
B
R

IC
S

R
S

-00-24
B

rabrand
&

S
chw

artzbach:
G

row
ing

Languages
w

ith
M

etam
orphic

S
yntax

M
acros

BRICS
Basic Research in Computer Science

Growing Languages with
Metamorphic Syntax Macros

Claus Brabrand
Michael I. Schwartzbach

BRICS Report Series RS-00-24

ISSN 0909-0878 September 2000

Copyright c© 2000, Claus Brabrand & Michael I. Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/24/

Growing Languages with
Metamorphic Syntax Macros

Claus Brabrand Michael I. Schwartzbach

BRICS∗, Department of Computer Science
Ny Munkegade, building 540

8000 Aarhus C, Denmark
{brabrand,mis }@brics.dk

Abstract

“From now on, a main goal in designing a language should be to plan for growth.”
Guy Steele: Growing a Language, OOPSLA’98 invited talk.

We present our experiences with a syntax macro language augmented with a
concept of metamorphisms. We claim this forms a general abstraction mechanism for
growing (domain-specific) extensions of programming languages.

Our syntax macros are similar to previous work in that the compiler accepts
collections of grammatical rules that extend the syntax in which a subsequent program
may be written. We exhibit how almost arbitrary extensions can be defined in a purely
declarative manner without resorting to compile-time programming. The macros are
thus terminating in that parsing is guaranteed to terminate, hygienic since full α-
conversion eliminates the risk of name clashes, and transparent such that subsequent
phases in the compiler are unaware of them. Error messages from later phases in the
compiler are tracked through all macro invocations to pinpoint their sources in the
extended syntax.

A concept of metamorphic rules allows the arguments of a macro to be defined
in an almost arbitrary meta level grammar and then to be morphed into the host
language.

We show through examples how creative use of metamorphic syntax macros may
be used not only to create convenient shorthand notation but also to introduce new
language concepts and mechanisms. In fact, whole new languages can be created at
surprisingly low cost. The resulting programs are significantly easier to understand
and maintain.

This work is fully implemented as part of the <bigwig> system for defining
interactive Web services, but could find use in many other languages.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

1 Introduction

Syntax macros have long been advocated as a means for extending programming
languages [23, 3, 12]. Recent interest in domain-specific and customizable languages
poses the challenge of using macros to realize new language concepts and constructs
or even to grow entire new languages [18, 1, 13].

Existing macro languages are either unsafe or not expressive enough to lift this
challenge, since the syntax allowed for macro invocations is too restrictive. Also, many
macro languages resort to compile-time meta programming, making them difficult to
use safely.

In this paper we propose a new macro language that is at once sufficiently ex-
pressive and based entirely on simple declarative concepts like grammars and substi-
tutions. Our contributions are:

• a survey of related work, identifying and classifying relevant properties;
• the design of a declarative and expressive macro language;
• a concept of metamorphism to capture almost arbitrary syntax of invocations;
• a full and efficient implementation for a syntactically rich host language; and
• examples of creative applications.

This work is carried out in the context of the <bigwig> project [7], but could find
uses in many other host languages for which a top-down parser can be constructed.
For a given application of our approach, knowledge of the host grammer is required.
However, no special properties of such a grammar are used. In fact, we could easily
build a generator that for a given host grammar automatically will provide a parser
that supports our notion of syntax macros.

2 Related Work Survey

Figure 2 contains a detailed survey of the predominant macro languages that have
previously been proposed. We have closely investigated the following eight macro
languages and their individual semantic characteristics: C’s preprocessor, CPP [9,
17]; the Unix macro preprocessor, M4; TEX’s built-in macro mechanism; the macro
mechanism of Dylan [16]; The C++ templates [19]; Scheme’s hygienic macros [8,
11]; the macro mechanism of the Jakarta Tool Suite, JTS [1]; and the Meta Syntactic
Macro System, MS2 [23]. The survey has led us to identify and group 31 properties
that characterize a macro language and that we think are relevant for comparing
such work. Our own macro language is designed by explicitly considering exactly
those properties; for comparison, it is included in the last column of the survey table
in Figure 2.

2.1 General Properties

The paramount characteristic of a macro language is whether it operates at the lex-
ical or syntactical level. Lexical macro languages allow tokens to be substituted by
arbitrary sequences of characters or tokens. These definitions may be parameterized
so that the substitution sequence contains placeholders for the actual parameters that

2

;Srepeat

until (

)

;

(

repeat E)

until E

repeat S ;)E(Suntil

Original Macro
definition

Expanded
programprogram

ES
E

S

E

S

Figure 1: Syntax macros—operators on parse trees.

are themselves just arbitrary character sequences. CPP, M4, and TEX are well-known
lexical macro languages. Conceptually, lexical macro processing precedes parsing and
is thus ignorant of the syntax of the underlying host language. In fact, CPPand M4are
language independent preprocessors for which there is no concept of host language.
As a direct consequence of syntactic independence, all lexical macro languages share
many dangers that can only be avoided by clever hacks and workarounds, which are
by now folklore.

In contrast, syntactical languages operate on parse trees as depicted in Figure 1,
which of course requires knowledge of the host language and its grammar. Syntactical
macro languages include C++ templates , Scheme, JTS, and MS2. The language
Dylan is a hybrid that operates simutaneously on token streams and parse trees.

Some macro languages allow explicit programming on the parse trees that are
being constructed, while others only use pattern matching and substitution. CPPonly
allows simple conditionals, M4 offers simple arithmetic, C++ templates performs
constant folding (which together with multiple definitions provide a Turing-complete
compile-time programming language [21]), while Scheme and MS2 allow arbitrary
computations.

2.2 Syntax Properties

The syntax for defining and invoking macros varies greatly. The main point of interest
is how liberal an invocation syntax is allowed. At one end of the spectrum is CPP
which requires parenthesized and comma separated actual arguments, while at the
other end Dylan allows an almost arbitrary invocation syntax following an initial
identifier.

2.3 Type Properties

There are two notions of type in conjunction with syntactical macro languages, namely
result types and argument types, both ranging over the nonterminals of the host
language grammar. These are often explicitly declared, by naming nonterminals of
some standardized host language grammar. Using these, syntactical macro languages
have the possibility of type checking definitions and invocations. Definitions may be
checked to comply with the declared nonterminal return type of the macro, assuming
that the placeholders have the types dictated by the arguments. Invocations may be

3

checked to ensure that all arguments comply with their declared types. Often the
argument type information is used to guide parsing, in which case this last check
comes for free. If both checks are performed, no parse errors can occur as a direct
consequence of macro expansion.

Only JTS and MS2 take full advantage of this possibility. The others we have
mentioned fall short in various ways, for example by not checking that the macro
body conforms to the result nonterminal. The languages also differ in how many
nonterminals from the host grammar can be used as such types.

2.4 Definition Properties

There are many relevant properties of macro definitions. The languages Dylan , CPP,
and Scheme, allow more than one macro to be defined with the same name; a given
invocation then selects the appropriate definition either by trying them out in the
order listed or by using a notion of specificity.

Most macro languages have one-pass scope rules for macro definitions, meaning
that a macro is visible from its lexical point of definition and onward. Only MS2

employs a two-pass strategy, in which macro definitions are available even before
their lexical point of definition. With one-pass scope rules, the order in which macros
are defined is significant, whereas with two-pass scope rules the macro definitions
may be viewed as a set. This has the nice property that the definition order can be
rearranged without affecting the semantics. However, this is not completely true of
MS2 since its integrated compile-time programming language has one-pass scope rules.
Some of the languages allow macros to be undefined or redefined which of course only
makes sense in the presence of one pass scope rules. Many languages permit local
macro definitions, but CPP, Dylan , and JTS have no such concept.

There are two kinds of macro recursion; direct and indirect. Direct recursion
occurs when the body of a macro definition contains an invocation of itself. This al-
ways leads to infinite expansions. Indirect recursion occurs when a self-invocation is
created during the expansion. This can be the result of a compile-time language cre-
ating a self-invocation or the result of the expansion being reparsed as in the prescan
expansion strategy (see below). Without a compile-time programming language with
side-effects to “break the recursion”, indirect recursion also yields infinite expansions.
The above generalizes straightforwardly to mutual recursion. Most of the languages
tolerate some form of macro recursion, only CPPand JTS completely and explicitly
avoid recursion.

An important issue is the argument structure that is allowed. Most languages
require a fixed number of arguments for each macro. Scheme allows lists of argument,
MS2 allows lists, tuples, and optional arguments, while Dylan is the most flexible by
allowing the argument syntax to be described by a user defined grammar.

4

Property \ Language CPP M4 TEX Dylan C++ templates Scheme JTS MS2 <bigwig>

G
en

.

Level of operation lexical lexical lexical hybrid syntactical syntactical syntactical syntactical syntactical
Language dependent no no yes yes yes yes yes yes yes
Programmable conditionals arithmetic yes no constant folding yes no yes no

S
y
n
ta

x

Definition keyword #define define \def define macro template define-syntax macro syntax syntax
Formal argument def id N/A #1 to #9 ?id:id, ?:id, ?id <nt id> id nt id $$nt:: id, $$...:: id <nt id>, <id: nt id>
Formal argument use id $0 to $9 #1 to #9 ?id id id id $id <id>
Invocation syntax id(, ,) id(, ,) \ id ... id ... id< , , > (id) #id(, ,) id ... id ...

T
y
p
e

Arg. types declared N/A N/A N/A yes yes implicitly yes yes yes
Argument nonterminals N/A N/A N/A 7+token id, type, const s-exp 6 15 all 55
Argument types checked N/A N/A N/A yes yes yes yes yes yes
Result types declared N/A N/A N/A yes no implicitly yes yes yes
Result nonterminals N/A N/A N/A stm, fcall, def decl s-exp 5 15 all 55
Result types checked N/A N/A N/A no N/A no yes yes yes

D
efi

n
itio

n

Multiple definitions no no no yes yes yes no no yes
Definition selection N/A N/A N/A order listed specificity order listed N/A N/A specificity
Definition scope one pass one pass one pass one pass one pass one pass one pass two pass two pass
Undefine yes redefine redefine no no redefine no N/A N/A
Local macro definitions no yes yes no yes yes yes no yes
Direct recursion no yes yes yes no yes no no rejected
Indirect recursion no yes yes yes yes yes N/A yes N/A
Argument structure fixed fixed fixed grammar fixed list fixed option, list, tuple grammar

In
v
o
ca

tio
n

Body expansion lazy eager lazy lazy lazy lazy eager eager eager
Order of expansion prescan prescan outer prescan N/A outer inner outer inner
Parsing ambiguities N/A N/A shortest shortest N/A N/A N/A greedy greedy
Hygienic expansion no no no yes no yes (yes) no yes
Macros as results no yes yes no no yes yes yes no
Guaranteed termination yes no no no no no yes no yes

Im
p
l.

Transparent yes N/A yes yes yes yes yes yes yes
Error trailing N/A N/A no no no no no no yes
Pretty printing no no no no no no no no yes
Package Mechanism no no no no no no no no yes

Figure 2: A macro language survey.

2.5 Invocation Properties

A macro body may contain further macro invocations. The languages are evenly split
as to whether a macro body is expanded eagerly at its definition or lazily at each
invocation.

Similarly, the actual arguments may contain macro invocations; here, the lan-
guages split on using an inner or outer expansion strategy. However, CPP, M4, and
Dylan use a more complex strategy known as argument prescan. When a macro in-
vocation is discovered, all arguments are parsed and any macros in them are invoked.
These expanded arguments are then substituted for their placeholders in a copy of
the macro body. Finally, the entire result is rescanned, processing any newly pro-
duced macro invocations. Note that this strategy only makes sense for lexical macro
languages.

The languages that allow a liberal invocation syntax where the arguments are
not properly delimitered sometimes face ambiguities in deciding how to match actual
to formal macro arguments. The lexical languages, TEX and Dylan , resolve such
ambiguities by chosing the shortest possible match; in contrast, the syntactical lan-
guage MS2 employs a greedy strategy that for each formal argument parses as much
as possible. None of the languages investigated employed back-tracking for matching
invocations with definitions.

Most syntactical languages employ automatic α-conversion to obtain hygienic
macros; MS2 requires explicit renamings to be performed by the programmer. Several
languages allow new macro definitions to be generated by macro expansions. Only
CPP and JTS guarantee termination of macro expansion; the others fail either by
a naive treatment of recursive macros or by allowing arbitrary computations during
expansion.

2.6 Implementation Properties

Macro languages are generally designed to be transparent, meaning that subsequent
phases of the compilation need not be aware of macro expansions. However, none
seem to allow error trailing, which would mean that errors from subsequent phases
could be traced back to the unexpanded syntax. Similarly, no languages allow pretty
printing of the unexpanded syntax. Finally, a package concept for macros is typically
not supported.

2.7 Other Related Work

Our macro language shares some features of a previous work on extensible syntax [4],
although that is not a macro language. Rather, it is a framework for defining new
syntax that is represented as parse tree data structures in a target language, in which
type checking and code generation is then performed. In contrast, our new syntax is
directly translated into parse trees in a host language. Also, the host language syntax
is always available on equal footing with the new syntax. However, the expressiveness
of the extensible syntax that is permitted in [4] is very close to the argument syntax
that we allow, although there are many technical differences, including definition
selection, parsing ambiguities, expansion strategy, and error trailing. Also, we allow
a more general translation scheme.

6

3 Designing a Macro Language

The ideal macro language would allow all nonterminals of the host language grammar
to be extended with arbitrary new productions, defining new constructs that appear
to the programmer as if they were part of the original language. The macro languages
we have seen in the previous section all approximate this, some better than others.

In this section we aim to come as close to this ideal as practically possible. We
will carefully consider the semantic aspects identified in Figure 2 in our design.

Later, we take a further step by allowing the programmer to define also new
nonterminals.

Syntax

Our syntax macro language looks as follows:

macro : syntax <nonterm> id 〈param〉∗ ::= { body }
param : token

| <nonterm id>

A syntax macro has four constituents: a nonterminal result type, an identifier naming
the macro, a parameter list specifying the invocation syntax, and a body that must
comply with the result type.

The result type declares the type of the body and thereby the syntactic contexts
in which invocations of the macro are permitted. Adhering to Tennent’s Principle of
Abstraction [20], we allow nonterm to range over all nonterminals of the host language
grammar. Of course, the nonterminals are from a particular standardized abstract
grammar. In the case of the <bigwig> host language, 55 nonterminals are available.

As in MS2, a macro must start with an identifier. It is technically possible to lift
this restriction [14], but it serves to make macro invocations easier to recognize. The
parameter list determines the rest of the invocation syntax. Here, we allow arbitrary
tokens interspersed among arguments that are identifiers typed with nonterminals.
The list ends with the “::= ” token.

The macro body enclosed in braces conforms to the result type and references the
arguments through identifiers in angled brackets.

Simple Examples

A simplest possible macro without arguments is:

syntax <floatconst> pi ::= {
3.1415927

}

whose invocation pi is only allowed in places where a floatconst would be. The next
macro takes an argument and executes it with 50% probability:

syntax <stm> maybe <stm S> ::= {
if (random (2)==1) <S>

}

7

A more interesting invocation syntax is:

syntax <stm> repeat <stm S> until (< exp E>); ::= {
{

bool first = true ;
while (first || !<E>) {

<S>
first = false ;

}
}

}

which extends the host language with a repeat construct that looks and feels ex-
actly like the real thing. Identifiers such as repeat and until are even treated as
keywords in the scope of the macro definition. The semantic correctness of course
relies on α-conversion of first . Incidentally, this is the macro used in Figure 1.

An example with multiple definitions supplies a Francophile syntax for existing
constructs:

syntax <stm> si (< exp E>) < stm S> ::= {
if (<E>) <S>

}

syntax <stm> si (< exp E>) < stm S1> sinon <stm S2> ::= {
if (<E>) <S1> else <S2>

}

The two definitions are both named si but have different parameters.

Macro Packages

Using macros to enrich the host language can potentially create a Babylonic confusion.
To avoid this problem, we have created a simple mechanism for scoping and packaging
macro definitions. A package containing macro definitions is viewed as a set, that is,
we use two pass scope rules where all definitions are visible to each other and the order
is insignificant. A dependency analysis intercepts and rejects recursive definitions.

A package may require or extend other packages. Consider a package P that
contains a set of macro definitions M , requires a package R, and extends another
package E. The definitions visible inside the bodies of macros in M are M ∪ R ∪ E
and those that are exported from P are M ∪E. Thus, require is used for obtaining
local macros. The strict view that a package defines a set eliminates many potential
problems and confusions.

Parsing Definitions

Macro definitions are parsed in two passes. First, the macro headers are collected into
a structure that will later guide the parsing of invocations. The bodies are lexed to
discover macro invocations from which a dependency graph is constructed. Second,
the macro bodies are parsed in topological order. The result is for each body a parse
tree that conforms to the result type and contains placeholder nodes for occurrences
of arguments. It is checked that the body is always derivable from the result type
nonterminal when the placeholders are assumed to be replaced with derivations from
the corresponding argument type nonterminals.

8

Parsing Invocations

Macro invocations are detected by the occurrence of an identifier naming a macro.
At this point, the parser determines if the nonterminal result type of the macro is
reachable from the current point in parsing. If not, parsing is aborted. Otherwise,
parsing is guided to this nonterminal and invocation parsing begins. The result is a
parse tree that is inserted in place of the invocation.

Invocation parsing is conducted by interpreting the macro parameter list, match-
ing required tokens and collecting actual argument parse trees. When the end of the
parameter list is reached, the actual arguments are substituted into the placeholders
in a copy of the macro body. This process is commonly referred to as macro expan-
sion. It is greedy since an actual argument is parsed as far as possible in the usual
top-down parsing style.

However, this basic mechanism is not powerful enough to handle multiple defini-
tions of a macro. For that purpose, we must interpret a set of parameter lists. We
base the definition selection on the concept of specificity which is independent of the
macro definition order. This is done by gradually challenging each parameter list with
the input tokens. There are three cases for a challenge:

• if a list is empty, then it always survives;
• if a list starts with a token, then it survives if it equals the input token; and
• if a list starts with an argument <N a>, then it survives if the input token

belongs to first(N) in the host grammar.

Several parameter lists may survive the challenge. Among those, we only keep the
most specific ones. The empty list is always eliminated unless all lists are empty.
Among a set of non-empty lists, the survivors are those whose first parameter is
maximal in the ordering p < q defined as φ(q) ⊂ φ(p), where φ(token) is the singleton
{token} and φ(<N a>) is first(N) in the host grammar. The tails of the surviving
lists are then challenged with the next input token, and so on.

The intuition behind our notion of specificity can be summarized is a few rules
of thumb: 1) always prefer longer parameter lists to shorter ones, 2) always prefer a
token to a nonterminal, 3) always prefer a narrow nonterminal to a wider one. Rule
1) is the reason that the dangling sinon problem for our Francophile example is
solved correctly. This strategy has a far reaching generality that also works for the
metamorph rules introduced in Section 5.

For the order of expansion we have chosen the inner strategy. Since our macros
are terminating, the expansion order is semantically transparent, apart from a subtle
difference with respect to α-conversion that we will not get into here. The inner
strategy is simpler since arguments are only parsed once.

Well-Formedness

A set of macros with the same name must be well-formed. This means that they
must all have the same result type. Actually, this restriction could be relaxed to
allow different return types for macros with the same name by using a contravariant
specificity ordering to determine which one to invoke. Furthermore, to guarantee
that the challenge rounds described above have a unique final winner, we impose two
requirements. First, all parameter lists must be strictly ordered in the lexicographical

9

generalization of the v order from param to param∗. Second, for all pairs of parameter
lists of the form πp1π1 and πp2π2, if φ(p1) equals φ(p2) then p1 must equal p2.

Hygienic Macros

To achieve hygienic macros, we automatically α-convert the bound identifiers inside
macro bodies during expansion. Unlike Scheme [10, 5], we also α-convert free iden-
tifiers, since they cannot be guaranteed to bind to anything sensible in the context of
an invocation. As we thus α-convert all identifiers, the macro needs only recognize all
parse tree nodes of nonterminal id ; that is, no symbol table information is required.
To communicate identifiers from the invocation context we encourage the macro pro-
grammer to supply those explicitly as arguments of type id . If an unsafe free variable
is required, it must be backpinged to avoid α-conversion. It is often necessary to use
computed identifiers, as seen in Figure 3. For that purpose, we introduce an injec-
tive and associative binary concatenation operator “˜ ” on identifiers. The inductive
predicate α determines if an identifier will be α-converted:

• α(‘ i) = false;
• α(i˜ j) = α(i) ∧ α(j);
• α(<i>) = false, if <i> is an argument of type id ; and
• α(i) = true, otherwise.

4 Growing Language Concepts

Our macro language allows the host language to grow, not simply with handy abbre-
viations but with new concepts and constructs. Our host language, <bigwig> , is
designed for programming interactive Web services and has a very general mechanism
for providing concurrency control between session threads [15, 2]. The programmer
may declare labels in the code and use temporal logic to define the set of legal traces
for the entire service. This is a bit harsh on the average programmer and consequently
a good opportunity for using macros.

Figure 3 shows a whole stack of increasingly high-level concepts that are intro-
duced on top of each other, profiting from the possibility to define macros for all
nonterminals of the host language. Details of the <bigwig> syntax need not be un-
derstood. The allow , forbid , and mutex macros abbreviate common constructs in
the temporal logic and produce results of type formula. The macro region of type
toplevel is different; it introduces a new concept of regions that are declared on equal
footing with other native concepts. The exclusive macro of type stm defines a new
control structure that secures exclusive access to a previously declared region. The
resource macro of type toplevels declares an instance of another novel concept that
together with the macros reader and writer realizes the reader/writer protocol
for specified resources. Finally, the protected macro seemingly provides a modifier
that allows any declared variable to be subject to that protocol. The macros all build
on top of each other and produce no less than six levels of abstraction as depicted
in Figure 4. A similar development could have implemented other primitives, such

10

syntax <formula> allow <id L> when <formula F> ::= {
all now: <L>(now) => restrict <F> by now;

}

syntax <formula> forbid <id L> when <formula F> ::= {
allow <L> when !<F>

}

syntax <formula> mutex (< id A> , < id B>) ::= {
forbid <A> when (is t: <A>(t) &&

(all tt: t<tt => !(tt)))
}

syntax <toplevel> region <id R> ; ::= {
constraint {

label <R>˜A, <R>˜B;
mutex (<R>˜A, <R>˜B);

}
}

syntax <stm> exclusive (< id R>) < stm S> ::= {
{

wait <R>˜A;
<S>
wait <R>˜B;

}
}

syntax <toplevels> resource <id R> ; ::= {
region <R>;
constraint {

label <R>˜enterR, <R>˜exitR, <R>˜P;
trigger <R>˜RC when #<R>˜enterR == #<R>˜exitR;
trigger <R>˜PC when #<R>˜P == #<R>˜B;
allow <R>˜enterR when never (<R>˜P) ||

(is t: <R>˜PC(t) && (all tt: t<tt => !<R>˜P(tt)));
allow <R>˜A when never (<R>˜enterR) ||

(is t: <R>˜RC(t) && (all tt: t<tt => !<R>˜enterR(tt)));
}

}

syntax <stm> reader (< id R>) < stm S> ::= {
{

wait <R>˜enterR;
<S>
wait <R>˜exitR;

}
}

syntax <stm> writer (< id R>) < stm S> ::= {
{

wait <R>˜P;
exclusive (<R>) <S>

}
}

syntax <toplevels> protected <type T> <id I> ; ::= {
<T> <I>;
resource <I>;

}

Figure 3: Concurrency control abstractions

11

allow-when

forbid-when

mutex

region

resource

protected

<bigwig> core language

writer

exclusive

reader

1.

2.

3.

4.

5.

6.

0.

Figure 4: A stack of macro abstractions.

as semaphores, monitors, and fifo pipes. This demonstrates how the host language
becomes highly tailorable with very simple means. The <bigwig> language employs
an extensive collection of predefined macros to enrich the core language.

5 Metamorphisms

Macro definitions specify two important aspects: the syntax definition aspects charac-
terizing the syntactic structure of invocations and the syntax transformation aspects
specifying how “new syntax” is morphed into host language syntax.

So far, our macros can only have a finite invocation syntax, taking a fixed number
of arguments each of which is described by a host grammar nonterminal. In the fol-
lowing we will move beyond this limitation, focusing initially on the syntax definition
aspects.

The previously presented notion of multiplicity allows the definition of macros
with varying arity. The following example defines an enum macro as known from C
that takes one, two, or three identifier arguments:

syntax <decls> enum { < id X> } ; ::= {
const int <X> = 0;

}

syntax <decls> enum { < id X> , < id Y> } ; ::= {
const int <X> = 0;
const int <Y> = 1;

}

syntax <decls> enum { < id X> , < id Y> , < id Z> } ; ::= {
const int <X> = 0;
const int <Y> = 1;
const int <Z> = 2;

}

Evidently, this can only emulate varying arity to a fixed and finite extent, in other
words, it is not possible to define macros with arbitrary arity. Another point of
criticism is that the syntactic transformation specification exhibits a high degree of
redundance. In terms of syntax definition, the three enum definitions correspond to
adding three unrelated right-hand side productions for the nonterminal decls :

12

decls : enum { id } ;
| enum { id , id } ;
| enum { id , id , id } ;

Scheme amends this by introducing a special ellipsis construction, “... ” to specify
lists of nonterminal s-expressions. MS2 moves one step further by permitting also
tuples and optional arguments. The syntactic definition aspects of these extensions
correspond to allowing the use of regular expressions over the terminals and nonter-
minals of the host grammar on the right-hand sides of productions. The ubiquitous
EBNF syntax is available for designating options “?”, lists “* ” or “+”, and tuples
“{ ...} ” (for grouping). In addition, MS2 provides a convenient variation of the Kleene
star for specifying token-separated lists of nonterminals. Here, we use N⊕ as notation
for one-or-more comma separated repetitions of the nonterminal N . An enum macro
defined via this latter construction corresponds to extending the grammar as follows:

decls : enum { id⊕ } ;

The Dylan language has taken the full step by allowing the programmer to describe
the macro invocation syntactic structure via a user defined grammar, permitting the
introdution of new user defined nonterminals. This context-free language approach is
clearly superior to that of the regular language approach, and this way options, lists,
and tuples are just special cases. This approach can handle balanced tree structures
that cannot be captured using the regular expression extensions. The enum invocation
syntax could be described by the following grammar fragment that introduces a user
defined nonterminal called enums (underlined for readability):

decls : enum { id enums } ;
enums : , id enums

| ε

In Dylan the result of parsing a user defined nonterminal also yields a result that
can be substituted into the macro body. However, this result is an unparsed chunk of
tokens with all the associated lexical macro language pitfalls. We want to combine this
great definition flexibility with static safety. Turning to the syntactic transformation
specification aspects, we need some way of specifying the type of the result of parsing a
user defined nonterminal. Clearly, user defined nonterminals cannot exist on an equal
footing with that of the host language; our syntax macro must ultimately produce host
language syntax trees and thus cannot return user defined ASTs. To this end, as for
macros, we associate to every user defined nonterminal a host nonterminal result type
and require that the body result of parsing a user defined nonterminal be a syntax
tree of this type. The syntax defined by the user defined nonterminals is always
morphed directly into host syntax. The specification of this morphing is inductively
given for each production of the grammar. In contrast, MS2 relies on programming and
computation for specifying and transforming their regular expressions of nonterminals
into parse trees.

To distinguish clearly from the host grammar, we call the user defined nonterminal
productions typed with host nonterminals for metamorphisms. A metamorphism is

13

thus a user defined nonterminal (at meta grammar level) along with a rule specifying
how the new (macro) syntax is morphed into host language syntax. The syntax for
macro definitions is generalized as follows to accommodate the metamorphisms:

macro : syntax <nonterm> id 〈param〉∗ ::= { body }
| metamorph <nonterm> id --> 〈param〉∗ ::= { body }

param : token
| <nonterm id>
| <id: nonterm id>

We have introduced two new constructs. A parameter may now also be of the form
<M: N a>, meaning that it is named a, has an invocation syntax that is described by
the metamorph nonterminal M, and that its result has type N when it occurs in the
body. The metamorph syntax and the inductive translation into the host language is
described by the metamorph rules. To the left of the “--> ” token is the result type
and name of the metamorph nonterminal, and to the right is a parameter list defining
the invocation syntax and a body defining the translation into the host language.
The metamorph rules may define an arbitrary grammar. In its full generality, a
metamorph rule may produce multiple results each defined by a separate body.

We are now ready to define the general enum macro in our macro language. The
three production rules above translates into the following three definitions:

syntax <decls> enum { < id I> < enums: decls Ds> } ; ::= {
int e = 0;
const int <I> = e++;
<Ds>

}

metamorph <decls> enums --> , < id I> < enums: decls Ds> ::= {
const int <I> = e++;
<Ds>

}

metamorph <decls> enums --> ::= {}

The first rule becomes a macro called enum with the metamorph argument <enums:
decls Ds> describing a piece of invocation syntax that is generated by the nonter-
minal enums in the metamorph grammar. However, enums parse trees are never
materialized, since they are instantly morphed into parse trees of the nonterminal
decls in the host grammar.

The body of our enum macro commences with the declaration of a variable e used
for enumerating all the declared variables at runtime. This declaration is followed by
the morphing of the (first) identifier <I> into a constant integer declaration with
initialization expression e++. Hereafter, comes <Ds> which is the decls result of
metamorphing the remaining identifiers to constant integer declarations.

The next two productions in the enum grammar translates into two metamorph
definitions. The first will take a comma and an identifier followed by a metamorph
argument and morph the identifier into a constant integer declaration as above and
return this along with whatever is matched by another metamorph invocation. The

14

second metamorph definition offers a termination condition by parsing nothing and
returning the empty declarations.

The next example shows how the invocation syntax of a switch statement syntax
is easily captured and desugared into nested if statements:

syntax <stm> switch (< exp E>) { < swbody: stm S> } ::= {
{

typeof (<E>) x = <E>;
<S>

}
}

metamorph <stm> swbody -->
case <exp E>: < stms Ss> break ; < swbody: stm S> ::= {

if (x==<E>) { <Ss> } else <S>
}

metamorph <stm> swbody --> case <exp E>: < stms Ss>
break ; ::= {

if (x==<E>) { <Ss> }
}

In its full generality, a metamorph production may morph the invocation syntax into
several resulting parse trees in the host grammar. This can be seen as a generalization
of the divert primitive from M4; however, our solution statically guarantees syntac-
tic well-formedness of the combined result. The metamorph rules and metamorph
formals are extended to cope with multiple returns and arguments:

macro : metamorph <〈nonterm〉⊕> id --> 〈param〉∗ ::=
〈{ body } 〉+

param : <id: 〈nonterm id〉⊕>

The following example illustrates in a simple way how multiple metamorph results add
expressive power to our macro language. We extend a simple version of statement
blocks with optional initializations of declared variables (this is of course already
possible in <bigwig>). To build the expansion, we need to obtain from a variable
declaration both a decl declaring it and a stm initializing it. This base case is seen in
the rules for the metamorph nonterminal init; the nonterminal inits generalizes this
inductively for lists; and the two results are finally used in the block macro:

syntax <stm> block { < inits: decls Ds, stms Ss> <stms S> }
::= {

<Ds> <Ss> <S>
}

metamorph <decls, stms> inits --> < init: decl D, stm S>
<inits: decls Ds, stms Ss> ::= {

<D><Ds>
}{

<S><Ss>
}

metamorph <decls, stms> inits --> ::= {}{}

15

metamorph <decl , stm> init --> < type T> <id I> ; ::= {
<T> <I> ;

}{}

metamorph <decl , stm> init --> < type T> <id I> = < exp E> ;
::= {

<T> <I> ;
}{

<I> = <E> ;
}

With these definitions, the macro expands as follows:

block { int i;
int i = 42; float f;
float f; =⇒ int j;
int j = i+10; i = 42;
... j = i+10;

} ...

Without multiple results, some transformations are impossible or require contorted
encodings.

Parsing Invocations

The strategy for parsing invocations is unchanged. The < order is generalized appro-
priately by defining φ(<M: N a>) to be first(M) in the metamorph grammar. Note
that it is always possible to abbreviate part of the invocation syntax by introducing
a new metamorph nonterminal while preserving the semantics.

Well-Formedness

As for syntax macros, the set of productions for a given metamorph nonterminal
must be well-formed. Furthermore, to ensure termination of our greedy strategy, we
prohibit left-recursion in the metamorph grammar. Finally, we include the sanity
check that each metamorph nonterminal must derive some string.

Hygienic Macros

Metamorph productions do not initiate α-conversion. This is only done on the entire
body of a syntax macro, conceptually after its metamorphic arguments have been sub-
stituted. This is seen in the enum example, where the expansion of “enum {d,e}; ”
is:

int e˜42 = 0;
const int d = e˜42++;
const int e = e˜42++;

In this resulting parse tree, the local occurrence of e is everywhere α-converted to the
same e˜42 , which is necessary to yield the proper semantics.

16

6 Growing New Languages

Section 4 contains examples that use macros to enrich the host language with new
concepts and constructs. A more radical use of particularly metamorphisms is to
design and implement a completely new language at very little cost.

Our host language <bigwig> is itself a domain-specific language designed to
facilitate the implementation of interactive Web services. To program a family of
highly specialized services it can be advantageous to first define what we shall call a
very domain-specific language, or VDSL.

We consider a concrete example. At the University of Aarhus, undergraduate
Computer Science students must complete a Bachelor’s degree in one of several fields.
The requirements that must be satisfied are surprisingly complicated. To guide stu-
dents towards this goal, they must maintain a so-called “Bachelor’s contract” that
plans their remaining studies and discovers potential problems. This process is sup-
ported by a Web service that for each student iteratively accepts past and future
course activities, checks them against all requirements, and diagnoses violations until
a legal contract is composed. This service was first written as a straight <bigwig>
application, but quickly became annoying to maintain. Thus it was redesigned in the
form of a VDSL, where study fields and requirements are conceptualized and defined
directly in pseudo natural language style. This makes it possible for a secretary—or
even the responsible faculty member—to maintain and update the service. Figure 5
shows an example of the input. There is only a single macro, studies , which accepts
as argument an entire specification in the VDSL syntax, defined using 27 metamorph
rules. Its result is a corresponding <bigwig> service. Apart from the keyword re-
quire , none of the syntax shown is native to <bigwig> . The file bach.wigmac
is only 400 lines and yet contains a complete implementation of the new language,
including “parser” and “code generator”. Thus, our macro mechanism offers a rapid
and inexpensive realization of new ad-hoc languages with arbitrary syntax. Error
trailing and unexpanded pretty printing supports the illusion that a genuinely new
language is provided.

7 Implementation

The work presented is fully implemented in the <bigwig> compiler. The implemen-
tation is in C with extensive support from CPPand is available from the <bigwig>
project homepage [7] in an Open Source distribution. In the following we present two
important aspects from the implementation that achieve transparency for all other
phases of the compiler. These are the transparent representation of macros and the
generic pretty printer responsible for communicating macro-conscious information.
These aspects support the illusion that the host language is really extended.

Transparent Representation

Consider the following macro definition:

syntax <ids> xIDy (< ids Is>) ::= {
X,<Is>,Y

}

17

require "bach.wigmac"

studies
course Math101

title "Mathematics 101"
2 points fall term

...
course Lab304

title "Lab Work 304"
1 point fall term

exclusions
Math101 <> MathA
Math102 <> MathB

prerequisites
Math101,Math102 < Math201,Math202,Math203,Math204
CS101,CS102 < CS201,CS203
Math101,CS101 < CS202
Math101 < Stat101
CS202,CS203 < CS301,CS302,CS303,CS304
Phys101,Phys102 < Phys201,Phys202,Phys203,Phys301
Phys203 < Phys302,Phys303,Lab301,Lab302,Lab303
Lab101,Lab102 < Lab201,Lab202
Lab201,Lab202 < Lab301,Lab302,Lab303,Lab304

field "CS-Mathematics"
field courses

Math101,Math102,Math201,Math202,Stat101,CS101,
CS102,CS201,CS202,CS203,CS204,CS301,CS302,CS303,
CS304,Project

other courses
MathA,MathB,Math203,Math204,Phys101,Phys102,
Phys201,Phys202

constraints
has passed CS101,CS102
at least 2 courses among CS201,CS202,CS203
at least one of Math201,Math202
at least 2 courses among Stat101,Math202,Math203
has 4 points among Project,CS303,CS304
in total between 36 and 40 points

field "CS-Physics"
field courses

MathA,MathB,Stat101,CS101,CS102,CS201,CS202,
CS203,CS204,CS301,CS302,CS303,CS304,Project,
Phys101,Phys102,Phys201,Lab101,Lab102,Lab201,
Lab202

other courses
Phys202,Phys301,Phys302,Phys303,Phys304,Lab301,
Lab302,Lab303,Lab304,Math202,Math203,Math204

constraints
has passed CS101,CS102
at least 2 courses among CS201,CS202,CS203
has passed Phys101,Phys102
has 4 points among MathA,MathB,Math101,Math102
has 6 points among Phys201,Phys202,Lab101,Lab102,

Lab201,Lab202
in total between 38 and 40 points

Figure 5: A VDSL for Bachelor’s contracts.

18

1

3

5

6

4

2

Inv.

Arg. End.

End.

A D

X Y

CB

(a) Ordinary

1

3

5

6

4

2

Inv.

Arg. End.

End.

A D

X Y

CB

(b) Weaved

Figure 6: Macro representations.

The representation of the parse tree for the identifier list “A,xIDy(B,C),D ” is seen
in Figure 6(a). All node kinds of the parse tree are capable of holding three explicit
macro nodes: Inv , Arg , and End.

This representation yields a perfectly balanced structure with complete knowl-
edge of the scope of all macro invocations and arguments. It is, however, clearly not
transparent for subsequent phases in the compiler. Transparency is achieved through
a weaving phase in which new pointers are after parsing short-circuited around the
macro nodes giving two ways of traversing the parse tree. Macro conscious phases
follow the paths in Figure 6(a), while macro ignorant phases only see the new short-
circuited paths of Figure 6(b). A naive data structure would double the size of the
parse tree, but this can be avoided by storing the macro nodes at negative offsets in
only those parse tree nodes where they are required. Desugaring is not fully com-
patible with preserving macro information [22] and this is the only sense in which
transparency is not completely achieved. However, explicit desugaring is not really
necessary in a compiler that supports metamorphic syntax macros.

Generic Pretty Printing

Four indent directives control the pretty printing of macros:

param : 〈whitespace〉∗ | \n | \+ | \-

The macro header is augmented with whitespace, newline, indent, and unindent direc-
tives. The pretty printer can be instructed to print the si-sinon statement without
spaces around the conditional expression and with a newline before the alternate
branch:

syntax <stm> si (< exp E>) < stm S1> \n sinon <stm S2> ...

A more sophisticated indention correctly renders the switch control structure:

syntax <stm> switch (< exp E>) {\+\n< swbody: stm S>\-\n} ...

19

Figure 7: HTML pretty print with an error message.

These extensions are purely cosmetic; they have no semantics attached and are ignored
in the invocation challenge rounds.

Our implementation supports a generic nonterminal pretty printer that together
with a specific terminal pretty printer will unparse the code with or without macro
expansion. This only depends on the choice of arrows in Figure 6(b).

Our implementation currently has three terminal pretty printers for printing
ascii , LaTeX, and HTML/JavaScript of which the last is by far the most sophis-
ticated. It inserts use-def hyperlinks, visualizes expression types, highlights errors,
and expands individual macros at the click of a button.

Error Reporting

With our generic pretty printing strategy, error reporting is a special case of pretty
printing using a special kind of terminal printer that only print nodes with a non-
empty error string. Consequently, error messages can be viewed with or without
macro expansion. Figure 7 shows how a simple error is pinpointed in the unexpanded
syntax. The compiler can be instructed to dump the error trail as follows:

*** symbol errors:
*** bach.wig:175:

Identifier ‘CS501’ not declared
in macro argument ‘I’
in macro invocation ‘course_ids’ (bach.wig:175) defined in [bach.wigmac:60]
in macro argument ‘C’
in macro invocation ‘cons’ (bach.wig:175) defined in [bach.wigmac:112]
in macro argument ‘C’
in macro invocation ‘cons_list’ (bach.wig:175) defined in [bach.wigmac:126]
in macro argument ‘CN’
in macro invocation ‘fields’ (bach.wig:168) defined in [bach.wigmac:134]
in macro argument ‘A’
in macro invocation ‘studies’ (bach.wig:3) defined in [bach.wigmac:158]

which is useful when debugging macro definitions.

8 Conclusion and Future Work

We have designed and implemented a safe and efficient macro language that is suffi-
ciently powerful to grow domain-specific extensions of host languages or even entire
new languages.

There are several avenues for future work. First, we will take this approach even
further, by defining a notion of invocation constraints that restrict the possible uses
of macros. Such constraints capture some aspects of the static semantic analysis of

20

the language extensions that are grown. The constraints work exclusively on the
parse tree, similarly to [6], and thus preserve transparency. Second, we will build
implementations for other host languages, in particular Java. Third, it is possible to
create a parser generator that given a host grammar builds a parser that automatically
supports metamorphic syntax macros. Most of the required techniques are already
present in the implementation of metamorphisms.

References

[1] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for implementing
domain-specific languages. In Fifth International Conference on Software
Reuse, 1998.

[2] C. Brabrand. Synthesizing safety controllers for interactive Web services.
Master’s thesis, Department of Computer Science, University of Aarhus,
December 1998. Available from
http://www.brics.dk/ ∼brabrand/thesis/ .

[3] W. R. Campbell. A compiler definition facility based on the syntactic
macro. Computer Journal, 21(1):35–41, 1975.

[4] L. Cardelli, F. Matthes, and M. Abadi. Extensible syntax with lexical
scoping. SRC Research Report 121, 1994.

[5] W. Clinger and J. Rees. Macros that work. In Principles of Programming
Languages (POPL), pages 155–162, 1991.

[6] N. Damgaard, N. Klarlund, and M. Schwartzbach. Yakyak: Parsing with
logical side constraints. In Developments in Language Theory (DLT),
1999.

[7] C. Brabrand et al. The <bigwig> project homepage.
http://www.brics.dk/bigwig/ .

[8] R. Kelsey, W. Clinger, and J. R. (Eds.). Revised(5) report on the algo-
rithmic language scheme (r5rs), 1998.

[9] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall, Inc., 1978.

[10] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba. Hygienic
macro expansion. In Lisp and Functional Programming, pages 151–161,
1986.

[11] E. E. Kohlbecker and M. Wand. Macro-by-example: Deriving syntactic
transformations from their specifications. In Principles of Programming
Languages (POPL), pages 77–84. ACM, 1987.

21

[12] B. M. Leavenworth. Syntax macros and extended translation. CACM,
1966.

[13] W. Maddox. Semantically-sensitive macroprocessing. Technical report,
University of California, Berkeley, 1989. Technical Report UCB/CSD
89/545.

[14] D. Sandberg. Lithe: A language combining a flexible syntax and classes.
In Principles of Programming Languages (POPL), pages 142–145, 1982.

[15] A. Sandholm and M. I. Schwartzbach. Distributed safety controllers
for Web services. In Fundamental Approaches to Software Engineering,
FASE’98, pages 270–284, 1998.

[16] A. Shalit. The Dylan Reference Manual. Addison-Wesley-Longman, 1996.

[17] R. M. Stallman. The C preprocessor online documentation.
http://gcc.gnu.org/onlinedocs/cpp toc.html .

[18] G. Steele. Growing a language. OOPSLA invited talk, 1998.

[19] B. Stroustrup. The C++ Programming Language, chapter 13. Addison
Wesley, third edition, 1997.

[20] R. D. Tennent. Principles of Programming Languages. Prentice Hall,
1981.

[21] T. L. Veldhuizen. C++ templates as partial evaluation. In Partial Eval-
uation and Semantics-Based Program Manipulation (PEPM), 1999.

[22] O. Waddell and R. K. Dybvig. Visualizing partial evaluation. In ACM
Computing Surveys Symposium on Partial Evaluation, volume 30(3es):24-
es, September 1998.

[23] D. Weise and R. F. Crew. Programmable syntax macros. In Programming
Language Design and Implementation (PLDI), pages 156–165, 1993.

22

Recent BRICS Report Series Publications

RS-00-24 Claus Brabrand and Michael I. Schwartzbach.Growing Lan-
guages with Metamorphic Syntax Macros. September 2000.
22 pp.

RS-00-23 Luca Aceto, Anna Inǵolfsdóttir, Mikkel Lykke Pedersen, and
Jan Poulsen. Characteristic Formulae for Timed Automata.
September 2000. 23 pp.

RS-00-22 Thomas S. Hune and Anders B. Sandholm.Using Automata
in Control Synthesis — A Case Study. September 2000. 20 pp.
Appears in Maibaum, editor, Fundamental Approaches to Soft-
ware Engineering: First International Conference, FASE ’00
Proceedings, LNCS 1783, 2000, pages 349–362.

RS-00-21 M. Oliver Möller and Rajeev Alur. Heuristics for Hierarchical
Partitioning with Application to Model Checking. August 2000.
30 pp.

RS-00-20 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir. 2-
Nested Simulation is not Finitely Equationally Axiomatizable.
August 2000. 13 pp.

RS-00-19 Vinodchandran N. Variyam. A Note onNP ∩ coNP/poly.
August 2000. 7 pp.

RS-00-18 Federico Crazzolara and Glynn Winskel.Language, Seman-
tics, and Methods for Cryptographic Protocols. August 2000.
ii+42 pp.

RS-00-17 Thomas S. Hune. Modeling a Language for Embedded Sys-
tems in Timed Automata. August 2000. 26 pp. Earlier version
entitled Modelling a Real-Time Languageappeared in Gnesi
and Latella, editors, Fourth International ERCIM Workshop
on Formal Methods for Industrial Critical Systems, FMICS ’99
Proceedings of the FLoC Workshop, 1999, pages 259–282.

RS-00-16 Jǐr ı́ Srba. Complexity of Weak Bisimilarity and Regularity for
BPA and BPP. June 2000. 20 pp. To appear in Aceto and Vic-
tor, editors, Expressiveness in Concurrency: Fifth International
Workshop EXPRESS ’00 Proceedings, ENTCS, 2000.

