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How to Convert a Flavor of Quantum Bit

Commitment

Claude Crépeau1, Frédéric Légaré1 , and Louis Salvail2

1 School of Computer Science, McGill University, {crepeau,legare}@cs.mcgill.ca
2 BRICS? ? ?, Dept. of Computer Science,University of Århus, salvail@brics.dk

Abstract. In this paper we show how to convert a statistically binding
but computationally concealing quantum bit commitment scheme into
a computationally binding but statistically concealing scheme. For a
security parameter n, the construction of the statistically concealing
scheme requires O(n2) executions of the statistically binding scheme.
As a consequence, statistically concealing but computationally binding
quantum bit commitments can be based upon any family of quantum
one-way functions. Such a construction is not known to exist in the
classical world.

1 Introduction

Finding the weakest computational assumptions from which the basic
cryptographic primitives can be based upon is important for the theo-
retical foundations of cryptography. Protocols for secure 2-party compu-
tation are usually built from two basic and fundamental cryptographic
primitives: Bit commitment and oblivious transfer. Classically, one-way
functions are necessary and sufficient for secure bit commitment but not
for oblivious transfer unless a major breakthrough in complexity the-
ory[11, 13]. This suggests that in classical cryptography, bit commitment
is a weaker primitive than oblivious transfer. Bit commitments come in
two main flavors: binding but computationally concealing and conceal-
ing but computationally binding. Informally, binding means that what-
ever the committer does, it is impossible to open both 0 and 1 with
non-negligible probability of success (this is sometimes called statistically
binding). Concealing means that the receiver cannot obtain more than
a negligible amount of information about the committed bit (i.e. statis-
tically concealing). The weakest known computational assumption from
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which bit commitment can be based upon depends on its flavor. Bind-
ing but computationally concealing bit commitments can be based upon
any one-way function [17, 12, 8]. On the other hand, the weakest known
assumption for concealing but computationally binding commitments is
the existence of one-way permutations [18]. It seems that in the classical
world, unconditionally concealing commitments are more demanding than
unconditionally binding ones. The two flavors allow for different crypto-
graphic applications. For example, zero-knowledge proofs [9, 10] can be
constructed from unconditionally binding commitments whereas perfect
zero-knowledge arguments [3] require unconditionally concealing commit-
ments. Arguments can be used whenever the verifier is not restricted in
computing power and proofs can be used whenever the prover has unlim-
ited computing power. Arguments are preferable in some settings, since
a dishonest prover for an argument must break the complexity assump-
tion on-line in order to prove a false theorem whereas a dishonest verifier
involved in a computational zero-knowledge proof can spend unlimited
time in order to extract additional knowledge.

In quantum cryptography, computational assumptions are also re-
quired for bit commitment and oblivious transfer [15, 16, 14]. The stan-
dard computational assumptions for the quantum case are defined as in
the classical case except that they must resist quantum inverters. A quan-
tum one-way function is simply a classical function f : {0, 1}n → {0, 1}l(n)

for which given any x ∈ {0, 1}n, f(x) can be efficiently computed by the
quantum computer but finding x given f(x), (when x ∈R {0, 1}n) is hard.
In [7], an unconditionally concealing quantum bit commitment scheme is
built from any quantum one-way permutation. The resulting scheme al-
though improving the communication complexity of the known classical
protocols, requires the same kind of assumption than in the classical case.
In this paper, we show that the computational assumption for conceal-
ing quantum bit commitment schemes can be weakened compared to its
classical counterpart. Our result relies heavily upon the bbcs protocol
for quantum 1-out-of-2 oblivious transfer of Bennett, Brassard, Crépeau,
and Skubiszewska [2]. The bbcs protocol can be seen as a construction of
quantum oblivious transfer from a black-box for bit commitment [5, 20].
Therefore and unlike the classical case, there exists a black-box reduction
of quantum oblivious transfer to bit commitment.

Our main contribution consists in showing how any statistically bind-
ing quantum bit commitment scheme can be transformed into a statis-
tically concealing one. The construction is obtained by using the bbcs

protocol together with statistically binding but otherwise computation-
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ally concealing commitments (these commitments will be called initial
commitments in the following). Using the bbcs protocol that way, we
construct a simple quantum commitment scheme that we show statisti-
cally concealing and computationally binding. The construction converts
the flavor of the initial commitments after calling them O(n2) times for n
a security parameter. As a byproduct, we show that the bbcs protocol is
an oblivious transfer that statistically hides one out of the two bits sent
and computationally conceals the receiver’s selection bit whenever it is
used together with statistically binding but computationally concealing
commitments instead of perfect commitments given as black-boxes. This
extends the security result for the bbcs protocol of [2, 5, 20] to this case.
Our reduction of an adversary for the concealing condition of the initial
commitment scheme to an adversary for the binding condition of the re-
sulting commitment scheme is is an expected polynomial-time black-box
reduction. Although quantum information has peculiar behaviors adding
complexity to the security proofs of cryptographic protocols, we shall see
that using quantum oblivious transfer as a primitive allows to return to
an essentially classical situation. This might be of independent interest
for the construction and analysis of complex quantum protocols.

One consequence of our result is that statistically concealing but
computationally binding quantum commitment scheme can be based
upon any quantum one-way function using Naor’s construction [17] from
pseudo-random generators. Only the ability to send and receive BB84
qubits is required in order to get the new flavor. The scheme can there-
fore be implemented using current technology. Our result gives more ev-
idences that computational security in 2-party quantum cryptography
enjoys different properties than its classical counterpart.

Paper’s Organization. We introduce tools and definitions in Sect. 2. The
protocol by which the flavor of an originally binding but computationally
concealing commitment is transformed into a concealing but computa-
tionally binding commitment is described in Sect. 3. The security proof
of our construction is given in Sects. 4 and 5. In Sect. 4, we show that the
resulting commitment is computationally binding if the original one was
computationally concealing. We then prove in Sect. 5 that if the initial
commitment scheme is binding then the resulting one is concealing. We
finally conclude in Sect. 6.
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2 Preliminaries

2.1 Tools

Let X ∼ B(p) be a Bernoulli random variable with probability of success
p (when X = 1). The following simple argument will be useful:

Hybrid Argument. Let X = {X1,X2, . . . ,Xn} be a set of independent
random variables Xi ∼ B(pi) for 1 ≤ i ≤ n. Then, there exist 1 ≤ k < n
such that,

|pk+1 − pk| ≥
|pn − p1|

n
. (1)

The result also holds without the absolute values. Later, we shall be given
X without the values of the pi’s but only a way of sampling in each Xi ∈ X
and a guarantee that (1) holds for some k. The algorithms of Appendices
B and C can then be used to estimate the pi’s and find k′ satisfying a
drop similar to (1).

2.2 Notations and Model of Computation

For simplicity, we shall often drop the security parameters associated with
protocol executions. When protocols and adversaries are modeled as cir-
cuits they should be understood as infinite families of circuits, one circuit
for each possible values of the security parameters. We write poly(n) for
an arbitrary positive polynomial.

The basis {|0〉, |1〉} denotes the computational or rectilinear or “+”
basis for H2. When the context requires, we write |b〉+ to denote the bit
b in the rectilinear basis. The diagonal basis, denoted “×”, is defined as
{|0〉×, |1〉×} where |0〉× = 1√

2
(|0〉 + |1〉) and |1〉× = 1√

2
(|0〉 − |1〉). The

states |0〉, |1〉, |0〉× and |1〉× are the four BB84 states. For any x ∈ {0, 1}n

and θ ∈ {+,×}n, the state |x〉θ is defined as ⊗n
i=1|xi〉θi

. An orthogonal (or
Von Neumann) measurement of a quantum state in Hm is described by a
set of m orthogonal projections M = {Pi}m

i=1 acting in Hm thus satisfying∑
i Pi = 11m for 11m denoting the identity operator in Hm. Each projection

or equivalently each index i ∈ {1, . . . ,m} is a possible classical outcome
for M.

We modeled quantum algorithms by quantum circuits built out of an
universal set of quantum gates UG = {CNot, H, RQ}, where CNot denotes
the controlled-not, H the one qubit Hadamard gate, and RQ is an arbitrary
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one qubit non-trivial rotation specified by a matrix containing only ratio-
nal numbers [1]. The time-complexity of a quantum circuit C is the num-
ber of elementary gates ‖C‖UG in C. In addition to the set of gates UG, a
quantum circuit is allowed to perform one kind of Von Neumann measure-
ment: M+ = {P+

0 , P+
1 } where P+

0 = |0〉〈0| and P+
1 = |1〉〈1| are the two or-

thogonal projections of the computational basis. M+ is sometimes called
the measurement in the rectilinear or computational basis. Another Von
Neumann measurement that is used by the receiver in the BB84 quantum
coding scheme is the measurement in the diagonal basis M× = {P×

0 , P×
1 }

where P×
0 = 1

2(|0〉+ |1〉)†(|0〉+ |1〉) and P×
0 = 1

2(|0〉 − |1〉)†(|0〉 − |1〉). The
Hadamard gate H is sufficient to build measurement M× ∈ UG from M+

since M× = {H†P+
0 H, H

†P+
1 H}. If |Ψ〉 ∈ HA ⊗ HB is a composite quantum

state, we write PA
x |Ψ〉 for the projector applied to the registers in HA

along the state |x〉 for x ∈ {0, 1}Dim(HA). The classical output L(|Ψ〉) of
circuit L is the classical outcomes of all Von Neumann measurements M+

taking place during the computation L|Ψ〉. If the circuit L accepts two
input states of the form |Ψ0〉 ⊗ |Ψ1〉 we may write similarly L(|Ψ0〉, |Ψ1〉)
for the classical output.

A 2-party quantum protocol is a pair of interactive quantum circuits
(A,B) applied to some initial product state |xA〉A ⊗ |xB〉B representing
A’s and B’s inputs to the protocol neglecting to write explicitly the states
of A’s and B’s registers that do not encode their respective input to
the protocol (thus all in initial states |0〉). Since communication takes
place between A and B, the complete circuit representing one protocol
execution may have quantum gates in A and B acting upon the same
quantum registers. We write A � B the complete quantum circuit when
A is interacting with B. The final composite state |Ψfinal〉 obtained after
the execution is written |Ψfinal〉 = (A � B)|xA〉A|xB〉B . Protocols are to
be understood, although not explicitly stated, as specified by families of
circuits, one for each possible value of the security parameter n. If for a
participant (adversary) P given 1n as input there exists a classical Turing
machine that efficiently computes the description of the circuit Pn to be
run for security parameter n then P is said to be a uniform participant
(adversary); that is P is modeled by a uniform family of quantum circuits.
Otherwise, P is said to be non-uniform.

2.3 Cryptographic Primitives

The two relevant quantum primitives we shall use heavily in the follow-
ing are quantum bit commitment and quantum oblivious transfer. They
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are defined as straightforward quantum generalizations of their classical
counterparts.

Quantum Bit Commitment. A quantum bit commitment scheme is
defined by two quantum protocols ((CA, CB), (OA, OB)) where (CA, CB)
is a pair of interactive quantum circuits for the committing stage and
(OA, OB) is a pair of interactive quantum circuits for the opening stage
(i.e. A being the committer and B the receiver). The committing stage
generates the state |Ψb〉 = (CA � CB)|b〉A|0〉B upon which the opening
stage is executed: |Ψfinal〉 = (OA � OB)|Ψb〉. The binding condition of a
quantum bit commitment is slightly more general than the usual classical
definition. An adversary Ã = (CÃ, OÃ) is such that |Ψ̃〉 = (CÃ�CB)|0〉Ã
is generated during the committing stage. The dishonest opening circuit
OÃ tries to open b ∈R {0, 1} given as an extra input bit |b〉Ã. Given the
final state |Ψ̃final〉 = (OÃ �OB)|b〉A|Ψ̃〉 we define sb(n) as the probability
to open b with success. More precisely, sb(n) = ‖PB

OK,b|Ψ̃final〉‖2 where
PB

OK,b is Bob’s projection operator on the subspace leading to accept the
opening of b. An adversary Ã of the binding condition who can open
b = 0 with probability at least s0(n) and open b = 1 with probability at
least s1(n) will be called a (s0(n), s1(n))–adversary against the binding
condition. We define the concealing and binding criteria similarly to [7]:

(computationally) binding: There exists no quantum (s0(n), s1(n))–
adversary Ã where for some positive polynomial p(n), and sufficiently
large n’s, s0(n) + s1(n) ≥ 1 + 1

p(n) . The scheme is computationally

binding if we add the restriction that ‖Ã‖UG ∈ O(poly(n)).
(computationally) concealing: For every interactive quantum circuit

C̃B for the committing stage, all quantum circuits LB̃ acting only
upon B̃’s registers, all positive polynomials p(n) and sufficiently large
n’s, P

(
LB̃((CA � CB̃)|b〉A|0〉B̃) = b

)
< 1

2 + 1
p(n) where the proba-

bilities are taken over b ∈R {0, 1}. The scheme is computationally
concealing if we add the restriction ‖CB̃‖UG + ‖LB̃‖UG ∈ O(poly(n)).

What we call concealing and binding is in fact statistically concealing
and statistically binding respectively and not perfectly concealing and
perfectly binding.

Quantum Oblivious Transfer. In the following, we shall restrict our
attention to 1–2 quantum oblivious transfer (i.e. one-out-of-two oblivious
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transfer)[2, 6]. A 1–2 quantum oblivious transfer protocol involves a sender
Alice holding input bits (b0, b1) and a receiver Bob holding input c ∈
{0, 1}. Alice sends (b0, b1) to Bob in such a way that Bob receives only
bc and Alice does not get to know c. The receiver must not be able to
find bc for at at least one c ∈ {0, 1} and even given bc. More precisely,
a protocol (A,B) for 1–2 quantum oblivious is such that |Ψ(b0, b1, c)〉 =
(A � B)|b0; b1〉A|c〉B allows Bob to recover bc from applying M+ upon
one of his registers. A protocol for 1–2 quantum oblivious transfer is
(computationally) secure if it is both

(computationally) secure against the sender: For every quantum
sender Ã, all quantum circuit LÃ acting only on Ã’s regis-
ters, all positive polynomials p(n) and sufficiently large n’s,
P

(
LÃ((Ã � B)|0; 0〉Ã|c〉B) = c

)
< 1

2 + 1
p(n) where the probabilities

are taken over c ∈R {0, 1}. The protocol is computationally if we add
the restriction ‖LÃ‖UG + ‖Ã‖UG ∈ O(poly(n)).

(computationally) secure against the receiver: For every quantum
receiver B̃, all quantum circuits LB̃ acting only on B̃’s registers,
all positive polynomials p(n) and sufficiently large n’s, there exists
c ∈ {0, 1}, P

(
LB̃((A � B̃)|b0; b1〉A|0〉B̃ , |bc; c〉B̃) = bc̄

)
< 1

2 + 1
p(n)

where the probabilities are taken over b0, b1 ∈R {0, 1}. The security is
computational if we add the restriction ‖B̃‖UG+‖LB̃‖UG ∈ O(poly(n)).

As for bit commitment, the security against the sender and the security
against the receiver is not perfect but statistical.

3 The protocols

In this section, we first describe the bbcs protocol for 1-2 oblivious trans-
fer [2] which is the basis of our result. Then, we describe our quantum bit
commitment scheme qbc, using bbcs as a sub-protocol, that transforms
any (statistically) binding bit commitment scheme into a (statistically)
concealing one. Throughout this paper, we assume for simplicity that
quantum transmission is error-free.

3.1 The bbcs Protocol For 1 − 2 Quantum Oblivious Transfer

The bbcs protocol [2] is based upon the BB84 quantum coding scheme. If
the receiver (Bob) of a random BB84 qubit |s〉β , s ∈R {0, 1}, β ∈R {+,×}
is forced to measure it in basis β̂ ∈R {+,×} upon reception, then a noisy
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classical communication of bit s from Alice to Bob is implemented. More-
over, if later on Alice announces β, then Bob knows that he received s
whenever β = β̂ and an uncorrelated bit whenever β 6= β̂. The bbcs pro-
tocol amplifies this process in order to get a secure 1–2 oblivious transfer.
In order to ensure that Bob measures the BB84 qubits upon reception,
bit commitments are required. Bob commits upon each measurement and
outcome right after the quantum transmission. Alice then verifies in ran-
dom positions that Bob has really measured the transmitted qubits by
testing that whenever β = β̂ then Bob’s classical outcome r ∈ {0, 1} is
such that r = s.

In the following, we assume that Alice and Bob have access to some
bit commitment scheme BBC in order for Bob to commit upon the mea-
surements of the received qubits together with their outcomes. Since the
two commitments are made together, we write BBC(x, y), x, y ∈ {0, 1} for
the commitments of both the measurement and the outcome. This simply
means 2 sequential executions of BBC, one for the commitment of x and
the other the commitment of y. BBC may be given as a black-box for bit
commitment or may be provided from some computational assumption.
We denote by the Open-BBC(x, y) the opening stage of BBC(x, y). Protocol
bbcs(b0, b1)(c) achieves the oblivious transfer of bit bc:

Protocol 1 ( bbcs(b0, b1)(c) )

1: For 1 ≤ i ≤ 2n
– Alice picks si ∈R {0, 1}, βi ∈R {+,×}
– Alice sends to Bob a qubit πi in state |si〉βi

– Bob picks a basis β̂i ∈R {+,×}, measures πi in basis β̂i, and obtains the
outcome ri ∈ {0, 1}

2: For 1 ≤ i ≤ n
– Bob runs BBC(ri, β̂i) and BBC(rn+i, β̂n+i) with Alice
– Alice picks fi ∈R {0, 1} and announces it to Bob
– Bob runs Open-BBC(r′nfi+i, β̂nfi+i)

– Alice verifies that βnfi+i = β̂nfi+i ⇒ snfi+i = rnfi+i, otherwise she rejects
the current execution

– if fi = 0 then Alice sets βi ← βn+i and si ← sn+i and Bob sets β̂i ← β̂n+i

and ri ← rn+i

3: Alice announces her choices of bases β1, β2, . . . , βn to Bob

4: Bob announces two subsets of positions J0, J1 ⊂ {1, 2, . . . , n}, |J0| = |J1| =
n
3
, J0 ∩ J1 = ∅, and ∀i ∈ Jc, βi = β̂i.

5: Alice computes and announces b̂0 =
⊕

j∈J0

sj ⊕ b0 and b̂1 =
⊕

j∈J1

sj ⊕ b1

6: Bob receives 〈b̂0, b̂1〉 then computes bc =
⊕

i∈Jc

ri ⊕ b̂c

8



Known Security Results. The correctness and the security of the bbcs

protocol against the sender (Alice) has been reduced to the security of
BBC in [2, 5]. The security against the receiver (Bob) has been provided
by Yao in [20] given the security of the commitment scheme BBC. That is,
given BBC is a perfect black-box for bit commitment then bbcs is secure
against any dishonest Bob irrespectively of his computing power.

3.2 Quantum Bit Commitment Using bbcs

Given a binding but computationally concealing bit commitment scheme
BBC in bbcs the following commitment scheme will be shown concealing
and computationally binding.

Protocol 2 ( qbc(b) )

1: qbc-commit(b)
– For 1 ≤ j ≤ n
• Alice prepares a0j ∈R {0, 1} and a1j = a0j ⊕ b
• Bob prepares cj ∈R {0, 1}
• Alice and Bob execute bbcs(a0j , a1j)(cj) and Bob receives the result dj

2: qbc-open(b)
• Alice announces b
• For 1 ≤ j ≤ n
• Alice announces a0j and a1j

• Bob verifies that b = a0j ⊕ a1j and dj = acjj

A commitment to bit b is done by sending through 1–2 oblivious trans-
fer n pairs if bits {(a0j , a1j)}n

j=1 such that a0j ⊕ a1j = b. The concealing
condition is guaranteed by the security of oblivious transfer against the
receiver and the binding condition is guaranteed by the security against
the sender. Proving the security of qbc reduces to showing that the bbcs

protocol remains secure whenever computationally concealing but binding
commitments are used instead of classical black-boxes [5, 20].

More Notations. In the following we shall have to identify the variables
generated during all calls to bbcs in qbc. For that purpose, we use the
following notation:

– πj
i is the i-th qubit sent in the j-th call to bbcs in qbc.

– βj
i ∈ {+,×} is the basis βi announced by Alice during the j-th exe-

cution of bbcs in qbc.
– β̂j

i ∈ {+,×} is the basis used by Bob to measure πj
i in the j-th call

to bbcs.
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– rj
i ∈ {0, 1} is the outcome of Bob’s measurement of πj

i in basis β̂j
i .

– r̂j
i ∈ {0, 1} is Carl’s outcome for measurement of πj

i in basis βj
i .

– Jj = (Jj
0 , Jj

1 ) is the two sets of positions announced by Bob in the
j-th execution of bbcs.

We denote by bold lowercases the values for all executions at one glance:
β = {βj

i }i,j , β̂ = {β̂j
i }i,j, r = {rj

i }i,j , and r̂ = {r̂j
i }i,j . We denote by

b̂0 = b̂1
0, . . . , b̂

n
0 and b̂1 = b̂1

1, . . . , b̂
n
1 the bits announced by Alice at

step 5 of each call to bbcs. Similarly, we denote by a = (a0,a1) =
(a01, a11), (a02, a12), . . . , (a0n, a1n) ∈ {0, 1}2n Alice’s announcements dur-
ing the opening stage. We also denote J0 = J1

0 , . . . , Jn
0 and J1 =

J1
1 , . . . , Jn

1 all sets announced by Bob and we write J = (J0,J1). Let
c = c1, . . . , cn be all selection bits used by Bob and let d = d1, . . . , dn

be all bits received by bbcs. We write Jc = J1
c1 , J

2
c2 , . . . , J

n
cn

for all set of
positions corresponding to qubits measured by Bob in bases announced
by Alice.

4 The Binding Condition

In the following sections, we show that qbc is secure against any Alice
(the sender) who cannot break the concealing condition of the inner com-
mitment scheme BBC used in the calls to bbcs in order for Bob to commit
on his measurements and measurement outcomes.

Simplified Version of bbcs. In our analysis of the binding condition
of qbc, we shall assume that the opening of half of the commitments in
step 2 of bbcs doesn’t occur. The opening of the commitments allows
Alice to make sure that Bob measured the qubits received in bbcs upon
reception. This test is not relevant to the binding condition of qbc.

Protocol 3 ( bbcs
∗(b0, b1)(c) )

1: ...step 1 of protocol 3.1
2: For 1 ≤ i ≤ n
– Bob runs BBC(ri, β̂i) and BBC(rn+i, β̂n+i) with Alice
– Alice picks fi ∈R {0, 1} and announces it to Bob
– if fi = 0 then Alice sets βi ← βn+i and si ← sn+i and Bob sets β̂i ← β̂n+i

and ri ← rn+i

3–6: ...as steps 3 to 6 in protocol 3.1

We omit the proof of the following simple lemma:

10



Lemma 1. If bbcs
∗ is secure against the sender then bbcs is secure

against the sender.

Throughout Sect. 4, we shall assume tacitly calls to bbcs
∗ in qbc instead

of calls to bbcs. This simplifies the analysis and according to lemma 1,
it can be done without lost of generality.

4.1 How to Prove the Binding Condition

In order to show that qbc is computationally binding, we introduce in-
termediary protocols that will allow us to bridge the security of the qbc

protocol with the known security of bbcs given black-boxes for bit com-
mitments. Let’s consider the following four modified protocols:

u-bbcs: Protocol bbcs except that in step 2, Bob commits to random
values. In other words, for 1 ≤ i ≤ n, Bob runs BBC(u0i, u1i) and
BBC(u2i, u3i) with u0i, u1i, u2i, u3i ∈R {0, 1}.

m-bbcs: The same as u-bbcs but a third party, for 1 ≤ i ≤ n, intercepts
the ith qubit πi sent by Alice in step 1, measures in basis βi and sends
the resulting state to Bob.

u-qbc: Protocol qbc using u-bbcs.
m-qbc: Protocol qbc using m-bbcs.

The security against any dishonest sender in u-bbcs and m-bbcs is a
direct consequence of the analysis provided in [5]. Since the commitments
upon measurements do not carry any information about Bob’s measure-
ment, Alice cannot obtain any information about his selection bit c. The
security is information-theoretic, no complexity assumption on Alice’s
computing power is required.

We reduce the security of the binding condition of qbc to the security
of the concealing condition of BBC in two steps:

1. Using Lemmas 2 and 3, we conclude in Lemma 4 that u-qbc is bind-
ing. The modified protocol m-qbc is used for reducing the security of
u-qbc to the security of u-bbcs. Carl’s presence allows to classicize
the analysis which becomes simpler than working from u-qbc directly.

2. Theorem 1 establishes the desired result using the fact that an adver-
sary for the binding condition of qbc cannot be an adversary of u-qbc

(Lemma 4). It is shown how to construct an adversary for the con-
cealing condition of BBC given an adversary for the binding condition
of qbc.
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4.2 Part 1

In this section, we show that u-qbc is binding (Lemma 4) using Lemmas
2 and 3 as intermediary steps.

First, we show that an adversary against the binding condition of u-

qbc can be transformed into an adversary against the binding condition
of m-qbc.

Lemma 2. If there exist a (s0(n), s1(n))-adversary Ã against the binding
condition of u-qbc there also exists a (s0(n), s1(n))-adversary A∗ against
the binding condition of m-qbc.

Proof. We observe first that Ã’s announcement of β at step 3 of u-bbcs

commutes with step 2. That is, since only commitments to random val-
ues are received by Ã, the measurement producing β can be performed
without Bob’s commitments. Ã could simulate the commitments on her
own and then execute the measurement producing β before the qubits
are sent to Bob at step 1. Let A∗ be the quantum adversary that does
that. If Ã provides a (s0(n), s1(n))–advantage in u-qbc then so it is for
A∗. We now show that A∗ is also an adversary for the binding condition
of m-qbc.

Now assume for simplicity and without loss of generality that, Bob in
u-qbc or Bob and Carl in m-qbc wait until after Alice announces a =
(a0,a1) before measuring all qubits received. It is easy to verify that this
can always be done since nothing in the committing stage of u-qbc or m-

qbc relies on those measurements’ outcomes (i.e. since the commitments
are made to random values). Clearly, postponing measurements do not
influence Alice’s probability of success at the opening stage. Let V =
(β,J , b̂0, b̂1, c,a) be the partial view in u-qbc or in m-qbc up to Alice’s
announcement of a (and b since for all 1 ≤ j ≤ n, aj0 ⊕ aj1 = b) in the
opening stage. Let V U and V M be the random variable for the partial
view in u-qbc and m-qbc respectively. By construction we have that for
all V = (β,J , b̂0, b̂1, c,a), P (V U = V ) = P (V M = V ). Moreover, we have
that for all partial views V , the joint states |ΨU(V )〉 for u-qbc and |ΨM(V )〉
for m-qbc satisfy |ΨU(V )〉 = |ΨM(V )〉. Let Vb = {(β,J , b̂0, b̂1, c,a)|(∀1 ≤
j ≤ n)[aj0 ⊕ aj1 = b]} be the set of partial views corresponding for Alice
to open bit b. Given V , Bob’s test will succeed if he gets d = ac =
a1c1 , a2c2 , . . . , ancn after measuring the qubits in positions in Jc using
Alice’s bases βj

i for all i ∈ Jj
cj . Let Mtest(V ) = {QV

ok, 11 − QV
ok} be the

measurement allowing Bob to test Alice’s announcement when she unveils
b given partial view V ∈ Vb. QV

ok is the projection for the state of all qubits
received in positions in Jc into the subspace corresponding to parity dj =
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ajcj for all j ∈ {1, . . . , n}. More precisely, QV
ok =

⊗n
j=1

∑
x∈T (V,j) P

(V, j)
x

where T (V, j) = {x ∈ {0, 1}#Jj
cj |⊕i xi = ajcj ⊕ b̂j

cj} and β(V, j) = {βj
i |i ∈

Jj
cj} for all j ∈ {1, . . . , n}. Let s′b(b) be the probability of success when

A∗ opens b in m-qbc. We get that

sb(n) =
∑

V ∈Vb

P (V U = V ) ‖QV
ok|ΨU(V )〉‖2

=
∑

V ∈Vb

P (V M = V ) ‖QV
okQV

ok|ΨM(V )〉‖2 = s′b(n) (2)

since the only difference between u-qbc and m-qbc is that in the former
case both Carl and Alice measure the qubits in positions in Jc with the
same measurement Mtest (this why we have QV

okQV
ok = QV

ok in (2)). Carl’s
measurements for positions in Jc are irrelevant to the success probability.
The result follows. ut

Next, we reduce the binding condition of m-qbc to the security against the
sender in m-bbcs. We show that from any successful adversary against the
binding condition of m-qbc one can construct an adversary able to extract
non-negligible information about Bob’s selection bit in m-bbcs. Carl’s
measurements in m-qbc allows to classicize most part of the reduction
thus simplifying the proof that u-qbc is binding.

Lemma 3. If there exists a (s0(n), s1(n))-adversary Ã = (CÃ, OÃ)
against the binding condition of m-qbc with s0(n) + s1(n) ≥ 1 + 1

p(n) for
some positive polynomial p(n), then there also exists a cheating sender
A∗ for m-bbcs.

Proof. Let a′j0 and a′j1 be the two input bits for the j-th call to m-bbcs

computed according to Carl’s outcomes r̂. Let V be the random variable
for the joint view (a,a′,d, c) for an execution of the committing and the
opening stages of m-qbc between Ã and an honest receiver B and where Ã
is opening a random bit b ∈R {0, 1}. Without loss of generality, we assume
the announcements made by Ã to be consistent, that is a0i ⊕ a1i = b for
1 ≤ i ≤ n when she opens bit b. Given V = (a,a′,d, c), we define the
ordered set S(V ) = {j|a′j0 ⊕ a′j1 6= aj0 ⊕ aj1} ⊆ {1, . . . , n} of calls to
m-bbcs for which given view V Alice’s announcement of a disagree with
Carl’s outcomes a′. Given the ordered set S(V ) = {σ1, σ2, . . . , σs}, let
Xj(V ) ∈ {0, 1} for 1 ≤ j ≤ s be defined as

Xj(V ) =

{
0 if dσj 6= aσjcσj

1 if dσj = aσjcσj
.
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We let X(V ) = X1(V ), . . . ,Xl(V )(V ) for l(V ) = min (|S(V )|, dn
2 e).

Clearly, for Ã to open with success given V , we must have X(V ) = 1l(V ).
Note that P

(
|S(V )| ≥ n

2

)
≥ 1

2 since for at least one choice of b, |S(V )| ≥
n
2 given that V always describes a consistent opening. We easily get that

P
(
X(V ) = 1d

n
2
e
)

= P
(
X(V ) = 1l(V )

)
− P

(
X(V ) = 1l(V ) ∧ l(V ) <

n

2

)
≥ 1

2
(s0(n) + s1(n)) − 1

2
P

(
X(V ) = 1l(V ) | l(V ) <

n

2

)
≥ 1

2p(n)
. (3)

Since
∑

x∈{0,1}d n
2 e P (X(V ) = x) = 1, for n sufficiently large there

exists a string ŷ0 ∈ {0, 1}dn
2
e such that P

(
X(V ) = ŷ0

)
≤ 1

4p(n) . Let ρ be
the number of zeros in ŷ0 and R(ŷ0) = {r1, r2, . . . , rρ} ⊆ {1, . . . , dn

2 e} be
the ordered set of positions 1 ≤ r ≤ dn

2 e where ŷ0
r = 0. We now define for

1 ≤ j ≤ ρ the hybrid strings ŷj = ŷj
1ŷ

j
2 . . . ŷj

dn
2
e between ŷ0 and 1d

n
2
e:

ŷj
i =

{
1 if i = rk for k ≤ j
ŷ0

i Otherwise.

Hence, P (X(V ) = ŷρ = 1n) − P
(
X(V ) = ŷ0

)
≥ 1

4p(n) and we conclude
by a hybrid argument that there exist 1 ≤ k∗ ≤ ρ such that

P
(
X(V ) = ŷk∗) − P

(
X(V ) = ŷk∗−1

)
≥ 1

ρ4p(n)
≥ 1

2(n + 1)p(n)
(4)

Note that ŷk∗
and ŷk∗−1 differs only by the bit in position rk∗ where they

respectively have a 1 and a 0.
A∗ uses Ã and B = (CB, OB) the following way: after choosing h ∈R

{1, . . . , n}, it lets Ã interact with a simulated honest receiver B for m-qbc

except for the h-th execution of m-bbcs for which Ã interacts with the
targeted receiver for m-bbcs. Let V = (a,a′,d, c) be the view generated
during the execution. Given A∗’s view, algorithm LA∗

produces a guess c̃
for Bob’s selection bit c = ch in m-bbcs as follows:

– If |S(V )| ≥ dn
2 e, h = σrk∗ and ∀i ∈

{
1, . . . , dn

2 e
}
\ {rk∗},Xi(V ) = ŷk∗

i ,
then c̃ ∈ {0, 1} is defined such that ahc̃ = a′hc̃ (which necessarily exists
since h ∈ S(V )),

– Otherwise, c̃ ∈R {0, 1}.
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Let T (V ) be the event of a successful test in the previous computation.
We have that P (T (V )) ≥

(
P

(
X(V ) = ŷk∗)

+ P
(
X(V ) = ŷk∗−1

))
/2n

since independently |S(V )| ≥ n/2 with probability at least 1/2, h =
σr∗k with probability 1/n, and ∀i ∈

{
1, . . . , dn

2 e
}
\ {rk∗},Xi(V ) = ŷk∗

i

with probability P
(
X(V ) = ŷk∗)

+ P
(
X(V ) = ŷk∗−1

)
. Given T (V ),

the guess c̃ is the only value for Bob’s selection bit c that
would lead to X(V ) = ŷk∗

instead of X(V ) = ŷk∗−1 (the two
strings are the only possible given T (V )). We get P (c̃ = c|T (V )) =
P

(
X(V ) = ŷk∗)

/
(
P

(
X(V ) = ŷk∗)

+ P
(
X(V ) = ŷk∗−1

))
. (A∗, LA∗

) is a
cheating sender for m-bbcs since P (c̃ = c) = 1

2(1 − P (T (V ))) +
P (T (V )) P (c̃ = c|T (V )) ≥ 1

2 + 1
8n(n+1)p(n) . ut

Using Lemmas 1, 2 and 3 together with the fact that m-bbcs is uncondi-
tionally secure against the sender [5], we get the desired result:

Lemma 4. Protocol u-qbc is binding.

As we shall see next, Lemma 4 helps a great deal in proving that qbc is
computationally binding.

4.3 qbc is Binding When BBC is Concealing

In the following, we conclude that qbc is computationally binding when-
ever BBC is computationally concealing. We use the fact that u-qbc is
statistically binding (Lemma 4) in order to use any adversary against the
binding condition of qbc as a distinguisher between random (u-qbc) and
real (qbc) commitments for some hybrids between u-qbc and qbc.

Theorem 1. If there exists a (s0(n), s1(n))-adversary Ã = (CÃ, OÃ)
against the binding condition of qbc with s0(n) + s1(n) ≥ 1 +

1
p(n) for positive positive polynomial p(n), then there exists a quan-

tum receiver CB̃ in BBC and a quantum algorithm LB̃ such that
P

(
LB̃((CA � CB̃)|b〉A|0〉B̃) = b

)
≥ 1

2 + Ω( 1
n4p(n)) whenever b ∈R {0, 1}

and where CB̃ calls Ã an expected O(n5p(n)2) times.

Proof. Let B = (CB , OB) be the circuits for the honest receiver in qbc

and let A be an honest committer in BBC. Given Ã, we construct a receiver
CB̃ in BBC from which a bias for A’s committed bit can be extracted. Re-
member that the only difference between u-qbc and qbc is that a honest
receiver commits to random bits instead of his measurements and out-
comes. There are 4n calls to Commit-BBC per bbcs (u-bbcs) for a total of
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4n2 during the committing stage of qbc (u-qbc). Let’s note as significant
the committed bits specified by the protocol bbcs (to measurements and
outcomes) and as random the ones specified by the protocol u-bbcs (to
random bits). We describe hybrids in between qbc and u-qbc by letting
the number of significant and random commitments vary. Let qbc

k be
protocol qbc but where the first k commitments out of 4n2 are made
to random values. We have that u-qbc ≡ qbc

4n2
is binding whereas Ã

is a (s0(n), s1(n))–adversary for the binding condition of qbc
0 ≡ qbc.

Let sk
b (n) be the probability that Ã succeeds when opening b ∈ {0, 1} in

qbc
k for 0 ≤ k ≤ 4n2. Defining ŝk(n) = (sk

0(n) + sk
1(n))/2, we get that

ŝ0(n) ≥ 1
2 + 1

2p(n) and ŝ4n2
(n) < 1

2 + 1
poly(n) (from Lemma 4), given n

sufficiently large. By the hybrid argument, there exists 0 ≤ k∗ ≤ 4n2 − 1
such that for n sufficiently large,

ŝk∗
(n) − ŝk∗+1(n) ≥ 1

9n2p(n)
. (5)

Hence, D4n2( 1
9n2p(n)) = {ŝi(n)}4n2

i=0 is a family of Bernoulli distributions
that satisfies the condition of Lemma 7. The sampling circuit S is easy
to construct given Ã and B. Upon classical input |l〉 for 0 ≤ l ≤ 4n2,
S runs Ã and B except that the first l commitments sent from B to Ã
(using BBC) are made to random values instead of the measurements β̂
and the outcomes r. Ã then opens a random bit b ∈R {0, 1}. If B accepts
the opening of b then S(|l〉) = 1 otherwise it returns S(|l〉) = 0. Circuit
S is therefore a sampling circuit for D4n2( 1

9n2p(n)
) such that ‖S‖UG ∈

O(‖Ã‖UG) assuming without loss of generality that ‖B‖UG ∈ O(‖Ã‖UG).

We now construct the adversary CB̃ for the concealing condition of
BBC given Ã. In order to use algorithm FindDrop presented in Appendix
C, CB̃ must first determine a lower bound 1

p′(n) for the drop 1
9n2p(n) . This

is done by finding a lower bound p̃(n) for 1
2p(n) and then setting p′(n) =

5n2/p̃(n). CB̃ computes p̃(n) = LowBound(S0,
1
2 , n) where LowBound is

the procedure described in Appendix B and S0 is the circuit S with the
input bits fixed to |0〉. According to Lemma 6, when n is sufficiently
large LowBound returns p̃(n) such that 1

2n2p(n)
≤ p̃(n) ≤ 1

2p(n) except with
negligible probability and after an expected O(n5p(n)2) calls to S0.

Now CB̃ can use FindDrop(S, 1
p′(n) , n) with the family of distributions

D4n2( 1
p′(n)) = {ŝi(n)}4n2

i=0 which exhibits a drop 1
p′(n) except with negligible
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probability. From Lemma 7, CB̃ gets 0 ≤ κ ≤ 4n2 − 1 such that

ŝκ(n) − ŝκ+1(n) ≥ 1
2p′(n)

(6)

except with negligible probability. The value of κ is obtained after calling
S (including the calls to S0 in LowBound) an expected O(n5p(n)2) times.

CB̃ then uses κ for attacking the concealing condition of BBC the
following way: It lets Ã and B interact (where Ã opens b ∈R {0, 1}) as
in qbc

κ+1 except that the (κ+1)-th random commitment is provided by
the committer A in BBC. Let b ∈ {0, 1} be the bit committed by A. Let
V be the random variable for the view generated during the interaction
between Ã and B when Ã opens the random bit. Let cκ+1(V ) ∈ {0, 1}
be the bit that B would have committed if the (κ + 1)-th commitment
was significant. The distinguisher LB̃ (which is classical given the view
V ) returns the guess b̃ for b the following way:

– If V is a successful opening then b̃ = cκ+1(V ),
– Otherwise, b̃ ∈R {0, 1}.

Let Vκ+1
ok be the set of views for qbc

κ+1 resulting in a suc-
cessful opening and let G be the set of values κ for which
(6) holds. We have ŝκ(n) = P

(
V ∈ Vκ+1

ok |cκ+1(V ) = b
)

and
ŝκ+1(n) = 1

2

(
P

(
V ∈ Vκ+1

ok |cκ+1(V ) 6= b
)

+ P
(
V ∈ Vκ+1

ok |cκ+1(V ) = b
))

which, using (6), leads to P
(
V ∈ Vκ+1

ok ∧ cκ+1(V ) 6= b
)

≤
P

(
V ∈ Vκ+1

ok ∧ cκ+1(V ) = b
)

− 1
2p′(n) . Since we have in ad-

dition that P
(
V ∈ Vκ+1

ok

)
= P

(
V ∈ Vκ+1

ok ∧ cκ+1(V ) 6= b
)

+
P

(
V ∈ Vκ+1

ok ∧ cκ+1(V ) = b
)
, we get

P
(
b̃ = b|κ ∈ G

)
= P

(
V ∈ Vκ+1

ok ∧ cκ+1(V ) = b
)

+
1
2

(
1 − P

(
V ∈ Vκ+1

ok

))
≥ 1

2

(
1 +

1
2p′(n)

)
.

Since P
(
b̃ = b

)
≥ P (κ ∈ G) P

(
b̃ = b|κ ∈ G

)
and P (κ ∈ G) ≥ 1 −

2−αn, α > 0 (Lemma 6) we finally get that (CB̃ , LB̃) is an adversary for
the concealing condition of BBC providing a bias in Ω( 1

p′(n)) = Ω( 1
n4p(n)

)

after calling Ã an expected O(n5p(n)2) times. ut

5 The Concealing Condition

We now reduce the concealing condition of qbc to the security of bbcs

against the receiver [20].
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Lemma 5. If there exists a quantum interacting circuit CB̃ for
Commit-qbc and a quantum algorithm LB̃ acting only on B̃’s registers
such that P

(
LB̃((CA � CB̃)|b〉A|0〉B̃) = b

)
≥ 1

2 + 1
p(n) for some positive

polynomial p(n) and an honest committing circuit CA for b ∈R {0, 1},
then there also exists a cheating receiver (B∗, LB∗

) for bbcs.

Proof. For the receiver CB̃ and CA described in the statement, we have

P
(
LB̃((CA � CB̃)|1〉A|0〉B̃) = 1

)
−

P
(
LB̃((CA � CB̃)|0〉A|0〉B̃) = 1

)
≥ 2

p(n)
.

Let’s define a modification of an honest committing circuit for qbc, noted
CÃ, which is the same as CA but takes a string f̂ ∈ {0, 1}n instead of a bit
b and sends in the i-th call to bbcs the bits a0i ∈R {0, 1} and a1i = a0i⊕f̂i

for 1 ≤ i ≤ n. The circuit CA with input b is equivalent to CÃ with input
bn. Once again, by an hybrid argument, there exist 1 ≤ k∗ ≤ n such that

P
(
LB̃((CÃ � CB̃)|1k∗

0n−k∗〉Ã|0〉B̃) = 1
)

−

P
(
LB̃((CÃ � CB̃)|1k∗−10n−k∗+1〉Ã|0〉B̃) = 1

)
≥ 2

np(n)

With such value k∗, B∗ runs bbcs(e0, e1)(?) with an honest sender A′ the
following way: it lets CB̃ interact with CÃ with input (1k∗−1?0n−k∗

) for
Commit-qbc except for the k∗-th call to bbcs where it makes CB̃ interact
with the targeted sender.

Then, knowing ec for c ∈ {0, 1}, we take the output of LB̃ , b′ say, and
compute a guess ec ⊕ b′ for ec. For this algorithm LB∗

we have

P
(
LB∗

((A′ � B∗)|e0; e1〉A|0〉B
∗
, |ec; c〉B

∗
) = ec̄

)
= P

(
b′ = e0 ⊕ e1

)
≥ 1

2
+

1
np(n)

where the probabilities are taken over e0, e1 ∈R {0, 1}. ut

From Yao’s result [20] and Lemma 5 it is straightforward to conclude that
qbc is concealing.
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6 Conclusion and Open Questions

Having shown in Theorem 1, that a computationally concealing BBC re-
sults in a computationally binding qbc and, from Lemma 5 together with
Yao’s result [20], that no adversary against the concealing condition of
qbc exists, we conclude with our main result:

Theorem 2. If BBC is binding and computationally concealing then qbc

is concealing and computationally binding.

For security parameter n, the reduction of an adversary (CB̃
n , LB̃

n ) for the
concealing condition of BBC to an adversary Ãn for the binding condition
of qbc is expected polynomial-time black-box. If Ãn breaks the binding
condition of qbc with s0(n) + s1(n) ≥ 1 + 1

p(n) then the circuit CB̃
n is

specified by a classical Turing machine calling Ãn at most n5p(n)2 times
except with negligible probability. LB̃

n then provides a polynomial bias on
the committed bit through an almost trivial classical computation given
as input CB̃’s view. This guarantees that (CB̃

n , LB̃
n ) satisfies ‖CB̃

n ‖UG +
‖LB̃

n ‖UG ∈ O(n5p(n)‖Ã‖UG) (using standard simulation techniques) thus
breaking the concealing condition of BBC as defined in Sect. 2.3. The
adversary {(CB̃

n , LB̃
n )}n>0 is specified by a uniform family of quantum

circuits whenever {Ãn}n>0 is a uniform family1. Our reduction is therefore
uniformity preserving [18]. It is an interesting open problem to find an
exact polynomial-time black-box reduction.

One consequence of Theorem 2 is that concealing commitment
schemes can be built from any quantum one-way function. We first ob-
serve that Naor’s commitment scheme [17] is also secure against the quan-
tum computer if the pseudo-random generator (PRG) it is based upon is
secure against the quantum computer. This follows from the fact that any
quantum circuit able to distinguish between commitments to 0 and 1 is
also able to distinguish a truly random sequence from a pseudo-random
one. To complete the argument, we must make sure that given a quan-
tum one-way function one can construct a PRG resistant to quantum
distinguishers. A tedious but not difficult exercise allows to verify that
the classical construction of [19] results in a PRG secure against quantum
distinguishers given it is built from quantum one-way functions. We get
the following corollary which is not known to hold in the classical case:

1 Given 1n, there exists a poly-time Turing machine that outputs the description of

(CB̃
n , LB̃

n ), namely one knowing p(n).
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Corollary 1. Both binding but computationally concealing and conceal-
ing but computationally biding quantum bit commitments can be con-
structed from quantum one-way functions.

It would be interesting to find a concealing quantum bit commitment
scheme directly constructed from one-way functions which improves the
complexity of our construction. Is it possible to find a non-interactive
concealing commitment scheme from the same complexity assumption or
are such constructions inherently interactive? It is also unclear whether
or not perfectly concealing schemes can be based upon any quantum one-
way function?

Although we assumed in this paper a perfect quantum channel, our
construction should also work with noisy quantum transmission. It would
be nice to provide the analysis for this general case.
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A Bernshtein’s Law of Large Numbers

Theorem 3 (Bernshtein). Let X1,X2, . . . ,Xn ∼ B(p) be independent
random variables following a Bernoulli distribution with p as the proba-
bility parameter. Then for any 0 < ε ≤ p(1 − p),

P
(∣∣∣∣

∑n
i=1 Xi

n
− p

∣∣∣∣ ≥ ε

)
≤ 2e−nε2

In particular, Bernshtein’s law of large numbers ensures us that we
can estimate the probability of an event with an error bounded by any
polynomial except with negligible probability using a polynomial number
of random variables. For example, if we want an error bounded by 1

p(m)

then with dmp(m)2e random variables we obtain a correctly bounded
estimate with probability at least 1 − 2e−m.

B Estimating Polynomial Variation of Bernoulli’s
Parameter

Suppose we have a quantum circuit Rn allowing to sample from a
Bernoulli distribution with unknown parameter pn = q + 1

p(n) where

21



0 ≤ q < 1 is a known constant and p(n) is some positive polynomial.
That is P (Rn = 1) = pn and P (Rn = 0) = 1 − pn independently for each
execution of Rn. The following classical procedure uses the quantum
sampling circuit Rn as a black-box to provide a lower bound 1

gn
for 1

p(n) :

LowBound(Rn, q, n)

1. p̃n = 0; gn = 1;
2. While p̃n ≤ q + 2

gn
Do

(a) gn = gnn;
(b) #sampling = ng2

n;
(c) success = 0;
(d) For 1 ≤ i ≤ #sampling Do success = success + Rn;
(e) p̃n = success

#sampling ;
3. Return: 1

gn
.

Lemma 6. For n sufficiently large, LowBound(Rn, q, n) returns 1
gn

such
that 1

n2p(n) < 1
gn

≤ 1
p(n) except with probability 2−αn, α > 0 and after

calling Rn an expected O(n5p(n)2) times.

Proof. For n sufficiently large, there exist a constant k such that

1
nk+1

<
1

p(n)
≤ 1

nk
. (7)

Since by (7) there exists at least one, let k′ be the smallest constant such
that for all i ≥ k′ + 2 and j ≤ k′

3
ni

<
1

p(n)
≤ 1

nj
. (8)

By Bernshtein’s law of large numbers, the obtained estimate p̃n(t) in
the t-th repetition of step 2 as a bounded error 1

nt with probability at
least 1 − 2e−n. So, for j ≤ k′ we have with probability at least 1 − 2e−n

p̃n(j) ≤ q +
1

p(n)
+

1
nj

≤ q +
2
nj

(9)

and the number of repetition of step 2 is greater than k′ with probabil-
ity at least (1 − 2e−n)k

′
. Moreover, for i ≥ k′ + 2 we have again with

probability at least 1 − 2e−n

p̃n(i) ≥ q +
1

p(n)
− 1

ni
> q +

2
ni

(10)
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and so the probability of executing more than k′ + 2 repetitions of step 2
is lower then 2e−n. Hence the procedure will repeat step 2 either k′ + 1
or k′ + 2 and respectively output 1

nk′+1
or 1

nk′+2
except with negligible

probability smaller than 2−αn for some α > 0. By definition of k′ we have
that

1
n2p(n)

≤ 1
nk′+1

,
1

nk′+2
<

1
p(n)

. (11)

Furthermore, since equation 10 the expected number of calls to Rn is in
O(n5p(n)2). ut

C Finding a Polynomial Drop Between Neighbors

Let Dm( 1
p(n)) = {pi}m

i=0 be a family of Bernoulli distributions with un-
known parameters 0 ≤ pi ≤ 1 for every 0 ≤ i ≤ m and such that
pk∗ − pk∗+1 ≥ 1

p(n) for some 0 ≤ k∗ < m. Let S be a quantum circuit
such that P (S|l〉 = 1) = pl and P (S|l〉 = 0) = 1 − pl for all 0 ≤ l ≤ m.
That is, S is a quantum circuit allowing to sample from the Bernoulli
distribution B(pl) given classical input |l〉. We would like to find κ that
exhibits a polynomial drop pκ − pκ+1 similar to pk∗ − pk∗ . Algorithm
FindDrop finds κ using the sampling circuit S as a black-box but is oth-
erwise classical:
FindDrop(S, 1

p(n) , n)

1. p̃−1 = 0; k = −1;
2. Loop:

(a) k = k + 1; success = 0;
(b) For i = 1 to d64mnp(n)2e Do success = success + S|k〉;
(c) p̃k = success/d64mnp(n)2e;

3. Until (p̃k−1 − p̃k ≥ 3
4p(n)) or (k = m)

4. Return κ=k − 1.

The returned value κ can now be shown to satisfy pκ − pκ+1 ≥ 1
2(pk∗ −

pk∗+1) except with negligible probability. The algorithm is efficient in
terms of ‖S‖UG , and parameters m and n.

Lemma 7. Given a family of Bernoulli distributions Dm( 1
p(n)) = {pi}m

i=1

with sampling circuit S such that pk∗ − pk∗+1 ≥ 1
p(n) for some 0 ≤ k∗ ≤

m−1, algorithm FindDrop(S, 1
p(n) , n) returns κ such that pκ−pκ+1 ≥ 1

2p(n)

except with negligible probability 2−αn, α > 0 and after calling S at most
(m + 1)d64mnp(n)2e ∈ O(m2np(n)2) times.
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Proof. By Bernshtein’s law of large numbers, p̃k as a bounded error 1
8p(n)

with probability at least 1 − 2e−mn. So, with probability at least (1 −
2e−mn)m+1 the estimate p̃k is within bounded errors 1

8p(n) of pk for all
0 ≤ k ≤ m. In that case, we have for 0 ≤ i ≤ m− 1 such that pi − pi+1 <

1
2p(n)

p̃i − p̃i+1 ≤ pi − pi+1 +
2

8p(n)
<

3
4p(n)

(12)

and also for 0 ≤ j ≤ m − 1 such that pj − pj+1 ≥ 1
p(n)

p̃j − p̃j+1 ≥ pj − pj+1 −
2

8p(n)
≥ 3

4p(n)
. (13)

The algorithm FindDrop returns a bad κ whenever pκ − pκ+1 < 1
2p(n) but

p̃k−p̃κ+1 ≥ 3
4p(n) or whenever k∗ could not be recognized. By equations 12

and 13, the probability pe that FindDrop makes a mistake in the output
satisfies pe ≤ 1 − (1 − 2e−mn)m+1 ≤ 2−αn for some α > 0.

ut
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