (+ a 1)))
(F b)))))))

(lambda (x) ((x P) 0)))))

The procedure can be used as follows:

; Defining the term
(define X ; for our 1-point basis
(make-one-point-generator-lc

(lambda (n) ; This is the dispatcher:
(case n
((1) append) ; 1 => append procedure
((2) reverse) ; 2 => reverse procedure
(else ’(1 2 3)))))) ; 3 => the list (1 2 3)

> (X (X X)) ; evaluating to the append
#<procedure append> ; procedure
> (X ((X X) X)) ; evaluating to the reverse
#<procedure reverse> ; procedure
> (X (((X X) X) X)) ; evaluating to the list (1 2 3)
(1 2 3)
> ((X (X X)) ; (append

((X ((X X) X)) ; (reverse
(X (((X X) X) X))) ; ’(1 2 3))

(X (((X X) X) X))) ; ’(1 2 3))
(3 2 1 1 2 3)

The main advantage in the way we defined make-one-point-generator-lc
is that it provides a faithful rendition, from the λ-calculus into Scheme,
of the various terms used in the construction of a one-point basis in the
proof of Theorem 3.1: The term F , which maps numerals to terms; The
term P (defined in (2)), and finally X = M0 (defined in (3)). Although

6



make-one-point-generator-lc uses Scheme numerals rather than Church nu-
merals, this makes no difference here.

An implementation that is natural to Scheme would use Scheme’s variadic
procedures, i.e., procedures that take an arbitrary number of arguments and
bind them to a list. Rather than mapping integers to elements of this list we
could simply traverse the list. The following procedure does just that:

(define make-one-point-generator
(lambda terms

(let* ((terms (cons ’initial terms))
(M (lambda (m)

(lambda (b)
(lambda (a)
(if (eq? b terms)

(lambda (x) ((x m) (cdr a)))
(car b)))))))

(lambda (x) ((x M) terms)))))

The procedure make-one-point-generator is called with the terms in the
set rather than with the corresponding term F :

(define X (make-one-point-generator append reverse ’(1 2 3)))

The one-point basis X can be used as before.

6 Conclusion and Issues

In this paper, we have presented a systematic construction of a one-point basis
from any recursively enumerable set S of terms. The novelty of this approach
is that it makes no assumptions about the terms in S (and hence it does not
apply these terms either). We have provided a Scheme procedure that takes an
arbitrary number of arguments and returns a procedure that generates these
arguments. The equivalent expression in the λ-calculus can be written to take
the n-th Church numeral cn, followed by n arbitrary terms S1, . . . , Sn, and the
application reduces to a single term that can be used to generate {S1, . . . , Sn}.

Acknowledgements

Thanks go to Henk Barendregt, Olivier Danvy, Daniel Friedman, Julia Lawall,
and Larry Moss for their comments and encouragement in the course of this
work. This work was completed while visiting BRICS2 during September 2001.

2Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

7



References

[1] Hendrik P. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North-Holland, 1984.

[2] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[3] Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic,
volume I. North-Holland Publishing Company, 1958.

[4] Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin. Combinatory
Logic, volume II. North-Holland Publishing Company, 1972.

[5] Mayer Goldberg. Recursive Application Survival in the λ-Calculus. PhD
thesis, Department of Computer Science, Indiana University, June 1996.

[6] Richard Kelsey, William Clinger, and editors Rees, Jonathan. Revised5

Report on the Algorithmic Language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998.

[7] Guy L. Jr. Steele. Common Lisp: The Language. Digital Press, First edition,
1984.

[8] Joseph Stoy. Denotational Semantics: the Scott-Strachey Approach to Pro-
gramming Language Theory. The MIT Press Series in Computer Science.
MIT Press, 1977.

8



Recent BRICS Report Series Publications

RS-01-35 Mayer Goldberg. A General Schema for Constructing One-
Point Bases in the Lambda Calculus. September 2001. 8 pp.

RS-01-34 Flemming Friche Rodler and Rasmus Pagh.Fast Random Ac-
cess to Wavelet Compressed Volumetric Data Using Hashing.
August 2001. 31 pp. To appear inACM Transactions on Graph-
ics.

RS-01-33 Rasmus Pagh and Flemming Friche Rodler.Lossy Dictionaries.
August 2001. 14 pp. Short version appears in Meyer auf der
Heide, editor,9th Annual European Symposium on Algorithms,
ESA ’01 Proceedings, LNCS 2161, 2001, pages 300–311.

RS-01-32 Rasmus Pagh and Flemming Friche Rodler.Cuckoo Hashing.
August 2001. 21 pp. Short version appears in Meyer auf der
Heide, editor,9th Annual European Symposium on Algorithms,
ESA ’01 Proceedings, LNCS 2161, 2001, pages 121–133.

RS-01-31 Olivier Danvy and Lasse R. Nielsen.Syntactic Theories in Prac-
tice. July 2001. 37 pp. Extended version of an article to appear
in the informal proceedings of theSecond International Work-
shop on Rule-Based Programming, RULE 2001 (Firenze, Italy,
September 4, 2001). Superseeded by the BRICS report RS-02-
4.

RS-01-30 Lasse R. Nielsen.A Selective CPS Transformation. July 2001.
24 pp. Appears in Brookes and Mislove, editors,27th Annual
Conference on the Mathematical Foundations of Programming
Semantics, MFPS ’01 Proceedings, ENTCS 45, 2001. A prelim-
inary version appeared in Brookes and Mislove, editors,17th
Annual Conference on Mathematical Foundations of Program-
ming Semantics, MFPS ’01 Preliminary Proceedings, BRICS
Notes Series NS-01-2, 2001, pages 201–222.

RS-01-29 Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A Unify-
ing Approach to Goal-Directed Evaluation. July 2001. 23 pp.
Appears in New Generation Computing, 20(1):53–73, Novem-
ber 2001. A preliminary version appeared in Taha, editor,2nd
International Workshop on Semantics, Applications, and Im-
plementation of Program Generation, SAIG ’01 Proceedings,
LNCS 2196, 2001, pages 108–125.


