
B
R

IC
S

R
S

-00-17
T.S

.H
une:

M
odeling

a
Language

forE
m

bedded
S

ystem
s

in
T

im
ed

A
utom

ata

BRICS
Basic Research in Computer Science

Modeling a Language for
Embedded Systems in Timed Automata

Thomas S. Hune

BRICS Report Series RS-00-17

ISSN 0909-0878 August 2000

Copyright c© 2000, Thomas S. Hune.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/17/

Modeling a language for embedded

systems in timed automata?

Thomas Hune

BRICS??, Department of Computer Science
University of Aarhus, Denmark

baris@brics.dk

Abstract. We present a compositional method for translating real-time
programs into networks of timed automata. Programs are written in an
assembly like real-time language and translated into models supported
by the tool Uppaal. We have implemented the translation and give an
example of its application on a simple control program for a car. Some
properties of the behavior of the control program are verified using the
generated model.

1 Introduction

Reasoning about real-time systems can be very difficult and even
more so if they consist of several concurrent processes. Tools for for-
mal reasoning about such systems have been successfully developed
[LPY97,HHWT95,Yov97] and applied with in a number of cases (see
[LPY97,HHWT95,Yov97] for lists of case studies). Before applying
such tools one has to define an appropriate model of the system
in question. This can in many case be a time consuming and error
prone process. Methods and tools for defining such models based on
an (informal) description of the system or parts of the system are an
important help in the process of modeling.

One can divide models of embedded system into two groups. The
first consisting of systems where the control program (if any) and
the physical systems are mixed into one description (the water level
monitor and the leaking gas burner, see e.g. [ACH+95], are examples
of this). Systems in the second group have a clear distinction between

? This work is partially supported by the European Community Esprit-LTR Project
26270 VHS (Verification of Hybrid systems)

?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

the control program and the hardware/environment (some versions
of the train gate controller, e.g. the one in [Hen96], belong to this
group). Here we will consider systems belonging to the second group.
More precisely we will consider a method for modeling the control
programs of such systems.

We have defined and implemented a translation from control pro-
grams written in the RCX language to networks of timed automata
[LPY95] used by Uppaal [LPY97]. Such a translation allows easier
access to the verification power of a tool like Uppaal since the model
of the program comes for free. The implementation has been tested
on a number of programs and the properties of these programs have
been verified by Uppaal.

The programs we are considering, are written in a language called
the RCX language, which is an assembly like language with some
highlevel features. The RCX language runs on a processor in the
LEGO RCX brick which is part of LEGO MINDSTORMS
and LEGO ROBOLAB. The RCX brick is basically a (big)
LEGO brick with a computer inside. The brick has three input and
three output ports, a speaker and an infrared sender and receiver for
communication. Four different types of sensors are available for the
RCX brick: touch, light, temperature, and rotation. Programming
in the RCX language takes place on a PC where the programs are
translated into byte code and downloaded to the RCX for execu-
tion.

In Section 2 the RCX language is described in more detail and
an example of a control program for a car is given. Section 3 de-
scribes how RCX programs are executed especially with respect to
scheduling. The translation is described in Section 4. The correct-
ness of the translation is shortly discussed in Section 5 and and some
aspects of the implementation in Section 6. In Section 7 the example
is revisited and Section 8 contains a conclusion and ideas for future
work.

2 The RCX language

The language we are considering here is the RCX language run-
ning on the LEGO RCX brick. It is a kind of assembly language
but with some features from high level languages. The language is

2

mainly used as a target language for compilers form other languages
like the ones in MINDSTORMS and ROBOLAB. We have cho-
sen to look at the RCX language for several reasons. First of all, it
is a fairly simple language, but with most standard assembler opera-
tions. However, there is only one addressing mode making modeling
a lot simpler. Programs consists of a fixed number of tasks running
concurrently with a simple scheduling algorithm (see Section 3).

Even though the language is simple it can be used to write in-
teresting control programs. Since the RCX is part of LEGO one
can build physical embedded systems for the control programs. This
gives the opportunity of conducting experiments with complete em-
bedded systems, and to study the relationship between the behavior
of the complete embedded system and the formal model.

For these reasons we believe that the RCX language is suit-
able for a first try of defining an automatic translation from control
programs to formal models.

2.1 Program structure

A RCX program consists of a number of tasks. The number is re-
stricted to a maximum of ten tasks, numbered 0 to 9. There are other
restrictions imposed by the language, the most sever one being that
one can only use 32 integer variables for data (it is not possible to ad-
dress more). The body of a task is defined between BeginOfTask(i)

and EndOfTask(). During execution a task is either blocked or en-
abled, initially only task 0 is enabled. A task can be started by the
command StartTask(i) and blocked by StopTask(i). Whenever
StartTask(i) is executed, task i is restarted from the beginning
independent of the state of the task, so there is always at most one
copy of each task.

Next we will give a small example of a control program for a car,
and following that informally1 present the part of the language we
have considered. We present the instructions of the language in two
groups, one containing instructions for control of flow and one for
commands.

1 No formal semantics is available for the language. An informal description of the
language can be found in [LEG98]

3

2.2 Example

As an example we will look at a simple control program for a car
equipped with one touch sensor on each side of the front and one
motor on each side driving one wheel. At the front and the back
there is a ball instead of a wheel to make turning smoother. The car
is turned by the motors running in different directions. Figure 1 is a
sketch of the car. The control program consists of three tasks. Task 0

Sensor0

Sensor2

Motor0

Motor2

Fig. 1. Sketch of the car.

first sets up the sensors and starts the car. After having started the
car the task enters an infinite loop waiting for the reading from one
of the sensors to change from zero to one. The change of a sensor
reading from 0 to 1 will be considered an event which should be
handled. Depending on which of the two sensors changes, a task is
started to handle the event.

BeginOfTask(0)

SetFwd("02") # Setup the output ports(motors)

SetPower("02",2,4) # to forward and power 4

SetSensorType(0,1) # Setup the input ports

SetSensorMode(0,1,0) # to touch sensor,

SetSensorType(2,1) # boolean mode

SetSensorMode(2,1,0)

SetVar(0,2,0) # Var0:=0 (oldSensor0)

SetVar(2,2,0) # Var2:=0 (oldSensor2)

On("02") # Start the motors

Loop(2,0) # Begin the infinite loop

SetVar(3,9,0) # var3:=Sensor0

If(0,3,2,2,1) # If var3 = 1

If(0,0,3,2,1) # If var0 <> 1

4

StartTask(1) # Start task 1

SetVar(0,0,3) # Var0:=Var3

EndIf()

Else # Sensor0 was 0

SetVar(0,0,3) # Var0:=Var3

EndIf()

SetVar(4,9,2) # Var4:=Sensor2

If(0,4,2,2,1) # If var4 = 1

If(0,2,3,2,1) # If var2 <> 1

StartTask(2) # Start task 2

SetVar(2,0,4) # Var2:=Var4

EndIf()

Else # Sensor2 was 0

SetVar(2,0,4) # Var2:=Var4

EndIf()

EndLoop()

EndOfTask(0)

Task 1 and 2 are supposed to back the car a little and then turn
away from the obstacle. The only difference between the tasks is the
direction in which the car is turned, so only task 1 is shown.

BeginOfTask(1)

Off("02") # Stop the motors

SetRwd("02") # Set the motors to go backwards

On("02") # Start the motors

Wait(2,40) # Wait while the car goes backwards

SetFwd("0") # Make the car turn

Wait(2,30) # Wait while it is turning

SetFwd("2") # Go forward again

EndOfTask()

In line six of task 2 the argument for SetFwd is ‘‘2’’ and in line
eight it is ‘‘0’’.

2.3 Commands

The commands of the language can be divided into three categories.
There are commands for manipulating variables, for setting up the
sensors, and for controlling output.

5

The command for assignment is SetVar(i,j,k) where the num-
ber of the target variable (there are no symbolic names) is i ∈
{0, 1, . . . , 31}, j is the type of the source of the assignment and k
is the source. The most used sources (and the only ones we will
consider), are variables (where k is the number of the variable), con-
stants (where k is the value), sensor readings (where k ∈ {0, 1, 2} is
the number of the input port), and messages on the communication
port2 (where k does not have a meaning). All the commands for ma-
nipulating variables have this form, but the sensor reading and the
message can only be used in assignment. The other possible manip-
ulations are addition, subtraction, multiplication, division, bitwise
conjunction and bitwise disjunction.

Two commands for setting up the type of the sensors exists.
SetSensorType(i,j) specifies that input port i should be read as
a sensor of type j, j being one of the four types described previ-
ously. One can also set the type of readings from a sensor by the
SetSensorMode(i,j,k) command. Again i specifies which input
port is set, j is the type of input, e.g. a raw ten bit integer value, a
boolean or a percentage value. If boolean is chosen, k specifies how
the value is calculated.

There are two types of output ports. Three ports for motors or
lights (since we will concentrate on these, they will be called output
ports) and one for the speaker. The most basic commands for con-
trolling the output ports are On(li) and Off(li) where li is a list of
output ports. These simultaneously turn on respectively turn off the
ports specified by li. The commands SetFwd(li), SetRwd(li) and
AlterDir(li) can be used for changing the ‘direction’ of the output
of the ports specified by li. Finally, one can change the power of the
output from the ports by SetPower(li,j,k) where li specifies the
ports and j and k specifies the power in the same way as j and k
specifies a value in the commands for manipulating variables. The
value for the power can only be chosen in the range 0, 1, . . . , 8. For
using the speaker port the two commands, PlaySystemSound(i),
and PlayTone(i,j) are available. The first plays one of six prede-
fined sounds or beeps, and the second plays a tone with frequency i
for duration j, given in units of ten milliseconds.

2 This will always be the last message received.

6

2.4 Flow control

Two kinds of iterations exist in the language. Loop(j,k) loops the
number of times specified by j and k, where j is the type of the
source and k is the source. As source only variables and constants
can be used. If j and k specifies the constant zero, the loop is in-
finite. The other possibility is While(i,j,k,l,m) where k specifies
a comparison operator from the set {<, >, =, 6=}, and i,j and l,m
specifies the values to be compared. Here variables, constants and
sensor readings can be used.

An if statement with an optional else part, If(i,j,k,l,m) hav-
ing the same type of arguments as the while statement is also avail-
able.

Finally, one can block a task using the Wait(j,k) command.
Here j and k specifies the time for which the task will be blocked in
ten milliseconds units. This is the only ‘real-time’ command in the
sense that it refers directly to time.

3 Execution and scheduling

The RCX is running a small operating system with processes for
handling I/O and one process running an RCX interpreter. The
process running the interpreter has the lowest priority. Since (almost)
all the handling of I/O is periodic we assume that the interpreter
gets a fixed portion of the CPU time.

Initially all tasks but task 0 are blocked. Each enabled task ex-
ecutes one instruction and then leaves control to the next task in a
round robin fashion. One could imagine a number of other scheduling
policies for RCX and experimenting with this would be interesting.

A task context switch takes place between interpretation of in-
structions. We have made some experiments measuring the timing
of the execution of programs on the RCX. Based on these we have
concluded that the number of context switches does not depend on
the number of tasks in a program. In a program with only one task,
an instruction is interpreted approximately every 2 milliseconds.

The scheduling policy is very important when reasoning about
the behavior of programs. If we want to guarantee a given response
time of some action like pressing a touch sensor we must first of

7

all know how often the control program reads the input from the
sensor3. As one can imagine, the response time will depend on the
number of enabled tasks making it difficult to give precise bounds,
though upper bounds can be given. We will return to this question
in Section 7.

4 Modeling

The type of model we are using to model programs is networks of
timed automata extended with integer variables which is supported
by the tool Uppaal. Uppaal implements is a real-time model which
we find appropriate for our purpose. The only real-time feature in
the language (the wait command) could be handled by introducing a
kind of tick, but we find it more natural to introduce a clock variable
to model time. More importantly, we aim at modeling more than
control programs. We hope to use our models of control programs
together a with a model of the environment they are controlling and
time will be needed for describing this. We might need more general
constructions than clock variables to get a satisfactory model of the
environment. However, the tools we know of supporting more general
models does not seem to be mature enough yet.

A network of automata is a collection of automata running in
parallel and communicating by handshake. Channels are either in-
ternal, input, or output. Internal channels do not have a name, while
the other channels do. The names of input and output channels are
suffixed with ‘?’ or ‘!’ respectively. Communication takes place be-
tween one output channel and one input channel. Internal channels
do not synchronize. Figure 2 is an example of a network of two au-
tomata. Here the right automaton can communicate with the left
on the a channel. After communicating both automata are in state
S1 where the right automaton can send on channel c and the left
on channel b. If a communication on the b channel occurs nothing
more can happen, but if the c channel is used for communication
the right automaton has the possibility to move back to state S1,
using the internal channel. Here it can input on the b channel and

3 This of course also depends on how often the underlying operating system polls the
input ports but since we do not know this, we assume this is done ‘often enough’.

8

S0 S1

S2

S3

S0 S1

S2

S3

a?

b!

c?

a!

b?

c!

Fig. 2. A network of two automata

output on the c channel, but in this system, there is no automaton
to communicate with so the system is deadlocked.

Time is added in the standard way [AD90,AD94] by introducing
a number of real valued clock variables. In Figure 3 we have added
clock variables x and y to the automata. Initially both clock variables

S0 S1

S2

S3

S0 S1

S2

S3

x<2

y:=2

a?

y >= 4
b!

x:=0

c?

x>1
a!

x==3

b?

c!

x>4

Fig. 3. A network of two timed automata

have value zero and they progress at the same speed during the
execution. The a channel is enabled in the left automaton until two
time units have passed and in the right after one time unit has passed
from the beginning of the execution. After the communication has
taken place the value of the clock variable y is set to two. This
should give an idea how one can specify, when a channel is enabled
by adding guards to the channel and how one can reset the value
of clock variables. Only integer values are allowed in guards and
resettings.

In Uppaal one also has integer variables which do not change with
time but can be part of guards and assignments. On the right hand

9

side of assignments, expressions of the form E ::= V ar|Num|E OP E
where OP ∈ {+,−, ∗, /} can be used. We will make heavy use of this,
when modeling operations on variables in the language.

4.1 Structure of model

In our model of a program we will make one automaton for each task.
All channel names are suffixed with the name of the task (we will
assume that all instructions are from task 0 in the following figures
if nothing else is stated). This makes it possible for the scheduler,
also represented by one automaton, to control which task is allowed
to execute. All information concerning time spent on interpreting
instructions is handled by the scheduler.

Before we look at how single instructions are modeled, we have
to look at the modeling of I/O. Since we are modeling a program
and not a complete system our knowledge about the surroundings
is very limited. The program gets readings from sensors after A/D
conversion and some preprocessing but it cannot relate these read-
ings to the true values in the environment4. Therefore the reading
from a sensor is represented by an integer variable, named Sensori,
where i is the number of the sensor. This is all the program has
knowledge of. For output we do something similar. The status of
each output port is modeled by three integer variables Motor Pow,
Motor Dir and Motor On representing the power, the direction and
whether the port is turned on or not, respectively. The effect this has
on what is connected to the port is not modeled. For the port to the
speaker there is also three integer variables SystemSound, Frequency,
and Duration.

In the following subsections we will describe the transformation,
which is compositional, and hopefully it should be clear that imple-
menting this has been straightforward. In all the figures the state
named S0 is either the last state of the model of the previous in-
struction or the initial state of the automaton, if the instruction is
the first of the task.

4 Such readings might not make sense at all. If the programmer has specified that
sensor 1 is a touch sensor and someone plugs a light sensor to port 1, how should
the program relate such readings to the real values?

10

4.2 Commands

All the commands are modeled in a similar way by one channel and
one new state. The name of the channel is the name of the command.
The commands for setting up the sensors do not update any integer
variables since the type and mode of the sensors are not used in
the models we have defined so far. If needed, this may be included
later. For a command like On(‘‘02’’) the variables Motor On0 and
Motor On2 are set to 1 as shown in Figure 4. The other commands

S0 S1

Motor_On0:=1, Motor_On2:=1

OnT0!

Fig. 4. The model for the single command On(‘‘02’’).

for controlling the output ports are modeled similarly. Also the sound
commands for the speakers are handled in this way.

The commands handling variables are modeled in almost the
same way though here the type of the argument must be determined.
If the command is SetVar(23,2,0) we should assign the constant 0
to variable number 23 (remember that the second argument specifies
the type of the third argument, 2 means a constant). The command
SumVar(23,0,21) for adding variable number 21 to variable number
23 will have the assignment V ar23 := V ar23 + V ar21.

If we look at the sequence of commands like the first three com-
mands from task 1 of the example we get the automaton in Figure 5.
There is one channel for each command labelled with the name of the
command. Each channel updates the value of the variables specified
by the arguments of the command.

4.3 Flow control

When translating the instructions for flow control we need more that
one new channel and one new state. In the model of some of these
instructions there must be room for connecting models of the inner
parts of the instruction (like the body of a loop). For modeling a
loop statement like

11

InitLoc1 Loc1_T1 Loc2_T1

Loc3_T1

Motor_On0:=0, Motor_On2:=0

OffT1!

Motor_Dir0:=0, Motor_Dir2:=0

SetRwdT1!

Motor_On0:=1, Motor_On2:=1

OnT1!

Fig. 5. The model of the first three commands of task 1.

Loop(2,5)

.

.

EndLoop()

where .. is the body of the loop, we use four new states. Figure 6
shows the model of such a loop statement. In the example we have a

S0
S1 S2

S4

S3

5>0

LoopVar02:=5

LoopT0!

5<=0 EndLoopT0!

LoopVar02:=LoopVar02-1
EndLoopT0!

LoopVar02<=0 EndLoopT0!

LoopVar02>0

LoopT0!

Fig. 6. The model for a loop statement.

loop always running five times but the number of times can also be
specified by a variable. In the model this would mean changing the
constant 5 to the specified variable. The states S1 and S2 are the
initial and final state of the model of the body respectively. From
the state S0 we have two channels, one for entering the loop and one
for leaving it. Only one of these is enabled at a time. If the loop is

12

entered we assign the number of times the loop must be executed
to a new loop variable. Every time the end of the body is reached,
the loop variable is decremented and state S3 is entered. From S3
there is a channel leading to the beginning of the body and one to
S4. Again only one of the channels is enabled based on whether the
loop is finished or not. When the loop is finished state S4 is entered.
Decrementing the loop variable and testing it could of course have
been done in one step but in the implementation of the interpreter
this is interpreted as two instructions. This means that the task
needs to be scheduled twice to restart a loop.

The model of a while statement is very similar to that of a loop
though there is no need for a new variable. An example of a while
statement is

While(0,3,2,2,0)

.

.

EndWhile()

where the arguments means While Var3==0. Again .. is the body
of the while. In Figure 7 the model of the while statement can be
seen. As before the state S1 is the initial state of the body and S2

S0

S1 S2

S3
Var3==0

WhileT0!

Var3!=0 EndWhileT0!

EndWhileT0!

Fig. 7. The model for a while statement.

is the final state. From the state S0 we can move to the initial state
of the body if the condition of the while is satisfied and otherwise
the channel to the state S4 is enabled. Only one of these channels is
enabled. From the final state of the body there is a channel to the S0
state where the condition is tested again. As for the loop this could
have been done in one step (one channel) but the interpreter uses
two steps.

13

An if statement (without an else) like

If(0,3,2,2,0)

.

.

EndIf()

is modeled as in Figure 8. Again the initial state of the body is S1

S0

S1 S2
Var3==0

IfT0!

Var3!=0 EndIfT0!

Fig. 8. The model for an if statement.

and the final state of the body is S2. From the S0 state a channel
to S1 is enabled if the condition is satisfied. If this is not the case, a
channel to state S2 is enabled.

The model of an if-else statement follows the same idea, though
now there are two parts or bodies. A model of the if-else statement

If(0,3,2,2,0)

.

.

Else()

.

.

EndIf()

is shown in Figure 9. As in the model of the if statement there are
two channels from the S0 state. One with label IfT0 which is enabled
if the condition is satisfied and one labelled ElseT0 which is enabled
otherwise. The initial state of the model of the if part (the first . .)
is S1 and the final state is S2. From here there is an EndIf channel
to S4 which is the final state of the model for an if-else statement.
The initial state of the model of the else part (the second set of . .)
is S3 and the final state is S4.

14

S0

S1

S2

S3
S4

Var3==0

IfT0!

EndIfT0!

Var3!=0 ElseT0!

Fig. 9. The model for an if-else statement.

The wait statement is a little different from the others. This is the
only instruction in the language referring directly to time and also
the only part of the model of a task referring to time (represented
by a clock). The model of a wait instruction, see Figure 10, consists
of a channel from the S0 state to state S1 where a clock variable
xT0 is reset to zero, and a channel labelled SkipT0 from S1 to itself.
The SkipT0 channel is only used to synchronize with the scheduler

S1
xT0<=50

S2S0 xT0==50

SkipT0!

xT0:=0

WaitT0!

Fig. 10. The model for a wait statement.

without any time passing. There is also a channel without label from
S1 to S2. With this construction the scheduler does not need to keep
a list of tasks blocked by wait. The state S1 has an invariant forcing
the automaton to leave the state when the task is no longer blocked
by the wait. When the task is no longer blocked the channel to state
S2 is enabled. The channel from S1 to S2 is not enabled when the
task is blocked.

4.4 The scheduler

Applying the translation described so far we get an automaton for
each task modeling the execution of that task. To get a model of

15

the execution of the complete program we must combine the execu-
tions of the individual automata according to the scheduling policy
described in Section 3. We define one automaton controlling the
execution of the other automata (by synchronizing with these) im-
plementing the scheduling policy on the RCX.

When the StartTask(i) command is executed task number i is
restarted. Therefore we need a way of getting to the initial state of a
task from all the other states in the task. For this purpose we add a
channel labelled RSTi from all the states (including the initial state)
to the initial state. The scheduler also needs to realize when a task
has finished its execution, and hence we add a channel from the last
state to itself with label FinTi.

As mentioned the scheduler lets each task which is not blocked
execute one instruction in round robin. A task can be blocked if it has
not been started (initially only task 0 is started), if it has finished,
because of a StopTask statement, or because of a wait statement. In
the first three cases our model of the scheduler will skip the task but
in the case of the wait, the Skip channel with no delay will be used
for communication. This means that the scheduler does not need to
manage a list of tasks blocked by wait.

Our timing experiments suggest that the time spent on interpret-
ing the different commands is almost the same for all commands.
Since the time is almost independent on the parameters for the com-
mand we will not take this into account when modeling. The time
measured for interpreting an instruction is less that 0.2 milliseconds
which is less than the time spend on the context switch. In the model
we have chosen milliseconds as our basic time unit. Therefore we will
not model the time spent on interpreting each command but say that
interpreting one command from each task in the program takes one
millisecond, no matter how many tasks are enabled. The overhead
of instructions for all the tasks is two milliseconds, so interpreting
one instruction for all the tasks takes three milliseconds including
context sitches. This limits the precision of our model since we are
using three milliseconds steps. So the best guarantees we can give
using the model is within three milliseconds.

Figure 11 shows the structure of the scheduler for a program with
three tasks, where only task 0 can start the other tasks. The initial
state in the figure is the one with a ring inside. In Uppaal one can de-

16

InitState

chooseT0
step<=3

ChooseT1 ChooseT2

RunT0
step<=0

RunT1
step<=0

RunT2
step<=0

RSTaski

T0:=1,
T1:=0,
T2:=0

T0==1,
step==3
step:=0

T0==0, step==3

step:=0

turn==1

turn:=0

T1==1

turn==1

turn:=0

T1==0

T2==1

T2==0

turn==1 turn:=0

turn==0

turn:=1

StartTaskiT0?

turn==0
turn:=1

InstructionsT0?

turn==0
turn:=1

InstructionsT1?
turn==0
turn:=1
InstructionsT2?

turn==0

turn:=0,
T0:=0

FinT0?

turn==0

turn:=0,
T1:=0

FinT1?

turn==0 turn:=0,T2:=0FinT2?

Ti:=1

RSTi!

Fig. 11. Model of a scheduler.

fine a state to be committed which means that the automaton must
leave the state before any other action takes place. Especially, this
means that time cannot pass while an automaton is in a committed
state. Committed states are marked by a ‘C’ inside state. The com-
mitted states in the scheduler can be seen as a kind of control states
used for deciding who should be allowed to execute next.

For each task i there is an integer variable Ti taking values 0 or
1. If the task is enabled the value is 1, otherwise it is 0. The channel
from the initial state to ChooseT0 initializes these variables such
that only task 0 is enabled. When the scheduler is in state ChooseTi
the next task to execute according to the round robin schedule is
task i. If this task is enabled the scheduler can move to state RunTi
where it is possible to execute one instruction from the task. In case
the task is blocked the scheduler can move to test the next task. Since
all the ChooseTi states (except ChooseT0) are committed this does
not take any time.

17

In state RunTi the next instruction of task i can be executed.
The channel labelled InstructionsTi from RunTi to itself represents
a number of channels, one for each kind of instruction in task i. All
these channels have the same guard and assignment but different
labels. The clock step is used to synchronize the execution such that
each round through all the tasks takes three milliseconds. In state
ChooseT0 there is an invariant step ≤ 3 and guards on the outgoing
channels such that exactly three milliseconds must pass in this state.
In the RunTi state there is an invariant step ≤ 0 making sure that
time does not pass in these states. We have chosen not to make these
states committed because the environment should have the possibil-
ity of doing something. To make sure that a task only executes one
instruction each time it gets the control, the integer variable turn is
used. Depending on the value of turn it is possible to execute the
next instruction of the task or leave control for the next task. Chang-
ing the model slightly would allow for different instructions to take
a different amount of time. More instructions could be allowed by
changing the guards involving turn.

The StartTaskiT0 instructions is treated specially. This instruc-
tion executes as the other instructions but it must also restart task
i. Therefore the StartTaskiT0 channel ends in an intermediate state
RSTaski which is committed. From this state there is a channel
restarting task i and setting the variable Ti to one. After this con-
trol is back in the RunT0 state, as if a normal instruction had been
executed.

The scheduling policy on the RCX is very simple but with our
approach one can model more complicated policies. As mentioned
the number of instructions executed by each task could easily be
changed. One could also define a time slice instead of counting in-
structions. Modeling a scheduler with fixed priorities is also possible.
After a task finishes the scheduler should move control to the state
allowing the task with the highest priority to start. If this task is
enabled it will start, otherwise the other tasks should be checked
according to their priority until one can be started.

18

4.5 I/O

Handling of the I/O is not part of the model. We have modeled each
output port by three integer variables and the speaker port by three
integer variables as well. How fast the motor goes or what sounds
the speaker plays will not be part of our model, and the effects this
might have on the environment and thereby the inputs, will not be
modeled either. Note that this is important for modeling a complete
system, but based only on the program, we cannot hope to do this
automatically.

The input is not modeled either, though generating a simple
model of this letting the sensor reading behave arbitrarily would
be easy. Based on the sensor mode one can define an automaton
which at any time can assign any value in the range to the integer
variable representing the sensor reading. In most cases this can be
determined by a static analysis of the program. Programs can change
the sensor mode dynamically making such an analysis more difficult
to realize automatically.

We have defined these automata by hand for the experiments we
have made. In the example there are two touch sensors which can
give the reading zero or one. The simplest way of representing the
behavior of these two sensors is shown in Figure 12. This does not

S0
Sensor2:=0

Sensor2:=1

Sensor0:=0

Sensor0:=1

Fig. 12. Model of simple environment for two touch sensors.

place any restrictions on the readings from the sensors. If we had
knowledge of how often the underlying operating system is polling
the sensors, this would be a natural constraint to put on the channels.

19

5 Correctness

When addressing the correctness of the translation we must con-
sider two different aspects. The relationship between the input of a
program (values on the input ports) and the program variables and
values written to the output ports. In our case this also depends
on the scheduling of the processes. The second aspect is the timing
information of an execution and in the model.

No formal semantics of the RCX language is available but for
most of the commands the semantics is clear from the informal de-
scription given in [LEG98]. The few points which were not clear from
the description has been clarified by some simple experiments with
the language.

One could give a formal operational semantics to a task describ-
ing the output and changes of program variables with respect to old
program variables, old output, and input. Assuming functions Var,
In, and Out representing these environments, rules would have the
form

(Var, In, Out)
SetVar(3,0,5)−−−−−−−→ (Var[3 7→ Var(5)], In, Out)

With rules like this for all the instructions of the language, one can
for each instruction in the language prove that the translation de-
scribed in Section 4 satisfies these rules. Given a rule for sequential
composition it would be possible to prove correctness of the individ-
ual tasks with respect to the semantic given. Properties of a program
containing more than one task must be based on semantic rules tak-
ing the scheduling into account. If we disregard the Wait instruction
this could also be done without complicated modifications. If we also
want rules for the Wait instruction some notion of time is needed in
the semantic. Relating such a notion of time in the semantic to the
notion of time in Uppaal would be much harder than relating values
of variables.

Proving the translation of the individual tasks correct should
therefore be simple but tedious. Proving the scheduling of tasks with-
out the wait should also be possible though more challenging.

With respect to the timing of the execution it might be more
appropriate to talk about accuracy than correctness. Should we talk

20

about correctness we would need precise information about the op-
erating systems and the how much time is spend on handling I/O.
This might in the end depend on the input to the sensors. Also the
precision of the clock would have to be taken into consideration. For
these reasons we will talk about accuracy of the timing information.
There are two immediate problems with the timing information in
the model. First of all, the number of tasks enabled is not taken into
consideration when calculating the time spend interpreting the com-
mands. Secondly, time only passes in one state. In solving the second
problem we would have to solve the first as well. To solve this the
time unit would have to be changed, but this would enable models
with better precision in general. With the current information we
have on the timing of the execution of instructions, it does not make
much sense to to allow for specification with such a precision. Our
assumption about all commands taking the same time might not be
valid with such a fine grained measure of time. Much more precise
timing information would be needed for models and results obtained
from these models to be useful.

Therefore we have chosen to keep milliseconds as the basic time
unit and have the three milliseconds intervals when modeling the
execution. With this as basic time unit, we find that there is a good
correspondence between the timing specified in the model of a pro-
gram and the actual execution of the program. However, since there
is a small inaccuracy this can be added up during long executions.
One should of course be aware of this when modeling and proving
properties.

6 Implementation

From the description in Section 4 it should be clear that the transla-
tion can be implemented. We have made an implementation in ML
which translates a RCX program file to a file containing a textual
description of a network of timed automata (called xta format). The
xta format is the format Uppaal uses for describing automata. There
is no graphical information in the xta format but the newest version
of the graphical interface to Uppaal can read a file in xta format and
display the corresponding network of timed automata.

21

The program works in two phases. First the program file is parsed
and a data type for the program is built. This type looks as one would
expect with a statement being one of the instructions described in
Section 2 and the body of the control statements consisting of state-
ments.

The second phase is a recursive descent of the data type for the
program. Since our translation is compositional a statement can be
translated only knowing the last state of the model of the previous
statement.

Along the way through the data type one also needs to collect
the names of channels, clock variables, integer variables and states
since these must be defined in the xta file.

We have successfully tested the translation program on a number
of RCX programs.

7 Example revisited

We have used the translator to get a model of the control program
in Section 2.2. Figure 13 shows the automaton for task 0. The loop
testing the input from the sensors begins at state Loc9 T0, the chan-
nels before this state models the initialization. The state Loc23 T0
is the final state which is not reachable since the loop is infinite.
There are no restart channels in this model (except the one from the
initial state) because this task is never restarted.

The models of task 1 and 2 are very similar so we will only show
the model of task 1 (Figure 14). If one abstracts away from the
restart channels (the channels labelled RST1?) it should be easy to
follow the one path through the model. It should also be easy to see
that this models the commands in the task.

We will not show the model of the scheduler since this looks very
much like the model in Figure 11. The only difference being that the
InstructionsTi channel has been replaced with a number of channels
- one for each type of instruction in the task.

If we model the input from the sensors by the automaton in
Figure 12 and use this together with the automata for the tasks and
the scheduler we have a model of the complete system. We cannot
use this model to reason directly about the movements of the car.
What we can do, is reason about how the output ports react to

22

InitLoc0 Loc1_T0 Loc2_T0

Loc3_T0

Loc4_T0

Loc5_T0Loc6_T0Loc7_T0

Loc8_T0

Loc9_T0

Loc10_T0

Loc23_T0

Loc11_T0 Loc12_T0 Loc13_T0

Loc14_T0Loc15_T0Loc16_T0

Loc17_T0

Loc18_T0 Loc19_T0

Loc20_T0

Loc21_T0

Loc22_T0

RST0?

Motor_Dir0:=1,Motor_Dir2:=1

SetFwdT0!

Motor_Pow0:=4,Motor_Pow2:=4

SetPowerT0! SetSensorTypeT0!

SetSensorModeT0!

SetSensorTypeT0!SetSensorModeT0!

Var0 := 0

SetVarT0!

Var2 := 0

SetVarT0!

Motor_On0:=1,Motor_On2:=1

OnT0!

LoopT0!

Var3 := Sensor0

SetVarT0! Var3 == 1

IfT0!

Var3 != 1
EndIfT0!

Var0 != 1

IfT0!
Var0 == 1

EndIfT0!
StartTask1T0!

Var0 := Var3

SetVarT0!

Var0 := Var3

SetVarT0!

Var4 := Sensor2

SetVarT0!

Var4 == 1
IfT0!

Var2 != 1
IfT0!

Var2 == 1
EndIfT0! StartTask2T0!

Var2 := Var4

SetVarT0!

Var2 := Var4

SetVarT0!

LoopT0!

FinT0!

Var4 != 1

EndIfT0!

Fig. 13. Model of task 0.

input from the sensors. With this model we can first of all simulate
the behavior of the program. Given the very liberal model of the
environment we have defined, we can test how our program reacts
under any possible kind of input.

We can also answer some very basic questions about the program
such as whether it is possible for the output ports to be turned on
or whether it is possible for the output ports to be in reverse. This
is done by checking the formulas

E <> (Motor On0 == 1 and Motor On2 == 1)

and

E <> (Motor On0 == 1 and Motor On2 == 1 and

Motor Dir0 == 0 and Motor Dir2 == 0)

respectively. Both properties are satisfied and we get a trace leading
to a satisfying state.

We can also try to find out how fast the program will respond
when an input is read. This can not be done directly by writing one

23

InitLoc1

Loc1_T1 Loc2_T1

Loc3_T1

Loc4_T1
xT1<=100Loc5_T1

Loc6_T1

Loc7_T1 xT1<=100

Loc8_T1

Loc9_T1

RST1?

Motor_On0:=0,Motor_On2:=0
OffT1!

RST1?

Motor_Dir0:=0,Motor_Dir2:=0
SetRwdT1!

RST1?

Motor_On0:=1,Motor_On2:=1
OnT1!

RST1?

xT1 := 0
WaitT1!

SkipT1!xT1 == 100

RST1?
RST1?

Motor_Dir0:=1
SetFwdT1!

RST1?

xT1 := 0

WaitT1!

SkipT1!

xT1 == 100
RST1?

RST1?

Motor_Dir2:=1
SetFwdT1!

RST1?

FinT1!

Fig. 14. Model of task 1.

formula in Uppaal. Instead we have to make what is called a test
automaton. This is an automaton which only monitors the behavior
of the system. Figure 15 shows a test automaton for testing whether
the response time from sensor 0 has been read with value one by
task 0 and until task 1 responds is less than 16 milliseconds. Some

S0 S1 S2

xTest<=16

Error
loopstart?

Var3==1

xTest:=0urg?

xTest==16

RwdT1?

Fig. 15. A test automaton.

auxiliary channels are added to the model to synchronize with the
test automaton. Firstly, we will only consider the program after the
initialization is finished therefore the first channel. The channel urg
is only used to make the channel what is called an urgent channel.
An urgent channel is a special kind of channel which, when enabled,
must be executed without any time delay. This channel is enabled
when the program reads that the sensor has been pressed. If the
output ports are set in reverse before 16 milliseconds have passed we

24

enter the state S2 again and otherwise the Error state is entered.
All channels but the one to the error state are urgent. We can now
ask whether the Error state is reachable. If this is not the case the
response always arrives within 16 milliseconds. In this case the Error
state is not reachable but if 16 is changed to 15 then the Error state
is reachable. If we wanted to test the response time from the sensor
was touched we need a more complex test automaton taking into
account that the reading of the sensor in this model can be set to
one and then zero before the program reads it.

We might also want to verify that the output ports are set in
reverse direction and turned on for a given time when the sensor
reading changes to one. For this we need another model of the en-
vironment. When one of the readings change from zero to one the
output ports are set in reverse. While the output ports are in re-
verse the reading from the other sensor might also change from zero
to one. As a response to this the ports would be stopped. In general
we will have to define a more precise model of the sensor readings
if we want to prove more involved properties about our program or
the movement of the car itself.

8 Conclusion

We have presented a method for translating RCX programs to net-
works of timed automata in a format readable by Uppaal. Applying
this translation gives the possibility of reasoning formally about the
behavior of the program using Uppaal. The translation have been
implemented and tested on a number of examples with success.

Even though the method described here is specific to the RCX
language, we believe that the principles can be carried over to most
other assembly like (real-time) languages. There is a number of
things one should take into consideration before trying to do this.
Modeling other addressing forms like indirect addressing will be a
lot more involved though it can be done. A detailed knowledge of
the execution of programs or a formal semantics is needed for the
model to make sense. If one wants to prove strong timing bounds
for programs, precise timing information of the instructions will be
needed in the model.

25

Exploring how good a relationship we can get between the behav-
ior defined by timed automata and the behavior of LEGO systems
will be interesting. We cannot model the behavior of the physical
system completely but we hope to be able to model it in such a way,
that it makes sense to relate a number of properties of the formal
model to the real system. In doing this we will have to define more
detailed models of the environment.

Acknowledgements We would like to thank Michael Andersen
from LEGO for useful comments on the RCX.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138:pages:3–34, 1995.

[AD90] R. Alur and D.L. Dill. Automata for modeling real-time systems. Proc. of
ICALP’90, LNCS 433:pages 322–335, 1990.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126, 1994.

[Hen96] T. A. Henzinger. The theory of hybrid automata. Proc. of LICS’96, 1996.
[HHWT95] T. A. Henzinger, P.H. Ho, and H. Wong-Toi. A users guide to HYTECH.

Proc. of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), LNCS 1019, 1995.

[LEG98] LEGO. Software developers kit, November 1998. See
http://www.legomindstorms.com/.

[LPY95] K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time sys-
tems. In Proceedings of the 10th International Conference on Fundamentals
of Computation Theory, LNCS 965:pages 62–88, 1995.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. In Springer
International Journal of Software Tools for Technology Transfer, 1(1+2),
1997.

[Yov97] S. Yovine. Kronos: A verification tool for real-time systems. In Springer
International Journal of Software Tools for Technology Transfer, Vol. 1,
October 1997.

26

Recent BRICS Report Series Publications

RS-00-17 Thomas S. Hune. Modeling a Language for Embedded Sys-
tems in Timed Automata. August 2000. 26 pp. Earlier version
entitled Modelling a Real-Time Languageappeared in Gnesi
and Latella, editors, Fourth International ERCIM Workshop
on Formal Methods for Industrial Critical Systems, FMICS ’99
Proceedings of the FLoC Workshop, 1999, pages 259–282.

RS-00-16 Jǐr ı́ Srba. Complexity of Weak Bisimilarity and Regularity for
BPA and BPP. June 2000. 20 pp. To appear in Aceto and Vic-
tor, editors, Expressiveness in Concurrency: Fifth International
Workshop EXPRESS ’00 Proceedings, ENTCS, 2000.

RS-00-15 Daniel Damian and Olivier Danvy.Syntactic Accidents in Pro-
gram Analysis: On the Impact of the CPS Transformation. June
2000. Extended version of an article to appear inProceedings
of the fifth ACM SIGPLAN International Conference on Func-
tional Programming, 2000.

RS-00-14 Ronald Cramer, Ivan B. Damg̊ard, and Jesper Buus Nielsen.
Multiparty Computation from Threshold Homomorphic Encryp-
tion. June 2000. ii+38 pp.

RS-00-13 Onďrej Kl ı́ma and Jiř ı́ Srba. Matching Modulo Associativity
and Idempotency is NP-Complete. June 2000. 19 pp. To appear
in Mathematical Foundations of Computer Science: 25th Inter-
national Symposium, MFCS ’00 Proceedings, LNCS, 2000.

RS-00-12 Ulrich Kohlenbach.Intuitionistic Choice and Restricted Classi-
cal Logic. May 2000. 9 pp.

RS-00-11 Jakob Pagter. On Ajtai’s Lower Bound Technique forR-way
Branching Programs and the Hamming Distance Problem. May
2000. 18 pp.

RS-00-10 Stefan Dantchev and Søren Riis.A Tough Nut for Tree Resolu-
tion. May 2000. 13 pp.

RS-00-9 Ulrich Kohlenbach. Effective Uniform Bounds on the
Krasnoselski-Mann Iteration. May 2000. 34 pp.

RS-00-8 Nabil H. Mustafa and Aleksandar Pekěc. Democratic Consen-
sus and the Local Majority Rule. May 2000. 38 pp.

