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Abstract

The evaluation function of a syntactic theory is canonically defined
as the transitive closure of (1) decomposing a program into an evaluation
context and a redex, (2) contracting this redex, and (3) plugging the result
in the context. Directly implementing this evaluation function therefore
yields an interpreter with a quadratic time factor over its input. We
present sufficient conditions over a syntactic theory to circumvent this
quadratic factor, and we illustrate the method with two programming-
language interpreters and a transformation into continuation-passing style
(CPS). As a byproduct, the time complexity of this CPS transformation
is mechanically changed from quadratic to linear.

We also flesh out a new connection between continuations and evalu-
ation contexts, using Reynolds’s defunctionalization.

∗Extended version of an article to appear in the informal proceedings of the Second Inter-
national Workshop on Rule-Based Programming (RULE 2001), Firenze, Italy, September 4,
2001.

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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1 Introduction

A syntactic theory provides a uniform, concise, and elegant framework to specify
a programming language and to reason about it [4]. We consider the issue of
implementing the evaluation function of a syntactic theory in the form of an
interpreter. Our emphasis, however, is not on automating this process, as in
Xiao and Ariola’s SL project [12, 13].1 Instead, we show how to circumvent the
quadratic time factor over source programs entailed by a direct implementation
of an evaluation function.

We first identify the quadratic factor (Section 2). Then, we list sufficient
conditions to rephrase a syntactic theory so that implementing its evaluation
function does not incur this factor. The proof that these conditions are sufficient
is constructive in that it indicates how to mechanically rephrase the syntactic
theory to circumvent the quadratic factor. We then consider three examples: a
syntactic theory for the call-by-value λ-calculus (Section 3), a syntactic theory
for arithmetic expressions with precedence (Section 4), and a transformation
of λ-terms into continuation-passing style due to Sabry and Felleisen [9] (Sec-
tion 5).

2 Refocusing in a syntactic theory

A syntactic theory is a small-step semantics where evaluation is defined as the
transitive closure of single reductions, each performed by (1) decomposing a
program into a context and a redex, (2) contracting the redex, and (3) plugging
the result of contraction in the context. Most syntactic theories satisfy a unique
decomposition property.

The interpreter for a syntactic theory corresponding to its evaluation func-
tion naturally consists of a decompose-contract-plug loop. Often, the only viable
implementation of decomposition is a depth-first search in the abstract syntax
tree. The decompose step therefore introduces a significant overhead, propor-
tional to the program size. Likewise, plugging can also take time linear in the
program size, although it always takes at most as long as the following decom-
position, if there is one, and as illustrated below.

For example, here is a syntactic theory of the call-by-value λ-calculus:

e ∈ Λ e ::= x | λx.e | e e
v ∈ Values v ::= x | λx.e
x ∈ Vars
E ∈ EvCont E ::= [ ] | E e | v E
r ∈ Redex r ::= v v

Plugging the hole of an evaluation context with an expression is defined as usual:

([ ])[e] = e
(E e′)[e] = E[e] e′

(v E)[e] = v E[e]
1http://www.cs.uoregon.edu/~ariola/SL/
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The only reduction rule is the following one:

E[(λx.e) v] → E[e[v/x]]

Decomposition induces a linear overhead and thus evaluation takes a quadratic
time. Let us illustrate this complexity using Church numerals: dne is the Church
numeral for the number n, i.e., λz.λs. s(s(s(. . . (s︸ ︷︷ ︸

n

z) . . .))).

Example 1 We consider the term dne (λx.x)v where v is any value. This term
reduces in two steps to (λx.x)((λx.x)((λx.x)(. . . ((λx.x)︸ ︷︷ ︸

n

v) . . .))). From then on,

each decomposition into a context and a redex, always (λx.x) v, takes time pro-
portional to the number of remaining applications. The total evaluation time is
thus O(n2). �

Example 2 More generally, let us consider the term

(λx.x)((λx.x)((λx.x)(. . . ((λx.x)︸ ︷︷ ︸
n

e) . . .)))

where e reduces to v in m steps. The time complexity of reducing this term to
a value is at least O(m × n + n2). Indeed, the factor n is attached to each of
the m reduction steps and thus the time complexity for reducing e to v in this
context is at least O(m × n), after which we are back at the previous example.
�

We propose an alternative implementation of consecutive plug-and-decom-
pose operations that avoids the quadratic overhead. In this alternative im-
plementation, the composition of plug and decompose is replaced by a single
function that we call refocus. This replacement is only possible if the syntactic
theory satisfies some properties that essentially amount to the next redex occur-
ring, in the depth-first traversal of decompose, later than any other expression
that can occur in an evaluation context. We show that these properties hold if
the syntactic theory is given in the “standard” way, i.e., by a context-free gram-
mar of values and evaluation contexts, and if it satisfies a unique-decomposition
property. We also show how to construct a refocus function that avoids the
quadratic overhead.

2.1 Context-free syntactic theories (terms)

First, we can assume some properties of the grammar of the language. We are
working with abstract syntax, i.e., a program is an abstract-syntax tree where
each node is created by a production in the language grammar. Because the
abstract syntax need not correspond to the concrete syntax, we can, without
loss of generality, assume (1) that all productions are of the form

e ::= c(e1, . . . , en)
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for some terminal symbol c and non-terminals e1, . . . , en, and (2) that there
is only one production using c. We call the terminal symbols, c, constructors
and the non-terminals, e, term identifiers. The set of terms generated from
each non-terminal of the grammar is associated to this non-terminal, and the
non-terminal is used to refer to any element of that set. When we refer to a
production on the form e ::= c(e1, . . . , en), the set associated to e is called Exp
and the ones ranged over by e1, . . . , and en are called Exp1, . . . , and Expn,
respectively.

We assume that there is no trivial syntactic category, i.e., one where Expi

contains only zero or one element. There are standard ways to transform any
grammar into an equivalent grammar with no trivial syntactic categories [5,
Section 4.4].

We also require the syntactic theory to be defined by context-free grammars
of values, evaluation contexts, and redexes. (Xiao, Sabry, and Ariola also make
this assumption for terms and evaluation contexts [13].)

2.2 Context-free syntactic theories (values)

If e ::= c(e1, . . . , en) is a production in the language grammar, a production for
values is thus of the form

v ::= c(x1, . . . , xn)

where the xi are either term identifiers, ei, or non-terminals that, like v, repre-
sent values. We call such non-terminals value identifiers. The set of value terms
for a value identifier vi is called Vali and is necessarily a subset of Expi.

2.3 Context-free syntactic theories (contexts)

Likewise, evaluation contexts are given by a grammar of the form:

E ::= [ ] | c(x1, . . . , xi−1, Ei, xi+1 . . . , xn) | . . .

where again the xj ’s are either value- or term identifiers, and Ei and E are non-
terminals representing evaluation contexts. We call such non-terminals context
identifiers. The terminal [ ] is called the hole of a context.

The binary operator ◦ constructs the composition of two contexts. It is
defined inductively on the structure of its first argument as follows.

[ ] ◦ E2 = E2

c(e1, . . . , E, . . . , en) ◦ E2 = c(e1, . . . , E ◦ E2, . . . , e)

Composition thus satisfies (E1 ◦ E2)[e] = E1[E2[e]].
Contexts with composition form a monoid where the empty context, [ ], is

the unit, and all other evaluation contexts can be constructed by composing
elementary contexts, i.e., contexts where the immediate sub-context is a hole,
e.g., c(x1, . . . , xi−1, [ ], xi+1, . . . , xn).

Because composition is associative, we can define evaluation contexts cor-
responding to composition on the left or on the right. For example, at the
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beginning of Section 2, we gave a traditional definition of EvCont where eval-
uation contexts are created by composition on the left. We can also specify
EvCont so that evaluation contexts are created by composition on the right:

E ∈ EvCont E ::= [ ] | E[[ ] e] | E[v [ ]]

Plugging the hole of an evaluation context with an expression is then defined
iteratively as follows:

([ ])[e] = e
(E[[ ] e′])[e] = E[e e′]
(E[v [ ]])[e] = E[v e]

In the sense that an evaluation context represents a function from terms to
terms, it is injective, i.e., if E[e] = E[e′] then e = e′. This injectivity can be
proven by structural induction over E.

We define the depth of an evaluation context E as the number of productions
used to create it. We write it |E|, and define the depth function | · | inductively
over the structure of evaluation contexts as follows.

|[ ]| = 0
|c(e1, . . . , E, . . . , en)| = 1 + |E|

One can then easily show that |E1 ◦ E2| = |E1| + |E2| and |E| = 0 ⇔ E = [ ].
We also define a partial ordering on evaluation contexts based on the com-

position operation: E1 ≤ E2 if there exists an E′ such that E2 = E1 ◦ E′. This
relation is reflexive, anti-symmetric, and transitive (simple proof omitted).

If two evaluation contexts are both smaller than a third one, then the two are
themselves related. This follows from the structure of the grammar of evaluation
contexts, and therefore we can uniquely define the greatest lower bound of any
set of contexts with respect to the ordering. We write E1 u E2 for the binary
greatest lower bound of E1 and E2.

If E1 is strictly smaller than E2, i.e., if E1 ≤ E2 and E1 6= E2, we use the
traditional notation E1 < E2. This strict ordering is well-founded, since the | · |
function maps the evaluation contexts into the natural numbers ordered by size
and it is monotone with respect to <.

Some syntactic categories contain only values, e.g., the syntactic categories
of literals. We assume that there are no evaluation contexts for those syntactic
categories, since such evaluation contexts could never occur in a decomposition
into context and redex anyway, and as such they are irrelevant to the semantics
of a language. Likewise, there is no reason to distinguish between values and
expressions, so we only represent the syntactic category by the term identifier
and never by the associated value identifier.

2.4 Context-free syntactic theories (redexes)

We require redexes to be defined by a context-free grammar using only construc-
tors, term identifiers, and value identifiers. More precisely, productions must
be of the form r ::= c(x1, . . . , xn) where xi is either vi or ei. The set of redexes
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ranged over by ri is called Redexi. It is a subset of Expi. We require Redexi

to be disjoint from the set of values, Vali.
Some syntactic theories have more than these groups of terms and include

groups of terms that are considered errors or that are stuck. With an abuse
of language, we group all these terms under the name “redex”. Indeed, we are
primarily interested in the plugging and decomposition taking place between
reductions, independently of what the contractions do, inasmuch as we can
distinguish values from non-value expressions.

2.5 Properties of syntactic theories

We require one property of the syntactic theory, that of unique decomposition.

Definition 1 (Unique decomposition) A syntactic theory satisfies a unique-
decomposition property if any term, e, can be uniquely decomposed into either
a value, if e itself is a value, or an evaluation context E and a redex r such that
e = E[r]. �

Unique decomposition is so fundamental to syntactic theories for determin-
istic languages that it is almost always the first property to be established. Its
proof is often technically simple, but because of its many small cases, it tends
to be tedious and error-prone. This state of affairs motivated Xiao, Sabry,
and Ariola to develop an automated support for proving unique-decomposition
properties [13].

If the syntactic theory satisfies a unique-decomposition property, then its
redexes are exactly the non-value terms that can only be trivially decomposed,
as shown by the following two inclusions.

• Let r be a redex. If E[e] is a decomposition of r then either e is a value, and
the decomposition is trivial, or e is not a value, and it can be decomposed
uniquely into e = E′[r′]. Then (E ◦ E′)[r′] is a decomposition of r into a
context and a redex. Since [ ][r] is also a decomposition into an evaluation
context and a redex, and it is unique, we know that E ◦ E′ = [ ] and
r′ = r. The only way E ◦ E′ can be [ ] is if both E and E′ are [ ], and so
the decomposition was trivial.

• Let e be a non-value term that can only be trivially decomposed. Then by
unique decomposition e can be uniquely decomposed as E[r]. Since this
decomposition must be trivial, and r is a redex and thus not a value, it
follows that E = [ ] and thus e = r is itself a redex.

The following property of syntactic theories with unique decomposition al-
lows us to show the correctness of the refocus function.

Definition 2 (Left-to-right reduction sequence) A syntactic theory has a
left-to-right reduction sequence if for each production e ::= c(e1, . . . , en) of the
language grammar, there exists a number 0 ≤ m ≤ n, called the length of the
reduction sequence of c, such that if e = c(e1, . . . , en) then the following two
properties hold.
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1. If all of e1 through em are values then e is either a value or a redex,
depending only on c.

2. If 1 ≤ i < m is the first i such that ei is not a value, with a (unique)
decomposition of ei = E[r], then the decomposition of e is

c(e1, . . . , ei−1, E, ei+1, . . . , en)[r].

Depending on whether e is a value or a redex in the first property, we say that
c constructs a value or c constructs a redex, respectively.

In words, the length of a reduction sequence is the number of immediate
sub-expressions that must be reduced to produce a value or a redex. �

Not all syntactic theories have such a left-to-right reduction sequence, but
any syntactic theory with unique decomposition can be transformed into one
that does by only reordering the arguments of the constructors

We show that there is a reduction sequence, not necessarily left-to-right, for
any production of the language grammar.

Definition 3 (Reduction sequence) A syntactic theory is said to have a re-
duction sequence if for each production e ::= c(e1, . . . , en) of the language gram-
mar, there exists a number 0 ≤ m ≤ n, called the length of the reduction se-
quence of c, and a sequence of length m of indices between 1 and n, represented
by an injective mapping σ : {1, . . . , m} → {1, . . . , n} (called the reduction se-
quence of c), such that if e = c(e1, . . . , en) then the following two properties
hold.

1. If all of eσ(1) through eσ(m) are values then e is either a value or a redex,
depending only on c.

2. If 1 ≤ i < m is the first i such that eσ(i) is not a value, with a (unique)
decomposition of eσ(i) = E[r], then the decomposition of e is

c(e1, . . . , eσ(i)−1, E, eσ(i)+1, . . . , en)[r].

A left-to-right reduction sequence is a reduction sequence where the σ-function
is the identity.

Theorem 1 A syntactic theory that satisfies “unique decomposition” has a re-
duction sequence.

Proof: Let e ::= c(e1, . . . , en) be a production of the grammar of the
language.

The proof constructs the reduction sequence (m, σ). First we formalize and
name the two properties above.
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P1(m, σ) ={ ∀e1, . . . , en.
(∀i ∈ {1, . . . , m} .eσ(i) ∈ Valσ(i)) ⇒ c(e1, . . . , en) ∈ Val ∪ Redex

P2(m, σ) =


∀e1, . . . , en.∀i ∈ {1, . . . , m} .
((∀j ∈ {1, . . . , i − 1} .eσ(j) ∈ Valσ(j)) ∧ eσ(i) ∈ Expσ(i) \ Valσ(i)

∧ decompose(eσ(i)) = (E, r))
⇒ decompose(c(e1, . . . , en)) = (c(e1, . . . , eσ(i)−1, E, eσ(i)+1, . . . , en), r)

We show three facts about these properties:

Fact 1: P2(0, σ). It holds vacuously. The σ must be the empty function, since
it is defined over the empty set.

Fact 2: P2(m, σ) ⇒ P1(m, σ)

∨ ∃σ′ : {1, . . . , m + 1} inj→ {1, . . . , n} .P2(m + 1, σ′).

Three cases occur.

Assume P2(m, σ). Let e1 through en be given such that eσ(1) through
eσ(m) are values and the remaining are not (if at all possible, some syn-
tactic categories might contain only values).

Then either c(e1, . . . , en) is a value or not.

• If c(e1, . . . , en) is a value, then there must be some production v ::=
c(x1, . . . , xn) such that xi is not a value identifier, vi, unless i is in
the range of σ (if ei is a value only because it comes from a syn-
tactic category that contains only values, then xi is assumed to be
a term identifier). In that case, any choice of e1 through en where
eσ(1) . . . eσ(m) are values must also be a value, so P1(m, σ) must hold
and we say that c constructs a value.

• If c(e1, . . . , en) is not a value, then it has a unique decomposition into
evaluation context and redex. Let (E, r) = decompose(c(e1, . . . , en))
be that decomposition. Then either E is the empty context or not.

– If E is the empty context, then c(e1, . . . , e2) is itself a redex.
That means that there is a production for redexes on the form
r ::= c(x1, . . . , xn) that matches this choice of values and non-
values (xi being a value identifier only if i is in the range of σ).
In that case, any choice of e1 through en where eσ(1) . . . eσ(m) are
values must also be a redex, so P1(m, σ) must hold and we say
that c constructs a redex.

– If E is not the empty context, then E must be of the form

c(x1, . . . , xi−1, Ei, xi+1, . . . , xn)

9



There must then be a production E ::= c(x1, . . . , xi−1, Ei, xi+1,
. . . , xn) where xj is only a value identifier if j is in the range of σ.
In that case, for any choice of e1 through en with eσ(1) . . . eσ(m)

being values and ei = Ei[r] being a non value, c(e1, . . . , en) will
also be decomposable into c(e1, . . . , ei−1, Ei, ei+1, . . . , en) and r.
If we extend σ with (m + 1) 7→ i, it must then satisfy P2(m +
1, σ[m + 1 7→ i]).

Fact 3: P1(n, σ). If σ : {1, . . . , n} inj→ {1, . . . , n} then σ is a permutation. As-
suming that all of eσ(1) through eσ(n) are values is then the same as as-
suming all of e1 through en are values. Then c(e1, . . . , en) can have no
non-trivial decomposition, so it is either a value or a redex.

If it is a value, then there must be a production v ::= c(x1, . . . , xn), which
means that any choice of values, e1 . . . en will make c(e1, . . . , en) a value,
and c constructs a value.

If c(e1, . . . , en) is a redex, then there must be a production on the form
r ::= c(x1, . . . , xn), so any choice of values e1 . . . en will also make c(e1, . . . ,
en) a redex, and c constructs a redex.

By repeating Fact 2 up to n times, starting with Fact 1, we can see that
there must be a reduction sequence of some length, (m, σ), satisfying P1(m, σ)
and P2(m, σ), and indeed the proof suggests how to build such a σ. Thus, any
syntactic construct in the language has a reduction sequence. The definition
guarantees that a reduction sequence is unique, since the existence of a longer
reduction sequence requires an expression to both be a value or redex and to be
decomposable into a non-trivial evaluation context and a redex. �

In the remainder of this section, we assume that the subterms of the con-
structors are ordered according to the reduction sequence, i.e., the reduction
sequence is left-to-right in the abstract syntax. This is only for ease of repre-
sentation, since it lets us abstract away the mapping σ. Any argument based
on left-to-right reduction sequences still hold in the more general case when σ
is inserted in the appropriate places.

Also, for ease of reference, we subscript the evaluation-context constructors
by the index of the argument that is an evaluation context. That is, E ::=
ci(v1, . . . , vi−1, Ei, ei+1, . . . , en), since all evaluation contexts that are used must
be of this form.

2.6 Construction of a refocus function

We now define a function, refocus, that is extensionally equivalent to the com-
position of the plug function and the decompose function. It uses a different rep-
resentation of evaluation contexts—a stack of elementary contexts—that allows
us to inexpensively compose an elementary context on the right of a context,
i.e., to plug an elementary context in a context. Since the evaluation context
is only ever accessed in plug and decompose, we are free to choose our own
representation when implementing these functions.
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The refocus function is defined with two mutually recursive functions. The
first, refocus , takes an evaluation context—represented as a stack of elementary
evaluation contexts—and an expression. It then tries to find the redex in that
expression by decomposing the expression. If it fails, then the expression must
be a value, and it calls an auxiliary function, refocusaux , defined by cases on the
top-most evaluation context on the stack.

For each e ::= c(e1, . . . , en) in the language grammar, there exists one cor-
responding rule in refocus .

1. If the length of the reduction sequence of c is 0, then we know that
c(e1, . . . , en) is a value or a redex.

(a) If c constructs a value, then

refocus(c(e1, . . . , en), E) = refocusaux (E, c(e1, . . . , en)).

(b) If instead c constructs a redex, then

refocus(c(e1, . . . , en), E) = (E, c(e1, . . . , en))

since we have found the decomposition.

2. If the length of the reduction sequence is non-zero, then the first expression
must be reduced, and we simply refocus on it:

refocus(c(e1, . . . , en), E) = refocus(e1, E ◦ c([ ], e2, . . . , en))

where we write E ◦ c(. . . , [ ], . . .) for “pushing” the elementary context,
c(. . . , [ ], . . .), on the “stack” of contexts, E.

3. Likewise, the refocusaux function is defined by cases on the evaluation
context on top of the stack. Let us take, e.g., the evaluation context
ci(v1, . . . , vi−1, [ ], ei+1, . . . , en) as the top-most elementary context on the
stack.

(a) If the length of the reduction sequence of c is i and c constructs a
value, then

refocusaux (E ◦ ci(v1, . . . , vi−1, [ ], ei+1, . . . , en), vi)
= refocusaux (E, c(v1, . . . , vi−1, vi, ei+1, . . . , en))

The auxiliary function tries to find the next expression in the reduc-
tion sequence by plugging the value given and picking the next subex-
pression in the reduction sequence. In this case there is no next sub-
expression, so refocusaux iterates with the newly constructed value.

(b) If the length of the reduction sequence of c is i, but c constructs a
redex, then we have found a decomposition. Thus, the rule is:

refocusaux (E ◦ ci(v1, . . . , vi−1, [ ], ei+1, . . . , en), vi)
= (E, c(v1, . . . , vi−1, vi, ei+1, . . . , en)).
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(c) If the length of the reduction sequence of c is bigger than i, then
we are not finished evaluating the c-expression, so we refocus on the
next subexpression in the reduction sequence, and the rule is:

refocusaux (E ◦ ci(v1, . . . , vi−1, [ ], ei+1, ei+2, . . . , en), vi)
= refocus(ei+1, E ◦ ci+1(v1, . . . , vi−1, vi, [ ], ei+2, . . . , en)).

4. Finally there is one rule for the empty context.

refocus([ ], v) = v

This base case accounts for the situation where the entire expression is a
value, so the decomposition has to return a value rather than a pair of a
context and a redex.

With one such rule for each construction in the language syntax and in the
evaluation-context syntax, the refocus function terminates only when finding a
decomposition into an evaluation context and a redex or if the entire program is
found to be a value. An ordering argument using the reduction sequence shows
that refocus visits expressions in an order corresponding to a depth-first post-
order traversal of the syntax tree, skipping the branches that are not in position
to be evaluated (such as the conditional branches of an “if” construct). As such,
refocus necessarily terminates, and it does so exactly with a decomposition,
which has to be unique. We define this ordering as follows.

Definition 4 (Ordering on decompositions of a term) Let e = E1[e1] =
E2[e2] be decompositions. There are two cases where (E1, e1) v (E2, e2).

• (E1, e1) v (E2, e2) if E1 ≤ E2 (i.e., if E2 = E1 ◦ E′ for some E′). Two
equivalent ways of stating the requirement is that E1 uE2 = E1 or that e2

is a subterm of e1. When E1 ≤ E2 we write E2 \ E1 for the E′ satisfying
E2 = E1 ◦ E′. This E′ is in fact uniquely determined by E1 and E2.

• If neither E1 < E2 nor E2 < E1 then E = E1 uE2 is strictly smaller than
both E1 and E2. Let us look at where the evaluation contexts differ; let
E′

1 = E1 \ E and E′
2 = E2 \ E.

Since E′
1 and E′

2 are both non-empty and E′
1[e1] = E′

2[e2], there must be
some constructor c such that they are of the form E1 \E = ci(e1, . . . , ei−1,
Ei, ei+1, . . . , en) and E2 \E = cj(e1, . . . , ej−1, Ej , ej+1, . . . , en). The i and
j (which we will call the index of the sub-context) must be different, since
otherwise E ◦ (ci(v1, . . . , Ei, . . . , en)) would be a lower bound of both E1

and E2, contradicting that E is the greatest lower bound.

Then (E1, e1) v (E2, e2) if i > j, i.e., if e1 is “later in the reduction
sequence” than e2.

No decompositions are related by v unless they satisfy one of these two cases.
�
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The relation v is reflexive, symmetric, and transitive (proof omitted), i.e., it
is an ordering relation. It is also total, i.e., for any two decompositions of the
same term, E1[e1] = E2[e2], either (E1, e1) v (E2, e2) or (E2, e2) v (E1, e1).
This follows from any two decompositions, E1[e1] = E2[e2], satisfying at least
one of the following four cases (the third one is compound):

1. E1 uE2 = E1, in which case E1 < E2 and thus (E1, e1) < (E2, e2) (by the
first case of Definition 4),

2. E1 uE2 = E2, in which case E2 < E1 and thus (E2, e2) < (E1, e1) (by the
first case of Definition 4), or

3. E1 u E2 is strictly smaller than both E1 an E2, so by the second case of
Definition 4, either (E1, e1) v (E2, e2) or (E2, e2) v (E1, e1).

We define the strict ordering, @, as (E1, e1) @ (E2, e2) if (E1, e1) v (E2, e2)
and (E1, e1) 6= (E2, e2). Then @ is well-founded, since the number of decompo-
sitions of a term is finite.

Now we are in position to prove that refocus terminates. The proof shows
that consecutive calls to refocusaux happen on smaller and smaller decomposi-
tions, so such calls must eventually terminate.

Lemma 1 (Totality) Any call to refocus terminates, i.e., refocus is total.

Proof: We prove that refocusaux is total.
The proof is by well-founded induction on the arguments of refocusaux .
There are four cases, one base case and one case for each possible behavior

of refocusaux on an argument (E ◦ ci(e1, . . . , [ ], . . . , en), v).

1. If the argument to refocusaux is an empty context and a value, then it
stops immediately with that value as result.

2. If the reduction sequence of c has length m = i and c constructs a value,
then

refocusaux (E ◦ ci(e1, . . . , [ ], . . . , en), v)
= refocusaux (E, c(e1, . . . , v, . . . , en)).

Since E < E ◦ ci(e1, . . . , [ ], . . . , en), the first case of the definition of v
shows that

(E, c(e1, . . . , v, . . . , en)) @ (E ◦ ci(e1, . . . , [ ], . . . , en), v).

3. If the reduction sequence of c has length m = i and c constructs redexes,
then refocusaux stops with a decomposition into an evaluation context and
a redex.

4. If the reduction sequence of c has length m > i then

refocusaux (E ◦ ci(e1, . . . , [ ], ei+1, . . . , en), v)
= refocus(ei+1, E ◦ c1(e1, . . . , v, [ ], . . . , en)).
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NB: (E◦c1(e1, . . . , v, [ ], . . . , en), ei+1) @ (E◦ci(e1, . . . , [ ], ei+1, . . . , en), v).

Here we need a sub-induction to show that refocus(ei+1, E ◦c(e1, . . . , v, [ ],
. . . , en)) eventually either computes a value, or calls refocusaux with an
argument that is smaller than (E ◦ ci(e1, . . . , [ ], ei+1, . . . , en), v).

The proof is by structural induction on ei+1. We show that for any ar-
gument, (e, E), to refocus , either the above happens, or refocus calls it-
self with an argument that is still smaller (wrt. @) than (E ◦ ci(e1, . . . ,
[ ], ei+1, . . . , en), v) and structurally smaller than e, guaranteeing eventual
termination. The three cases are as follows.

• Either refocus calls refocusaux with the same arguments that it re-
ceived itself (in the opposite order). These arguments are smaller
than (E ◦ ci(e1, . . . , [ ], ei+1, . . . , en), v) by induction hypothesis.

• refocus terminates with a result that is an evaluation context and a
redex.

• refocus calls itself with an argument that is structurally smaller, and
which is also a smaller decomposition than (E◦ci(e1, . . . , [ ], ei+1, . . . ,
en), v).
It suffices to show that if (E1, e1) @ (E′, e′) and E1 6< E′ (i.e., it
is due to the second case in the definition of v), then any other
decomposition (E2, e2) with E1 < E2 also satisfies (E2, e2) @ (E′, e′).
This follows directly from the definition, since E′ u E1 = E′ u E2,
and thus E1 \ E′ u E1 < E2 \ E′ u E2.

The above induction argument proves that refocusaux is a total function, and
another induction, similar to the sub-induction in Case 3, shows that refocus is
total as well. �

Since refocus can only terminate yielding a decomposition into either a value
or an evaluation context and a redex, and such a decomposition is unique, it
must compute the same function as the composition of plugging and decompos-
ing.

We make only a short argument that using refocus leads to a more efficient
implementation of finding the next redex than plugging and then decomposing
using a depth-first search for the redex. The refocus function visits the nodes of
the syntax tree in the same order as a recursive-descent decomposition. How-
ever, it does not start from scratch, but from the node that is about to be
plugged.2 In an implementation of a syntactic theory that uses refocus , the
time taken to perform a reduction sequence like E[e] → E[e′] → E[e′′] is thus
independent of E. Using refocus thus makes it possible to avoid the quadratic
overhead identified at the start of this section.

2In fact, as we observed elsewhere [3], the refocus function corresponds to a continuation-
passing implementation of recursive descent with a first-order representation of the contin-
uation: the evaluation context. Applying the auxiliary function to a context and a value
corresponds to applying the continuation to that value. We come back to this point in ap-
pendix.
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3 Application: the call-by-value λ-calculus

Let us get back to the call-by-value λ-calculus, as initially considered in the
beginning of Section 2. First, we state the grammars of the language and of the
syntactic theory, but this time in the format used in Section 2.1 and onwards.

e ∈ Exp e ::= var(x) | lam(x, e) | app(e, e)
x ∈ Ide
v ∈ Val v ::= var(x) | lam(x, e)
E ∈ EvCont E ::= [ ] | app(E, e) | app(v, E)
r ∈ Redex r ::= app(v, v)

Ide is a syntactic category of identifiers, containing only values, so there is no
value- and evaluation-context definition for it.

The interpreter is defined as follows.

eval : Exp → Val + (EvCont× Redex)
eval (e) = eval ′(decompose(e))

eval ′ : Val + (EvCont× Redex) → Val + (EvCont× Redex)
eval ′(v) = v

eval ′(E, app(lam(x, e), v)) = eval (plug(E, e[v/x]))
eval ′(E, app(x, v2)) = (E, app(x, v2))

given
decompose : Exp → Val + (EvCont× Redex)

plug : EvCont× Exp → Exp

The interpreter takes one expression as argument, and attempts to repeatedly
decompose, contract, and plug, until either a value or a stuck redex is reached,
if any.

The syntactic theory given has a left-to-right reduction sequence, where
the length of the reduction sequence of app is 2 and app constructs redexes.
Therefore we define the refocus and refocusaux functions as follows.

refocus : Exp× EvCont → Val + (EvCont× Redex)
refocus(var(x), E) = refocusaux (E, var(x))

refocus(lam(x, e), E) = refocusaux (E, lam(x, e))
refocus(app(e1, e2), E) = refocus(e1, E ◦ (app([ ], e2))

refocusaux : EvCont× Val → Val + (EvCont× Redex)
refocusaux ([ ], v) = v

refocusaux (E ◦ (app([ ], e2)), v) = refocus(e2, E ◦ (app(v, [ ])))
refocusaux (E ◦ (app(v1, [ ])), v) = (E, app(v1, v))

The interpreter is then changed to using refocus instead of decompose and
plug.
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eval : Exp → Val + (EvCont× Redex)
eval (e) = eval ′(refocus(e, [ ]))

eval ′ : Val + (EvCont× Redex) → Val + (EvCont× Redex)
eval ′(v) = v

eval ′(E, app(lam(x, e), v)) = eval ′(refocus(e[v/x], E))
eval ′(E, app(x, v2)) = (E, app(x, v2))

NB: The last rule of eval ′ is used for stuck redexes.
To implement this interpreter, e.g., in ML, the grammars of the syntactic

theory can be expressed directly as ML data types. As for the refocus function,
it can use a stack of elementary contexts and a push operation to efficiently
implement the composition of an elementary context to the right of a context.
It is however more convenient then to represent evaluation contexts “inside out”:

E ::= [ ] | E[[ ]e] | E[v[ ]].

Because it uses refocusing instead of consecutive plugging and decomposing,
the resulting interpreter does not incur a quadratic overhead over its input. For
example (cf. Example 1 in Section 2), it evaluates a term such as dne (λx.x) v
in time O(n).

4 Application: arithmetic expressions with precedence

We give a comprehensive example illustrating all the cases of the construction
of a refocus function. We consider arithmetic expressions with additions, multi-
plications, conditional expressions checking whether their first argument is zero,
parenthesized expressions, literals, and oracles returning 0 or 1. (The oracles
are only there to illustrate a case of the construction.)

The grammar is unambiguous and hierarchic, as often given in compiler
courses. It specifies expressions, terms, and factors, and reads as follows.

e ∈ Expr e ::= t + e | Ifz e e e | t
t ∈ Term t ::= f × t | f
f ∈ Fact f ::= n | flip | (e)
n ∈ Lit

A program is an expression.

4.1 A syntactic theory

We define the syntactic theory of arithmetic expressions by specifying its values,
its computations, its evaluation contexts, its redexes and its reduction rules.
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Values (trivial terms):

ve ∈ ExprVal ve ::= vt

vt ∈ TermVal vt ::= vf
vf ∈ FactVal vf ::= n

Computations (serious terms):

ce ∈ ExprComp ce ::= t + e | Ifz e e e | ct

ct ∈ TermComp ct ::= f × t | cf
cf ∈ FactComp cf ::= flip | (e)

Evaluation contexts:

Ee ∈ ExprEvCont Ee ::= [ ]e | Et + e | vt + Ee | Ifz Ee e e | Et

Et ∈ TermEvCont Et ::= [ ]t | Ef × t | vf × Et | Ef

Ef ∈ FactEvCont Ef ::= [ ]f | (Ee)

Redexes:

re ∈ ExprRedex re ::= vt + ve | Ifz ve e e | rt

rt ∈ TermRedex rt ::= vf × vt | rf
rf ∈ FactRedex rf ::= flip | (ve)

Reduction rules:

Ee[n1 + n2] → Ee[n3] where n3 is the sum of n1 and n2

Ee[Ifz n e1 e2] → Ee[e1] if n = 0
Ee[Ifz n e1 e2] → Ee[e2] if n 6= 0

Ee[n1 × n2] → Ee[n3] where n3 is the product of n1 and n2

Ee[flip] → Ee[0]
Ee[flip] → Ee[1]
Ee[(n)] → Ee[n]

The reduction rules are defined only on decompositions that “make sense”, i.e.,
only an expression is plugged into [ ]e, only a term into [ ]t and a factor into [ ]f .
The result of a reduction is an expression.

This syntactic theory satisfies three unique-decomposition lemmas, i.e., de-
composing an expression (resp. of a term and of a factor) into an evaluation
context and a redex yields a unique result. We prove these lemmas by struc-
tural induction on the syntax. The language is simple enough that the number
of cases is manageable.

There are no stuck redexes, and reduction always yields an expression. The
reduction relation, however, is not a function from expressions to expressions,
even though decompositions are unique, because of the oracles.
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4.2 An alternative representation of contexts

In Section 4.1, the grammar of evaluation contexts embodies left composition,
i.e., the construction of contexts by composition with an elementary context on
the left. In other words, each production except for the empty context, e.g.,
Ee ::= vt + Ee, could be written as Ee ::=(vt + [ ]e) ◦Ee. Since composition of
contexts is associative, we could define the same contexts using right composi-
tion, giving a production of the form Ee ::=Ee ◦(vt +[ ]e). We write it, however,
in the more common way: Ee ::=Ee[vt + [ ]e].

We transform the grammar of contexts into one representing composition
on the right, and we do this in a completely mechanical way. The example
above shows the general idea, though it does not illustrate the case where the
sub-context is not of the same type as the generated context.

We have three groups of evaluation contexts, grouped by the syntactic cat-
egory they produce when plugged. Take the elementary context [ ]t + e. If
we left-compose another evaluation context with this elementary context, we
require that the other context produces terms. If we right-compose this elemen-
tary context, however, we require the other context to accept expressions in the
hole. To capture this restriction in the grammar, we group the productions by
the type of the hole instead. So for example, the production Ee ::=Et + e is
transformed into Et ::=Ee[[ ]t + e].

In general, the transformation rewrites a production on the form Ea ::=
c(x1, . . . , Eb, . . . , xn) into Eb ::= Ea[c(x1, . . . , [ ]b, . . . , xn)], and it keeps the
productions of empty contexts. Performing this transformation on the grammar
of evaluation contexts above gives the following grammar.

Evaluation contexts:

Ee ∈ ExprEvCont Ee ::= [ ]e | Ee[vt + [ ]e] | Ee[Ifz [ ]e e e] | Ef [([ ])]
Et ∈ TermEvCont Et ::= [ ]t | Ee[[ ]t + e] | Et[vf × [ ]t] | Ee

Ef ∈ FactEvCont Ef ::= [ ]f | Et[[ ]f × t] | Et

In the original representation, Ee ranged over all contexts that generated
expression, but made no restriction on the type of the hole. The second rep-
resentation likewise lets Ee range over all contexts with a hole accepting an
expression, but makes no restriction on the type of the result of a plug. Using
this second representation, we must require that the evaluation contexts appear-
ing in the reduction rules must output expressions, i.e., we rule out the empty
contexts from Et and Ef in the grammar of evaluation contexts. The resulting
evaluation contexts and reduction rules read as follows.
Evaluation contexts:

Ee ∈ ExprEvCont Ee ::= [ ]e | Ee[vt + [ ]e] | Ee[Ifz [ ]e e e] | Ef [([ ])]
Et ∈ TermEvCont Et ::= Ee[[ ]t + e] | Et[vf × [ ]t] | Ee

Ef ∈ FactEvCont Ef ::= Et[[ ]f × t] | Et
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Reduction rules:

Ee[n1 + n2] → Ee[n3] where n3 is the sum of n1 and n2

Ee[Ifz n e1 e2] → Ee[e1] if n = 0
Ee[Ifz n e1 e2] → Ee[e2] if n 6= 0

Et[n1 × n2] → Et[n3] where n3 is the product of n1 and n2

Ef [flip] → Ef [0]
Ef [flip] → Ef [1]
Ef [(n)] → Ef [n]

4.3 Implementation

Figure 1 displays the BNF of arithmetic expressions in Standard ML. As usual
with syntactic theories, we distinguish between values (trivial terms) and com-
putations (serious terms). An expression (expr) is thus trivial (expr val) or
serious (expr comp); a term (term) is trivial (term val) or serious (term comp);
and a factor (fact) is trivial (fact val) or serious (fact comp). The only val-
ues are integers, hence values are defined with the hierarchy of types expr val,
term val, fact val, and int. Computations are similarly embedded, hence the
hierarchy of types expr comp, term comp, and fact comp.

Figure 2 displays the evaluation contexts and Figure 3, the corresponding
plug functions. Figure 4 displays the implementation of redexes and the result
of decomposition, and Figure 5, the corresponding decomposition functions.

datatype expr = EXPR_VAL of expr_val

| EXPR_COMP of expr_comp

and expr_val = TERM_VAL’ of term_val

and expr_comp = ADD of term * expr

| IFZ of expr * expr * expr

| TERM_COMP’ of term_comp

and term = TERM_VAL of term_val

| TERM_COMP of term_comp

and term_val = FACT_VAL’ of fact_val

and term_comp = MUL of fact * term

| FACT_COMP’ of fact_comp

and fact = FACT_VAL of fact_val

| FACT_COMP of fact_comp

and fact_val = INT of int

and fact_comp = FLIP

| PARENS of expr

Figure 1: Abstract syntax of arithmetic expressions
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datatype expr_evcont = EEC0

| EEC1 of term_val * expr_evcont

| EEC2 of expr * expr * expr_evcont

| EEC3 of fact_evcont

and term_evcont = TEC1 of expr * expr_evcont

| TEC2 of fact_val * term_evcont

| TEC3 of expr_evcont

and fact_evcont = FEC1 of term * term_evcont

| FEC2 of term_evcont

Figure 2: Evaluation contexts for arithmetic expressions

(* plug_expr : expr_evcont * expr -> expr *)

(* plug_term : term_evcont * term -> expr *)

(* plug_fact : fact_evcont * fact -> expr *)

fun

plug_expr (EEC0, e)

= e

| plug_expr (EEC1 (tt, eec), e)

= plug_expr (eec, EXPR_COMP (ADD (TERM_VAL tt, e)))

| plug_expr (EEC2 (e1, e2, eec), e)

= plug_expr (eec, EXPR_COMP (IFZ (e, e1, e2)))

| plug_expr (EEC3 fec, e)

= plug_fact (fec, FACT_COMP (PARENS e))

and

plug_term (TEC1 (e, eec), t)

= plug_expr (eec, EXPR_COMP (ADD (t, e)))

| plug_term (TEC2 (tf, tec), t)

= plug_term (tec, TERM_COMP (MUL (FACT_VAL tf, t)))

| plug_term (TEC3 eec, TERM_VAL tt)

= plug_expr (eec, EXPR_VAL (TERM_VAL’ tt))

| plug_term (TEC3 eec, TERM_COMP st)

= plug_expr (eec, EXPR_COMP (TERM_COMP’ st))

and

plug_fact (FEC1 (t, tec), f)

= plug_term (tec, TERM_COMP (MUL (f, t)))

| plug_fact (FEC2 tec, FACT_VAL tf)

= plug_term (tec, TERM_VAL (FACT_VAL’ tf))

| plug_fact (FEC2 tec, FACT_COMP sf)

= plug_term (tec, TERM_COMP (FACT_COMP’ sf))

Figure 3: Plug functions for arithmetic expressions
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datatype expr_redex = ADD_REDEX of term_val * expr_val

| IFZ_REDEX of expr_val * expr * expr

datatype term_redex = MUL_REDEX of fact_val * term_val

datatype fact_redex = FLIP_REDEX

| PARENS_REDEX of expr_val

datatype decomposed = VALUE of expr_val

| EXPR_DECOMPOSITION of expr_evcont * expr_redex

| TERM_DECOMPOSITION of term_evcont * term_redex

| FACT_DECOMPOSITION of fact_evcont * fact_redex

Figure 4: Redexes and the result of decomposition for arithmetic expressions
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(* decompose_expr : expr -> decomposed *)

(* decompose_expr_comp : expr_comp * expr_evcont -> decomposed *)

(* decompose_term_comp : term_comp * term_evcont -> decomposed *)

(* decompose_fact_comp : fact_comp * fact_evcont -> decomposed *)

fun

decompose_expr (EXPR_VAL te)

= VALUE te

| decompose_expr (EXPR_COMP se)

= decompose_expr_comp (se, EEC0)

and

decompose_expr_comp (ADD (TERM_VAL tt, EXPR_VAL te), eec)

= EXPR_DECOMPOSITION (eec, ADD_REDEX (tt, te))

| decompose_expr_comp (ADD (TERM_VAL tt, EXPR_COMP se), eec)

= decompose_expr_comp (se, EEC1 (tt, eec))

| decompose_expr_comp (ADD (TERM_COMP st, e), eec)

= decompose_term_comp (st, TEC1 (e, eec))

| decompose_expr_comp (IFZ (EXPR_VAL te, e1, e2), eec)

= EXPR_DECOMPOSITION (eec, IFZ_REDEX (te, e1, e2))

| decompose_expr_comp (IFZ (EXPR_COMP se, e1, e2), eec)

= decompose_expr_comp (se, EEC2 (e1, e2, eec))

| decompose_expr_comp (TERM_COMP’ st, eec)

= decompose_term_comp (st, TEC3 eec)

and

decompose_term_comp (MUL (FACT_VAL tf, TERM_VAL tt), tec)

= TERM_DECOMPOSITION (tec, MUL_REDEX (tf, tt))

| decompose_term_comp (MUL (FACT_VAL tf, TERM_COMP st), tec)

= decompose_term_comp (st, TEC2 (tf, tec))

| decompose_term_comp (MUL (FACT_COMP sf, t), tec)

= decompose_fact_comp (sf, FEC1 (t, tec))

| decompose_term_comp (FACT_COMP’ sf, tec)

= decompose_fact_comp (sf, FEC2 tec)

and

decompose_fact_comp (FLIP, fec)

= FACT_DECOMPOSITION (fec, FLIP_REDEX)

| decompose_fact_comp (PARENS (EXPR_VAL te), fec)

= FACT_DECOMPOSITION (fec, PARENS_REDEX te)

| decompose_fact_comp (PARENS (EXPR_COMP se), fec)

= decompose_expr_comp (se, EEC3 fec)

Figure 5: Decomposition of an arithmetic expression
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(* eval : expr -> expr_val *)

(* eval’ : decomposed -> expr_val *)

fun

eval e

= eval’ (decompose_expr e)

and

eval’ (VALUE te)

= te

| eval’ (EXPR_DECOMPOSITION

(eec, ADD_REDEX (FACT_VAL’ (INT n1),

TERM_VAL’ (FACT_VAL’ (INT n2)))))

= eval (plug_expr

(eec, EXPR_VAL (TERM_VAL’ (FACT_VAL’ (INT (n1 + n2))))))

| eval’ (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT 0)), e1, e2)))

= eval (plug_expr (eec, e1))

| eval’ (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)), e1, e2)))

= eval (plug_expr (eec, e2))

| eval’ (TERM_DECOMPOSITION

(tec, MUL_REDEX (INT n1, FACT_VAL’ (INT n2))))

= eval (plug_term (tec, TERM_VAL (FACT_VAL’ (INT (n1 * n2)))))

| eval’ (FACT_DECOMPOSITION

(fec, FLIP_REDEX))

= eval (plug_fact (fec, FACT_VAL (INT (Oracle.flip ()))))

| eval’ (FACT_DECOMPOSITION

(fec, PARENS_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)))))

= eval (plug_fact (fec, FACT_VAL (INT n)))

Figure 6: Evaluation of an arithmetic expression

Figure 6 displays the evaluation function, which attempts to decompose its
input expression into an evaluation context and a redex. If the expression is a
value (and thus cannot be decomposed), then the result is found. Otherwise, the
redex is contracted, the contractum is plugged into the context, and evaluation is
iterated. Contracting a redex amounts to adding two integers, selecting between
two expressions, multiplying two integers, calling an oracle (which is unspecified
here; our implementation is state-based), or skipping parentheses. No redexes
are stuck.
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4.4 Refocusing

We now construct the refocus functions. We start from the ML definition of the
grammar, in Figure 1, which fits the format expected for the construction.

Let us determine the reduction sequence of each syntactic construct.

The main syntactic constructs: Both addition and multiplication evaluate
their arguments from left to right. The conditional expression is special
in that it only evaluates its first argument. The oracle has no argument.
The parentheses has one argument and evaluates it. All of these syntactic
constructs create redexes.

The auxiliary syntactic constructs: The coercions between terms and ex-
pressions and between factors and expressions have one argument. This
argument is evaluated.

The refocus functions follow the grammatical structure of the source lan-
guage. Their skeleton is thus as follows.

fun refocus_expr (EXPR_VAL te, eec)

= refocus_expr_val (te, eec)

| refocus_expr (EXPR_COMP se, eec)

= refocus_expr_comp (se, eec)

and refocus_expr_val (te, eec)

= ...

and refocus_expr_comp (ADD (t, e), eec)

= ...

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= ...

| refocus_expr_comp (TERM_COMP’ st, eec)

= ...

and refocus_term (TERM_VAL tt, tec)

= refocus_term_val (tt, tec)

| refocus_term (TERM_COMP st, tec)

= refocus_term_comp (st, tec)

and refocus_term_val (tt, tec)

= ...

and refocus_term_comp (MUL (f, t), tec)

= ...

| refocus_term_comp (FACT_COMP’ sf, tec)

= ...

and refocus_fact (FACT_VAL tf, fec)

= refocus_fact_val (tf, fec)

| refocus_fact (FACT_COMP sf, fec)

= refocus_fact_comp (sf, fec)

and refocus_fact_val (tf, fec)

= ...

and refocus_fact_comp (FLIP, fec)

= ...

| refocus_fact_comp (PARENS e, fec)

= ...
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In the rest of this section, we complete each missing case in this definition.

1. If the length of the reduction sequence of a production is zero, then the
result of the production is a value or a redex.

(a) The case of values is already taken care of because the grammar dif-
ferenciates betwen values and computations. All functions refocus x

call refocus x val if given a value, and call refocus x comp if given a
computation.

(b) If the result of a production is a redex, then we have found a de-
composition. Here, only the oracle fits the bill. We thus return a
decomposition.

refocus_fact_comp (FLIP, fec)

= FACT_DECOMP (fec, FLIP_REDEX)

2. If the length of the reduction sequence is non-zero, then the first sub-
expression must be evaluated.

refocus_expr_comp (ADD (t, e), eec)

= refocus_term (t, TEC1 (e, eec))

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= refocus_expr (e0, EEC2 (e1, e2, eec))

| refocus_expr_comp (TERM_COMP’ st, eec)

= refocus_term_comp (st, TEC3 eec)

refocus_term_comp (MUL (f, t), tec)

= refocus_fact (f, FEC1 (t, tec))

| refocus_term_comp (FACT_COMP’ sf, tec)

= refocus_fact_comp (sf, FEC2 tec)

| refocus_fact_comp (PARENS e, fec)

= refocus_expr (e, EEC3 fec)

3. Likewise, each refocus x val is defined by cases on the inner elementary
evaluation context.

refocus_expr_val (te, EEC0)

= ...

| refocus_expr_val (te, EEC1 (tt, eec))

= ...

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= ...

| refocus_expr_val (te, EEC3 fec)

= ...
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refocus_term_val (tt, TEC1 (e, eec))

= ...

| refocus_term_val (tt, TEC2 (tf, tec))

= ...

| refocus_term_val (tt, TEC3 eec)

= ...

refocus_fact_val (tf, FEC1 (t, tec))

= ...

| refocus_fact_val (tf, FEC2 tec)

= ...

(a) If the length of the reduction sequence of a production is reached and
the production constructs a value, we refocus on this value.

| refocus_term_val (tt, TEC3 eec)

= refocus_expr_val (TERM_VAL’ tt, eec)

| refocus_fact_val (tf, FEC2 tec)

= refocus_term_val (FACT_VAL’ tf, tec)

(b) If the length of the reduction sequence of a production is reached and
the production constructs a redex, we have found a decomposition.

| refocus_expr_val (te, EEC1 (tt, eec))

= EXPR_DECOMP (eec, ADD_REDEX (tt, te))

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= EXPR_DECOMP (eec, IFZ_REDEX (te, e1, e2))

| refocus_expr_val (te, EEC3 fec)

= FACT_DECOMP (fec, PARENS_REDEX te)

| refocus_term_val (tt, TEC2 (tf, tec))

= TERM_DECOMP (tec, MUL_REDEX (tf, tt))

(c) If the length of the reduction sequence of a production is not reached,
we refocus on the next sub-expression to be reduced.

refocus_term_val (tt, TEC1 (e, eec))

= refocus_expr (e, EEC1 (tt, eec))

refocus_fact_val (tf, FEC1 (t, tec))

= refocus_term (t, TEC2 (tf, tec))

4. Finally, we turn to the empty context:

refocus_expr_val (te, EEC0)

= VALUE te

The refocus functions are now complete (see Figure 7).
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fun refocus_expr (EXPR_VAL te, eec)

= refocus_expr_val (te, eec)

| refocus_expr (EXPR_COMP se, eec)

= refocus_expr_comp (se, eec)

and refocus_expr_val (te, EEC0)

= VALUE te

| refocus_expr_val (te, EEC1 (tt, eec))

= EXPR_DECOMPOSITION (eec, ADD_REDEX (tt, te))

| refocus_expr_val (te, EEC2 (e1, e2, eec))

= EXPR_DECOMPOSITION (eec, IFZ_REDEX (te, e1, e2))

| refocus_expr_val (te, EEC3 fec)

= FACT_DECOMPOSITION (fec, PARENS_REDEX te)

and refocus_expr_comp (ADD (t, e), eec)

= refocus_term (t, TEC1 (e, eec))

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= refocus_expr (e0, EEC2 (e1, e2, eec))

| refocus_expr_comp (TERM_COMP’ st, eec)

= refocus_term_comp (st, TEC3 eec)

and refocus_term (TERM_VAL tt, tec)

= refocus_term_val (tt, tec)

| refocus_term (TERM_COMP st, tec)

= refocus_term_comp (st, tec)

and refocus_term_val (tt, TEC1 (e, eec))

= refocus_expr (e, EEC1 (tt, eec))

| refocus_term_val (tt, TEC2 (tf, tec))

= TERM_DECOMPOSITION (tec, MUL_REDEX (tf, tt))

| refocus_term_val (tt, TEC3 eec)

= refocus_expr_val (TERM_VAL’ tt, eec)

and refocus_term_comp (MUL (f, t), tec)

= refocus_fact (f, FEC1 (t, tec))

| refocus_term_comp (FACT_COMP’ sf, tec)

= refocus_fact_comp (sf, FEC2 tec)

and refocus_fact (FACT_VAL tf, fec)

= refocus_fact_val (tf, fec)

| refocus_fact (FACT_COMP sf, fec)

= refocus_fact_comp (sf, fec)

and refocus_fact_val (tf, FEC1 (t, tec))

= refocus_term (t, TEC2 (tf, tec))

| refocus_fact_val (tf, FEC2 tec)

= refocus_term_val (FACT_VAL’ tf, tec)

and refocus_fact_comp (FLIP, fec)

= FACT_DECOMPOSITION (fec, FLIP_REDEX)

| refocus_fact_comp (PARENS e, fec)

= refocus_expr (e, EEC3 fec)

Figure 7: Refocusing over an arithmetic expression
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(* refocus_expr : expr * expr_evcont -> decomposed *)

(* refocus_expr_val : expr_val * expr_evcont -> decomposed *)

(* refocus_expr_comp : expr_comp * expr_evcont -> decomposed *)

(* refocus_term : term * term_evcont -> decomposed *)

(* refocus_term_val : term_val * term_evcont -> decomposed *)

(* refocus_term_comp : term_comp * term_evcont -> decomposed *)

(* refocus_fact : fact * fact_evcont -> decomposed *)

(* refocus_fact_val : fact_val * fact_evcont -> decomposed *)

(* refocus_fact_comp : fact_comp * fact_evcont -> decomposed *)

(* eval : expr -> expr_val *)

(* eval’ : decomposed -> expr_val *)

fun

eval e

= eval’ (refocus_expr (e, EEC0))

and

eval’ (VALUE te)

= te

| eval’ (EXPR_DECOMPOSITION

(eec, ADD_REDEX (FACT_VAL’ (INT n1),

TERM_VAL’ (FACT_VAL’ (INT n2)))))

= eval’ (refocus_expr

(EXPR_VAL (TERM_VAL’ (FACT_VAL’ (INT (n1 + n2)))), eec))

| eval’ (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT 0)), e1, e2)))

= eval’ (refocus_expr (e1, eec))

| eval’ (EXPR_DECOMPOSITION

(eec, IFZ_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)), e1, e2)))

= eval’ (refocus_expr (e2, eec))

| eval’ (TERM_DECOMPOSITION

(tec, MUL_REDEX (INT n1, FACT_VAL’ (INT n2))))

= eval’ (refocus_term (TERM_VAL (FACT_VAL’ (INT (n1 * n2))), tec))

| eval’ (FACT_DECOMPOSITION

(fec, FLIP_REDEX))

= eval’ (refocus_fact (FACT_VAL (INT (Oracle.flip ())), fec))

| eval’ (FACT_DECOMPOSITION

(fec, PARENS_REDEX (TERM_VAL’ (FACT_VAL’ (INT n)))))

= eval’ (refocus_fact (FACT_VAL (INT n), fec))

Figure 8: Evaluation of an arithmetic expression, refocused

The main evaluation function is displayed in Figure 8. Rather than decom-
posing the result of the plug functions, eval’ refocuses each contractum and
iterates.
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4.5 Summary and conclusion

We have considered arithmetic expressions with precedence and specified their
meaning with a syntactic theory. We then used the method of Section 2 to write
refocusing functions that map an evaluation context and syntactic entity into
either a value or a decomposition into an evaluation context and a redex. The
result is a compositional evaluator that operates in one pass over its input.

5 Application: Sabry and Felleisen’s CPS transformation

In their work on reasoning about programs in continuation-passing style (CPS),
Sabry and Felleisen designed a new CPS transformation [9, Definition 5]. This
CPS transformation integrates a notion of generalized reduction and thus yields
very compact CPS programs [2]. It is also unusual in the sense that it builds
on the notion of a syntactic theory, rather than on operational semantics [1, 6]
or denotational semantics [11]. Therefore, and unlike all the other formalized
CPS transformations we are aware of, it is not defined by structural induction
over its input. Instead, it is defined as the transitive closure of decomposing,
performing an elementary CPS transformation, and plugging. Therefore, its di-
rect implementation incurs the same quadratic factor as considered in Section 2.
In the rest of this section, we derive an implementation that operates in linear
time over the source program.

The original specification is indexed with 0 (Section 5.1). We first make
decomposition and plugging explicit, indexing this specification with 1 (Sec-
tion 5.2). Then, we present a version that explicitly uses a refocus function,
indexing this spefication with 2 (Section 5.3). Using the construction of Sec-
tion 2, we then define an efficient version of the refocus function.

Terms, values, and contexts are defined as follows.

M ∈ Λ M ::= V | M M
V ∈ Values V ::= x | λx.M
x ∈ Vars
E ∈ EvCont E ::= [ ] | E[V [ ]] | E[[ ] M ]

5.1 The original specification

Definition 5 (Sabry and Felleisen, 1993) The following CPS transforma-
tion uses three mutually recursive functions: C0

k to transform terms, Φ0 to
transform values, and K0

k to transform evaluation contexts. Let k, ui ∈ Vars
be fresh. The functions C0

k and K0
k are parameterized over a variable k that

represents the current continuation.

C0
k : Λ → Λ

C0
k[[V ]] = k Φ0[[V ]]

C0
k[[E[x V ]]] = x K0

k[[E]] Φ0[[V ]]
C0

k[[E[(λx.M) V ]]] = (λx.C0
k [[E[M ]]]) Φ0[[V ]]
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Φ0 : Values → Λ
Φ0[[x]] = x

Φ0[[λx.M ]] = λk.λx.C0
k [[M ]]

K0
k : EvCont → Λ

K0
k[[[ ]]] = k

K0
k[[E[x [ ]]]] = x K0

k[[E]]
K0

k[[E[(λx.M) [ ]]]] = λx.C0
k[[E[M ]]]

K0
k[[E[[ ] M ]]] = λui.C0

k[[E[ui M ]]]

The CPS transformation of a complete program M is λk.C0
k[[M ]]. �

5.2 Making decomposition and plugging explicit

We make decomposition and plugging explicit using the two following functions.

decompose : Λ → Values + EvCont × Λ
plug : EvCont × Λ → Λ

Therefore, instead of C[[E[M ]]], we explicitly write C ◦ plug [[E, M ]].
The original CPS transformation can then be expressed as follows, using an

auxiliary function C̃1
k.

C1
k : Λ → Λ

C1
k[[M ]] = C̃1

k ◦ decompose [[M ]]

C̃1
k : Values + EvCont × Λ → Λ

C̃1
k[[V ]] = k Φ1[[V ]]

C̃1
k[[E, x V ]] = x K1

k[[E]] Φ1[[V ]]

C̃1
k[[E, (λx.M) V ]] = (λx.C1

k ◦ plug [[E, M ]]) Φ1[[V ]]

Φ1 : Values → Λ
Φ1[[x]] = x

Φ1[[λx.M ]] = λk.λx.C1
k [[M ]]

K1
k : EvCont → Λ

K1
k[[[ ]]] = k

K1
k[[E[x [ ]]]] = x K1

k[[E]]
K1

k[[E[(λx.M) [ ]]]] = λx.C1
k ◦ plug [[E, M ]]

K1
k[[E[[ ] M ]]] = λui.C1

k ◦ plug [[E, ui M ]]

The CPS transformation of a complete program M is λk.C1
k[[M ]].
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Inlining C1
k makes it clear that decompose is mostly called with the result of

plug—in fact always, since M = plug[[[ ], M ]], initially and in the CPS transfor-
mation of a λ-abstraction. Therefore, we can reexpress the CPS transformation
using a refocusing function combining decompose and plug .

5.3 Refocusing

The refocusing function refocus is defined as the composition of decompose and
plug. Its type is thus as follows.

refocus : EvCont × Λ → Values + EvCont × Λ

The CPS transformation can then be expressed as follows.

C2
k : Values + EvCont × Λ → Λ

C2
k[[V ]] = k Φ2[[V ]]

C2
k[[E, x V ]] = x K2

k[[E]] Φ2[[V ]]
C2

k[[E, (λx.M) V ]] = (λx.C2
k ◦ refocus [[E, M ]]) Φ2[[V ]]

Φ2 : Values → Λ
Φ2[[x]] = x

Φ2[[λx.M ]] = λk.λx.C2
k ◦ refocus [[[ ], M ]]

K2
k : EvCont → Λ

K2
k[[[ ]]] = k

K2
k[[E[x [ ]]]] = x K2

k[[E]]
K2

k[[E[(λx.M) [ ]]]] = λx.C2
k ◦ refocus [[E, M ]]

K2
k[[E[[ ] M ]]] = λui.C2

k ◦ refocus [[E, ui M ]]

The CPS transformation of a complete program M is λk.C2
k ◦ refocus [[[ ], M ]].

We are now free to use any implementation of refocus that is extensionally
equivalent to decompose ◦ plug.

5.4 Efficiency

The following ‘deforested’ implementation of refocus avoids redundant plugging
and decomposition. We write it by following the guidelines of Section 2, inlining
refocusaux .

refocus [[E, M0 M1]] = refocus [[E[[ ] M1], M0]]
refocus [[E[[ ] M1], V0]] = refocus [[E[V0 [ ]], M1]]
refocus [[E[V0 [ ]], V1]] = [[E, V0 V1]]

That this function is extensionally equivalent to decompose ◦ plug and more
efficient follows from the proof of its construction in Section 2.6. Also, that this
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refocus function is similar to the one in Section 3 is unsurprising since it is based
on the same syntactic theory of the λ-calculus.

With this definition of refocus , the CPS transformation (C2
k, Φ2, K2

k) pro-
duces the same compact terms as (C0

k, Φ0, K0
k), but it operates in linear time,

or more precisely, in one pass, over its input.

6 Conclusion and issues

We have presented a general result about syntactic theories with context-free
grammars of values, evaluation contexts, and redexes, and with a unique-decom-
position property. This result enables one to mechanically derive an interpreter
that does not incur a quadratic-time overhead. We have illustrated the result
with two interpreters, one for the call-by-value λ-calculus and one for arithmetic
expressions with precedence, and by mechanically turning a quadratic-time pro-
gram transformation into a program transformation that operates in one pass.
In all cases, contexts are best represented inside out.

In appendix, we also flesh out a new connection between evaluation contexts
and continuations.

Acknowledgments: We are grateful to Daniel Damian, Bernd Grobauer, and
Julia Lawall for commenting the initial version of this article. Thanks are also
due to the RULE’01 anonymous referees. This work is supported by the ES-
PRIT Working Group APPSEM (http://www.md.chalmers.se/Cs/Research/
Semantics/APPSEM/).

A A note on defunctionalization

A.1 Defunctionalization before refocusing

Elsewhere [3, Section 4], we observed that in a syntactic theory, the evaluation
contexts, the plug functions, and the decomposition functions are the defunc-
tionalized counterpart [7, 8] of one collection of decomposition functions written
in continuation-passing style. For three reasons we have found this observation
to be consistently useful in practice: (1) writing one collection of decomposition
functions is simpler than writing three interconnected definitions; (2) the de-
composition functions implement a straightforward recursive descent; and (3) a
correct grammar of evaluation contexts follows for free.

Our case in point is Figure 9, which displays the higher-order version of
Figures 2, 3, and 5. Initially, decompose expr comp is called with the identity
function instead of with EEC0.

A.2 Defunctionalization after refocusing

Our observation also holds after refocusing. Figures 2, 7, and 8 are the de-
functionalized counterpart of one collection of refocusing functions written in
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(* decompose_expr : expr -> decomposed *)

(* decompose_expr_comp : expr_comp * (expr -> expr) -> decomposed *)

(* decompose_fact_comp : fact_comp * (fact -> expr) -> decomposed *)

(* decompose_term_comp : term_comp * (term -> expr) -> decomposed *)

fun decompose_expr (EXPR_VAL te)

= VALUE te

| decompose_expr (EXPR_COMP se)

= decompose_expr_comp (se, fn e => e)

and decompose_expr_comp (ADD (TERM_VAL tt, EXPR_VAL te), eec)

= EXPR_DECOMPOSITION (eec, ADD_REDEX (tt, te))

| decompose_expr_comp (ADD (TERM_VAL tt, EXPR_COMP se), eec)

= decompose_expr_comp

(se, fn e => eec (EXPR_COMP (ADD (TERM_VAL tt, e))))

| decompose_expr_comp (ADD (TERM_COMP st, e), eec)

= decompose_term_comp (st, fn t => eec (EXPR_COMP (ADD (t, e))))

| decompose_expr_comp (IFZ (EXPR_VAL te, e1, e2), eec)

= EXPR_DECOMPOSITION (eec, IFZ_REDEX (te, e1, e2))

| decompose_expr_comp (IFZ (EXPR_COMP se, e1, e2), eec)

= decompose_expr_comp

(se, fn e => eec (EXPR_COMP (IFZ (e, e1, e2))))

| decompose_expr_comp (TERM_COMP’ st, eec)

= decompose_term_comp (st, fn (TERM_VAL tt)

=> eec (EXPR_COMP (TERM_COMP’ st))

| (TERM_COMP st)

=> eec (EXPR_COMP (TERM_COMP’ st)))

and decompose_term_comp (MUL (FACT_VAL tf, TERM_VAL tt), tec)

= TERM_DECOMPOSITION (tec, MUL_REDEX (tf, tt))

| decompose_term_comp (MUL (FACT_VAL tf, TERM_COMP st), tec)

= decompose_term_comp

(st, fn t => tec (TERM_COMP (MUL (FACT_VAL tf, t))))

| decompose_term_comp (MUL (FACT_COMP sf, t), tec)

= decompose_fact_comp (sf, fn f => tec (TERM_COMP (MUL (f, t))))

| decompose_term_comp (FACT_COMP’ sf, tec)

= decompose_fact_comp (sf, fn (FACT_VAL tf)

=> tec (TERM_VAL (FACT_VAL’ tf))

| (FACT_COMP sf)

=> tec (TERM_COMP (FACT_COMP’ sf)))

and decompose_fact_comp (FLIP, fec)

= FACT_DECOMPOSITION (fec, FLIP_REDEX)

| decompose_fact_comp (PARENS (EXPR_VAL te), fec)

= FACT_DECOMPOSITION (fec, PARENS_REDEX te)

| decompose_fact_comp (PARENS (EXPR_COMP se), fec)

= decompose_expr_comp (se, fn e => fec (FACT_COMP (PARENS e)))

Figure 9: Higher-order decomposition of an arithmetic expression
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continuation-passing style, and using the following higher-order data type.

datatype decomposed

= VALUE of expr_val

| EXPR_DECOMPOSITION of (expr_val -> decomposed) * expr_redex

| TERM_DECOMPOSITION of (term_val -> decomposed) * term_redex

| FACT_DECOMPOSITION of (fact_val -> decomposed) * fact_redex

Our case in point is Figure 10, which displays the higher-order version of Fig-
ures 2, 7, and 8. Initially, refocus expr is called with VALUE instead of with
EEC0.

The refocus functions, in Figure 10, implement a straightforward recursive
descent over the source expression. Their types read as follows.

refocus_expr : expr * (expr_val -> decomposed) -> decomposed

refocus_expr_val : expr_val * (expr_val -> decomposed) -> decomposed

refocus_expr_comp : expr_comp * (expr_val -> decomposed) -> decomposed

refocus_fact : fact * (fact_val -> decomposed) -> decomposed

refocus_fact_val : fact_val * (fact_val -> decomposed) -> decomposed

refocus_fact_comp : fact_comp * (fact_val -> decomposed) -> decomposed

refocus_term : term * (term_val -> decomposed) -> decomposed

refocus_term_val : term_val * (term_val -> decomposed) -> decomposed

refocus_term_comp : term_comp * (term_val -> decomposed) -> decomposed

These types witness that the continuation of each refocus function expects a
value. The fact that each refocus function is compositional implies that evalu-
ation operates in one pass.

We also observe that because of the intermediate decompositions, the refocus
functions do not strictly conform to continuation-passing style, where all calls
are tail calls [10]. Therefore, to write them in direct style, one needs control
operators for composing continuations such as shift and reset [1].

Another possibility would be to inline eval’ and to localize the contrac-
tion of redexes where they occur in the source term. The result conforms to
continuation-passing style and can be mapped back to direct style, yielding a
completely usual, compositional, and efficient recursive-descent evaluator.

A.3 Conclusion

Defunctionalization therefore contributes to connecting evaluation contexts and
continuations in two ways:

1. In the decomposition of an expression into an evaluation context and a
redex, the evaluation context and the plug functions are a defunctionalized
continuation.

2. In a refocused evaluator, the evaluation context and the refocus functions
are also a defunctionalized continuation.

These two views correspond to the two traditional ways of presenting contin-
uations in the literature: as a representation of the current context and as a
representation of the rest of the computation.
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fun refocus_expr (EXPR_VAL te, eec)

= refocus_expr_val (te, eec)

| refocus_expr (EXPR_COMP se, eec)

= refocus_expr_comp (se, eec)

and refocus_expr_val (te, eec)

= eec te

and refocus_expr_comp (ADD (t, e), eec)

= refocus_term

(t, fn tt => refocus_expr

(e, fn te => EXPR_DECOMPOSITION

(eec, ADD_REDEX (tt, te))))

| refocus_expr_comp (IFZ (e0, e1, e2), eec)

= refocus_expr (e0, fn te => EXPR_DECOMPOSITION

(eec, IFZ_REDEX (te, e1, e2)))

| refocus_expr_comp (TERM_COMP’ st, eec)

= refocus_term_comp

(st, fn tt => refocus_expr_val (TERM_VAL’ tt, eec))

and refocus_term (TERM_VAL tt, tec)

= refocus_term_val (tt, tec)

| refocus_term (TERM_COMP st, tec)

= refocus_term_comp (st, tec)

and refocus_term_val (tt, tec)

= tec tt

and refocus_term_comp (MUL (f, t), tec)

= refocus_fact

(f, fn tf => refocus_term

(t, fn tt => TERM_DECOMPOSITION

(tec, MUL_REDEX (tf, tt))))

| refocus_term_comp (FACT_COMP’ sf, tec)

= refocus_fact_comp

(sf, fn tf => refocus_term_val (FACT_VAL’ tf, tec))

and refocus_fact (FACT_VAL tf, fec)

= refocus_fact_val (tf, fec)

| refocus_fact (FACT_COMP sf, fec)

= refocus_fact_comp (sf, fec)

and refocus_fact_val (tf, fec)

= fec tf

and refocus_fact_comp (FLIP, fec)

= FACT_DECOMPOSITION (fec, FLIP_REDEX)

| refocus_fact_comp (PARENS e, fec)

= refocus_expr

(e, fn te => FACT_DECOMPOSITION (fec, PARENS_REDEX te))

Figure 10: Higher-order refocusing over an arithmetic expression
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