
B
R

IC
S

R
S

-00-48
Jurdzínski&

V
öge:

A
D

iscrete
S

tratety
Im

provem
entA

lgorithm
forS

olving
P

arity
G

am
es

BRICS
Basic Research in Computer Science

A Discrete Stratety Improvement Algorithm
for Solving Parity Games

Marcin Jurdzi ński
Jens Vöge

BRICS Report Series RS-00-48

ISSN 0909-0878 December 2000

Copyright c© 2000, Marcin Jurdziński & Jens Vöge.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/48/

A Discrete Strategy Improvement Algorithm
for Solving Parity Games∗

Marcin Jurdziński†

BRICS‡

Dept. of Computer Sci.

University of Aarhus
Denmark

Jens Vöge§

Lehrstuhl für Informatik VII
Fachgruppe Informatik

RWTH Aachen
Germany

December 2000

Abstract

A discrete strategy improvement algorithm is given for con-
structing winning strategies in parity games, thereby providing
also a new solution of the model-checking problem for the modal
µ-calculus. Known strategy improvement algorithms, as proposed
for stochastic games by Hoffman and Karp in 1966, and for dis-
counted payoff games and parity games by Puri in 1995, work with
real numbers and require solving linear programming instances
involving high precision arithmetic. In the present algorithm for
parity games these difficulties are avoided by the use of discrete

∗A preliminary version of this paper [21] was published in: Computer Aided Verifi-
cation, 12th International Conference, CAV 2000, Proceedings, volume 1855 of Lecture
Notes in Computer Science, pages 202–215, Chicago, IL, USA, July 2000, Springer-
Verlag.

†Address: BRICS, Department of Computer Science, University of Aarhus, Ny
Munkegade Building 540, DK-8000 Aarhus C, Denmark. Email: mju@brics.dk. A
part of the work reported here was done while the author was a research assistant at
Lehrstuhl für Informatik VII, RWTH Aachen, Germany.

‡Basic Research in Computer Science, Centre of Danish Science Foundation.
§Address: RWTH Aachen, Lehrstuhl für Informatik VII, D-52056 Aachen, Ger-

many. Email: voege@informatik.rwth-aachen.de. Supported by the Deutsche
Forschungsgemeinschaft (DFG), project Th 352/5-3.

1

vertex valuations in which information about the relevance of ver-
tices and certain distances is coded. An efficient implementation
is given for a strategy improvement step. Another advantage of
the present approach is that it provides a better conceptual under-
standing and easier analysis of strategy improvement algorithms
for parity games. However, so far it is not known whether the
present algorithm works in polynomial time. The long standing
problem whether parity games can be solved in polynomial time
remains open.

1 Introduction

The study of the computational complexity of solving parity games has
two main motivations. One is that the problem is polynomial time equiv-
alent to the modal µ-calculus model checking [8, 19], and hence better
algorithms for parity games may lead to better model checkers, which is
a major objective in computer aided verification.

The other motivation is the intriguing status of the problem from the
point of view of structural complexity theory. It is one of the few natural
problems which is in NP ∩ co-NP [8] (and even in UP ∩ co-UP [10]), and
is not known to have a polynomial time algorithm, despite substantial
effort of the community (see [8, 1, 18, 11] and references there). Other
notable examples of such problems include simple stochastic games [3, 4],
mean payoff games [6, 23], and discounted payoff games [23]. There are
polynomial time reductions of parity to mean payoff games [16, 10], mean
payoff to discounted payoff games [23], and discounted payoff to simple
stochastic games [23]. Parity games, as the simplest of them all, seem
to be the most plausible candidate for trying to find a polynomial time
algorithm.

A strategy improvement algorithm has been proposed for solving
stochastic games by Hoffman and Karp [9] in 1966. Puri in his PhD
thesis [16] has adapted the algorithm for discounted payoff games. Puri
also provided a polynomial time reduction of parity games to mean payoff
games, and advocated the use of the algorithm for solving parity games,
and hence for the modal µ-calculus model checking.

In our opinion Puri’s strategy improvement algorithm for solving par-
ity games has two drawbacks.

• The algorithm uses high precision arithmetic, and needs to solve
linear programming instances: both are typically costly operations.

2

An implementation (by the first author) of Puri’s algorithm, using
a linear programming algorithm of Meggido [13], proved to be pro-
hibitively slow.

• Solving parity games is a discrete, graph theoretic problem, but
the crux of the algorithm is manipulation of real numbers, and its
analysis is crucially based on continuous methods, such as Banach’s
fixed point theorem.

The first one makes the algorithm inefficient in practice, the other one
obscures understanding of the algorithm.

Our discrete strategy improvement algorithm remedies both short-
comings of Puri’s algorithm mentioned above, while preserving the overall
structure of the generic strategy improvement algorithm. We introduce
discrete values (such as tuples of: vertices, sets of vertices and natural
numbers denoting lengths of paths in the game graph) which are being
manipulated by the algorithm, instead of their encodings into real num-
bers. (One can show a precise relationship between behaviour of Puri’s
and our algorithms; we will treat this issue elsewhere.)

The first advantage of our approach is that we avoid solving linear
programming instances involving high precision arithmetic. Instead, a
shortest paths instance needs to be solved in every strategy improve-
ment step of the algorithm. The shortest paths instances occurring in
this context have discrete weights recording relevance of vertices and dis-
tances in the game graph. We develop an algorithm exploiting the special
structure of these instances instead of using standard shortest paths al-
gorithms. Our algorithm gives an efficient implementation of a single
improvement step of the strategy improvement algorithm. Its running
time is O(n · m), where n is the number of vertices, and m is the num-
ber of edges in the game graph. In comparison, a naive application of
Bellman-Ford algorithm [5] gives O(n2 · m) running time.

The other advantage is more subjective: we believe that it is easier
to analyze the discrete data maintained by our algorithm, rather than its
subtle encodings into real numbers involving infinite geometric series [16].
The classical continuous reasoning involving Banach fixed point theorem
gives an elegant proof of correctness of the algorithm in a more general
case of discounted payoff games [16], but we think that in the case of
parity games it blurs an intuitive understanding of the underlying dis-
crete structure. However, the long standing open question whether a
strategy improvement algorithm works in polynomial time [4] remains

3

unanswered. Nevertheless, we hope that our discrete analysis of the al-
gorithm may help either to find a proof of polynomial time termination,
or to come up with a family of examples on which the algorithm re-
quires exponential number of steps. Any of those results would mark a
substantial progress in understanding the computational complexity of
parity games.

So far, for all families of examples we have considered the strategy im-
provement algorithm needs only linear number of strategy improvement
steps. Notably, a linear number of strategy improvements suffices for
several families of difficult examples for which other known algorithms
need exponential time.

The rest of this chapter is organized as follows. In section 2 we define
the infinite parity games and we establish their equivalence to finite cycle-
domination games. In section 3 we sketch the idea of a generic strategy
improvement algorithm and we state general postulates which guarantee
correctness of the algorithm. Then in section 4 we give a specific proposal
for the ingredients of a generic strategy improvement algorithm. In sec-
tion 5 we prove that these ingredients satisfy the postulates of section 3.
In this way we get a purely discrete strategy improvement algorithm
for solving parity games. In section 6 we give a specialized shortest
paths algorithm for the shortest paths instances occurring in our strat-
egy improvement algorithm. In this way we obtain an efficient O(n · m)
implementation of a strategy improvement step, where n is the number
of vertices, and m is the number of edges in the game graph. Finally,
in section 7 we discuss partial results and open questions concerning the
time complexity of strategy improvement algorithms.

2 Parity games

2.1 Infinite parity games

A game graph G =
(
V, E, (MEven, MOdd), p

)
of a parity game consists of a

directed graph (V, E), a partition (MEven, MOdd) of the set of vertices V ,
and a priority function p : V → {0, 1, . . . , k} for some k ∈ N. We restrict
ourselves to finite parity game graphs and for technical convenience we
assume that every vertex has at least one out-going edge.

An infinite parity game G∞ is a two-person infinite duration path-
forming game played on graph G. The two players, Even and Odd,
keep moving a token along edges of the game graph: player Even moves

4

the token from vertices in MEven, and player Odd moves the token from
vertices in MOdd. A play of G∞ is an infinite path 〈v0, v1, v2, . . .〉 in the
game graph G arising in this way. A play P = 〈v0, v1, v2, . . .〉 is winning
for player Even if the biggest priority occurring infinitely often in P (i.e.,
the biggest number occurring infinitely often in 〈p(v0), p(v1), p(v2), . . .〉)
is even; otherwise P is winning for player Odd.

A memoryless strategy for player Even is a function σ : MEven → V
such that

(
v, σ(v)

) ∈ E for all v ∈ MEven. (We consider only memoryless
strategies here so for brevity we just write strategies to denote memory-
less strategies throughout the paper.) A play 〈v0, v1, v2, . . .〉 is consistent
with a strategy σ for player Even if v`+1 = σ(v`) for all ` ∈ N, such
that v` ∈ MEven. Strategies for player Odd are defined analogously. If
σ is a strategy for player Even (Odd) then we write Gσ to denote the
game graph obtained from G by removing all the edges (v, w), such that
v ∈ MEven (v ∈ MOdd) and σ(v) 6= w; we write Eσ for the set of edges of
Gσ. If σ is a strategy for player Even and τ is a strategy for player Odd
then we write Gστ for (Gσ)τ ; we write Eστ for its set of edges.

Note that if σ is a strategy for player Even and τ is a strategy for
player Odd then for every vertex v, there is a unique play Pστ (v) starting
from v and consistent with both σ and τ . We say that a strategy σ for
player Even is a winning strategy from a vertex v if for every strategy
τ for player Odd, the unique play Pστ (v) starting from v and consistent
with both σ and τ is winning for player Even. A strategy σ is a winning
strategy from a set of vertices W if it is winning from every vertex in W .
Winning strategies for player Odd are defined analogously.

Remark. In literature on parity games (see for example [20, 22, 10])
a different definition of a winning strategy is used; here we call it “a
strategy winning against arbitrary strategies.” We say that a strategy σ
for player Even (Odd) is a strategy winning against arbitrary strategies
from a vertex v if every play starting from v and consistent with σ is
winning for player Even (Odd). We argue that the two definitions are
equivalent for parity games.

Proposition 2.1 A strategy σ for player Even (Odd) is a winning strat-
egy from a vertex v if and only if σ is a strategy winning against arbitrary
strategies from v.

Proof. The “if” part is obvious.
We prove the “only if” part for player Even; the proof for player Odd

is analogous. Suppose that σ is a winning strategy for player Even from

5

v. Then the biggest priority on every cycle in Gσ reachable from v in Gσ

is even. Let P be an infinite play consistent with σ. We argue that the
biggest priority occurring infinitely often on P is even. Using a simple
stacking technique (see for example [23], page 347, or [10], page 122) we
can decompose play P into a finite path and an infinite number of simple
cycles in Gσ. (The decomposition may be different if the game graph
is infinite, but the proposition can be proved in a very similar way also
for parity games with infinite game graphs.) Note that biggest priorities
in all simple cycles in the decomposition are even because all the cycles
are cycles in Gσ reachable from v in Gσ. Hence the maximal priority
occurring infinitely often in P is even, i.e., P is a winning play for player
Even. [Proposition 2.1] [Remark] �

Theorem 2.2 (Memoryless Determinacy [7, 15])
For every parity game graph G, there is a unique partition (WEven, WOdd)
of the set of vertices of G, such that there is a winning strategy for player
Even from WEven in G∞ and a winning strategy for player Odd from WOdd

in G∞.

We call sets WEven and WOdd the winning sets of player Even and player
Odd, respectively. The problem of deciding the winner in parity games
is, given a parity game graph and a vertex of the graph, to determine
whose winning set the vertex belongs to. By solving a parity game we
mean finding the partition (WEven, WOdd).

2.2 Finite cycle-domination games

For the purpose of development and reasoning about our discrete strategy
improvement algorithm for solving parity games it is technically conve-
nient to reformulate a bit the standard definition of parity games outlined
above. Below we define finite cycle-domination games and we give a sim-
ple translation of every parity game into an equivalent cycle-domination
game.

A game graph G =
(
V, E, (M⊕, M), (R+, R−)

)
of a cycle-domination

game consists of a directed graph (V, E), where V = {1, 2, . . . , n} for
some n ∈ N, and of two partitions (R+, R−) and (M⊕, M) of the set of
vertices V . We sometimes refer to the numbers identifying vertices as
their priorities, and we use the standard ≤ order on natural numbers to
compare them.

A finite cycle-domination game Gω is a two-person finite path-forming
game played on graph G. The two players, player ⊕ and player 	, play

6

similarly to players Even and Odd in infinite parity games by moving a
token along edges of the game graph G: player ⊕ moves the token from
vertices in M⊕, and player 	 moves the token from vertices in M	. The
difference from infinite parity games is that a play is finished as soon
as the path constructed so far by the players contains a cycle. In other
words, a play in Gω is a finite path P = 〈v0, v1, . . . , v`〉 in the game graph
G, such that vi 6= vj for all 1 ≤ i < j < `, and there is a k < `, such
that vk = v`. It follows that 〈vk, vk+1, . . . , v`〉 is the only cycle in play
P ; we write Cycle(P) to denote this unique cycle, and we call it the
cycle of P . We define the cycle dominating value λ(P) of play P to be
max≤ (

Cycle(P)
)

= max≤{vk, vk+1, . . . , v`}, i.e., the vertex with biggest
priority in the cycle of P . We say that a play P in Gω is winning for
player ⊕ if λ(P) ∈ R+, otherwise λ(P) ∈ R− and play P is winning for
player 	. Strategies and winning strategies for both players in Gω are
defined similarly as in infinite parity games.

Given a parity game graph G =
(
V, E, p, (MEven, MOdd)

)
we construct

a cycle-domination game graph G = (V, E, (R+, R−), (M⊕, M)
)
, such

that the games G∞ and G
ω

are equivalent in the following sense.

Proposition 2.3 A strategy σ is a winning strategy for player Even
(player Odd) from a vertex v in G∞ if and only if σ is a winning strategy
for player ⊕ (player) from v in G

ω
.

Construction of G: Let M⊕ = MEven, M	 = MOdd, and

R+ =
{

v ∈ V : p(v) is even
}
, and R− =

{
v ∈ V : p(v) is odd

}
.

We introduce a total order relation ≤ on V called the relevance order.
Let the relevance order ≤ be an arbitrary total order extending the pre-
order induced by priorities, i.e., such that p(v) ≤ p(w) implies v ≤ w for
all v, w ∈ V . Note that we use the same symbol “≤” for the standard
order on natural numbers and for the relevance order; in fact we identify
vertices in V with integers in the set

{
1, 2, . . . , |V |} via the unique order-

isomorphism between the total orders (V,≤) and
({

1, 2, . . . , |V |},≤)
.

Proof (of Proposition 2.3). The first condition, i.e., that σ is a win-
ning strategy for player Even (player Odd) in G∞ is equivalent to saying
that for every cycle in Gσ reachable from v in Gσ, the biggest priority
occurring on the cycle is even (odd). The other condition, i.e., that σ is
a winning strategy for player ⊕ (player) in G

ω
is equivalent to saying

that for every cycle in Gσ, the most relevant vertex in the cycle belongs

7

to R+ (R−). It follows immediately from the construction of G that the
biggest priority occurring on a cycle in Gσ is even (odd), if and only if
the most relevant vertex in the same cycle in Gσ belongs to R+ (R−),
and so we are done. [Proposition 2.3]

3 Generic strategy improvement algorithm

In order to develop a strategy improvement algorithm for solving cycle-
domination games we define the problem of solving cycle-domination
games as an “optimization problem.” Suppose we have a pre-order v on
the set Strategies⊕ ⊆ (M⊕ → V) of strategies for player ⊕, satisfying
the following two postulates.

P1. There is a maximum element in the pre-order (Strategies⊕,v),
i.e., there is a strategy σ ∈ Strategies⊕, such that κ v σ for all
κ ∈ Strategies⊕.

P2. If σ is a maximum element in the pre-order (Strategies⊕,v) then
σ is a winning strategy for player ⊕ from every vertex of her winning
set.

The problem of solving a cycle-domination game with respect to v is,
given a cycle-domination game, to find a strategy for player ⊕ which is
a maximum element in the pre-order (Strategies⊕,v).

Suppose we also have an operator

Improve : Strategies⊕ → Strategies⊕,

satisfying the following two postulates:

I1. If σ is not a maximum element in the pre-order (Strategies⊕,v)
then σ v Improve(σ) and Improve(σ) 6v σ.

I2. If σ is a maximum element in the pre-order (Strategies⊕,v) then
we have Improve(σ) = σ.

A generic strategy improvement algorithm is the following procedure.

Strategy improvement algorithm
pick a strategy σ for player ⊕
while σ 6= Improve(σ) do σ := Improve(σ)

8

Note that postulate I1. guarantees that the algorithm terminates, be-
cause there are only finitely many strategies for player ⊕. Postulate I2.
implies that when the algorithm terminates then the strategy σ is a max-
imum element in the pre-order (Strategies⊕,v). Altogether, we get the
following.

Theorem 3.1
If a pre-order (Strategies⊕,v) satisfies postulates P1. and P2., and an
Improve operator satisfies postulates I1. and I2. then strategy improve-
ment algorithm is a correct algorithm for solving cycle-domination games
with respect to v.

4 Discrete strategy improvement algorithm

Below we give a particular proposal for a pre-order (Strategies⊕,v)
satisfying postulates P1. and P2., and an Improve operator satisfying
postulates I1. and I2. These definitions are based on discrete valuations
assigned to strategies and hence give rise to a purely discrete strategy
improvement algorithm for solving cycle-domination games.

4.1 Play values

For every w ∈ V , we define V>w = { v ∈ V : v > w }, and V<w = { v ∈
V : v < w }.

Let P = 〈v1, v2, . . . , v`〉 be a play, and let vk = λ(P), i.e., the cycle
value of P is the k-th element of P . Let Prefix(P) = {v1, v2, . . . , vk−1},
i.e., Prefix(P) is the set of vertices in play P occurring before the loop
value of P . We define the primary path value π(P) of play P to be
Prefix(P)∩V>λ(P), i.e., the set of vertices occurring in P with priorities
bigger than λ(P). We define the secondary path value #(P) of play P
to be

∣∣Prefix(P)|, i.e., the length of the path from the initial vertex of
P to λ(P). The path value of play P is defined to be the ordered pair(
π(P), #(P)

) ∈ ℘(V) × N. The play value Θ(P) of play P is defined

to be the ordered pair
(
λ(P),

(
π(P), #(P)

)) ∈ V × (
℘(V) × N

)
. We

write PlayValues to denote the image of the function Θ : Plays →
V × (

℘(V) × N
)
. Note that

PlayValues ⊆ { (
v, (B, k)

)
: B ⊆ V>v

}
. (1)

9

4.2 Linear order E on PlayValues

For all v ∈ V , we define

Reward(v) =

{
−v if v ∈ R−,

v if v ∈ R+.

For all v, w ∈ V , we define v � w to hold if and only if Reward(v) ≤
Reward(w). We write v ≺ w if v � w and v 6= w. Note that � is a linear
order on V , and m ≺ p for all m ∈ R− and p ∈ R+.

For B, C ∈ ℘(V), such that B 6= C, we define

MaxDiff(B, C) = max≤(
(B \ C) ∪ (C \ B)

)
.

We define B ≺ C to hold if and only if either

• MaxDiff(B, C) ∈ (B \ C) ∩ R−, or

• MaxDiff(B, C) ∈ (C \ B) ∩ R+.

We write B � C if B ≺ C or B = C. For ` ∈ V , we write B �` C if
B ∩ V>` � C ∩ V>`. We write B =` C if B �` C and C �` B. We write
B ≺` C if B �` C and C 6�` B.

For all ` ∈ V , and (B, k), (B′, k′) ∈ ℘(V) × N, we define the relation
(B, k) E` (B′, k′) to hold if and only if either

• B ≺` B′, or

• B =` B′ and either

– ` ∈ R− and k ≤ k′, or

– ` ∈ R+ and k′ ≤ k.

We write (B, k) /` (B′, k′) if (B, k) E` (B′, k′) and (B′, k′) 6E` (B, k).
For all

(
`, (B, k)

)
,
(
`′, (B′, k′)

) ∈ V × (
℘(V)×N

)
, we define the rela-

tion
(
`, (B, k)

)
E

(
`′, (B′, k′)

)
to hold if and only if either

• ` ≺ `′, or

• ` = `′ and (B, k) E` (B′, k′).

For ξ, ξ′ ∈ V × (
℘(V) × N

)
, we write ξ / ξ′ if ξ E ξ′ and ξ′ 6E ξ.

Note that (1) guarantees that E is a linear order on PlayValues. It
is a linear pre-order on V × (

℘(V) × N
)
.

Example. Note that ξ1 =
(
3, {1}, 2

)
and ξ2 = (3, {2}, 2) are not play

values, because {1} 6⊆ V>3 and {2} 6⊆ V>3, respectively. We have ξ1 E ξ2

and ξ2 E ξ1, even though ξ1 6= ξ2. [Example] �

10

4.3 Pre-order v on Strategies⊕
We write Valuations to denote the set (V → PlayValues) of functions
assigning a play value to every vertex of the game graph. We extend the
E order to a partial order on Valuations by defining it point-wise, i.e.,
for Ξ, Ξ′ ∈ Valuations we define Ξ E Ξ′ to hold if Ξ(v) E Ξ′(v) for all
v ∈ V . We write Ξ / Ξ′ if Ξ E Ξ′ and Ξ 6= Ξ′.

Valuation Ωσ. For every strategy σ ∈ Strategies⊕ we define Ωσ ∈
Valuations in the following way:

Ωσ(v) = minE
{

Θ(P) : P ∈ Playsσ(v)
}
,

where Playsσ(v) is the set of plays starting from vertex v and consistent
with σ. Finally, for σ, σ′ ∈ Strategies⊕ we define σ v σ′ to hold if and
only if Ωσ E Ωσ′ . We write σ @ σ′ if Ωσ / Ωσ′ .

4.4 An Improve operator

We say that a set I ⊆ E is unambiguous if (v, w) ∈ I and (v, u) ∈ I
imply that w = u. For every unambiguous set of edges I, we define an
operator SwitchI : Strategies⊕ → Strategies⊕ as follows:

[
SwitchI(σ)

]
(v) =

{
w if (v, w) ∈ I for some w ∈ V,

σ(v) otherwise.

We say that an edge (v, w) ∈ E is an improvement for a strategy σ if

Ωσ

(
σ(v)

)
/ Ωσ(w). (2)

We define a (non-deterministic) operator Improve : Strategies⊕ →
Strategies⊕ as follows:

Improve(σ) =

{
SwitchI(σ) for some set I 6= ∅ of improvements for σ,

σ if there are no improvements for σ.

Let I1, I2, . . . , It ⊆ E, and let σ be a strategy for player ⊕. Define σ0 = σ,
and σk = SwitchIk

(σk−1) for k > 0. We say that P = 〈I1, I2, . . . , It〉 is a
strategy improvement policy for σ if:

• for all k ≤ t, we have that Ik 6= ∅ is an unambiguous set of im-
provements for σk−1, and

• there are no improvements for σt.

11

4.5 A few technical definitions

Pre-orders E` on M(V) × N. For technical reasons, for every ` ∈ V ,
we extend the pre-order E` on ℘(V) × N to M(V) × N, where M(V)
is the set of multi-sets of elements of V . The definitions of �`, and E`

are the same as for ℘(V) × N; the only difference is that MaxDiff for
B, C ∈ M(V) is defined by

MaxDiff(B, C) = max≤(
(B \M C) ∪ (C \M B)

)
,

where \M is the multiset difference, and B ≺ C is defined to holds if and
only if either

• MaxDiff(B, C) ∈ (B \M C) ∩ R−, or

• MaxDiff(B, C) ∈ (C \M B) ∩ R+.

Example. If 3 ∈ R− then we have {1, 3, 3} � {1, 2, 3} because

MaxDiff
({1, 3, 3}, {1, 2, 3}) = 3

and 3 ∈ ({1, 3, 3} \M {1, 2, 3}) ∩ R−. [Example] �

Pre-orders Ẽ` on M(V) × N. We define the following weakening of the
E` pre-order. For ` ∈ V and (B, k), (B′, k′) ∈ M(V) × N, we define
(B, k)Ẽ`(B

′, k′) to hold if and only if B �` B′. We write (B, k) ∼=`

(B′, k′) if (B, k)Ẽ`(B
′, k′) and (B′, k′)Ẽ`(B, k). Note that Ẽ` is a pre-

order on M(V)×N, and that Ẽ` is coarser than E`, i.e., (B, k) E` (B′, k′)
implies (B, k)Ẽ`(B

′, k′). Note, for example, that if 2 ∈ R+ then we have({2, 3}, 1
) ∼=2

({1, 3}, 2
)
, but

({2, 3}, 1
) 6E2

({1, 3}, 2
)
.

Operation � on M(V) × N. For (B, k), (B′, k′) ∈ M(V) × N, we define
(B, k)�(B′, k′) =

(
B∪MB′, k+k′), where ∪M is the multi-set union. We

also use the following shorthand: if C ∈ ℘(V) then (B, k) � C is defined
to be equal to (B, k) �

(
C, |C|), i.e., we have that (B, k) � C =

(
B ∪M

C, k + |C|). Moreover, if v ∈ V then we often write (B, k) � v instead of
(B, k)�{v}. In other words, we have that (B, k)�v = (B∪M{v}, k+1).

5 Correctness of the algorithm

In order to prove correctness of our discrete strategy improvement algo-
rithm, i.e., to establish Theorem 3.1, it suffices to argue that the defini-
tions of subsection 4 satisfy postulates P1., P2., I1., and I2.

12

5.1 Valuation Ωσ and shortest paths

Let Ωσ = (Λσ, Πσ) : V → V × (
℘(V) × N). We establish the following

characterization of Ωσ.

1. Let Tσ = {t ∈ V : there is a cycle C in Gσ, such that max≤(C) = t}.
Then for all v ∈ V , we have that

Λσ(v) = min�{ t ∈ Tσ : there is a path from v to t in Gσ }. (3)

2. For v, t ∈ V , we define Pathσ(v, t) to be the set of sets of vertices
S ∈ ℘(V), such that S ∪ {t} is the set of vertices occurring on a
(simple) path from v to t in Gσ. Let v ∈ V and let ` = Λσ(v).
Then we have

Πσ(v) = minE`

{ (
S ∩ V>`, |S|

)
: S ∈ Pathσ(v, `)

}
. (4)

Clause 1. is straightforward. Note that for all (v, w) ∈ Eσ we have

Λσ(v) � Λσ(w). (5)

We argue that clause 2. holds. Let P ∈ Playsσ(v), such that Θ(P) =
Ωσ(v). Let R = Prefix(P) and let C = Cycle(P). Then Λσ(v) = λ(P)
and

Πσ(v) =
(
π(P), #(P)

)
=

(
(R ∪ C) ∩ V>`, |R|),

i.e., Πσ(v) =
(
R ∩ V>`, |R|); the last equality holds because max≤(C) =

λ(P). Therefore, we have that

Πσ(v) = minE`

{ (
π(P), #(P)

)
: P ∈ Playsσ(v) and λ(P) = `

}
= minE`

{ (
S ∩ V>`, |S|

)
: S ∈ Pathσ(v, `)

}
.

As a result of the above we get a characterization of Πσ(v) as a solu-
tion of the following shortest paths problem instance. For ` ∈ Tσ consider
the subgraph G`

σ = (V `, E`
σ) of Gσ induced by V ` = {v ∈ V : Λσ(v) = `}.

With every edge (v, w) ∈ E`
σ we associate the weight

({v} ∩ V>`, 1
) ∈

M(V) × N. The set of weights of paths in G`
σ is M(V) × N with � as

the operation of adding weights. Shortest paths are taken with respect
to the E` pre-order on M(V) × N.

Remark. Section 26.4 of the book by Cormen et al. [5] describes an
algebraic structure called a closed semi-ring that allows to define a short-
est paths problem and devise algorithms for finding shortest paths. We

13

leave it as an exercise to the reader to verify that for every ` ∈ V , the set
M(V) × N with the extension operator � and the summation operator
maxE` forms a closed semi-ring. [Remark] �

Note that from Λσ(v) = ` for all v ∈ V `, it follows that all cycles in G`
σ

have “non-negative” weight, i.e., they have weight E`-bigger than (∅, 0)
if ` ∈ R−, and E`-bigger than (∅, +∞) if ` ∈ R+. Therefore, shortest
paths to ` exist from each vertex v ∈ V `, they are simple paths, and
Πσ(v) is the weight of the shortest path from v to ` in G`

σ.
Observe, that for v 6= `, the characterization of Πσ(v) as the weight

of a shortest path from v to ` implies, that if w ∈ V ` is a successor of v
on a shortest path from v to ` in G`

σ then

Πσ(v) =` Πσ(w) � v, (6)

and for all (v, u) ∈ E`
σ we have

Πσ(v) E` Πσ(u) � v. (7)

Note that we have
Πσ(`) = (∅, 0). (8)

Moreover, observe that by definition of ` ∈ Tσ, there is a cycle C in
G`

σ, such that max≤(C) = `, and there are no cycles with “negative”
weight. Therefore, if w is the successor of ` with a shortest path to `
then Πσ(w) = (∅, k) for some k ∈ N, and hence we have

Πσ(`) ∼=` Πσ(w) � `, (9)

and for all (`, u) ∈ E`
σ we have

Πσ(`) Ẽ` Πσ(u) � `. (10)

5.2 Locally progressive valuations

Strategy σ for player 	. Let σ be a strategy for player ⊕. We define a
strategy σ for player 	 in the following way. For every v ∈ M	, we set:

σ(v) = w, such that Ωσ(w) E Ωσ(u) for all u ∈ succ(v),

i.e., σ(v) is defined to be a successor of v which minimizes the value of
Ωσ with respect to E. Note that from the characterization of Ωσ from
the previous subsection it follows that for all (v, w) ∈ Eσσ, we have

14

Λσ(v) = Λσ(w). Moreover, claims (6) and (9) hold, respectively, for all
(v, w) ∈ Eσσ, depending on whether Λσ(v) 6= v or Λσ(v) = v, respectively.
These observations together with claim (8) motivate the following notion
of a locally progressive valuation.

Locally progressive valuation. Let Ξ = (Λ, Π) : V → V × (
℘(V) × N

)
be

a valuation. We define Prog(Ξ, e) to hold for e = (v, w) ∈ E, if and only
if:

1. Λ(v) = Λ(w), and

2. if Λ(v) 6= v then Π(v) =Λ(v) Π(w) � v, and

3. if Λ(v) = v then Π(v) ∼=Λ(v) Π(w) � v and Π(v) = (∅, 0).

We say that Ξ is a locally progressive valuation for strategies σ and τ if
and only if Prog(Ξ, e) holds, for all e ∈ Eστ .

The following fact follows immediately from the definition of strategy
σ and from (3), (6), (8), and (9).

Proposition 5.1 Valuation Ωσ is a locally progressive valuation for σ
and σ.

Valuation Θστ . Note that if σ and τ are strategies for player ⊕ and for
player 	, respectively, then for every vertex v ∈ V , there is a unique play
Pστ (v) starting from v and consistent with σ and τ . We write Θστ for a
valuation defined by Θστ (v) = Θ

(
Pστ (v)

)
.

In the following lemma we establish that a locally progressive valua-
tion for σ and τ is a local characterization of the valuation Θστ .

Lemma 5.2 A valuation Ξ is a locally progressive valuation for σ and
τ if and only if Ξ = Θστ .

Proof. Let v ∈ V and let Pστ (v) = 〈v1, v2, . . . , v`〉 be the unique play
starting from v and consistent with σ and τ . It is easy to verify that
Θστ is a locally progressive valuation for σ and τ . We show that if Ξ is
a locally progressive valuation for σ and τ then Ξ(v) = Θ

(
Pστ (v)

)
.

Let C = {vk, vk+1, . . . , v`−1} be the cycle of Pστ (v), i.e., let vk = v` and
k < `. Let Ξ = (Λ, Π), where Λ : V → V and Π : V → (M(V)×N

)
. By

definition of a locally progressive valuation we get that Λ(v1) = Λ(v2) =
· · · = Λ(v`). Let ` = Λ(v). We claim that λ

(
Pστ (v)

)
= Λ(v), i.e., that

max≤(C) = `.

15

By definition of a locally progressive valuation we get that Π(vi) ∼=`

Π(vi+1) � vi for all i ∈ {k, k + 1, . . . , ` − 1}. This implies that

Π(vk) ∼=` Π(v`) � {vk, vk+1, . . . , v`−1} = Π(vk) � C.

It follows that max≤(C) ≤ `. Note that max≤(C) < ` implies that
Π(vi) =` Π(vi+1) � vi for all i ∈ {k, k + 1, . . . , ` − 1}, i.e., that Π(vk) =`

Π(vk)�C holds. This, however, is impossible because |C| > 0. Therefore,
we get that max≤(C) = `.

Now we argue that Π(v) is equal to the path value of Pστ (v). By
definition of a locally progressive valuation we get that Π(vi) =` Π(vi+1)�
vi for all i ∈ {1, 2, . . . , k − 1}, and that Π(vk) = (∅, 0). Therefore, we get
that

Π(v) =` (∅, 0) � Prefix
(
Pστ (v)

)
=`

(
π
(
Pστ (v)

)
, #

(
Pστ (v)

))
.

[Lemma 5.2]

A best counter-strategy against σ. Note that by Proposition 5.1, an im-
mediate corollary of Lemma 5.2 is that

Ωσ = Θσσ. (11)

Hence by definition of Ωσ we get that Θσσ E Θστ , for all strategies τ for
player 	. In other words, σ is a best counter-strategy against σ.

5.3 Locally under-progressive valuations

Motivated by conditions (5), (7), (8), and (10) satisfied by Ωσ, we intro-
duce a relaxation of the notion of a locally progressive valuation called a
locally under-progressive valuation.

Locally under-progressive valuation. Let Ξ = (Λ, Π) : V → V × (
℘(V) ×

N
)

be a valuation. We define UnderProg(Ξ, e) to hold for e = (v, w) ∈ E,
if and only if:

1. Λ(v) � Λ(w), and

if Λ(v) = Λ(w) then:

2. if Λ(v) 6= v then Π(v) EΛ(v) Π(w) � v, and

3. if Λ(v) = v then Π(v) ẼΛ(v) Π(w) � v and Π(v) = (∅, 0).

16

We say that Ξ is a locally under-progressive valuation for strategy σ if
and only if UnderProg(Ξ, e) holds, for all e ∈ Eσ.

The following fact follows immediately from (5), (7), (8), and (10).

Proposition 5.3 Valuation Ωσ is a locally under-progressive valuation
for strategy σ.

In the following proposition we collect a couple of simple facts about
locally under-progressive valuations and relations E and Ẽ`.

Proposition 5.4 Let Ξ = (Λ, Π) : V → V × (
℘(V)×N

)
be a valuation.

1. If UnderProg
(
Ξ, (v, w)

)
holds and Λ(v) = Λ(w) then we have that

Π(v) ẼΛ(v) Π(w) � v holds.

2. If UnderProg
(
Ξ, (v, w)

)
holds and Ξ(w) E Ξ(u) then we have that

UnderProg
(
Ξ, (v, u)

)
holds.

In the next lemma we establish that a locally under-progressive valu-
ation Ξ for a strategy σ is a witness that all plays starting from a vertex
v and consistent with σ, have value at least as big as Ξ(v) with respect
to the E order.

Lemma 5.5 If Ξ is a locally under-progressive valuation for a strategy
σ then Ξ E Ωσ.

Before we prove Lemma 5.5 we collect the following important properties
of relations E` and Ẽ`.

Proposition 5.6 Let ` ∈ V , and B, C ∈ M(V), and k ∈ N.

1. If max≤(C) ≥ ` then

max≤(C) � ` if and only if (B, k) Ẽ` (B, k) � C.

2. If max≤(C) 6= ` then

max≤(C) � ` if and only if (B, k) /` (B, k) � C.

Proof. Assume first that max≤(C) > `. Then (B, k) /̃` (B, k) � C holds
if and only if B ≺` B ∪M C holds, if and only if max≤(C) ∈ R+ holds, if
and only if max≤(C) � ` holds. Observe also, that (B, k) /` (B, k) � C

17

holds if and only if B ≺` B∪MC holds, if and only if (B, k) /̃` (B, k) � C
holds.

Assume that max≤(C) = `. Then (B, k) Ẽ` (B, k) � C holds because
B =` B ∪M C; and max≤(C) � ` obviously holds.

Assume finally that max≤(C) < `. Then B =` B ∪M C and therefore
by definition of E` we have that (B, k) /` (B, k) � C holds if and only
if ` ∈ R−, if and only if max≤(C) � `. [Proposition 5.6]

Proof (of Lemma 5.5). Let v ∈ V , and let P be a play starting from v
and consistent with σ. It suffices to show that Ξ(v) E Θ(P).

Let Ξ = (Λ, Π) : V → V × (M(V) × N
)
. First we show that Λ(v) �

λ(P). From definition of a locally under-progressive valuation it follows
that the values of Λ on vertices in play P are non-decreasing with respect
to � order, so they are all equal on the cycle Cycle(P) of P . Hence, if
we define ` to be the value of Λ on vertices in Cycle(P) then we have
Λ(v) � `. Therefore, it suffices to prove that ` � λ(P).

If ` 6∈ Cycle(P) then applying the definition of a locally under-
progressive valuation around the cycle of P we get that

Π(w) E` Π(w) � Cycle(P),

for some vertex w ∈ Cycle(P). Note that from ` 6∈ Cycle(P) it follows
that λ(P) 6= `, and therefore clause 2. of Proposition 5.6, with C =
Cycle(P), implies that λ(P) = max≤ (

Cycle(P)
) � `.

If ` ∈ Cycle(P) then applying the definition of a locally under-
progressive valuation around the cycle of P , together with clause 1. of
Proposition 5.4, we get that

Π(w) Ẽ` Π(w) � Cycle(P),

for some vertex w ∈ Cycle(P). Note that from ` ∈ Cycle(P) it follows
that λ(P) ≥ `, and therefore clause 1. of Proposition 5.6 implies that
λ(P) = max≤ (

Cycle(P)
) � `.

If Λ(v) ≺ λ(P) then we have Ξ(v) / Θ(P) and we are done. As-
sume then that ` = Λ(v) = λ(P). We show that in this case Π(v) /`(
π(P), #(P)

)
, which immediately implies that Ξ(v) E Θ(P). By apply-

ing the definition of a locally under-progressive valuation along Prefix(P)
we get

Π(v) E` Π(`) � Prefix(P),

and we also have Π(`) = (∅, 0) because Λ(`) = `, and hence

Π(v) E`

(
Prefix(P),

∣∣Prefix(P)
∣∣) =`

(
π(P), #(P)

)
.

18

[Lemma 5.5]

5.4 Strategy improvement

Lemma 5.7 For every strategy σ for player ⊕, we have σ v Improve(σ).

Proof. It suffices to show that Ωσ is a locally under-progressive valuation
for Improve(σ). Then by Lemma 5.5 we get that Ωσ E ΩImprove(σ), i.e.,
that σ v Improve(σ).

We argue that Ωσ is a locally under-progressive valuation for the
strategy Improve(σ). By Proposition 5.3 we have that Ωσ is a locally
under-progressive valuation for σ. Therefore, it suffices to check that
for all v ∈ M⊕, the predicate UnderProg holds for Ωσ along the edge(
v, [Improve(σ)](v)

)
. Note that by definition of the Improve operator

we have
Ωσ

(
[Improve(σ)](v)

)
D Ωσ

(
σ(v)

)
,

for all v ∈ M⊕. Note that the UnderProg predicate holds for Ωσ along
the edges

(
v, σ(v)

)
, for all v ∈ M⊕, because Ωσ is a locally progressive

valuation for σ. It then follows from clause 2. of Proposition 5.4 that the
UnderProg predicate for Ωσ holds along every edge

(
v, [Improve(σ)](v)

)
,

for all v ∈ M⊕. [Lemma 5.7]

5.5 Maximum strategies

Lemma 5.8 For every strategy σ for player ⊕, the following are equiv-
alent:

1. strategy σ is not a maximum element in (Strategies⊕,v),

2. Improve(σ) 6= σ,

3. Improve(σ) 6v σ.

Locally over-progressive valuation. Let Ξ = (Λ, Π) : V → V ×(
℘(V)×N

)
be a valuation. We define OverProg(Ξ, e) to hold for e = (v, w) ∈ E if
and only if:

1. Λ(v) � Λ(w), and

if Λ(v) = Λ(w) then:

2. if Λ(v) 6= v then Π(v) DΛ(v) Π(w) � v, and

19

3. if Λ(v) = v then Π(v) D̃Λ(v) Π(w) � v and Π(v) = (∅, 0).

We say that Ξ is a locally over-progressive valuation for strategy τ for
player 	 if and only if OverProg(Ξ, e) holds for all e ∈ Eτ .

Valuation fσ. For every strategy τ ∈ Strategies	 we define fτ ∈
Valuations in the following way:

fτ (v) = maxE
{

Θ(P) : P ∈ Playsτ (v)
}
,

where Playsτ (v) is the set of plays starting from vertex v and consistent
with τ .

In the following lemma we show that a locally over-progressive valu-
ation Ξ for a strategy τ is a witness that all plays starting from vertex v
and consistent with τ have value at most as big as Ξ(v) with respect to
the E order on valuations.

Lemma 5.9 If Ξ is a locally over-progressive valuation for a strategy τ
then fτ E Ξ.

The above lemma is proved similarly to Lemma 5.5, using the following
simple facts instead of Proposition 5.4.

Proposition 5.10 Let Ξ = (Λ, Π) : V → V ×(
℘(V)×N

)
be a valuation.

1. If OverProg
(
Ξ, (v, w)

)
holds and Λ(v) = Λ(w) then we have that

Π(v) D̃Λ(v) Π(w) � v holds.

2. If OverProg
(
Ξ, (v, w)

)
holds and Ξ(w) D Ξ(u) then we have that

OverProg
(
Ξ, (v, u)

)
holds.

Proof (of Lemma 5.8).
1 ⇒ 2. We claim that it suffices to argue that if Improve(σ) = σ then
Ωσ is a locally over-progressive valuation for σ. By Lemma 5.9 we then
have

fσ E Ωσ. (12)

This, however, implies that κ v σ for all strategies κ for player ⊕. It is
so because Ωκ E fτ holds for all strategies κ and τ , hence in particular
Ωκ E fσ holds, so altogether we get Ωκ E fσ E Ωσ.

We argue that Ωσ is a locally over-progressive valuation for σ. By
Proposition 5.1 we know that Prog predicate for Ωσ holds along all edges
(v, w) ∈ E, such that σ(v) = w or σ(v) = w. Therefore, it suffices to

20

check that the OverProg predicate for Ωσ holds along all edges (v, w) ∈ E,
such that v ∈ M⊕. Note that from Improve(σ) = σ it follows that

Ωσ

(
σ(v)

)
D Ωσ(w),

for all v ∈ M⊕ and w ∈ succ(v), and hence by clause 2. of Proposition 5.10
we get that OverProg

(
Ωσ, (v, w)

)
holds.

2 ⇒ 3. Note that if Improve(σ) 6= σ then for some v ∈ M⊕, the predicate
Prog does not hold for Ωσ along the edge

(
v, [Improve(σ)](v)

)
. Therefore,

by Lemma 5.2 we have that Ωσ 6= Θ
Improve(σ)Improve(σ), i.e., by (11) we

have that Ωσ 6= ΩImprove(σ). Recall that E is a partial order on the set of
valuations, hence it must be the case that ΩImprove(σ) 6E Ωσ because by
Lemma 5.7 we have Ωσ E ΩImprove(σ).

3 ⇒ 1. Straightforward. [Lemma 5.8]

5.6 Proving the postulates P1., P2., I1., and I2.

P1. Lemmas 5.7 and 5.8 imply that after a finite number of iterations
of the strategy improvement algorithm it must be the case that
Improve(σ) = σ. By Lemma 5.8 such a strategy σ is a maximum
element in the pre-order (Strategies⊕,v).

P2. Let σ be a maximum element in (Strategies⊕,v). Then from
Lemma 5.8 it follows that Improve(σ) = σ. By definition of Ωσ,
strategy σ is a winning strategy for player ⊕ from the set

W σ
⊕ =

{
v ∈ V : Ωσ(v) =

(
`, (B, k)

)
and ` ∈ R+

}
.

We claim that W σ
⊕ is the winning set for player ⊕. It suffices to

argue that player 	 has a winning strategy from the set V \ W σ
⊕.

Note that

V \ W σ
⊕ =

{
v ∈ V : Ωσ(v) =

(
`, (B, k)

)
and ` ∈ R−

}
,

and by (12) we have fσ E Ωσ. This means, however, that σ is a
winning strategy for player 	 from V \ W σ

⊕.

I1. Immediate from Lemmas 5.7 and 5.8.

I2. Immediate from Lemma 5.8.

21

6 Efficient implementation

We are given a graph G = (V, E) with a linear order ≤ on vertices, and
a vertex t ∈ V , such that:

for every v ∈ V , there is a path from v to t in G, (13)

and

for every cycle C in G, we have that max≤(C) � t. (14)

Every edge (v, w) ∈ E has the weight
({v} ∩ V>t, 1

) ∈ ℘(V>t) × N. The
weights are ordered by Et and added to each other with �. The task is
for all vertices v ∈ V , to determine (the weight of) a shortest path from
v to t in G. For all v ∈ V , let Σ(v) ⊆ ℘(V>t) be the set of vertices with
priority bigger than t occurring in a shortest path from v to t in G.

We use the following algorithm to compute the shortest paths.

Shortest paths
1. E := E \ ({t} × V

)
2. for all r ∈ V>t in ≤-descending order
3. if r ∈ R+ then
4. W :=

{
w ∈ V : there is a path from w to t in (V \ r, E)

}
5. E := E \ (

(W ∪ {r}) × (V \ W)
)

6. if r ∈ R− then
7. U :=

{
u ∈ V : there is a path from u to r in (V, E)

}
8. E := E \ (

(U \ {r}) × (V \ U)
)

9. if t ∈ R+ then find longest distances from every vertex to t
10. if t ∈ R− then find shortest distances from every vertex to t

The algorithm works as follows. First we remove edges going out of t
since we are only interested in paths from all vertices to t (line 1.). Then
in every iteration of the for all loop (lines 2.–8.) we remove edges that
cannot possibly belong to a shortest path from a vertex v to t. After the
for all loop has been executed, from every vertex there are only paths to
t containing the same set of vertices in V>t as a shortest path. Therefore,
in order to find shortest paths from every vertex to t it suffices to find
longest distances to t if t ∈ R+, and shortest distances to t if r ∈ R−
(lines 9. or 10.). Finding longest distances in the case when t ∈ R+ can
be done efficiently because in this case the graph is acyclic.

Let us analyze the first iteration of the for all loop, i.e., let r =
max≤(V) and let r > t. There are two cases to consider: r ∈ R+ and
r ∈ R−.

22

Suppose that r ∈ R+. Then for all v ∈ V , by the definition of Et

and by the maximality of r with respect to ≤, a shortest path from v to
t should avoid visiting r if possible. More formally, for every v ∈ V , we
have that:

r 6∈ Σ(v) if and only if there is a path from v to t in G in
which r does not occur.

(15)

Therefore, the set W computed in line 4. contains all vertices v ∈ V , such
that r does not occur on a shortest path from v to t. On the other hand,
the set V \W consists of vertices from which a visit to r is “unavoidable”
on a shortest path to t. It is then not hard to see that by removing in
line 5. all the edges leading from W to V \ W we only disconnect paths
which cannot be shortest paths to t. Let G′ be the graph after removing
edges in line 5. Therefore, for every v ∈ V , we have that:

G′ contains a shortest path from v to t in G. (16)

Moreover, after performing the deletion of edges in line 5., no path from
W to t contains r, and all the paths from V \W to t contain r. In other
words, we have that:

if r ∈ Σ(v) then r occurs on every path from v to t in G′, (17)

and

if r 6∈ Σ(v) then r does not occur on any path from v to t
in G′.

(18)

Observe also, that by performing the deletion in line 5. we disconnect all
cycles containing r, because then r can only be reached from vertices in
V \ W , and only vertices in W are reachable form r, i.e., we have:

there is no cycle in G′ containing r. (19)

We omit considering the other case, i.e., r = max≤(V>t) ∈ R−. In-
stead, motivated by claims (16), (17), (18), and (19), established above
for r = max≤(V>t) ∈ R+, we argue that the following invariant is main-
tained by all iterations of the for all loop.

For x ∈ V>t, let G(x) be the graph after the body of for all loop has
been performed for all r ∈ V>t, such that r > x.

Proposition 6.1 Let r ∈ V>t. For all s ∈ V>t, such that s > r, and for
all v ∈ V , we have:

23

1. G(r) contains a shortest path from v to t in G,

2. if s ∈ Σ(v) then s occurs on every path from v to t in G(r),

3. if s 6∈ Σ(v) then s does not occur on any path from v to t in G(r),

4. there is no cycle in G(r) containing s.

Proof. We prove the proposition by induction on r. Claims 1.–4. hold
trivially for r = max≤(V). Assume as the induction hypothesis that
clauses 1.–4. hold for some r ∈ V>t. We show then, that clauses 1.–4.
hold for r′ = max≤(V<r), by analyzing what happens when the body of
the for all loop is performed. We consider two cases.

• r ∈ R+.

Note that by clauses 1.-3. of the induction hypothesis, and by def-
inition of Et, we have:

r ∈ Σ(v) if and only if r occurs on every path from v to t in G(r).

With this analogue of claim (15), the arguments needed to prove
clauses 1.–4. for r′ are the same as the ones we have used to establish
claims (16)–(19).

• r ∈ R−.

Note that by clauses 1.-3. of the induction hypothesis, and by def-
inition of Et, we have:

r ∈ Σ(v) if and only if r occurs on some path from v to t in
G(r).

(20)

We argue that:

there is no cycle in G(r) containing r. (21)

Suppose the contrary is the case, i.e., that there is a cycle C con-
taining r in G(r). Then by clause 4. of the induction hypothesis we
have that max≤(C) = r, which together with r ∈ R− implies that
max≤(C) ≺ t, a contradiction with (14). Note that (21) establishes
clause 4. for r′.

A corollary of (21) is that if r ∈ Σ(v) then all paths from v to t
and containing r are simple paths. Moreover, by clause 1. of the

24

induction hypothesis there is a path from r to t in G(r), and hence,
claim (20) implies the following:

r ∈ Σ(v) if and only if there is a path from v to r in
G(r).

(22)

Therefore, the set U computed in line 7. contains all vertices v ∈ V ,
such that r occurs on a shortest path from v to t, and the set V \U
contains all vertices from which a visit to r is not possible on a
shortest path to t. Observe, that by removing edges leading from
U \{r} to V \U we only disconnect paths which cannot be shortest
paths to t. This establishes clause 1. for r′.

Note also, that by definition of U no path from V \U to t contains
r, and after deletions of edges in line 8. we have that all paths
from U to t contain r. This establishes clauses 3. and 2. for r′.
[Proposition 6.1]

Theorem 6.2
An improvement step of our discrete strategy improvement algorithm can
be performed in time O(n · m).

7 Time complexity

In the analysis of the running time of a strategy improvement algorithm
there are two parameters of major interest:

1. the time needed to perform a single strategy improvement step,

2. the number of strategy improvement steps needed.

By Theorem 6.2 our discrete strategy improvement algorithm achieves a
satisfactory bound on the former parameter.

A satisfactory analysis of the latter parameter is missing in our work.
Despite the long history of strategy improvement algorithms for stochas-
tic and payoff games [9, 4, 16] very little is known about the number of
strategy improvement steps needed. The best upper bounds are expo-
nential [4, 16] but to our best knowledge no examples are known which
require more than linear number of improvement steps. We believe that
our purely discrete description of strategy improvement gives new in-
sights into the behaviour of the algorithm in the special case of parity

25

games. The two long standing questions: whether there is a polyno-
mial time algorithm for solving parity games [8], and, more concretely,
whether a strategy improvement algorithm for parity games terminates
in polynomial time [4, 16], remain open. Below we discuss some disjoint
observations we have come up with so far, and some questions which we
believe are worth pursuing.

Proposition 7.1 For every initial strategy, there is a strategy improve-
ment policy of length at most n. Moreover, there is such a policy switch-
ing exactly one edge in every improvement step.

Proof. Let us fix a strategy κ which is a maximum element in the
partial order (Strategies⊕,v). Note that it suffices to show that for
every strategy σ which is not a maximum element in (Strategies⊕,v),
there is an improvement (v, w) ∈ E for σ, such that w = κ(v).

Claim 7.2 If I ⊆ E contains no improvement for σ then SwitchI(σ) v
σ.

We argue how the proposition follows from the claim. Suppose for the
sake of contradiction that for all v ∈ M⊕, such that σ(v) 6= κ(v), we
have Ωσ

(
κ(v)

)
E Ωσ

(
σ(v)

)
. Let I =

{ (
v, κ(v)

)
: v ∈ M⊕ and σ(v) 6=

κ(v)
}

. Note that SwitchI(σ) = κ. Hence by Claim 7.2 we get that
κ v σ which contradicts the assumption that κ is a maximum element
in (Strategies⊕,v) and that σ is not.

Proof (of Claim 7.2). Note that for all (v, w) ∈ I we have that

Ωσ(w) E Ωσ

(
σ(v)

)
. (23)

By Proposition 5.1 we have that Prog(Ωσ, e) holds for all edges e in the
graph of strategies σ and σ. From (23) and from clause 2. of Propo-
sition 5.10 it follows that OverProg(Ωσ, e) holds for all edges e in the
graph of strategies SwitchI(σ) and σ. Let σ′ = SwitchI(σ). Note that
in the (one-player) game Gσ′ we have fσ = Θσ′σ. Therefore, by applying
Lemma 5.9 to Gσ′ we get that Θσ′σ E Ωσ. Note that by definition of Ωσ′

we have that Ωσ′ E Θσ′σ, and hence we get Ωσ′ E Ωσ which concludes
the proof. [Claim 7.2] [Proposition 7.1]

This contrasts with an algorithm for solving parity games based on
progress measures [11], for which there are families of examples on which
every policy requires an exponential number of steps.

26

Melekopoglou and Condon [14] exhibit families of examples of simple
stochastic games for which several natural strategy improvement policies
switching only one switchable vertex in every strategy improvement step
have exponential length.

Problem 7.3 Are there families of examples of parity games for which
there exist strategy improvement policies of super-polynomial length?

Examples of Melekopoglou and Condon [14] are Markov decision pro-
cesses, i.e., one-player simple stochastic games [3]. It is an open question
whether the strategy improvement algorithm using the standard policy,
i.e., switching all switchable vertices in every strategy improvement step,
works in polynomial time for one-player simple stochastic games [14].
In contrast, our discrete strategy improvement algorithm terminates in
polynomial time for one-player parity games.

Proposition 7.4 The discrete strategy improvement algorithm termi-
nates after O(n3) strategy improvement steps for one-player parity games.

Most algorithms for solving parity games studied in literature have
roughly O

(
(n/d)d

)
or O

(
(n/d)d/2

)
worst-case running time bounds, where

d is the number of different priorities assigned to vertices. The best upper
bound we can give at the moment for the number of strategy improve-
ment steps needed by our discrete strategy improvement algorithm is the
trivial one, i.e., the number of different strategies for player 0, which can
be 2Ω(n).

Proposition 7.5 The discrete strategy improvement algorithm termi-
nates after

∏
v∈V0

out-deg(v) many strategy improvement steps.

There is, however, a variation of the strategy improvement algorithm
for parity games, for which the number of strategy improvement steps is
bounded by O

(
(n/d)d

)
.

Proposition 7.6 There is a strategy improvement algorithm for parity
games for which all policies have length O

(
(n/d)d

)
, and every strategy

improvement step can be performed in nO(1) time.

Note that in every strategy improvement step the current valuation
Ωσ strictly improves with respect to E in at least one vertex. We say that
a strategy improvement step is substantial if in the current valuation the

27

loop value for some vertex strictly improves. Observe that there can be
at most O(n2) substantial strategy improvement steps. It follows that
in search for superpolynomial examples one has to manufacture gadgets
allowing long sequences of non-substantial strategy improvement steps.

We have collected a little experimental evidence that in practice most
improvement steps are non-substantial. There are few interesting scalable
families of hard examples of parity games known in literature. Using
an implementation of our discrete strategy improvement algorithm by
Schmitz and Vöge [17] we have run some experiments on families of
examples taken from [2] and from [11], and on a family of examples
mentioned in [11] which make Zielonka’s version [22] of the McNaughton’s
algorithm [12] work in exponential time. For all these families only linear
number of strategy improvement steps were needed and, interestingly, the
number of non-substantial strategy improvement steps was in all cases
constant, i.e., not dependent of the size of the game graph.

We conclude with a number of questions to pursue.

Problem 7.7 Does our discrete algorithm, with a policy switching in
every strategy improvement step a maximal set of improvements (i.e.,
switching all switchable vertices), terminate in polynomial time? If not,
exhibit families of examples for which there are policies of exponential
length.

Problem 7.8 Are there polynomial time computable heuristics for con-
structing policies of polynomial length?

Problem 7.9 Define and study other partial orders on the set of strate-
gies and other strategy improvement operators.

Problem 7.10 Develop other algorithms than a strategy improvement
algorithm for solving the optimization problem of solving cycle-domination
games with respect to a partial order on the set of strategies.

References

[1] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. Marrero.
An improved algorithm for the evaluation of fixpoint expressions.
Theoretical Computer Science, 178(1–2):237–255, May 1997. A pre-
liminary version appeared in Proceedings of CAV’94, volume 818 of
LNCS, Springer-Verlag.

28

[2] Nils Buhrke, Helmut Lescow, and Jens Vöge. Strategy construc-
tion in infinite games with Streett and Rabin chain winning con-
ditions. In Tiziana Margaria and Bernhard Steffen, editors, Tools
and Algorithms for Construction and Analysis of Systems, Second
International Workshop, TACAS ’96, volume 1055 of LNCS, pages
207–224, Passau, Germany, 27–29 March 1996. Springer-Verlag.

[3] Anne Condon. The complexity of stochastic games. Information
and Computation, 96:203–224, 1992.

[4] Anne Condon. On algorithms for simple stochastic games. In Jin-
Yi Cai, editor, Advances in Computational Complexity Theory, vol-
ume 13 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 51–73. American Mathematical Society,
1993.

[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press/McGraw-Hill, 1990.

[6] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean
payoff games. Int. Journal of Game Theory, 8(2):109–113, 1979.

[7] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and
determinacy (Extended abstract). In 32nd Annual Symposium on
Foundations of Computer Science, pages 368–377, San Juan, Puerto
Rico, 1–4 October 1991. IEEE Computer Society Press.

[8] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking
for fragments of µ-calculus. In Costas Courcoubetis, editor, Com-
puter Aided Verification, 5th International Conference, CAV’93, vol-
ume 697 of LNCS, pages 385–396, Elounda, Greece, June/July 1993.
Springer-Verlag.

[9] A. Hoffman and R. Karp. On nonterminating stochastic games.
Management Science, 12:359–370, 1966.

[10] Marcin Jurdziński. Deciding the winner in parity games is in
UP ∩ co-UP. Information Processing Letters, 68(3):119–124,
November 1998.

[11] Marcin Jurdziński. Small progress measures for solving parity
games. In Horst Reichel and Sophie Tison, editors, STACS 2000,

29

17th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, Proceedings, volume 1770 of Lecture Notes in Computer Sci-
ence, pages 290–301, Lille, France, February 2000. Springer-Verlag.

[12] Robert McNaughton. Infinite games played on finite graphs. Annals
of Pure and Applied Logic, 65(2):149–184, 1993.

[13] Nimrod Megiddo. Towards a genuinely polynomial algorithm for lin-
ear programming. SIAM Journal on Computing, 12:347–353, 1983.

[14] Mary Melekopoglou and Anne Condon. On the complexity of the
policy improvement algorithm for Markov decision processes. ORSA
Journal of Computing, 6(2):188–192, 1994. Operations Research
Society of America.

[15] A. W. Mostowski. Games with forbidden positions. Technical Re-
port 78, University of Gdańsk, 1991.

[16] Anuj Puri. Theory of Hybrid Systems and Discrete Event Systems.
PhD thesis, Electronics Research Laboratory, College of Engineer-
ing, University of California, Berkeley, December 1995. Memoran-
dum No. UCB/ERL M95/113.

[17] Dominik Schmitz and Jens Vöge. Implementation of a strat-
egy improvement algorithm for finite-state parity games (Ex-
tended abstract). Fifth International Conference on Imple-
mentation and Application of Automata, CIAA 2000, Pro-
ceedings, London, Ontario, Canada, July 2000. Available at
http://www-i7.informatik.rwth-aachen.de/~voege/omega/.

[18] Helmut Seidl. Fast and simple nested fixpoints. Information Pro-
cessing Letters, 59(6):303–308, September 1996.

[19] Colin Stirling. Local model checking games (Extended abstract). In
Insup Lee and Scott A. Smolka, editors, CONCUR’95: Concurrency
Theory, 6th International Conference, volume 962 of LNCS, pages 1–
11, Philadelphia, Pennsylvania, 21–24 August 1995. Springer-Verlag.

[20] Wolfgang Thomas. On the synthesis of strategies in infinite games.
In 12th Annual Symposium on Theoretical Aspects of Computer
Science, volume 900 of LNCS, pages 1–13, Munich, Germany, 2–
4 March 1995. Springer-Verlag.

30

[21] Jens Vöge and Marcin Jurdziński. A discrete strategy improvement
algorithm for solving parity games (Extended abstract). In E. A.
Emerson and A. P. Sistla, editors, Computer Aided Verification, 12th
International Conference, CAV 2000, Proceedings, volume 1855 of
Lecture Notes in Computer Science, pages 202–215, Chicago, IL,
USA, July 2000. Springer-Verlag.

[22] Wies law Zielonka. Infinite games on finitely coloured graphs with
applications to automata on infinite trees. Theoretical Computer
Science, 200:135–183, 1998.

[23] Uri Zwick and Mike Paterson. The complexity of mean payoff games
on graphs. Theoretical Computer Science, 158:343–359, 1996.

31

Recent BRICS Report Series Publications

RS-00-48 Marcin Jurdziński and Jens V̈oge.A Discrete Stratety Improve-
ment Algorithm for Solving Parity Games. December 2000.
31 pp. Extended abstract appears in Emerson and Sistla, ed-
itors, Computer-Aided Verification: 11th International Confer-
ence, CAV ’00 Proceedings, LNCS 1855, 2000, pages 202–215.

RS-00-47 Lasse R. Nielsen.A Denotational Investigation of Defunction-
alization. December 2000. 50 pp. Presented at16th Workshop
on the Mathematical Foundations of Programming Semantics,
MFPS ’00 (Hoboken, New Jersey, USA, April 13–16, 2000).

RS-00-46 Zhe Yang. Reasoning About Code-Generation in Two-Level
Languages. December 2000.

RS-00-45 Ivan B. Damg̊ard and Mads J. Jurik. A Generalisation, a
Simplification and some Applications of Paillier’s Probabilistic
Public-Key System. December 2000. 18 pp. Appears in Kim,
editor, Fourth International Workshop on Practice and Theory
in Public Key Cryptography, PKC ’01 Proceedings, LNCS 1992,
2001, pages 119–136. This revised and extended report super-
sedes the earlier BRICS report RS-00-5.

RS-00-44 Bernd Grobauer and Zhe Yang. The Second Futamura Pro-
jection for Type-Directed Partial Evaluation. December 2000.
To appear in Higher-Order and Symbolic Computation. This re-
vised and extended report supersedes the earlier BRICS report
RS-99-40 which in turn was an extended version of Lawall,
editor, ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, PEPM ’00 Proceed-
ings, 2000, pages 22–32.

RS-00-43 Claus Brabrand, Anders Møller, Mikkel Ricky Christensen,
and Michael I. Schwartzbach.PowerForms: Declarative Client-
Side Form Field Validation. December 2000. 21 pp. Appears in
World Wide Web Journal, 4(3), 2000.

RS-00-42 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
The <bigwig> Project. December 2000. 25 pp.

