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Abstract
Given a collection of connected components, it is often desired to cluster together

parts of strong correspondence, yielding a hierarchical structure. We address the au-
tomation of this process and apply heuristics to battle the combinatorial and compu-
tational complexity.

We define a cost function that captures the quality of a structure relative to the
connections and favors shallow structures with a low degree of branching. Finding
a structure with minimal cost is shown to be NP -complete. We present a greedy
polynomial-time algorithm that creates an approximative good solution incrementally
by local evaluation of a heuristic function. We compare some simple heuristic func-
tions and argue for one based on four criteria: The number of enclosed connections,
the number of components, the number of touched connections and the depth of the
structure.

We report on an application in the context of formal verification, where our algo-
rithm serves as a preprocessor for a temporal scaling technique, called “Next” heuris-
tic [AW99]. The latter is applicable in enumerative reachability analysis and is included
in the recent version of the Mocha model checking tool.

We demonstrate performance and benefits of our method and use an asynchronous
parity computer, a standard leader election algorithm, and an opinion poll protocol as
case studies.

1 Introduction

Detailed descriptions of large systems are often too complex to be comprehensive. It is not
sufficient to have complete explicit data. In order to make sense out of vast amounts of
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information, we need structure. As humans, we have limited ability to mentally deal with a
large number of objects simultaneously. Structure helps us to focus on essential parts and
devise a reasonable order in which to proceed. Perhaps surprisingly, this also holds true for
machines, whenever the data has to be processed in a nontrivial way.

Consider a system with 5 components A, B, C, D, E. Suppose components A and B are
connected (for instance, could share a variable in the context of communicating processes),
components A, B, C are connected, B and D are connected, and so are D and E. Then,
instead of viewing the system as a set of 5 components, we may want to view it as a tree
{{{A, B}, C}, {D, E}}. In this structuring, only the connection between B and D needs to be
visible (or understood) at the root. We will formalize the input as a hypergraph, structuring
as a hierarchical partitioning, and study the problem of designing a good structuring.

A hypergraph H = (C, E) is a finite set of vertices C together with a multi set E , where
every hyperedge e ∈ E is a subset of C. We assume that every e corresponds to a unique
label `e. Hyperedges of size 0 or 1 are disallowed. When drawing hypergraphs, we follow the
edge standard, that coincides with the common graph representation for the special case,
that every hyperedge is of size 2.1

We describe hierarchical partitionings as trees over leaf nodes C, where all internal nodes
are assumed to have degree at least 2. As a convention, we draw these trees over a given
hypergraph by introducing one polyhedron for each internal node. All enclosed polyhedrons
and vertices in C are children of this node.

A

C D

B A

C D

B

A

C D

B

Figure 1: Two symmetric ways to structure a square.

Qualifying hierarchical structures Often there are various hierarchical partitionings
we would consider qualitatively equivalent. If symmetries—in terms of vertex permutations
that map one structure to the other—can be found, we want to rate them equally high.
In Figure 1, the four atomic components A, B, C, D are connected via the hyperedges
{A, B}, {A, C}, {B, D}, and {C, D}. The left structure can be mapped into the right one

1For a overview on graphs and hypergraphs see e.g. [Ber73].
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by rotating the atoms counter-clockwise, thus these structures are symmetric. This leaves
open the question as how to find symmetries efficiently.2

depth : 2
#children : 4 (root)

A

C D

B A

C D

B

depth : 4
#children : 2, 2, 2

Figure 2: Two less desirable hierarchical partitionings of the same square.

The way to qualify is heavily dependent on the application we have in mind, but there
are two natural properties we tend to prefer: Low depth and low degree of branching. In
the example in Figure 1, the hierarchy of each partitioning is of depth 2 and the degree of
branching on each level is 2 as well. Figure 2 depicts two less desirable partitionings. The
left tree is of depth 1, but the root has 4 children. On the right we see a hierarchical par-
titioning of depth 3 with branching degree 2. In general, the two criteria are competing goals.

Plan This report is organized as follows. The next section explains a motivation for hier-
archical partitioning in model checking. In section 3 we define and characterize the general
problem. In section 4 we develop a greedy algorithm to generate approximative good so-
lutions. Section 5 reports on experiments with sample problems. Section 6 reflects on the
limitation of our method, contrasts it to related work and lists open problems. We end with
a summary.

2 Hierarchical Partitioning for Formal Verification

The problem of finding apt hierarchical partitionings has concrete applications in formal
verification. Here we are often confronted with collections of entities or processes, that
are interconnected via channels or shared variables. Typically, the communication struc-
ture offers asymmetries that can be exploited by means of introducing property-preserving
abstractions of sub-components.

Our specific motivation is a safety-property preserving optimization of a model checking
algorithm. Model checking [CE82, CK96, Hol97] is widely accepted as a useful technique
for the formal verification of high-level designs in hardware and communication protocols.
Since it typically requires search in the global state-space, much research aims at providing
heuristics to make this step less time- and space-consuming.

Consider 4 processes A, B, C, D such that A and B communicate using channel x, A
and C communicate using channel y, C and D communicate using channel z and D and B

2In order to identify symmetries, we have to solve a special graph isomorphism problem. Though this is
know to be in NP and unlikely to be NP -complete, no polynomial-time algorithm is known, see [KST93].
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communicate using channel u. This corresponds to the hypergraph of Figure 1. Instead of
viewing the system as a set of 4 processes, if we view the system hierarchically decomposed
as shown in left of Figure 1, tools such as concurrency workbench [CPS91, CPS93], can
analyze it in the following way. First take the product of processes A and C. Now the
communication channel y can be viewed as internal to this composite process, and we can
apply a reduction based on weak bisimulation minimizing the size. Analogously, compose B
and D, and minimize considering the channel u.

The hierarchical partitioning is exploited in a different way in the model checker Mocha,
and will form the basis of the experiments in this paper. In the context of reactive mod-
ules [AH96], a specialized heuristic was proposed and implemented in the recent version of
this verification tool: The “Next” heuristic [AW99], that allows to ignore irrelevant tran-
sitions by temporal scaling. Sequences of transitions are compressed into a single meta-
transition, thus saving time and memory in the state space exploration. The technique
assumes an initial structure of the original system as isolated processes called modules. It
is applicable whenever the modules are enabled to move asynchronously and the formula in
question is a safety property. By clustering modules together, we can hide local behavior via
hiding variables that cannot affect the remaining system. Thus we are allowed to replace a
sub-system P of by an abstracted version, called next Θ for P , where Θ expresses changes
that cannot be hidden. This technique can be applied in a hierarchical manner.

The gain depends strongly on the structure we impose, i.e. on the choices of P . As a
rule, we want to hide variables as soon as possible. At the same time it is an advantage,
if the structure reflects areas of strong interaction, i.e. if many variables can be hidden
in sub-components at the same time. It is to be expected, that even in good partitioning
some variables cannot be hidden early. The challenge is to make advantageous choices. In
last consequence, the quality of our structure is determined by the savings with respect to
a model-checking algorithm. However, this not an applicable measure, since predicting the
run-time is in general not easier that solving the model-checking problem itself.3 Therefore
we introduce an approximate measure, that relies only on syntactic properties of the given
system.

In the following we consider a system to be given as a hypergraph, where processes are
vertices and shared variables among them are represented by hyperedges. We rearrange the
vertices as leaves of a rooted tree T . Hyperedges that range over large portions of the tree
are punished in terms of cost. The problem of structuring the system reduces then to find a
tree of low cost.

3Assume the desired property does not to hold. Then the best structure uncovers a short violating path,
which is much cheaper than an exhaustive state space exploration. We cannot know that this path exists
without solving the original problem, thus we cannot have a tight estimate on the run-time without also
knowing the answer.
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3 The Tree-Indexing Problem

We want to restructure a given hypergraph in a hierarchical manner. A tree-indexing T of
a hypergraph H = (C, E) is a rooted tree over leaf nodes C, where every internal node has at
least two children. Every tree-indexing corresponds to a cost value dependent on E .

n 1 2 3 4 5 6 7 8 9 10
#tree-indexings T (n) 1 1 4 26 236 2·752 39·208 660·032 12·818·912 282·137·824

Table 1: The combinatorial explosion in the number of tree-indexings.

Combinatorial Complexity Given a hypergraph with n labeled vertices, we want to
determine the number T (n) of distinguishable tree-indexings. This is in an equivalent for-
mulation recorded as Schröder’s fourth problem [Sch70]. It can be solved (for every fixed
n) via a generating function method. Let ϕ(z) be the ordinary generating function, where
the nth coefficient corresponds to T (n). Let ϕ̂(z) be its exponential transform. Since ev-
ery structure is either atomic or a set of smaller structures (with cardinality at least two),
ϕ̂(z) can be expressed according to the theory of admissible constructions [FZV94,Fla88] as
follows:

ϕ̂(z) = Union (z, Set (ϕ̂(z), cardinality ≥ 2))

This transcribes to

ϕ̂(z) = z +
∑
k≥2

1
k!

· (ϕ̂(z))k

⇔ ϕ̂(z) = z + exp (ϕ̂(z)) − ϕ̂(z) − 1
⇔ exp (ϕ̂(z)) = 2 ϕ̂(z) − z + 1

There is no closed form known for ϕ̂(z), ϕ(z), or T (n). However, for every fixed n we
can extract the nth coefficient of ϕ(z) with algebraic methods and thus approximate T (n)
(see [Fla97]). Table 1 gives an impression how fast this series grows. Thus we have only
little hope to perform an exhaustive search on the domain of possible tree-indexings.

Computational Complexity We can formulate the problem of finding a good tree-
indexing as an optimization problem relative to a fixed cost function. This function should
punish both deep structures and hyperedges that span over big subtrees. For every e ∈ E
let Te denote the smallest complete subtree of T , such that every vertex v ∈ e is a leaf of
Te. With leaves(T ) we denote the set of leaf nodes in T . The depth of T is the length of the
longest descending path from its root. The depth cost of a tree T is defined as a function

depth cost(T ) :=

{
2 if depth(T ) = 1
depth(T ) otherwise

(1)
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The cost of a tree-indexing T is then defined relative to H = (C, E).

cost(T ) :=
∑
e∈E

depth cost(Te) · |leaves (Te) | (2)

For example, both tree-indexings in Figure 1 have cost 2 · 2 · 2 + 2 · 2 · 4 = 24, whereas the
tree-indexings in Figure 2 are of cost 4 · 2 · 4 = 32 and 2 · 2 + 2 · 3 + 2 · 3 · 4 = 34 respectively.

Edge-Guided Tree-Indexing: Given a hypergraph H = (C, E) and a number K ∈ IN .
Decide whether there exists a tree-indexing of cost at most K.

The problem Edge-Guided Tree-Indexing is NP -complete, even if we restrict to the spe-
cial case where H is a multi graph. A proof by reduction from Minimum Cut Into Equal-

Sized Subsets is given in Appendix A. We expect Edge-Guided Tree-Indexing to re-
main NP -hard for other non-trivial definitions of a cost function like

∑
e |leaves(Te)|, though

we do not give a proof for this. This precludes the possibility to determine an optimal tree-
indexing in polynomial time4 and suggests the application of heuristics in order to find a
reasonably good tree-indexing efficiently.

4 Heuristic Solutions

The key observation is that not all tree-indexings make sense. We want to group only com-
ponents together, that are immediately (and possibly strongly) related. In Figure 1 no one
would think of grouping A with D, since they do not immediately share any hyperedge. We
can make use of this asymmetry in terms of simple strategies, that start with a flat struc-
ture and incrementally construct a hierarchical one. For simplicity we refer to intermediate
structures always as forests over a fixed set of n leaf nodes.

4.1 Partitioning Pairwise

We propose two simple strategies that incrementally construct a tree-indexing by introducing
one new root node in each step. Though they fail to yield desired results in simple scenarios,
they guide us to the construction of an improved method.

Let us start with a forest, where every tree consists of a single node. Now we repeatedly
combine two trees that share a hyperedge under a new root.

Strategy I: Group together any pair, that shares a hyperedge.

With this method, we avoid to combine unrelated sub-trees. Since with every step the
number of trees in the forest decreases by one, this terminates after n − 1 steps. Initially
there are O(n2) pairs to check and in any of the n − 1 steps we have to consider at most n

4Unless NP turns out to be equal to P .
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new candidates. Assuming we can check whether A and B share one hyperedge in constant
time, Strategy I has run-time complexity O(n2). It is easy to spot the shortcomings. It
is barely checked, whether there is any connection between a considered pair, everything
else is ignored. In Figure 3 we show a simple scenario, where Strategy I could yield the
desired result on the left only by chance. The dashed outlines of polyhedra indicate, that no
hyperedge can be hidden within these subtrees.

x

y

A

C D

B

x

y

A

C D

B

x

y

A

C D

B

want could get

Figure 3: Strategy I can easily yield undesired results.

Though A and B were somehow stronger connected than A and D (by sharing two
hyperedges instead of just one), our strategy was blind to that fact. So let us take this
degree of connectedness into account.

Strategy II: Group together the pair that shares the most hyperedges.

This does not significantly increase the complexity, since we can maintain the number of pairs
in an apt data structure, e.g., a priority queue sorted by the number of shared hyperedges.
As we see in Figure 4, Strategy II yields more satisfactory structures.

x

y
D

A B

C

x

y
D

A B

C

Figure 4: The two possible results when applying Strategy II.
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However, it is not too difficult to find scenarios, where also Strategy II performs poorly,
one is shown in Figure 5. Since the components C, D, E, F , G are connected via three
hyperedges, the more intuitive subtree {A, B, C} is never considered.

A

B D

Cx

y z,u,w

E

F

G

A

B D

Cx

y z,u,w

E

F

G

want could get

A

B

x

E

F

G

y
z,u,w

C

D

Figure 5: A way to fool Strategy II.

It is likely that we can come up with a bad scenario for any simple strategy, especially if
the number of choices it considers is quite small. This serves as an argument to increase the
size of our search space and consider also larger tuples as candidates.

4.2 A Greedy Algorithm for Partitioning

The simple ideas from the previous section can be extended to shape a greedy algorithm.
Starting with hypergraph H = (C, E), maintain a partial tree-indexing, i.e., a forest F with
leaves C. Repeatedly pick the best set of trees in F from a (possibly restricted) set of
candidates. The heuristic component is the selection and comparison of candidates. The
latter is realized via the pre-order induced by a rating function r : 2C? × ℘D → IR, where 2C?
denotes a multi set of hyperedges and ℘D is the set of forests over leaves D ⊆ C. The higher
the rating, the better the candidate.
The algorithm in Figure 6 proceeds as follows. F is initialized as the forest with |C| trees,
each consisting of a single node. After inserting a set of candidates proposed for grouping
together in a priority queue, a small number of executions of the while-loop follows. In
each execution, the most promising candidate A is dequeued and the data is updated: The
trees in A are replaced by a tree with the fresh root A′ and children t ∈ A. Every set
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Algorithm: partition incrementally

input: hypergraph H = (C, E)

output: tree-indexing over leaves C

PriorityQueue Q := emptyQueue
Forest F := C
Forall considered candidates A ⊆ F

insert(A, Q)

While notempty(Q)

A := top(Q)
let A′ := fresh node with children t ∈ A
F := (F \ A) ∪ {A′}
E := E \ {e | e ⊆ A} /? remove covered hyperedges ?/
update(E , A, A′) /? replace all t ∈ A by A′ ?/

Forall B ∈ Q with B ∩ A 6= ∅
remove(B, Q)

Forall new candidates D containing A′

insert(D, Q)

Return F
Figure 6: Incremental algorithm for constructing a tree-indexing.

containing trees t ∈ A is removed from the priority queue and new candidates containing A′

are inserted. Hyperedges e ⊆ A are deleted so that they do not influence later selections.
This description leaves open the questions, what should be used as a rating function

and which candidates should be considered in first place. We explain these aspects of the
algorithm in the following.

Developing a good rating function In a reasonable definition of a rating function,
several factors concerning the structure of the proposed candidate have to be taken into
account. Most importantly, we want to know the number of additional hyperedges that
are completely covered by this set, and thus can be hidden from the outside without losing
information.

Def 4.1 (cover number) Let H = (C, E) be a hypergraph and A = {T1, . . . , Tk} ⊆ C. The
cover number of A, in symbols 〈〈A〉〉, is defined as the number of hyperedges covered by the
subtrees of A.

〈〈{T1, . . . , Tk}〉〉 := |{`e | e ∈ E , e ⊆ leaves(A), ∀i. e 6⊆ leaves(T i)}|

Though this value tells us a lot about a candidate, it is itself not a good guideline. Recall
that the set C has naturally always the highest possible cover number |E|. We want to relate
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the cover number to the size of a candidate. Have a look at Figure 7. Which one of the
choices is preferable?

B

A

C

x y

zB

A

C

x y

z

A

B

C E

D

F

x w

v

uz

y

A

B

C E

D

F

x w

v

z

y

u

Two clusterings of K3 Two clusterings of a 6-ring

Figure 7: Considerations about the strength of a connection.

In the case of K3, it is not intuitive, why one pair {A, B} should be on a level below in
the hierarchy. Rather we would like the left option to be taken. When considering the 6-ring
instead, the six hyperedges are too weak an argument to group this big structure together in
one go; we would favor the right alternative. So, three components with three links should
be stronger than two with just one. But at the same time, two components with one link
should be rated higher than six components with six links. This suggests, that size is not to
be taken as a linear factor. Instead rather think of the number of possible connections in a
set of size n, which is

(
n
2

)
= O(n2). We propose the following rating function:

rpref(A) :=
〈〈A〉〉
|A|2

Comparing this to the examples in Figure 7, we can verify that rpref precisely selects the
options we argued for. In the following we refine rpref by adding more structural information.

Def 4.2 (touch of a candidate) Let H = (C, E) be a hypergraph and F be a forest over
leaves C. Then the touch of A ⊆ F is defined as the labels from hyperedges that connect A
with the rest of H.

touch(A) := { `e | e 6⊆ leaves(A) }
Def 4.3 (depth of a candidate) The depth of a tree with only one node equals 0. Let F
be a forest, A = {T1, . . . , Tk} ⊆ F . The depth of A is defined as

depth ({T1, . . . , Tk}) := 1 + max
1≤i≤k

depth(T i)

It is intuitive that preference should be given to candidates with small depth. We might also
be interested in the number of links, that cannot be hidden, i.e., the touch. If this number is
big, the candidate is less desirable. Hence we propose the following improved rating function.

r+
pref(A) :=

〈〈A〉〉
|A|2

+
ε1

|touch(A)| +
ε2

depth(A)

The parameters ε1 and ε2 are supposed to be chosen small and positive. For the experiments
in section 5.1, the assignments ε1 := 1/1000, ε2 := 1/100000 were used.
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Restricting the set of considered candidates In our formulation of the algorithm
partition incrementally we remained unclear what the considered candidates are. We want
to weed out hopeless candidates, e.g., those not sharing any labels, before adding them to
our priority queue. In a positive formulation, consider only candidates, that are extensions
of interesting pairs.

Def 4.4 (interesting pair) Given a hypergraph H(C, E) and a forest F over leaves C. An
interesting pair {T1, T2} is a subset of F , such that touch(T1) ∩ touch(T2) 6= ∅.

It is clear that every candidate that is not a superset of an interesting pair has cover
number 0 and thus can be neglected. As it turns out in our implementation, the expensive
part of the algorithm is the computation of the cover number. First computing interesting
pairs and then extending them to candidates is an advantage.

The number of candidates can still be excessive, just consider a hyperedge connecting all
vertices. Since the number of subsets of C is exponential in |C|, an exhaustive enumeration is
not feasible for large systems. If conservative techniques (like considering just extensions of
interesting pairs) do not suffice, we have to apply a more rigorous pruning, even for the price
of thereby ignoring good candidates. An obvious suggestion is to consider only candidates
up to a certain size k, thus establishing an upper bound of nk+1 − n − 1 candidates. This
k can be adjusted according to n, which provides a simple and reasonable method to prune
the search.

5 Experimental Results

We implemented the algorithm from section 4.2 in an experimental version of the Mocha

verification tool [jmo00] (a predecessor was implemented in C, see [AHMQ98]). We extended
the recent Java implementation, which make use of native libraries for symbolic model check-
ing. Since our experiments only employ the enumerative check, given run-times and memory
requirements are those of the Java Virtual Machine, executing on a Sun Enterprise 450 with
UltraSPARC-II processors, 300 MHz. Together with an optimization in the enumerative
check called “Next” heuristic [AW99], we are able to corroborate effectiveness and usability
of our algorithm in some simple examples. We consider an asynchronous parity computer, a
leader election protocol, and an opinion poll protocol.

5.1 Asynchronous Parity Computer

This example models a parity computer, designed as a binary tree (see Figure 8). The
leaf nodes are Client modules, communicating a binary value to the next higher Join. A
simple hand-shake protocol is devised by the two variables ack and req. All components are
supposed to move asynchronously. Thus the join nodes have to wait for both values to be
present, before reporting their exclusive-or upwards. The Root component, after receiving
the result of the computation, hands down an acknowledgment. After this reaches a client,
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it is able to devise a fresh value. Thus ’computation’ here is an ongoing process rather than
a function terminated at some distinguished point.

req
ack

req00
ack00

req01
ack01

req10
ack10

req11
ack11

req000
ack000

req001
ack001

req011
ack011 req100

ack100

req111
ack111

req110
ack110

req101
ack101

req010
ack010

req0
ack0

req1
ack1

Root

Join

Join0 Join1

Join00 Join01 Join10 Join11

C000 C001 C010 C011 C100 C101 C110 C111

Figure 8: Layout of an asynchronous parity computer with eight clients.

We consider binary trees with n client nodes, where n varies from 3 to 8. The number of
variables increases linearly with n, whereas the state-space grows exponentially. The sample
question we pose is whether the module Root will ever output a value zero or one. We
expect our model checking algorithm to falsify the claim, that it never will. The Mocha

specification for the case n = 3 is given in Appendix B.
It is obvious that the variables used for communication between clients and joins (like

req000, ack000) do not contribute to this query. Rather, the behavior of some sub-tree rooted
in a join can be simulated by replacing it with an appropriate client node. In an attempt to
make the check more efficient, the local states of clients need not to be considered. It suffices
to establish the reachability for a state, where some req is sent. This concept can be built
into the enumerative model check algorithm, as described in detail in [AW99]. However, it
requires an explicit structuring of the system: Sub-components have to be grouped together,
irrelevant variables have to be hidden explicitly.

For a human user—understanding the structure and the problem at hand—it is intuitive
to introduce a structuring bottom up. At a glance, he would spot the client modules to
be leaves. However, for an automated algorithm, it presents a challenge. The difference
between {Join1, Join11} and {Client000, Join00} is minor: Both pairs cover exactly two
variables. Thus an incautious technique easily runs into errands. Figure 9 shows the results of
automated hierarchical partitioning when using rpref as rating function. Though it succeeds
in incrementally hiding more and more variables, the obtained structure is uncomfortably
deep.
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Root
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Join0 C1

C00 C01
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Join0 Join1
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Root

Join

Join0

Join00 Join01

C000 C001 C010 C011

C1
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Join0 Join1

Join00 Join01

C000 C001 C010 C011

C10 C11

Root
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Join

Join0 Join1

Join00 Join01 Join10

C000 C001 C010 C011 C100 C101

C11

Join

Join0 Join1

Join00 Join01 Join10 Join11

C000 C001 C010 C011 C100 C101 C110 C111

Root

Figure 9: Applying rpref on parity computers with three to eight clients.

The somewhat more sophisticated rating function r+
pref performs far better, as seen in

Figure 10. The parameters ε1 and ε2 were calibrated to ε1 := 1/1000 and ε2 := 1/100000,
giving shallow structures a bigger bonus than those encompassing only few variables.

Table 2 allows us to verify, that the intuitively more adequate structure indeed leads to
a better run-time performance with respect to an enumerative check. With “partition” we
denote the preprocessing time used by partition incrementally and “check” corresponds to
the run-time of the model checking algorithm. All run-times are in milliseconds. We see
that the time for computing the partitioning exceeds the model checking time for bigger
examples. This explains by two facts: First, we never restricted the size of candidates and
thus considered a number exponential in n. Second, the property we checked did not hold,
thus the model checking algorithm was able to abort without having to explore the entire
state space.

5.2 Leader Election in a Ring

We consider a leader election protocol as a second sample problem. The modules are arranged
in a ring topology, where each buffered channel is modeled by a separate module. The
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Figure 10: Using r+
pref yields an intuitive hierarchical partitioning.

modules use a standard leader election protocol to elect the one with the highest (unique) id
number: Every cell proceeds sending the highest id number it has seen so far, starting with
his own. If a cell receives its own id number, it declares itself to be the leader (see [Lyn96]
for an exhaustive treatment of this problem). Figure 11 shows how a ring with 3 cells is
partitioned incrementally with application of rating function r+

pref . The checked property
is a valid invariant: At no time there is more than one process denoted leader (a safety
property). The gap in time performance between unstructured and clustered system was
not extreme, but noticeable (Table 3). Unfortunately, we are not able to perform checks
with larger rings, since the modeling of the links as finite state automata turns out to be
very consumptive with respect to the state space. We included the Mocha specification in
Appendix C.

5.3 Opinion Poll Protocol

The last sample problem is rather artificial. It is meant to demonstrate the behavior of our
heuristic in a setting where there is no obvious choice.
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size partition |hash table| check
3 3·227 97 556
4 4·683 647 3·507
5 6·214 1·945 11·442
6 9·314 16·047 102·920
7 19·064 58·353 433·828
8 69·006 [Memory out] –

size partition |hash table| check
3 134 53 349
4 313 119 787
5 712 141 1·146
6 2·742 207 1·813
7 12·804 273 2·632
8 63·834 471 4·973

Applying rpref as heuristic function Applying r+
pref with ε1 := 1

1000 , ε2 := 1
100000

Table 2: Parity computer: Run-time performance of two heuristic functions.

send0
ack0

send1
ack1

send2
ack2

inp0
req0

inp1
req1

inp2
req2

Cell0

Cell1 Cell2Link12

Link20Link01
direction

of message-passing =⇒
send0
ack0

send1
ack1

send2
ack2

inp0
req0

inp1
req1

inp2
req2

Cell0

Cell1 Cell2Link12

Link20Link01

Figure 11: Leader election protocol with 3 cells, clustered via r+
pref .

size |hash table| model checking

2 563 6·270
3 70·797 1·327·756

size partition |hash table| model checking

2 217 563 4·615
3 279 61·455 661·275

Checking without partitioning Applying r+
pref before checking

Table 3: Checking leader election protocols without and with partitioning.

Consider a poll for a public opinion. There is a line of N pollers Pi and two non-connected
lines of citizen Ai and Bi, plus two special citizen C and D. Poller P1 starts raising an issue
with a Yes/No question. Let us assume that the way one asks influences the answer. Poller
P1 starts of with an opinion he got from a random source (called Master). Poller Pi+1

is influenced by Pi. The citizen are influenced by the pollers who asked and one other
citizen. For example, Ai+1 is influenced by Ai’s opinion and A1 by a random source NA. In
Figure 12 you see the communication pattern for the cases N = 1 and N = 2. The Mocha

specification for the case N = 1 is found in Appendix D.
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Figure 12: Opinion poll communication pattern for N = 1 and N = 2.
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N = 1 N = 2 N = 3 N = 4

Figure 13: Opinion poll: Partitioned according to rating function r+
pref .

For N = 1, 2, 3, 4 we considered three invariants: (i) a false property that is easy to falsify,
(ii) a false property that requires a special scenario (called bad property in the following),
and (iii) a true property.

The experiments compare plain enumerative model-checking and application of the next
heuristic, where the preprocessing follows one of the following strategies. a. 2-merge: Group
any pair with a connection, i.e., follow Strategy I, b. pref: Partition incrementally accord-
ing to rating function rpref , and c. pref+size: Partition incrementally according to rating
function r+

pref . For the latter, we included the results of the preprocessing in Figure 13. It is
interesting to note that sometimes triples were preferred to pairs. The quantitative compari-
son is listed in Table 4, run-times are in milliseconds. For the false properties (i) and (ii) the
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enumerative check is slower when sophisticated heuristics are applied. That explains by the
fact, that it is more tedious to reach a counter-example scenario here. For the true property
(iii), the enumerative check improves with application of the next heuristic. For larger N
the more sophisticated clustering techniques pref and pref+size perform slightly better than
2-merge.

(i) false Judgment: System = (result = DontKnow)
N\Method plain 2-merge pref pref+size

1 742
2 (partition)

854 (check)
280 (partition)
754 (check)

274 (partition)
861 (check)

2 3·713 32 (partition)
4·313 (check)

1·808 (partition)
6·862 (check)

1·886 (partition)
6·850 (check)

3 32·181 7 (partition)
26·330 (check)

1·790 (partition)
87·708 (check)

2·047 (partition)
88·879 (check)

4 345·071 22 (partition)
435·529 (check)

5·256 (partition)
1·390·739 (check)

4·828 (partition)
1·351·527 (check)

(ii) bad Judgment: System = NoNegativeResult
N\Method plain 2-merge pref pref+size

1 1·113 2 (partition)
916 (check)

238 (partition)
766 (check)

203 (partition)
886 (check)

2 4·846 5 (partition)
3·930 (check)

1·625 (partition)
7·130 (check)

1·667 (partition)
6·561 (check)

3 32·580 7 (partition)
29·324 (check)

1·788 (partition)
87·827 (check)

1·920 (partition)
73·350 (check)

4 385·951 20 (partition)
375·977 (check)

5·476 (partition)
1·665·765 (check)

6·458 (partition)
1·306·961 (check)

(iii) true Judgment: System = ~((result = DontKnow) & (result = Yes))
N\Method plain 2-merge pref pref+size

1 30·565 2 (part.)
23·689 (check)

290 (part.)
24·369 (check)

292 (part.)
24·423 (check)

2 610·131 5 (part.)
454·089 (check)

1·787 (part.)
482·600 (check)

2·148 (part.)
482·214 (check)

3 8·488·532 17 (part.)
6·392·536 (check)

2·301 (part.)
5·920·255 (check)

2·357 (part.)
5·865·170 (check)

4 93·557·192 23 (part.)
60·934·073 (check)

5·733 (part.)
57·762·294 (check)

5·068 (part.)
57·165·981 (check)

Table 4: Opinion poll protocol: Run-time comparison of different preprocessing methods.

6 Critique

Our proposed method gives no guarantee on how the obtained result compares to an optimal
solution. Since we apply a variation of local search, it is to be expected that this method gets
caught in local optima (for an overview on heuristic search techniques see e.g. [RN95]). More-
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over, optimality in the sense of least cost does not imply minimal time- or space-consumption
when running a model checking algorithm. Part of the difficulties with quantifying this al-
gorithm lies in the structural complexity of the problem itself: It is hard to capture the
characteristics of a system within a single number.

Our case studies teach the lesson that—when using an incremental approach— both
size and depth of the candidates have to be taken into account. It remains unclear, how
this should be reflected in general. The values for ε1 and ε2 were chosen according to fit the
example of the parity computer. It would be desirable to investigate the impact of parameter
changes in general, but we lack apt mathematical means to do so.

Considered Candidates and Rating Functions There are several improvements that
can be taken into account. For example, the number of considered candidates in each step
should be further restricted. The interesting pairs technique provided a first step, but it
would suffice to consider only supersets of present hyperedges.

If the number of vertices is large, we have to apply more rigorous pruning. We proposed
a simple restriction on the size of considered candidates. There is limited potential that
more subtle techniques yield better results in practice.

Unfortunately, the best upper bound on the number of candidates is exponential in the
number of components. Simple syntactic restrictions do not change this situation. Assume
the size of hyperedges is bounded by a constant. This does not suffice to derive an upper
bound on the size of reasonable candidates. Consider a ring of n components A0, . . . , An−1,
where every pair (Ai, Ai+1 MOD n) is connected via multiple hyperedges. Though all the
hyperedges are of size 2, the candidate {A0, . . . , An−1} cannot be neglected.

Unfortunately, we cannot expect efficient techniques to guarantee preservation of the best
candidate: For some simple rating functions, the computational complexity of finding the
the best candidate is high. In particular, we can encode the Max Clique problem5 by using
this rating function:

rε(A) :=
|A|

ε + |A| · (|A| − 1) − 〈〈A〉〉
If the input is a simple graph and ε is chosen sufficiently small, the largest clique is precisely
the candidate with the highest rating. That means that in every iteration we have to solve
a NP -hard problem.

Note that this does not imply, that finding the best candidate is hard for every rating
function. If we choose r(A) := 〈〈A〉〉, then the single best candidate is always the complete
set C. We were not able to establish the hardness for interesting classes of rating functions.
But we believe that there is little hope to get this step more than reasonably efficient.

Outlook Our method is not limited to Mocha. It can be applied in other settings where
connected entities have to be structured or re-structured. The parameters can be adjusted

5See e.g. [GJ79], listed under graph theory, no.19.
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accordingly. We believe that the obtained structure can be exploited by other means, e.g.
by building abstractions based on this particular hierarchy.

In our considered application, the difficulty of the model checking problem relies on the
size of the state space. This is typically exponential in the number of modules. In many
cases, the size of the state space turns out to be the bottleneck, that can be overcome only
by application of various heuristics. Hence, automated tree-indexing can be considered a
good investment.

Related Work Hierarchical structures find a wide range of application in design, descrip-
tion and physical organization of both software and hardware.

In particular, the decomposition of large circuits in VLSI layout turns out to be a crucial
problem and has received a respectable amount of attention. Here the partitions are typically
shallow (i.e., of depth two) and mainly motivated by size constraints that single components
have to meet. Optimality is typically described as the least number of components with as
few as possibly connections.

Similar structures called classification trees (e.g. [GRD91]) are used as expressive decision
trees over large sets of data. The internal nodes are labeled by distinguishing criteria and
all leaf nodes are distinguishable. Finding expressive classification trees is computationally
hard.

Though various advanced techniques have been developed for these problems, to the best
of our knowledge none of them is applicable in the considered case. In our setting, every
tree-indexing is a feasible solution, there is no constraint satisfaction component and there
might well be two leaves that are alike. Moreover, our notion of optimality is less clearly
shaped. In the particular application in model checking, we want to minimize the time
and memory requirements of our model checking algorithm. Hopes are low, that we can
practicably evaluate this characteristic. Thus we have to rely on guidelines.

Open Questions We showed that finding an optimal solution with respect to our cost
function is NP -hard, but this does not preclude the existence of an polynomial approximation
scheme. Also, it remains unknown, how the computational complexity compares with respect
to other cost functions, like depth cost(T ) := depth(T ) or cost(T ) :=

∑
e |leaves(Te)|. It is

conjectured that the tree-indexing problem remains NP -complete in both cases.

7 Summary

We developed a notion of optimal hierarchical partitioning of a hypergraph and proved
the problem to be NP -complete. We presented a simple and scalable method to automate
hierarchical partitioning. With this greedy approach we proposed a feasible strategy to battle
the combinatorial and computational complexity of the problem. We argued that—in order
to achieve a good result—a candidate for grouping together should be evaluated with respect
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to four criteria: Number of covered hyperedges, size, number of occurring hyperedges, and
structural depth.

We implemented our algorithm and validated its performance on small and medium
sized examples. It is considered to include this method in the Mocha model checking tool
as an option.

Acknowledgments: We thank Bow-Yaw Wang and Radu Grosu for many useful comments
and invaluable help on Mocha implementation details. This research was supported in part
by SRC award 99-TJ-688.

References

[AH96] R. Alur and T.A. Henzinger. Reactive modules. In Proceedings of the 11th An-
nual Symposium on Logic in Computer Science, pages 207–218. IEEE Computer
Society Press, 1996.

[AHMQ98] R. Alur, T. A. Henzinger, F. Y. C. Mang, and S. Qadeer. MOCHA: Modularity
in model checking. Lecture Notes in Computer Science, 1427:521–525, 1998.

[AW99] Rajeev Alur and Bow-Yaw Wang. “Next” Heuristic for On-the-fly Model Check-
ing. In Proceedings of the Tenth International Conference on Concurrency The-
ory (CONCUR’99), LNCS 1664, pages 98–113. Springer-Verlag, 1999.

[Ber73] Claude Berge. Graphs and Hypergraphs. Number 6 in North-Holland Math-
ematical Library. North-Holland Publ. Co., American Elsevier Publ. Co. Inc.,
Amsterdam, 1973.

[CE82] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons from
branching time temporal logic. Lecture Notes Comp. Sci., 131:52–71, 1982.

[CK96] Edmund M. Clarke, Jr. and Robert, P. Kurshan. Computer-aided verification.
IEEE Spectrum, 6(33):61–67, June 1996.

[CPS91] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A se-
mantics based tool for the verification of concurrent systems. Technical Report
91-24, Technical University of Aachen (RWTH Aachen), 1991.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A
Semantics Based Tool for the Verification of Concurrent Systems. ACM Trans-
actions on Programming Languages and Systems, 15(1):36–72, January 1993.

[Fla88] Phillippe Flajolet. Mathematical Methods in the Analysis of Algorithms and
Data Structures. Lecture Notes for A Graduate Course on Computation Theory,
Udine (Italy), Fall 1984. In Egon Börger, editor, Trends in Theoretical Computer
Science, pages 225–304. Computer Science Press, 1988.

20



[Fla97] Philippe Flajolet. A problem in Statistical Classification Theory, 1997.
http://pauillac.inria.fr/algo/libraries/autocomb/schroeder-html/

schroeder1.html.

[FZV94] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for
the random generation of labelled combinatorial structures. Theoretical Com-
puter Science, 132:1–35, 1994. A preliminary version is available in INRIA Re-
search Report RR-1830.

[GJ79] Michael R Garey and David S Johnson. Computers and Intractibility, a Guide to
the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, 1979.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP -complete
graph problems. Theoretical Computer Science, 1(3):237–267, February 1976.

[GRD91] Saul B. Gelfand, C. S. Ravishankar, and Edward J. Delp. An iterative growing
and pruning algorithm for classification tree design. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-13(2):163–174, February 1991.

[Har88] David Harel. On visual formalisms. Communications of the ACM, 31(5):514–530,
May 1988.

[Hol97] G.J. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

[jmo00] Mocha: Exploiting Modularity in Model Checking, 2000. see http://www.cis.

upenn.edu/~mocha.
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A Edge-Guided Tree-Indexing is NP -complete

Theorem 1 For a multi graph G = (V, E) and an integer K, deciding whether there exists
a tree-indexing T with cost at most K is NP -complete.

Proof. Containment in NP is simple, for we can guess any possible tree-indexing T and
compute cost(T ) in polynomial time. We show NP -hardness by reduction from the following
NP -complete problem.

Minimum Cut Into Equal-Sized Subsets [GJS76]6 Given a graph G = (V, E) with
specified vertices s, t ∈ V and a positive integer K. It is NP -complete to answer the following
question. Is there a partition of V into disjoint sets V1, V2 such that s ∈ V1, t ∈ V2, |V1| = |V2|,
such that the number of edges with one endpoint in V1 and the other endpoint in V2 is no
more than K?

Note that n := |V | is restricted to be even. For n = 2 there exists only one solution, thus
we consider n ≥ 4. Furthermore, we assume that that m := |E| > n/4. For smaller m the
problem is trivial, since we have at least n/2 isolated vertices.

Reduction. For every instance (G, s, t, K) we construct—in polynomial time and logarith-
mic space—an instance (G′, K ′), such that there exists a partition V1, V2 with cost ≤ K if
and only if there exists a tree-indexing T of G′ with cost(T ) ≤ K ′.

s tn1 = n−2
2 n2 = n−2

2

Figure 14: Binary, shallow, and balanced tree-indexing T ∗.

The idea is to augment G in a way, such that a tree-indexing with lowest cost has the
shape of a balanced tree of depth 2 (see Figure 14). To achieve this, we add edges leading to
the nodes s and t. We call s and t attractors in the following. The number of edges between
V1 and V2 then corresponds to the number of edges between the subtrees of T plus some
offset.

Given G = (V, E), s, t, K, |V | = n, |E| = m. Let V ′ := V \ {s, t}. Then we define G′ to
be the graph with vertices V and 4 m2 additional edges between each v ∈ V ′ and every

6See also: [GJ79], comment to problem Minimum Cut into Bounded Sets (ND17).
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attractor. We call these edges β-edges and use β := 4 m2 as a parameter.

cost+ := β (2 (n/2 − 1) · 2 n/2 + (n − 2) · 2 n)

K ′ := cost+ + (m − K) · 2 n/2 + K · 2 n

It suffices to show that an optimal tree-indexing has the shape of a balanced tree of depth 2.
Then the cost for the newly introduced edges is fixed (cost+). We still have to pay for the
edges that originated from E. If they live inside a subtree, they are cheap (2 n/2), else they
are punished with factor 2 n. It is clear that cost K ′ can be achieved if and only if a balanced
partition of V with at most K edges between V1 and V2 is possible.

Let T ∗ be a tree-indexing like in Figure 14. In the worst case, all m original edges in E
are in between the subtrees. Thus we can give an upper bound cost∗ on cost(T ∗).

cost∗ := β (2 (n/2 − 1) · 2 n/2 + (n − 2) · 2 n) + m · 2 n
= 3 β n(n − 2) + 2 mn

Lemma 1 Let T be a tree-indexing of depth 1. Then cost(T ) > cost∗.

Proof. The cost of T is precisely

(2 β (n − 2) + m) · 2 n =
4β n(n − 2) + 2 mn > 3β n(n − 2) + 2 mn.

���

Lemma 2 Let T be a tree-indexing, where attractors s and t live in the same subtree. Then
cost(T ) > cost∗.

Proof. Suppose a tree-indexing T where t and s live in the same subtree. To estimate
the cost of T , we can assume that the tree containing s, t has no siblings within subtree 1
(there is additional punishment by increased depth and no gain). The same holds true for
vertices located in a subtree starting at the level of s and t. Thus we can assume that the
two attractors share a subtree of depth 1 with n1 additional vertices and that the remaining
(n − n1 − 2) graph nodes are collected in a second subtree, for in alternative structures the
relevant costs are the same or worse. Thus the only scenario to consider is displayed in
Figure 15.

A lower bound on the cost of structure T is obtained by looking only at β edges. The costs
for subtree 1 is β (2 n1) · 2 (2 + n1) and the graph violations amount to cost 2 β (n − n1 − 2) ·
2 n.
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n1s t n2 = n – n1 – 2

Figure 15: Best case of a tree-indexing T with attractors in the same subtree.

Comparing the costs yields

cost(T ) − cost∗ =
β (2 n1) · 2 (2 + n1) + 2 β (n − n1 − 2) · 2 n − (3 β n(n − 2) + 2 m n) =

8 β n1 + 4 β n1
2 + β n2 − 4 β nn1 − 2 β n − 2 mn =

β (n2 − 4 n + 4 − 4 nn1 + 8 n1 + 4 n2
1) + β (2 n − 4) − 2 mn =

β ((n − 2) − 2 n1)
2 + β (2 n − 4) − 2 mn ≥

4β − 2 mn ≥
4 mn − 2 mn > 0

���

We can assume now, that the optimal solution (i.e. this that allows the largest K ′ and
thus the largest K) is non-monolithic and that attractors s and t live in different subtrees.
Before we argue that more than two subtrees are too expensive, we need to state a lower
bound on the cost of subtrees with one attractor.

Lemma 3 Let T be a tree-indexing where the root has ≥ 3 children, attractor s lives in
subtree 1 and attractor t in subtree 2. Then cost(T ) > cost∗.

Proof. Assume that subtrees 1 and 2 contain, in addition to the attractors, p respectively
q nodes, p + q < n − 2. Make a case split on the depth of the tree-indexing.

(i) The depth of the tree-indexing is 2.
Then the cost can be estimated as in Figure 16. It suffices to show the following

s tp q
n − 2 − (p + q)

T :
cost(T )≥
β p · 2 (p + 1) inside subtree 1
β q · 2 (q + 1) inside subtree 2
β n · 2 n to attractor in other subtree
β (n-2-p-q) · 2 n additional rightmost violations

Figure 16: Lower bound on cost of a non-binary tree-indexing T .
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inequality:

β p · 2 (p + 1) + β q · 2 (q + 1) + β n · 2 n + β (n-2-p-q) · 2 n > cost∗

⇔ β (n2 − 2 n − 2 np − 2 nq + 2 p + 2 p2 + 2 q + 2 q2) − 2 mn > 0

⇔ β

(
n2−4 n+4−2 np − 2 nq+p2 + q2+2 pq+4 p+4 q

+2 n−4 +p2 + q2−2 pq−2 p−2 q

)
− 2 mn > 0

⇔ β( ((n − 2) − (p + q))2︸ ︷︷ ︸
≥0

+ (p − q)2︸ ︷︷ ︸
≥0

+2 (n − p − q − 2)︸ ︷︷ ︸
≥1

) − 2 mn > 0

⇐ 4 m2 · 2 > 2 mn

(ii) The depth of the tree-indexing is at least 3.
Then there are (n− 2− p− q) + (n− 2) ≥ n− 1 edges that have to be payed for with
factor β · 3 n.

3 β n(n − 1) − cost∗ =
3 β n − 2 mn > 0

���

Assuming that the root has exactly two children, we can now exclude tree-indexings of
unnecessary depth.

Lemma 4 Let T be a tree-indexing where the root has 2 children, in each subtree lives one
attractor and depth(T ) ≥ 3. Then cost(T ) > cost∗.

Proof. Every of the n − 2 leaves in V \ {s, t} has β edges to the attractor in the other
subtree. It suffices to estimate the internal costs of the two subtrees with β 2 · 2 (we have
at least two edges somewhere inside).

β (4 + (n − 2) 3 n) > cost∗

⇔ 4 · 4 m2 > 2 mn

���

Lemma 5 Let T be a tree-indexing where the root has 2 children, in each subtree lives one
attractor, depth(T ) = 2 and subtree 1 contains p < (n − 2)/2 nodes from V \ {s, t}. Then
cost(T ) > cost∗.
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s

T :

p < n−2
2s n–2–p

cost(T ):
β p · 2 (p + 1) inside subtree 1
β (n–2–p) · 2 (n–2–p) inside subtree 2
β (n–2) · 2 n to attractor in other subtree

Figure 17: Lower bound on cost of an unbalanced tree-indexing T .

Proof. We can estimate cost(T ) as in Figure 17.

β (p · 2 (p + 1) + (n − 2 − p) · 2 (n − 2 − p) + (n − 2) · 2 n) > cost∗

⇔ β( 4 p2 + 8 p + n2 − 4 n − 4 np + 4︸ ︷︷ ︸
fn(p)

) > 2 mn

The term in fn(p) is minimal for d
dp

fn(p) = 0, i.e. for p = n/2− 1. Since p ≤ n/2− 2 and fn

is quadratic in p, it suffices to check the value p0 = n/2 − 2.

fn(n/2 − 2) = 2 (1/2 n − 2) (−1 + 1/2 n) + n (1/2 n + 1) − (n − 2)n
= 4

Since 4 β = 16 m2 > 4 mn > 2 mn, this proves the lemma.
���

Thus we can be sure that only binary, shallow and balanced tree-indexings like in Figure 14
are candidates for optimal solutions. The soundness of the reduction follows.

�

B Parity Computer (three clients)

/* ****************************************

* Asynchronous Parity Computer

* ****************************************

*/

type ReqType is { none, zero, one, ready }

type AckType is { idle, wait, null, pos }

module Root is

interface ack : AckType;

external req : ReqType;

private loc : (0..3);

lazy atom root controls ack, loc reads req, loc

init

[] true -> ack’ := idle; loc’ := 0;

update

[] (loc = 0) & (req = zero) -> ack’ := wait; loc’ := 1;

[] (loc = 0) & (req = one) -> ack’ := wait; loc’ := 2;

[] (loc = 1) & (req = ready) -> ack’ := null; loc’ := 3;

[] (loc = 2) & (req = ready) -> ack’ := pos; loc’ := 3;

[] (loc = 3) & (req = none) -> ack’ := idle; loc’ := 0;
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module Client is

interface req : ReqType;

external ack : AckType;

private loc : (0..3);

lazy atom client controls req, loc reads ack, loc

init

[] true -> req’ := none; loc’ := 0;

update

[] (loc = 0) -> req’ := zero; loc’ := 1;

[] (loc = 0) -> req’ := one; loc’ := 1;

[] (loc = 1) & (ack = wait) -> req’ := ready; loc’ := 2;

[] (loc = 2) & ((ack = pos) | (ack = null)) -> req’ := none; loc’ := 3;

[] (loc = 3) & (ack = idle) -> loc’ := 0;

module Join is

interface req : ReqType; ack0, ack1: AckType;

external req0, req1 : ReqType; ack: AckType;

private loc : (0..7);

lazy atom join controls req, ack0, ack1, loc reads req0, req1, ack, loc

init

[] true -> req’ := none; loc’ := 0; ack0’ := idle; ack1’ := idle;

update

[] (loc = 0) & (req0 = zero) & (req1 = zero) -> ack0’ := wait; ack1’ := wait; loc’ := 1;

[] (loc = 0) & (req0 = zero) & (req1 = one) -> ack0’ := wait; ack1’ := wait; loc’ := 2;

[] (loc = 0) & (req0 = one) & (req1 = one) -> ack0’ := wait; ack1’ := wait; loc’ := 1;

[] (loc = 0) & (req0 = one) & (req1 = zero) -> ack0’ := wait; ack1’ := wait; loc’ := 2;

[] (loc = 1) & (req0 = ready) & (req1 = ready) -> req’ := zero; loc’ := 3;

[] (loc = 2) & (req0 = ready) & (req1 = ready) -> req’ := one; loc’ := 3;

[] (loc = 3) & (ack = wait) -> req’ := ready; loc’ := 4;

[] (loc = 4) & (ack = null) -> req’ := none; loc’ := 5;

[] (loc = 4) & (ack = pos) -> req’ := none; loc’ := 6;

[] (loc = 5) & (ack = idle) -> ack0’ := null; ack1’ := null; loc’ := 7;

[] (loc = 6) & (ack = idle) -> ack0’ := pos; ack1’ := pos; loc’ := 7;

[] (loc = 7) & (req0 = none) & (req1 = none) -> ack0’ := idle; ack1’ := idle; loc’ := 0;

/* ---------------------------------------------------------------------- */

module C00 is Client[req,ack := req00,ack00]

module C01 is Client[req,ack := req01,ack01]

module C1 is Client[req,ack := req1,ack1]

module system3 is

Root || Join || J0 || C00 || C01 || C1

/* ---------------------------------------------------------------------- */

predicate notyield is ~(ack = null | ack = pos)

/* ---------------------------------------------------------------------- */

judgment J3 is system3 |= notyield

C Leader Election Protocol (two processes)

/* ****************************************

* Leader Election Protocol 2

* ***************************************

*/

type ReqType is { idle, high }
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type StatusType is { unknown, broken, chosen }

type AckType is { null, ok }

module Cell is

interface status: StatusType;

sendX: ( 0 .. 4 );

req: ReqType;

loc: ( 0 .. 5 );

u: ( 0 .. 4 );

external ack: AckType;

inp: ( 0 .. 4 );

uid: ( 0 .. 4 );

lazy atom A0 controls status, sendX, req, loc, u

reads status, sendX, req, loc, u, ack, inp, uid

init

[] true -> u’ := 0; loc’ := 0; req’ := idle; status’ := unknown; sendX’ := 0;

update

[] loc = 0 -> u’ := uid; loc’ := 1;

[] loc = 1 -> sendX’ := u; loc’ := 2;

[] (loc = 2) & (ack = ok) -> sendX’ := 0; loc’ := 3;

[] loc = 3 -> loc’ := 4; req’ := high;

[] (loc = 4) & (inp = uid) -> req’ := idle; status’ := chosen; loc’ := 5;

[] (loc = 4) & (inp > uid) -> req’ := idle; u’ := inp; loc’ := 1;

[] (loc = 4) & (inp > 0) & (inp < uid) -> req’ := idle; loc’ := 3;

module Initialize is

interface uid0, uid1: ( 0 .. 4 );

lazy atom A2 controls uid0, uid1

reads uid0, uid1

init

[] true -> uid0’ := 1;

uid1’ := 4;

update

module Link is

interface ack: AckType;

inp: ( 0 .. 4 );

external sendX: ( 0 .. 4 );

req: ReqType;

private B1, B2, B3: ( 0 .. 4 );

items: ( 0 .. 3 );

loc: ( 0 .. 4 );

lazy atom A1 controls ack, inp, B1, B2, B3, items, loc

reads ack, inp, B1, B2, B3, items, loc, sendX, req

init

[] true -> loc’ := 0; B1’ := 0; B2’ := 0; B3’ := 0; items’ := 0; ack’ := null; inp’ := 0;

update

[] (loc = 0) & (sendX > 0) -> loc’ := 1;

[] (loc = 1) & (items = 0) -> loc’ := 2; items’ := 1; ack’ := ok; B1’ := sendX;

[] (loc = 1) & (items = 1) -> loc’ := 2; items’ := 2; ack’ := ok; B2’ := sendX;

[] (loc = 1) & (items = 2) -> loc’ := 2; items’ := 3; ack’ := ok; B3’ := sendX;

[] (loc = 2) & (sendX = 0) -> loc’ := 0; ack’ := null;

[] (loc = 0) & (req = high) & (items > 0) -> loc’ := 3;

[] (loc = 3) & (items = 1) -> inp’ := B1; items’ := 0; B1’ := 0; loc’ := 4;

[] (loc = 3) & (items = 2) -> inp’ := B1; items’ := 1; B1’ := B2; B2’ := 0; loc’ := 4;

[] (loc = 3) & (items = 3) -> inp’ := B1; items’ := 2; B1’ := B2; B2’ := B3; B3’ := 0; loc’ := 4;

[] (loc = 4) & (req = idle) -> inp’ := 0; loc’ := 0;
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module Cell0 is Cell [ status, sendX, req, ack, inp, uid, u, loc :=

status0, sendX0, req0, ack0, inp0, uid0, u0, loc0 ]

module Cell1 is Cell [ status, sendX, req, ack, inp, uid, u, loc :=

status1, sendX1, req1, ack1, inp1, uid1, u1, loc1 ]

module Link0_1 is Link [ ack, inp, sendX, req :=

ack0, inp1, sendX0, req1 ]

module Link1_0 is Link [ ack, inp, sendX, req :=

ack1, inp0, sendX1, req0 ]

module System is Initialize

|| Cell0

|| Cell1

|| Link0_1

|| Link1_0

/* ---------------------------------------------------------------------- */

predicate consistent is ~((status0 = chosen) & (status1 = chosen))

/* ---------------------------------------------------------------------- */

judgment J1 is System |= consistent

D Opinion Poll Protocol (one poller)

/* ****************************************

* Opinion Poll 1

* ****************************************

*/

type opinionType is { Yes, No, DontKnow }

type statusType is { Init, Wait, Done }

/* ---------- Templates ---------- */

module Poller is

interface tellA, tellB, tellDown, tellUp, tellUpEcho: opinionType;

external hearA, hearB, hearUpA, hearUpB, master: opinionType;

private opinion: opinionType; status: statusType;

lazy atom POLL controls opinion, tellA, tellB, tellDown, status, tellUp, tellUpEcho

reads hearA, hearB, hearUpA, hearUpB, status, opinion, master

init

[] true -> opinion’ := DontKnow; status’ := Init; tellA’ := DontKnow;

tellB’ := DontKnow; tellDown’ := DontKnow;

tellUp’ := DontKnow; tellUpEcho’ := DontKnow;

update

[] (status = Init) & (opinion = DontKnow) -> opinion’ := master;

[] (status = Init) & ((opinion = Yes) | (opinion = No)) ->

tellA’ := opinion; tellB’ := opinion; tellDown’ := opinion; status’ := Wait;

[] status = Wait & (hearA = Yes) & (hearB = Yes) & (hearUpA = Yes) & (hearUpB = Yes) ->

opinion’ := Yes; tellUp’ := Yes; tellUpEcho’ := Yes; status’ := Done;

[] status = Wait & (hearA = No) & (hearB = No) & (hearUpA = No) & (hearUpB = No) ->

opinion’ := No; tellUp’ := No; tellUpEcho’ := No; status’ := Done;
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module Noise is

interface tell: opinionType;

lazy atom FLIP controls tell

init

[] true -> tell’ := Yes;

[] true -> tell’ := No;

update

module Citizen is

external hearUp, hearSide: opinionType;

interface tellDown, tellUp: opinionType;

private opinion: opinionType; status: statusType;

lazy atom VOTER controls tellDown, tellUp, status, opinion

reads hearUp, hearSide, status, opinion

init

[] true -> opinion’ := Yes; status’ := Init; tellDown’ := DontKnow; tellUp’ := DontKnow;

[] true -> opinion’ := No; status’ := Init; tellDown’ := DontKnow; tellUp’ := DontKnow;

update

[] (status = Init) & (hearUp = Yes) & (hearSide = Yes) ->

tellDown’ := Yes; tellUp’ := Yes; status’ := Done;

[] (status = Init) & (hearUp = No) & (hearSide = No) ->

tellDown’ := No; tellUp’ := No; status’ := Done;

[] (status = Init) & (hearUp = Yes) & (hearSide = No) ->

tellDown’ := opinion; tellUp’ := opinion; status’ := Done;

[] (status = Init) & (hearUp = No) & (hearSide = Yes) ->

tellDown’ := opinion; tellUp’ := opinion; status’ := Done;

/* ---------- Module Definitions ---------- */

module Master is Noise [ tell := hear_p_1_up ]

module P_1 is Poller [

master, tellA, tellB, tellDown, hearA, hearB, hearUpA, hearUpB, tellUp, tellUpEcho :=

hear_p_1_up, hear_a_1_side, hear_b_1_side, hear_cd, tell_a_1_up, tell_b_1_up, tell_c_up, tell_d_up,

result, resultEcho ]

module N_A is Noise [ tell := hear_a_1_up ]

module N_B is Noise [ tell := hear_b_1_up ]

module A_1 is Citizen [ hearUp, hearSide, tellDown, tellUp :=

hear_a_1_up, hear_a_1_side, hear_c_side, tell_a_1_up ]

module B_1 is Citizen [ hearUp, hearSide, tellDown, tellUp :=

hear_b_1_up, hear_b_1_side, hear_d_side, tell_b_1_up ]

module C is Citizen [ hearUp, hearSide, tellDown, tellUp := hear_cd, hear_c_side, desert_c, tell_c_up ]

module D is Citizen [ hearUp, hearSide, tellDown, tellUp := hear_cd, hear_d_side, desert_d, tell_d_up ]

module System is Master || P_1 || N_A || N_B || A_1 || B_1 || C || D

/* ---------------------------------------------------------------------- */

predicate NoResult is (result = DontKnow)

predicate NoNegativeResult is ( ( (result = DontKnow) & (result’ = DontKnow))

|( (result = Yes) & (result’ = Yes) ))

predicate ResultsInDontKnow is ~( (result = DontKnow) & (result = Yes) )

judgment falseJudge is System |= NoResult

judgment badJudge is System |= NoNegativeResult

judgment trueJudge is System |= ResultsInDontKnow
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