
B
R

IC
S

D
S

-96-4
T.B

raüner:
A

n
A

xiom
atic

A
pproach

to
A

dequacy

BRICS
Basic Research in Computer Science

An Axiomatic Approach to Adequacy

Torben Braüner

BRICS Dissertation Series DS-96-4

ISSN 1396-7002 November 1996

Copyright c
 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Dissertation Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/

ftp://ftp.brics.dk/pub/BRICS

An Axiomatic Approach to Adequacy

Torben Bra�uner

Ph.D. Dissertation

Department of Computer Science

University of Aarhus

Denmark

An Axiomatic Approach to Adequacy

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Ful�lment of the Requirements for the

Ph.D. Degree

by
Torben Bra�uner

July 1996

To Anne and Sara

Abstract

This thesis studies adequacy for PCF-like languages in a general categorical framework. An
adequacy result relates the denotational semantics of a program to its operational semantics; it
typically states that a program terminates whenever the interpretation is non-bottom. The main
concern is to generalise to a linear version of PCF, called LPCF, the adequacy results known
for standard PCF, keeping in mind that there exists a Girard translation from PCF to LPCF
with respect to which the new constructs should be sound. General adequacy results have usually
been obtained in order-enriched categories, that is, categories where all hom-sets are typically
cpos, maps are assumed to be continuous and �xpoints are interpreted using least upper bounds.
One of the main contributions of the thesis is to propose a completely di�erent approach to the
problem of axiomatising those categories which yield adequate semantics for PCF and LPCF. The
starting point is that the only unavoidable assumption for dealing with adequacy is the existence,
in any object, of a particular "unde�ned" point denoting the non-terminating computation of the
corresponding type; hom-sets are pointed sets, and this is the only required structure. In such
a category of pointed objects, there is a way of axiomatising �xpoint operators: They are maps
satisfying certain equational axioms, and furthermore, satisfying a very natural non-equational
axiom called rational openness. It is shown that this axiom is su�cient, and in a precise sense
necessary, for adequacy. The idea is developed in the intuitionistic case (standard PCF) as well
as in the linear case (LPCF), which is obtained by augmenting a Curry-Howard interpretation
of Intuitionistic Linear Logic with numerals and �xpoint constants, appropriate for the linear
context. Using instantiations to concrete models of the general adequacy results, various purely
syntactic properties of LPCF are proved to hold.

7

Acknowledgements

I am grateful to my supervisor, Glynn Winskel, for guidance and support. In particular, I thank
him for encouragement at a critical time. Also thanks to Glynn for giving me freedom to pursue
my own research interests.

Thanks to Doug Gurr for helping get me started. I have bene�ted greatly from conversations
with Samson Abramsky, Gavin Bierman, Gian Luca Cattani, Marcelo Fiore, Claudio Hermida,
Martin Hyland, Fran�cois Lamarche, S�ren B�gh Lassen, Guy McCusker, Valeria de Paiva, Andy
Pitts, Gordon Plotkin, John Power, Alex Simpson and Sergei Soloviev. I am grateful to Gavin,
Valeria and Andy for hospitality whenever I visited Cambridge. Thanks to Marcelo for his hospi-
tality during my Edinburgh visit.

I would also like to thank my evaluation commitee - Thomas Ehrhard, Mogens Nielsen and
Valeria de Paiva - for useful comments and suggestions. These are taken into account in this, the
�nal version of the dissertation.

Thanks to Lars Arge and Allan Cheng for assistance with some typographical matters. The
diagrams and proof-rules are produced using Paul Taylor's macros.

I would like to acknowledge the �nancial support of BRICS1 and Aarhus University Research
Foundation in the form of studentships. The CLICS project has contributed towards travel ex-
penses on several occasions.

I am most thankful for the love and support of my wife Anne and for the shared joy of our
daughter Sara.

1Basic Research in Computer Science, Centre of the Danish National Research Foundation.

9

Contents

Abstract 7

Acknowledgements 9

1 Introduction 13

1.1 Chronology . 13

1.2 Denotational Semantics of PCF . 13

1.3 An Axiomatic Approach to Adequacy . 16

1.4 Introduction to LPCF . 17

1.5 Overview of the Thesis . 19

1.6 Prerequisites and Notation . 21

2 The Semantic Picture 23

2.1 Monoidal Categories . 23

2.2 The Model for Intuitionistic Linear Logic . 26

2.3 The Category of Coalgebras . 28

2.4 The Kleisli Category . 31

2.5 Categories of Cpos . 32

2.6 Categories of dI-Domains . 35

3 The �-Calculus 41

3.1 Intuitionistic Logic . 41

3.2 Syntax of the �-Calculus . 43

3.3 The Curry-Howard Isomorphism . 46

3.4 Categorical Semantics . 46

4 The Linear �-Calculus 51

4.1 Intuitionistic Linear Logic . 51

4.2 A Digression - Russell's Paradox and Linear Logic 56

4.3 Syntax of the Linear �-Calculus . 58

4.4 The Curry-Howard Isomorphism . 61

4.5 Categorical Semantics . 63

4.6 The Generalised Linear �-Calculus - Syntax . 66

4.7 The Generalised Linear �-Calculus - Semantics . 69

5 The Girard Translation 73

5.1 Syntax . 73

5.2 Soundness . 76

11

12 CONTENTS

6 PCF - Semantic Issues 81

6.1 Unde�nedness . 81
6.2 Numerals . 82
6.3 Fixpoints . 83
6.4 The Observational Preorder . 86
6.5 Rationality . 88

7 The Programming Language PCF 93

7.1 Syntax and Operational Semantics . 93
7.2 Categorical Semantics . 97
7.3 Adequacy . 99
7.4 Observable Types . 105
7.5 Unwinding . 106
7.6 A Digression - Syntactic Rational Openness . 107

8 LPCF - Semantic Issues 109

8.1 Unde�nedness . 109
8.2 Linear Numerals . 111
8.3 Linear Fixpoints . 112
8.4 Linear Rationality . 116

9 The Programming Language LPCF 123

9.1 Syntax . 123
9.2 Eager Operational Semantics . 126
9.3 Lazy Operational Semantics . 128
9.4 Categorical Semantics . 130
9.5 Generalised LPCF - Syntax . 133
9.6 Generalised LPCF - Semantics . 135
9.7 Eager Adequacy . 136
9.8 Lazy Adequacy . 147
9.9 Observable Types . 152
9.10 Unwinding . 153

10 Extension of the Girard Translation 155

10.1 Syntax . 155
10.2 Soundness . 156
10.3 Relating Operational Semantics . 159

11 Further Work 161

Bibliography 162

Index 166

Chapter 1

Introduction

This �rst chapter contains an introduction to the thesis. In Section 1.1 we give a short chrono-
logical account of the work to be presented. Section 1.2 introduces the traditional order-theoretic
approach to denotational semantics of the programming language PCF, and in Section 1.3 the
problem of giving an adequate denotational semantics is considered from an axiomatic point of
view. In Section 1.4 the programming language LPCF, which is a linear version of PCF, is in-
troduced and given an adequate categorical semantics. In Section 1.5 we give an overview of the
thesis, and �nally, in Section 1.6 prerequisites and notation are discussed.

1.1 Chronology

Historically, this thesis grew out of an attempt to give a denotational semantics to a programming
language based on a Curry-Howard interpretation of Intuitionistic Linear Logic augmented with
numerals and recursion. After �xing the term language for Intuitionistic Linear Logic, a �xpoint
constant appropriate for the linear context was added. Numerals were introduced later on. Con-
siderations in concrete categories of cpos and dI-domains turned out to be very instructive in the
development from Intuitionistic Linear Logic, considered as a pure logic, to what was to become
the programming language LPCF (Linear Programming language for Computable Functions).
This is witnessed by [Bra94a]. Proving adequacy for interpretations in the concrete categories did,
however, turn out to be cumbersome, which initiated a search for general categorical adequacy

results where only relevant properties of a model are taken into account.
Now, PCF (Programming language for Computable Functions) is a programming language

based on a Curry-Howard interpretation of Intuitionistic Logic, namely the well-known typed
�-calculus, augmented with numerals and recursion. It turns out that there are close connections
between (a categorical model for) LPCF and (a categorical model for) PCF via an extension of
the Girard Translation as shown in [Bra95a]. Given the connection between LPCF and PCF, it
seemed appropriate to sort out proper categorical axioms for the simpler language of PCF before
dealing with LPCF. A crucial step in this respect was to leave out the order-structure motivated
by the point of view that partiality is the fundamental notion from which order-structure is to be
derived. These considerations led to the results of [Bra97b].

After giving proper axioms for an adequate categorical semantics of PCF, we were �nally in
position to deal with LPCF. As to be expected there are close connections between axioms for
adequacy on a categorical model for PCF and axioms for adequacy on a categorical model for
LPCF. An adequate categorical semantics of LPCF is given in [Bra97a].

1.2 Denotational Semantics of PCF

This section introduces the traditional order-theoretic approach to denotational semantics of PCF.
The reader not acquainted with the formal de�nition of PCF is advised to browse through Sec-

13

14 CHAPTER 1. INTRODUCTION

tion 7.1 before continued reading.

A characterising feature of denotational semantics of programming languages is that the piece
of text constituting a computer program is considered to denote an appropriate mathematical
object. This is witnessed by a distinction between the formal language in which the program is
written, and the mathematical universe in which the denoted object exists, that is, a distinction
between syntax and semantics. The notion of a distinction between syntax and semantics is
inherited from logic and its history goes back at least as long as to the work of Frege, [Fre92].

In the area of programming languages, the notion of a distinction between syntax (a program)
and semantics (an appropriate mathematical object denoted by the program) can be tracked to the
until recently unpublished manuscript [Sco69] where Scott introduced PCF; inspired by the work
of Strachey translating programming languages into the untyped �-calculus (see the introduction
to [Sto77]). This is the historical origin of denotational semantics of programming languages. The
manuscript remained unpublished, but widely circulated, until it appeared in [Sco93]. The formal
system of PCF consists of the typed �-calculus augmented with booleans and numerals together
with recursion where the usual reduction rules are replaced by a lazy operational semantics. It is
similar to G�odel's System T, [G�od58, GLT89] which, however, deals with primitive recursive func-
tions, whereas PCF deals with computable functions in general. The original presentation of PCF
has exponential types and two ground types, namely types for numerals and booleans; however,
we shall instead consider a version with only one ground type, namely a type for numerals. It is
straightforward to represent booleans by numerals, so this does not make an essential di�erence.
Later on we shall add product and sum types to the picture, but for now we will consider only
exponential types and the type for numerals.

Now, Scott's pioneering idea was to interpret types of PCF as cpos and terms as continuous
functions. A cpo1 is a poset containing a bottom element ? where every increasing chain fxigi2!
has a least upper bound ti2!xi, and a continuous function f is a monotone function that preserves
the least upper bound of any increasing chain fxigi2!, that is, we have

f(
G
i2!

xi) =
G
i2!

f(xi):

The type for numerals N is then interpreted as ! with a bottom element adjoined. An exponential
type A) B is interpreted as the set [[A]]) [[B]] of continuous functions from the interpretation
[[A]] of A to the interpretation [[B]] of B equipped with the extensional order. The extensional
order is de�ned as f v g i�

8x 2 A: f(x) v g(x)

for any continuous functions f; g : A ! B. This amounts to exponential types being interpreted
as categorical exponentials in the model, that is, in the category of cpos and continuous functions.
The justi�cation for the interpretation of the numerals type is to consider elements of ! as \values"
and the bottom element as \unde�ned". This corresponds to the possibilities when evaluating a
program2 of numerals type: It either terminates with a numeral as the outcome, or it does not
terminate. When interpreting exponential types we simply have f v g i� the function g is more
de�ned than the function f in the sense that whenever f is de�ned having a certain value, then g

is also de�ned having the same value. In [Plo77] it was shown that termination of a program of
numerals type actually corresponds to the interpretation being non-bottom, that is, we have

[[t]] 6=? , t +

for every program t of numerals type. In that setting a semantics with such a property is called
adequate. The adequacy result thus expresses that the syntactic notion of termination coincides
with the semantic notion of de�nedness.

1Later on we shall consider a notion of cpos and continuous functions where increasing chains are replaced by
directed sets, but this di�erence is not essential for the work presented here.

2A closed term is called a program. This convention is not followed by all authors.

1.2. DENOTATIONAL SEMANTICS OF PCF 15

Now, the paper [Plo77] did not only deal with adequacy, it also introduced the notion of full
abstraction. To consider this notion, we need to de�ne the contextual preorder on programs: For
every pair u and v of programs of type A we de�ne u .A v i�

t[u=z] +) t[v=z] +

for every term t of numerals type with one free variable z of type A. An order-theoretic semantics
of PCF is called fully abstract i�

[[u]] v [[v]] , u . v:

for any pair u and v of programs of the same type. It is straightforward to show that adequacy
is equivalent to the) direction. The (direction is, however, not satis�ed by the cpo semantics
given by Scott. The problem is the existence of programs, say u and v, that are indistinguishable
by the contextual preorder, but have di�erent interpretation. This has to do with the inherently
sequential behaviour of PCF and at the same time the ability to de�ne functions with a \parallel"
character in the model: The programs u and v denote functions that can only be distinguished by
applying them to the famous \parallel-or" function, which is not de�nable in PCF. Let B denote
the poset obtained by adjoining a bottom element to the set of truth values fTrue; Falseg; the
parallel-or function

por : B �B ! B

is then de�ned to be the unique monotone extension of the usual disjunction function

_ : fTrue; Falseg � fTrue; Falseg ! fTrue; Falseg

such that por(True;?) = True and por(?; T rue) = True.
The obstacle to full abstraction created by the parallel-or function led to the discovery of

dI-domains and stable functions, [Ber78]. The idea is to interpret types of PCF as dI-domains
and terms as stable continuous functions with the aim of removing the parallel-or function. A
dI-domain is a non-empty poset where every �nitely compatible subset X has a least upper bound
tX, and furthermore, the poset has to be prime algebraic3, that is, every element is the least
upper bound of the prime elements below it, and the poset has to be �nitary, that is, the set of
elements below a �nite element constitutes a �nite set. A stable function f is a monotone function
that preserves the greatest lower bound of any �nitely compatible subset X, that is, we have
f(uX) = uf(X), and a continuous function f between dI-domains is a monotone function that
preserves the least upper bound of any directed subset X, that is, we have f(tX) = tf(X). The
type for numerals N is then interpreted as ! with a bottom element adjoined; this is the same as
with the cpo semantics. But the dI-domain semantics di�ers from the cpo semantics with respect
to an exponential type A) B which is interpreted as the set [[A]]) [[B]] of stable continuous
functions from [[A]] to [[B]] equipped with the stable order. The stable order is de�ned as f v g i�

8x; y 2 A: x v y) f(x) = f(y) u g(x)

for any stable continuous functions f; g : A ! B. This amounts to exponential types being
interpreted as categorical exponentials in the model, that is, in the category of dI-domains and
stable continuous functions. Note that the stable order is included in the extensional order. When
interpreting exponential types we have f v g i� the behaviour of the function f is a part of the
behaviour of the function g in a sense which will be made precise in Section 2.6 using the notion
of trace. The dI-domain semantics does indeed rule out the parallel-or function; this can be seen
by considering the compatible elements (True;?) and (?; T rue) from the domain of por, but it
turns out that it is not fully abstract itself.

Recently, a fully abstract model for PCF has been discovered outside traditional order-theoretic
domain theory, namely in the realm of games, [AJM96, HO96, Nic94]. The order of the gamemodel
coincides with the stable order of [Ber78] which corroborates the point of view that the dI-domain

3The original de�nition in [Ber78] has distributivity, that is, xu (y t z) = (xu y)t (xu z) whenever y and z are
compatible, instead of prime algebraicity, but in [Win87] it is shown that the two de�nitions are equivalent.

16 CHAPTER 1. INTRODUCTION

semantics is a major step towards full abstraction. In this thesis we are concerned with adequacy
rather than full abstraction, so we will consider the above mentioned categories of cpos and dI-
domains as primary examples of concrete models of PCF and thus leave game semantics to further
work - see Chapter 11.

1.3 An Axiomatic Approach to Adequacy

This section introduces the axiomatic approach to a denotational semantics of PCF which will be
dealt with in details in Chapter 6. We impose appropriate axioms on a categorical model with
the aim of proving an adequacy result. We follow Scott's idea in assuming the presence of certain
\unde�ned" maps with the role of being the interpretation of non-terminating terms, but the order-
structure is left out motivated by the point of view that partiality is the fundamental notion from
which order-structure should be derived (which is in accordance with [Fio94b]). This is di�erent
from previous approaches where some kind of order-theoretic structure has been considered to be
part of an adequate categorical model for PCF. For example, in [BCL86] cpo-enrichment is taken
to be part of a categorical model; this means that every hom-set is equipped with a cpo structure
such that composition is continuous. In [AJM96] this is replaced by rationality, which means that
the categorical model in question is poset-enriched such that each poset has a bottom element,
and moreover, every increasing chain of the form f?; fngn2! for some endofunction f is assumed
to have a least upper bound which is preserved by composition (note that we write composition
as g;h rather than h � g). Our motivation for adhering to the point of view that partiality is the
fundamental notion from which order-structure should be derived is that no order-theoretic notions
are used in the formal de�nition of PCF, but an appropriate order-structure is indeed derivable,
namely the observational preorder on terms. Moreover, the point of view is corroborated by the
observation that our categorical model (to be introduced below) induces a poset-enrichment in a
canonical way, and, under appropriate circumstances, even rationality; this is with respect to the
observational preorders on hom-sets quotiented down to posets.

Historically, the axioms of our categorical model were discovered essentially by extracting the
properties of the order-structure of a rational category, and a cpo-enriched category as well, which
are actually used to obtain an adequacy result. The order-structure is used to de�ne �xpoints such
that for any endomap f the chain of �nite approximants f?; fngn2! actually approximates the
�xpoint f] in an appropriate sense. So rather than assume the presence of an order-structure, we
axiomatise what is actually needed; namely �xpoints which are approximated by their (formal)
�nite approximants in an appropriate sense stated in non-order-theoretic terms. The starting
point of our axiomatisation is a cartesian closed category where for each object B we assume
the presence of an \unde�ned" map ?B: 1 ! B together with a �xpoint operator, that is, an
operation which to a map f : B ! B assigns a map f] : 1 ! B such that f] = f]; f . We also
assume the presence of an object N together with appropriate maps for dealing with numerals.
The categorical axioms consist of a couple of equational (that is, �rst order) ones together with
one non-equational, namely the axiom of rational openness on each �xpoint operator. A �xpoint
operator is rationally open with respect to an object P i� for all maps f : B ! B and g : B ! P

it is the case that
f]; g 6=?) 9n 2 !: ?; fn; g 6=? :

Thus, the hidden essential property of an order-theoretic model has been revealed: De�nedness of
an expression is determined by the (formal) �nite approximants to the involved �xpoints.

Having �xed an appropriate categorical model it is proved that the categorical semantics is
adequate4 in the sense that we have

[[t]] 6=?) t +

for every program t. If the program t is of numerals type, then we actually have a converse to
adequacy. A type where this happens to be the case is called observable, that is, a type B is
observable i� t +) [[t]] 6=? for every program t of type B.

4This is stronger than the original notion of adequacy which only takes ground types into account.

1.4. INTRODUCTION TO LPCF 17

It is possible to restrict the axiom of rational openness such that it is not only su�cient,
but also necessary for the interpretation to be adequate. What is done, is essentially to restrict
rational openness to maps de�nable in PCF. The \necessary" direction of this result relies on the
unwinding theorem, which is a purely syntactic result saying that if t is a term of observable type
with one free variable z of type (A) A)) A then

t[Y=z] + , 9n 2 !: t[Yn=z] +

where the terms YnA are the �nite approximants to the �xpoint constant YA de�ned by the stipu-
lations

Y0 =

Yn+1 = �f:f(Ynf)

The unwinding theorem is intuitively clear: A �xpoint constant in a terminating program could
possibly only be unwinded a �nite number of times. We will prove the theorem using an instance
of the adequacy result in the concrete category of cpos and continuous functions.

Very recently, there has been considerable progress in axiomatising su�cient conditions for
obtaining full abstraction for PCF, [Abr96]. The intuitions leading to this work stem from the
theory of games rather than from traditional order-theoretic domain theory, but rational openness
is, however, recognised5 as the essential notion for an axiomatic approach to adequacy.

Now, the numerals type is observable, but we cannot expect that to be the case for exponential
types because the bottom elements here do not correspond to non-termination in general; for
example, the terminating term �x:
 is interpreted as bottom. We stress that what we do in this
thesis is consider the question of adequacy in the situation where exponential types are interpreted
as categorical exponentials in the model. But it should be mentioned that it is possible to dodge
the impossibility of obtaining a converse to adequacy at exponential types by introducing a monad
(�)? with appropriate properties and then interpret types in a way that re
ects the evaluation
strategy following the ideas put forward in [Mog89]. For example, if the evaluation strategy is
eager, then the type A) B is interpreted as [[A]]) [[B]]? and terms are interpreted as maps in
the Kleisli category induced by the monad. This is the approach taken in [Gun92, Win93] where
PCF-like languages are interpreted in the category of cpos and continuous functions using the
usual \lift" monad. The use of a monad to give an adequate interpretation with the property that
the adequacy result has a converse at all types is implicit in [FP94, Fio94a] where a categorical
semantics is given for FPC, which is the �-calculus augmented with recursive types and equipped
with an operational semantics. The starting point is a categorical notion of partial maps put
forward in [Mog86, Ros86] together with cpo-enrichment. A comparison with our approach shows
that they obtain a stronger result, namely an adequacy result which has a converse at all types,
at the expense of having to use a more technically involved categorical notion of partial maps;
and moreover, they take partiality as well as order as primitive notions, whereas we only take
a notion of partiality as primitive. We shall not follow the monad-track here; in Chapter 9 we
shall indeed consider the question of adequacy for a linear version of PCF, namely LPCF, where
it turns out that the lift functor is not a monad on any of the canonical concrete models of cpos
and dI-domains, and moreover, there does not seem to be any other appropriate monads around.

1.4 Introduction to LPCF

This section introduces the programming language LPCF together with an adequate categorical
interpretation. This issue will be dealt with in details in Chapter 9.

LPCF is a programming language based on a Curry-Howard interpretation of Intuitionistic
Linear Logic, the linear �-calculus, in the same way as PCF is based on a Curry-Howard interpre-
tation of Intuitionistic Logic, the well-known �-calculus. The purpose of LPCF is to give a linear
account of computable functions.

5With due reference to [Bra97b].

18 CHAPTER 1. INTRODUCTION

Now, the fundamental idea of Linear Logic is to control the use of resources, which is witnessed
by the absence of contraction and weakening

�; A;A;��B

�; A;��B

�;��B

�; A;��B

This prevents us from considering the context � of a sequent ��B as a set of formulae, but we
have to consider it as a multiset of formulae instead. For the Curry-Howard interpretation of
Intuitionistic Linear Logic, the linear �-calculus, this has the consequence that every free variable
of a typeable term occurs exactly once6. A restricted form of contraction and weakening is,
however, available by having the proof-rules

�; !A; !A;��B

�; !A;��B

�;��B

�; !A;��B

explicitly as part of Intuitionistic Linear Logic. A proof of !A amounts to having a proof of A that
can be used an arbitrary number of times. It follows that the linear �-calculus has the operations
of copying and discarding explicitly built into the syntax.

The programming language LPCF consists of the linear �-calculus augmented with numerals
and recursion, appropriate for the linear context, where the reduction rules induced by the Curry-
Howard isomorphism are replaced by an operational semantics. It turns out that eager as well as
lazy evaluation rules for terms of certain types behave properly with respect to an appropriate
categorical model; for terms of other types the categorical model motivates a certain choice of
evaluation rules. We shall consider an eager as well as a lazy operational semantics. The eager
operational semantics is eager in the sense that we take the evaluation strategy used in each
particular evaluation rule to be eager whenever there is a choice, etc. In most cases the evaluation
rules of the eager operational semantics coincides with the ones given in [Abr90]; however, it is
the case that the evaluation rules involving terms of ! types are di�erent, which is dictated by the
categorical model. Also the way of introducing recursion in LPCF is motivated by interpretation
in an appropriate categorical model: The interpretation of (the evaluation rule for) the linear
�xpoint constant of LPCF corresponds to the interpretation of (the evaluation rule for) the �xpoint
constant of PCF in the induced Kleisli category.

After having introduced the programming language LPCF we will give it a categorical seman-
tics. The starting point is the categorical model for Intuitionistic Linear Logic given in [BBdPH92b]
called a linear category, where for each object B we assume the presence of a map ?B: I ! B

together with a linear �xpoint operator, that is, an operation which to a map f :!B ! B assigns
a map f] : I ! B such that f] =
(f]); f . It is assumed that all maps are strict, that is, we have
?A; g =?B for any map g : A ! B. We also assume the presence of an object N together with
appropriate maps for dealing with numerals. A linear �xpoint operator corresponds to a �xpoint
operator in the Kleisli category induced by the ! comonad of the linear category, which enables
us to import the notion of rational openness to the linear setting. Two concrete linear categories
satisfying the axioms of the categorical model are given, namely the category of cpos and strict
continuous functions, and the category of dI-domains and linear stable functions. In [HP90] it is
shown that a cartesian closed category with �nite sums and �xpoint operators is inconsistent, that
is, it is equivalent to the category consisting of one object and one map. But both of the above
mentioned concrete linear categories of cpos and dI-domains have �nite sums and linear �xpoint
operators; so the presence of linear �xpoint operators in a linear category is consistent with the
presence of �nite sums. Thus, the inconsistency of recursion with this standard construct vanishes
when we go to a linear context, which is in accordance with [Plo93].

Having �xed an appropriate categorical model for LPCF it is proved that the categorical
semantics is adequate whether we consider the eager or the lazy operational semantics. Adequacy
thus follows from the categorical results in the above mentioned concrete linear categories of cpos
and dI-domains. The adequacy results make use of what we have called Generalised LPCF, which

6Where we disregard the additive fragment.

1.5. OVERVIEW OF THE THESIS 19

essentially consists of the typing rules of LPCF extended with an extra context dealt with in an
additive fashion.

The introduction of Generalised LPCF enables us to state and prove an unwinding theorem
for LPCF. Here we make use of an instance of the adequacy result in the concrete linear category
of cpos and strict continuous functions. Using the unwinding theorem it is proved that rational
openness, when restricted to de�nable maps, is not only su�cient but also necessary for adequacy.

It is a notable feature of the categorical interpretation that it is adequate whether we consider
the eager or the lazy operational semantics. Using instances of the adequacy results in the concrete
linear category of cpos and strict continuous functions, this can be used to prove a purely syntactic
result saying that the choice of evaluation strategy does not matter for the observable behaviour
of programs of observable types, that is, if t is a program of observable type then

t + , t #

where + and # are the eager and the lazy evaluation relation, respectively. This is due to two
reasons: The linear character of LPCF and the fact that in both of the operational semantics a
program of ! type is always evaluated before it is discarded. So it is simply impossible to get rid of
a non-terminating program without trying to evaluate it. For example, in the evaluation rule for
application it does not matter whether or not an argument is evaluated before it is plugged into
the body u of an abstraction �x:u because linearity entails that the variable x has to occur in u.

1.5 Overview of the Thesis

In this section an overview of the thesis is given. The main topics and the contributions of each
chapter are made clear.

Chapter 2: The Semantic Picture. This chapter introduces categorical machinery needed for
later together with some concrete categories. First we give an introduction to the notions
of monoidal categories, monoidal functors and monoidal natural transformations, as well
as to the notion of a comonoid in a monoidal category. Then the categorical model for
Intuitionistic Linear Logic of [BBdPH92b] is recalled and various rami�cations concerning
the category of coalgebras and the Kleisli category are considered. Finally we introduce the
category of cpos and strict continuous functions and the category of dI-domains and linear
stable functions. This chapter provides the following contributions:

� A couple of observations from Section 2.4 seem to be new; namely Proposition 2.4.2
and Proposition 2.4.3 dealing with certain naturality properties that enable categorical
interpretation of the �nite sums of the �-calculus in the Kleisli category.

� In Section 2.6 an account of the category of dI-domains and linear stable functions as
a model for Intuitionistic Linear Logic in the sense of [BBdPH92b] is given. This is
analogous to the account of the category of dI-domains and a�ne stable functions given
in [Bra94a, Bra94b].

Chapter 3: The �-Calculus. The primary goal of this chapter is to introduce the �-calculus.
It is shown how the �-calculus appears as a Curry-Howard interpretation of Intuitionistic
Logic. Given an appropriate categorical model, we recall how a categorical interpretation is
induced.

Chapter 4: The Linear �-Calculus. The primary goal of this chapter is to introduce the linear
�-calculus. It is shown how the linear �-calculus appears as a Curry-Howard interpretation
of Intuitionistic Linear Logic. Also we make a detour to Russell's Paradox with the aim of
illustrating the �ne grained character of Intuitionistic Linear Logic compared to Intuitionistic
Logic. Given an appropriate categorical model, we recall how a categorical interpretation of
the linear �-calculus is induced. A generalisation of the linear �-calculus which will be of
use later on is introduced. Contributions of this chapter:

20 CHAPTER 1. INTRODUCTION

� In Section 4.3 a correct introduction rule for the !-modality of Intuitionistic Linear Logic
is given. This was also given in [BBdPH92b] so we shall give an account of the history
of the mentioned rule as well - see Section 4.4.

� The generalised linear �-calculus introduced in Section 4.6 seems to be new. In certain
respects it is similar to the variants of Girard's Logic of Unity, [Gir93] considered in
[Wad93] and [Plo93]. The discovery the generalised linear �-calculus is motivated by
technical reasons: When in Chapter 9 we consider LPCF it enables us to prove adequacy,
and moreover, it enables us to state and prove an unwinding theorem.

Chapter 5: The Girard Translation. This chapter introduces the Girard Translation, [Gir87]
which is shown to be sound with respect to the categorical interpretations induced by an
appropriate categorical model. Contributions of this chapter:

� In Section 5.2 the Girard Translation is proved to be sound with respect to an ap-
propriate categorical model; this is essentially taken from [Bra95a, Bra95b]. It is a
categorical generalisation of a result in [Gir87] showing that the Girard Translation is
sound with respect to interpretation in a certain concrete category, namely the category
of coherence spaces and linear stable functions.

Chapter 6: PCF - Semantic Issues. This chapter introduces appropriate machinery for giv-
ing the categorical model for PCF in Chapter 7. This amounts to a categorical notion
of unde�nedness, and, moreover, categorical notions of numerals and �xpoints. Also, the
observational preorder on maps is considered. Contributions of this chapter:

� In Section 6.3 a couple of apparently new results about categorical �xpoint operators
are given, namely Proposition 6.3.8 and Proposition 6.3.9. In this section also the axiom
of rational openness on a �xpoint operator is introduced.

� In Section 6.5 it is shown that under appropriate circumstances a rationally open �x-
point operator induces a rational category when the quotients of the observational
preorders on hom-sets are considered.

Chapter 7: The Programming Language PCF. This chapter introduces the programming
language PCF. An adequacy result for PCF is given using a non-order-theoretic categorical
model. Observable types and an unwinding theorem are considered. Also, we make a detour
to syntactic notions of rationality and rational openness. This chapter provides the following
contributions:

� In Section 7.3 an adequacy result for PCF is given using a non-order-theoretic categori-
cal model. The essential ingredient of the categorical model is a rationally open �xpoint
operator. This is taken from [Bra97b]. The result can be seen as a non-order-theoretic
categorical generalisation of the original adequacy result of [Plo77].

� In Section 7.5 we prove an unwinding theorem for PCF using a concrete instance of
adequacy. This enables us to show that a restricted version of our axiom of rational
openness is not only su�cient, but also necessary for the interpretation to be adequate.
Essentially, what we do is we restrict rational openness to maps de�nable in PCF.

Chapter 8: LPCF - Semantic Issues. This chapter introduces appropriate machinery for giv-
ing the categorical model for LPCF in Chapter 9. This amounts to a categorical notion of
unde�nedness and to categorical notions of numerals and �xpoints, appropriate for the linear
setting. Also, the observational preorder is considered. Contributions of this chapter:

� In Section 8.3 a categorical notion of �xpoints appropriate for the linear setting is given,
and various related results are proved. Also, the axiom of rational openness on a linear
�xpoint operator is introduced.

1.6. PREREQUISITES AND NOTATION 21

� In Section 8.4 a notion of rationality suitable for the linear setting is given. This stems
from [Bra97a]. It is shown how under appropriate circumstances a rationally open
linear �xpoint operator induces a rational linear category.

Chapter 9: The Programming Language LPCF. This chapter introduces the programming
language LPCF, which is a linear version of PCF. We introduce a generalisation of LPCF
needed for technical reasons: It enables us to prove adequacy using a non-order-theoretic
categorical model and it enables us to state and prove an unwinding theorem. Also observable
types are considered. This chapter provides the following contributions:

� In Section 9.1 the programming language LPCF is introduced, and an eager and a
lazy operational semantics is given in Section 9.2 and Section 9.3, respectively. The
choice of evaluation rules for terms of certain types is motivated by interpretation in an
appropriate categorical model; in the case of terms of ! types this dictates evaluation
rules which are di�erent from the rules of [Abr90].

� In Section 9.7 and Section 9.8 adequacy results for eager and lazy LPCF are proved using
a non-order-theoretic categorical model. The essential ingredient of the categorical
model is a rationally open linear �xpoint operator.

� Using concrete instances of the adequacy results, in Section 9.9 we show that the choice
of evaluation strategy for LPCF does not matter for observable behaviour of terms of
observable types.

� In Section 9.10 we prove an unwinding theorem for LPCF using a concrete instance of
an adequacy result. This depends crucially on Generalised LPCF. Using the unwinding
theorem it is shown that a restricted version of our axiom of rational openness is not
only su�cient, but also necessary for the interpretation to be adequate. We essentially
restrict rational openness to de�nable maps.

Chapter 10: Extension of the Girard Translation. This chapter extends the Girard Trans-
lation of Chapter 5 to a translation from PCF to LPCF, which is shown to be sound with
respect to the categorical interpretations induced by an appropriate categorical model. This
chapter provides the following contributions:

� In Section 10.1 the Girard Translation is extended to a translation from PCF to LPCF
which in Section 10.2 is proved sound with respect to an appropriate categorical model.

� Using a concrete instance of the soundness result together with concrete instances of
the adequacy results for PCF and LPCF in Section 10.3 it is shown that the extended
Girard Translation preserves and re
ects evaluation of programs of ground type N .

Chapter 11: Further Work. This chapter outlines some possibilities for extensions of our work.

1.6 Prerequisites and Notation

The reader of this thesis is assumed to be familiar with the basic notions of Intuitionistic Logic,
the �-calculus, category theory and denotational semantics of programming languages. Some
experience with a functional programming language is useful.

The book [GLT89] gives an excellent introduction to Intuitionistic Logic and the �-calculus.
The textbook [BW90] is recommended as an introduction to category theory. Also the stan-
dard textbook [Mac71] is useful. A detailed introduction to the categorical notions relevant for
Intuitionistic Linear Logic can be found in the dissertation [Bie94]. The textbook [Win93] is
recommended to the reader not familiar with denotational semantics of programming languages.

A remark on notation: In order to avoid a proliferation of symbols we denote logical constructs
using appropriate categorical notation. For example, the conjunction of Intuitionistic Logic and
the additive conjunction of Intuitionistic Linear Logic are both denoted �.

22 CHAPTER 1. INTRODUCTION

Chapter 2

The Semantic Picture

This chapter introduces categorical machinery needed for later. Also some concrete categories are
given. Section 2.1 contains an introduction to the notions of monoidal categories, monoidal func-
tors and monoidal natural transformations, as well as to the notion of a comonoid in a monoidal
category. Readers familiar with these notions are advised to skip the section. In Section 2.2 the
categorical model for Intuitionistic Linear Logic from [BBdPH92b] is recalled. Various rami�ca-
tions concerning the category of coalgebras and the Kleisli category can be found in Section 2.3
and Section 2.4, respectively. In Section 2.5 the category of cpos and strict continuous functions is
introduced, and in Section 2.6 an account of the category of dI-domains and linear stable functions
is given.

2.1 Monoidal Categories

In this section we will recall the notions of monoidal categories, monoidal functors and monoidal
natural transformations, originally introduced in [EK66]. We will also recall the notion of a
comonoid in a monoidal category, which is dual to the notion of a monoid as given in [Mac71].

De�nition 2.1.1 A monoidal category is a 6-tuple (C; I;
; �; �; �) consisting of a category C of
which I is an object, a bifunctor
 : C�C ! C, and natural isomorphisms �; �; � with components

�A;B;C : A
 (B
C) �= (A
 B)
C �A : I
 A �= A �A : A
 I �= A

such that the diagrams

A
 (B
 (C
D))
�- (A
B)
 (C
D)

�- ((A
B)
 C)
D

A
 ((B
C)
D)

A
 �

? � - (A
 (B
 C))
D

6

�
D

and

A
 (I
B)
� - (A
 I)
 B

@
@
@
@
@

A
 �
R 	�

�
�
�
�

�
B

A
B

23

24 CHAPTER 2. THE SEMANTIC PICTURE

commute, and moreover, �I = �I . The monoidal category C is symmetric i� it is equipped with a
natural isomorphism
 with components

A;B : A
 B �= B
 A

such that the diagram

A
 (B
 C)
�- (A
B)
 C

- C
 (A
 B)

A
 (C
 B)

A

? �- (A
C)
 B

 B- (C
 A)
 B

?

�

commutes, and moreover,
A;B ;
B;A = id and �A =
A;I ;�A.

De�nition 2.1.2 A monoidal functor from a monoidal category (C; I;
; �; �; �) to a monoidal
category (C0; I 0;
0; �0; �0; �0) is a triple (F;mI ;m) consisting of a functor F : C ! C0 together with
a map

I0
mI- F (I)

and a natural transformation m with components

FA
0 FB
mA;B- F (A
 B)

such that the diagrams

FA
0 (FB
0 FC)
id
0 m- FA
0 F (B
 C)

m- F (A
 (B
 C))

(FA
0 FB)
0 FC)

�0

?
m
0 id- F (A
B)
0 FC

m- F ((A
B)
 C)
?

F�

and

I0
0 FA
�0 - FA

FI
0 FA

mI

0 id

?
m- F (I
 A)

6

F�

FA
0 I0
�0 - FA

FA
0 FI

id
0 mI

?
m- F (A
 I)

6

F�

commute (the map mI is simply the nullary version of the natural transformation m). The
monoidal functor F is symmetric i� the monoidal categories C and C0 are symmetric and the
diagram

FA
0 FB

0- FB
0 FA

F (A
 B)

m

? F (
)- F (B
A)
?

m

commutes. The (symmetric) monoidal functor F preserves the (symmetric) monoidal structure
i� mI and m are isomorphisms.

2.1. MONOIDAL CATEGORIES 25

De�nition 2.1.3 A monoidal natural transformation from a monoidal functor (F;mI ;m) to a
monoidal functor (G;nI; n) is a natural transformation � : F ! G such that the diagrams

FA
0 FB
m- F (A
 B)

GA
0 GB

�
0 �

?
n- G(A
 B)

?

�

I0
mI - FI

@
@
@
@
@

nI
R

GI
?

�

commute.

De�nition 2.1.4 The (symmetric) monoidal category C is closed when each functor (�)
A has
a speci�ed right adjoint A((�).

De�nition 2.1.5 A comonoid in a monoidal category (C; I;
; �; �; �) is a triple (C; e; d) consist-
ing of an object C together with maps

C
e- I C

d- C
C

such that the diagrams

C
 C �
d

C
d - C
C

C
 (C
C)

C
 d

? � - (C
 C)
C
?

d
C

and

C

	�
�
�
�
�

��1
@
@
@
@
@

��1

R
I
C �

e
 C
C
 C

d

? C
 e- C
 I

commute. The comonoid C is commutative i� the monoidal category C is symmetric and the
diagram

C
d- C
C

@
@
@
@
@

d

R
C
C
?

commutes.

De�nition 2.1.6 A comonoid map from a comonoid (C; e; d) to a comonoid (C0; e0; d0) is a map
f : C ! C0 such that the diagrams

C
f - C0

C
 C

d

? f
 f- C
 C
?

d0

C
f - C0

@
@
@
@
@

e
R

I
?

e0

commute.

Note that one obtains a category of comonoids in a monoidal category.

26 CHAPTER 2. THE SEMANTIC PICTURE

2.2 The Model for Intuitionistic Linear Logic

We will use the notion of a categorical model for Intuitionistic Linear Logic as it is de�ned in
[BBdPH92b, BBdPH92a]; we introduce the model below and explain its rami�cations afterwards.
This categorical model was introduced to repair a de�ciency of the model for Intuitionistic Linear
Logic given in [See89], namely that the induced interpretation of proofs is not necessarily preserved
by normalisation. Later on, the rami�cations of the work presented in [BBdPH92b] were detailed
in [Bie94].

De�nition 2.2.1 A linear category is a symmetric monoidal closed category (C; I;
;() with

� a symmetric monoidal comonad (!; "; �;mI;m),

� monoidal natural transformations e and d with components

!A
eA- I !A

dA- !A
!A

such that for each object A

{ the maps eA and dA are maps of coalgebras,

{ the triple (!A; eA; dA) is a commutative comonoid,

{ the map �A is a map of commutative comonoids1.

The assumption that the comonad (!; "; �) is symmetric monoidal means that ! is a symmetric
monoidal functor and " and � are monoidal natural transformations. When assuming the natural
transformations e and d to be monoidal, we are assuming the functors I and !(�)
!(�) to have
the obvious monoidal structure induced by the monoidal structure on !. Hence, the assumption
that the natural transformation e is monoidal amounts to commutativity of the diagrams

!A
!B
mA;B- !(A
 B)

I
 I

eA
 eB

? �= - I
?

eA
B

I
mI - !I

@
@
@
@
@

I
R

I
?

eI

The assumption that the natural transformation d is monoidal amounts to commutativity of the
diagrams

!A
!B
mA;B - !(A
B)

!A
!A
!B
!B

dA
 dB

? id
 �=
id- !A
!B
!A
!B
mA;B
mA;B- !(A
B)
!(A
 B)

?

dA
B

1This is a simpli�cation of the original clause that maps of free coalgebras are maps of commutative comonoids.

2.2. THE MODEL FOR INTUITIONISTIC LINEAR LOGIC 27

and

I
mI - !I

@
@
@
@
@

�=
R
I
 I

@
@
@
@
@

mI
mI
R
!I
!I
?

dI

It can be shown that (I;mI) and (!A
!A; (�A
 �A);m!A;!A) are coalgebras, so the assump-
tion that eA is a map of coalgebras amounts to eA being a map from (!A; �A) to (I;mI), and
the assumption that dA is a map of coalgebras amounts to dA being a map from (!A; �A) to
(!A
!A; (�A
 �A);m!A;!A). The notion of a coalgebra is de�ned below.

Let C be a category equipped with a comonad (!; "; �), that is, a functor ! : C ! C together
with natural transformations " and � with components

!A
"A- A !A

�A- !!A

such that the diagrams

!A

	�
�
�
�
�

id
@
@
@
@
@

id

R
!A �

"!A
!!A

�A

? !"A - !A

and

!A
�A - !!A

!!A

�A

? !�A- !!!A
?

�!A

commute. Then C! denotes the induced category of coalgebras and C! denotes the induced Kleisli
category. Recall that the category of coalgebras has as objects coalgebras, that is, pairs (A; h)
consisting of an object A and a map h : A!!A such that the diagrams

A
h - !A

!A

h

? !h - !!A
?

�A

A
h - !A

@
@
@
@
@

A
R

A
?

"A

28 CHAPTER 2. THE SEMANTIC PICTURE

commute, and moreover, a map between the coalgebras (A; h) and (B; k) is a map f : A ! B

such that the diagram

A
f - B

!A

h

? !f - !B
?

k

commutes. Composition as well as the identity are inherited from C. The Kleisli category has the
same objects as C, and a map between the objects A and B, considered as objects of the Kleisli
category, is a map f :!A ! B in C. The map "A :!A ! A is the identity on A in the Kleisli
category, and given two maps f :!A! B and g :!B ! C their composition in the Kleisli category
is equal to the composition

!A

(g)- !B

f- C

where
(g) = �A; !g. The operation
 is called the Kleisli operator. We have the following functors

C!
L! - C!

@
@
@
@
@

U!
R

I@
@
@
@
@

F!

	�
�
�
�
�

U !

�
�
�
�
�

F !

�

C

The functor U ! simply forgets the coalgebra structure, while the functor F ! takes an object B to
the coalgebra (!B; �) and a map f : B ! C to the map of coalgebras !f : (!B; �) ! (!C; �). We
have an adjunction U ! a F ! given by the natural bijection between maps

(D;h);B : C(U !(D;h); B) �= C!((D;h); F !B)

where
(g) = h; !g : (D;h) ! (!B; �) and
�1(f) = f ; "B : D ! B. Note that if in the de�nition
of the function
(D;h);B the coalgebra (D;h) is equal to (!A; �), then
 coincides with the Kleisli
operator given above. The functor U! takes an object B to !B and a map f :!B ! C to the map

(f) :!B !!C, while the functor F! is the identity on objects and takes a map f : B ! C to the map
"B ; f :!B ! C. We have an adjunction U! a F! induced by the observation that the sets C(U!A;B)
and C!(A;F!B) are identical. The functor L!, called the comparison functor, takes an object B
to the coalgebra (!B; �) and a map f :!B ! C to the map of coalgebras
(f) : (!B; �) ! (!C; �).
Note that F!;L! = F ! and L!;U

! = U!. The category of free coalgebras is the full subcategory
of C! whose objects are free coalgebras where a free coalgebra is a coalgebra which is equal to
(!B; �) for some object B. The category of free coalgebras is equivalent to the Kleisli category;
it is straightforward to check that the comparison functor L! from C! to C

! is an equivalence of
categories when considered as a functor from C! to the category of free coalgebras.

2.3 The Category of Coalgebras

In [Bie94] it is shown that a symmetric monoidal comonad (!; "; �;mI;m) on a symmetric monoidal
category (C; I;
) induces a symmetric monoidal structure on C!: The unit I of the tensor product
is given by the coalgebra (I;mI), and given two coalgebras (A; k) and (B; h), their tensor product
(A; k)
 (B; h) is given by the coalgebra (A
B; (k
 h);mA;B).

If, moreover, C is a linear category (it would actually not matter if we left out the closed
structure), then the symmetric monoidal structure on C! is a �nite product structure, that is, I
is a terminal object, and (A; k)
 (B; h) is a binary product of (A; k) and (B; h) when equipped

2.3. THE CATEGORY OF COALGEBRAS 29

with projections �1 and �2 given by the maps (A
 (h; eB));�= and ((k; eA)
B);�=, respectively.
Given a coalgebra (A; k), a unique map of coalgebras

(A; k)
hi- I

is given by the map k; eA, and given maps of coalgebras f : (C; l)! (A; k) and g : (C; l)! (B; h),
a unique map of coalgebras hf; gi making the diagram

(C; l)

	�
�
�
�
�

f
@
@
@
@
@

g

R
(A; k) �

�1
(A; k)
 (B; h)

hf; gi

? �2- (B; h)

commute is given by the map l; dC; (eC
 eC); (f
 g). Note that dA is equal to the diagonal map

(!A; �)
�- (!A; �)
 (!A; �)

Later we will need a generalisation of the natural transformation dA: We de�ne DA1;:::;An
to be

the composition

!A1
 :::
!An

dA1
:::
dAn- !A1
!A1
 :::
!An
!An
�=!A1
 :::
!An
!A1
 :::
!An

It can be shown by some equational manipulation that DA1;:::;An
is equal to the diagonal map

(!A1; �)
 :::
 (!An; �)
�- (!A1; �)
 :::
 (!An; �)
 (!A1; �)
 :::
 (!An; �)

Note that if in the de�nition of
(D;h);B in the previous section the coalgebra (D;h) is equal to
(!A1; �)
 :::
 (!An; �), then
 coincides with the generalised Kleisli operator of [BBdPH92b] which
takes a map

f :!A1
 :::
!An ! B

to the map
(f) de�ned as the composition

!A1
 :::
!An

�A1
:::
�An- !!A1
 :::
!!An

mA1;:::;An- !(!A1
 :::
!An)
!f- !B

It is remarkable that the de�nition of the generalised Kleisli operator does not rely on the presence
of �nite products; in [See89] another notion of a categorical model for Intuitionistic Linear Logic
is given where the induced generalised Kleisli operator does not have this property.

We will now assume that the linear category C does have �nite products (it would not matter
if we left out the closed structure). The functor F ! : C ! C! preserves �nite products because it
has a left adjoint, so a terminal object 1 in C is sent into a terminal object (!1; �) in C!, and a
binary product diagram

A �
�1

A �B
�2- B

living in C is sent into a binary product diagram

(!A; �) �
!�1

(!(A� B); �)
!�2- (!B; �)

living in C!. For later use we will make explicit the constructions involved in this observation.
Given a coalgebra (A; k), a unique map of coalgebras

(A; k)
hi- (!1; �)

30 CHAPTER 2. THE SEMANTIC PICTURE

is given by the map
(hi), and given maps of coalgebras f : (C; l)! (!A; �) and g : (C; l)! (!B; �),
a unique map of coalgebras hf; gi making the diagram

(C; l)

	�
�
�
�
�

f
@
@
@
@
@

g

R
(!A; �) �

!�1
(!(A�B); �)

hf; gi

? !�2- (!B; �)

commute is given by the map
(h
�1(f);
�1(g)i). We have the �nite product structure (I;
) on
C! which entails that we have an isomorphism

n1 : I �= (!1; �)

and an isomorphism
nA;B : (!A; �)
 (!B; �) �= (!(A �B); �)

which is natural in (!A; �) and (!B; �). It can be shown that the isomorphism n1 : I �=!1 and the
natural isomorphismnA;B :!A
!B �=!(A�B), where the coalgebras are left out, make ! a symmetric
monoidal functor from (C; 1;�) to (C; I;
). Given these isomorphisms, we can actually de�ne a
model for Intuitionistic Linear Logic as described in [See89]: Calculations show that the way the
isomorphisms are de�ned force ! to take the commutative comonoid structure with respect to the
�nite products to the commutative comonoid structure with respect to the symmetric monoidal
structure, that is, the map !hi :!A!!1 is equal to the composition

!A
eA- I �=!1

and the map !� :!A!!(A� A) is equal to the composition

!A
dA- !A
!A �=!(A� A)

A detailed comparison between the model for Intuitionistic Linear Logic given in [BBdPH92b] and
the one from [See89] can be found in [Bie94].

The terminal object in C! induced by the terminal object in C is also a terminal object in the
category of free coalgebras, and similarly, the binary product diagram in C! induced by the binary
product diagram in C, is also a binary product diagram in the category of free coalgebras. This
induces a �nite product structure on the category of free coalgebras2.

Now, assume that a symmetric monoidal closed category (C; I;
;() is equipped with a sym-
metric monoidal comonad (!; "; �;mI ;m). Then C! has a symmetric monoidal structure, as men-
tioned above, and moreover, it is shown in [Bie94] that for every object B the free coalgebra
(!B; �) is exponentiable with respect to the monoidal structure on C!. The internal-hom object of
a coalgebra (A; h) and the free coalgebra (!B; �) is given by the free coalgebra (!(A(B); �), and
an appropriate bijection between maps is given by the composition

C!((C; k)
 (A; h); (!B; �)) �= C(U !((C; k)
 (A; h)); B) because U ! a F !

= C(U !(C; k)
 A;B)
�= C(U !(C; k); A(B) because (�)
A a A((�)
�= C!((C; k); (!(A(B); �)) because U ! a F !

which is natural in (C; k). If, moreover, C is a linear category with �nite products, then the category
of free coalgebras has �nite products as given above, and we have the following composition of
bijections

C!((!(C �A); �); (!B; �)) �= C!((!C; �)
 (!A; �); (!B; �)) by composition with n
�= C!((!C; �); (!(!A(B); �)) as (!B; �) is exponentiable

2Note that the binary product structure hinges on the Axiom of Choice; to de�ne the binary product of a pair
of free coalgebras (A0; k) and (B0; h) we need objects A and B such that (A0; k) = (!A;�) and (B0; h) = (!B;�).

2.4. THE KLEISLI CATEGORY 31

which is natural in (!C; �). This induces a cartesian closed structure on the category of free
coalgebras3.

2.4 The Kleisli Category

In the previous section we gave a cartesian closed structure on the category of free coalgebras
induced by a linear category with �nite products. In this section we will essentially restate this
construction in the Kleisli category which is equivalent to the category of free coalgebras. The
observation that the Kleisli category is cartesian closed goes back to [See89]. It turns out that the
cartesian closed structure on the Kleisli category can be stated in a simpler way4 enabling a more
succinct statement of soundness of the Girard Translation, Theorem 5.2.2.

Now, assume that we are dealing with a linear category C with �nite products. The �nite
product structure on C induces a �nite product structure on the Kleisli category as follows: The
terminal object in the Kleisli category is taken to be 1, and the binary product of the objects A
and B in the Kleisli category is taken to be A � B when equipped with projections �1 and �2
given by the maps ";�1 :!(A�B)! A and ";�2 :!(A�B)! B, respectively. Given an object A,
a unique map in the Kleisli category

A
hi- 1

is given by the map hi :!A! 1, and given maps f :!C ! A and g :!C ! B, a unique map hf; gi
making the diagram in the Kleisli category

C

	�
�
�
�
�

f
@
@
@
@
@

g

R
A �

�1
A� B

hf; gi

? �2 - B

commute is given by the map hf; gi :!C ! A�B. The internal-hom object A) B of the objects
A and B in the Kleisli category is taken to be !A (B, and an appropriate bijection between
maps is given by the composition

C!(C �A;B) = C(!(C �A); B)
�= C(!C
!A;B) by composition with n
�= C(!C; !A(B) because (�)
!A a !A((�)
= C!(C; !A(B)
= C!(C;A) B)

which is natural in C. The de�nition of the internal-hom object corresponds to Girard's observa-
tion which gave rise to Linear Logic; namely the observation that the functor which forgets the
linearity of linear stable functions between coherence spaces has a left adjoint.

We will now consider �nite sums. If C is a category with a comonad (!; "; �), then an initial
object 0 in C induces a weak initial object in the Kleisli category and binary sums + in C induce
weak binary sums in the Kleisli category. This is essentially a restatement of an analogous con-
struction for the category of free coalgebras pointed out in [Bie94]. The weak initial object 0 in
the Kleisli category is taken to be 0, and the binary weak sum A + B of the objects A and B in
the Kleisli category is taken to be !A+!B when equipped with injections in1 and in2 given by the
maps in1 :!A!!A+!B and in2 :!B !!A+!B, respectively. Given an object A, a map in the Kleisli
category

0
[]- A

3Note that the closed structure hinges on the Axiom of Choice; to de�ne the internal-hom object of a coalgebra
(A; h) and a free coalgebra (B0; h) we need an object B such that (B0; h) = (!B;�).

4Avoiding the Axiom of Choice.

32 CHAPTER 2. THE SEMANTIC PICTURE

is given by the map "; [] :!0! A, and given maps f :!A! C and g :!B ! C, a map [f; g] making
the diagram in the Kleisli category

A
in1- A+ B �

in2
B

@
@
@
@
@

f
R 	�

�
�
�
�

g

C

[f; g]

?

commute is given by the map "; [f; g] :!(!A+!B)! C. One can actually show more than that.

De�nition 2.4.1 Let C be a category equipped with a comonad (!; "; �). A map in the Kleisli
category is called linear i� it is in the image of F!.

Proposition 2.4.2 Let C be a category with a comonad. If C has an initial object 0, then the
family of maps in the Kleisli category

[] : 0! C

induced by the weak initial object is natural in C with respect to linear maps. If C has binary
sums +, then the family of operations on maps in the Kleisli category

[�;+] : C!(A;C)� C!(B;C)! C!(A+ B;C)

induced by the weak binary sums is natural in C with respect to linear maps.

Proof: Straightforward equational manipulation. 2

Proposition 2.4.3 Let C be a linear category with �nite products. Given a map f :!A! B, the
map in the Kleisli category

B) C
f)C- A) C

is equal to F!(
(f) (C).

Proof: Recall that the Kleisli category is cartesian closed. The result follows from straightforward

equational manipulation. 2

The last two results may seem ad hoc, but it turns out that they are su�cient to give a categorical
interpretation of the sums of the �-calculus in the Kleisli category.

2.5 Categories of Cpos

The category of cpos and continuous functions, cpo, and the category of cpos and strict continuous
functions, cpost, are well known from the literature, see for example the textbooks [Win93, Gun92].
The category cpost is an example of a linear category according to [Bie94]. It is actually a model
for Intuitionistic Relevant Logic in the sense of [Jac94], that is, there is a natural transformation d
with components dA : A! A
A making appropriate diagrams commute. In this section we recall
the constructs for the sake of completeness. We �rst de�ne the categories cpo and cpost formally.
Then the constructions are given which make cpost a linear category with �nite products and
sums. As a spin-o� we obtain a cartesian closed structure on cpo.

De�nition 2.5.1 A cpo is a poset (D;v) with a least element ? such that every directed subset
X has a least upper bound tX. A monotone function f : D ! E between cpos is called continuous
i� f(tX) = tf(X) for any directed subset X. A monotone function f : D ! E between cpos is
called strict i� f(?) =?.

2.5. CATEGORIES OF CPOS 33

The obvious ordering on continuous functions between cpos is the extensional ordering de�ned as

f v g i� 8x 2 A: f(x) v g(x)

for any continuous functions f; g : A! B. First, we will give a symmetric monoidal structure on
the category cpost.

De�nition 2.5.2 We de�ne I to be the two-element set f?;>g with ? as bottom element. A
bifunctor
 is de�ned as follows: Given cpos D and E we de�ne D
E to be the set

f(d; e) 2 D � E j d =?, e =? g

equipped with the coordinate wise ordering. Given strict continuous functions f : D ! D0 and
g : E ! E0, we de�ne the strict continuous function f
 g : D
 E ! D0
E0 as

(f
 g)(d; e) =

�
(f(d); g(e)) if f(d) 6=? ^ g(e) 6=?
? otherwise

It is now straightforward to check that I together with the bifunctor
 constitute a symmetric
monoidal structure. It is custom to call I the Sierpinsky space and D
 E is called the smash

product of D and E. We will now show that every functor (�)
D has a right adjoint D((�).

De�nition 2.5.3 Given cpos D and E we de�ne D (E to be the set of strict continuous
functions from D to E equipped with the extensional order.

De�nition 2.5.4 Given cpos E and D we de�ne a strict continuous function

(D(E)
D
evalE;D- E

as
eval(f; e) = f(e):

It is straightforward to extend the functionD ((�) to a functor which is right adjoint to (�)
D
such that eval is counit: Given a strict continuous function f : C
 D ! E we de�ne a strict
continuous function �(f) : C ! (D (E) as

�(f)(c)(d) =

�
f(c; d) if c 6=? ^ d 6=?
? otherwise

It is then the case that �(f) is a unique strict continuous function with the property that the
diagram

C
D

@
@
@
@
@

�(f)
D

R
E

f

?
� eval

(D (E)
D

commutes. We will now give a comonad on the category cpost by giving a left adjoint to the
forgetful functor

U : cpost ,! cpo:

De�nition 2.5.5 Given a cpo D we de�ne D? to be the set (D�f�g)[f?g, where ? is di�erent
from all the elements of D� f�g, equipped with the ordering v given by stipulating that (d; �) v
(d0; �) whenever d v d0 and ?v x for any x 2 D?.

It is custom to call D? the lift of D.

34 CHAPTER 2. THE SEMANTIC PICTURE

De�nition 2.5.6 Given a cpo D we de�ne a continuous function

D
�D- D?

as
�(d) = (d; �):

It is straightforward to extend the function (�)? to a functor from cpo to cpost which is left
adjoint to U such that � is unit: Given a continuous function f : D ! E, we de�ne a strict
continuous function strict(f) : D? ! E by

strict(f)(x) =

�
f(d) if x = (d; �)
? otherwise

It is then the case that strict(f) is a unique strict continuous function such that the diagram

D
� - D?

	�
�
�
�
�

strict(f)

E

f

?

commutes. Note that the diagram lives in the category cpo. Let f : D ! E be a continuous
function, the strict continuous function f? : D? ! E? will then be given by

f?(x) =

�
f(d) if x = (d; �)
? otherwise

The adjunction induces a comonad on cpost consisting of the functor (�)? restricted to an end-
ofunctor on cpost together with a natural transformation " where a component "D : D? ! D

is equal to strict(idD) and a natural transformation � where a component �D : D? ! D?? is
equal to �D?. We want the comonad ((�)?; "; �) to be symmetric monoidal which motivates the
following de�nition:

De�nition 2.5.7 We de�ne a strict continuous function mI : I ! I? as

mI(x) =

�
(>; �) if x = >
? otherwise

and we de�ne a natural transformation m with components mD;E : D?
 E? ! (D
 E)? by
de�ning for each pair of cpos D and E a strict continuous function mD;E as

m(x) =

8<
:

((d; e); �) if x = ((d; �); (e; �)) such that d 6=? ^ e 6=?
(?; �) if x = ((d; �); (e; �)) such that d =? _ e =?
? otherwise

It is now straightforward to check that the function mI together with the natural transformation
m gives symmetric monoidal structure to the functor (�)? such that " and � are monoidal natural
transformations. Furthermore:

De�nition 2.5.8 We de�ne a natural transformation e with components eD : D? ! I by de�ning
for each cpo D a strict continuous function eD as

e(x) =

�
> if x = (d; �)
? otherwise

and we de�ne a natural transformation d with components dD : D? ! D?
D? by de�ning for
each cpo D a strict continuous function dD as

d(x) =

�
((d; �); (d; �)) if x = (d; �)
? otherwise

2.6. CATEGORIES OF DI-DOMAINS 35

It is now straightforward to check that the natural transformations e and d are monoidal such
that the three additional conditions on being a linear category, De�nition 2.2.1, are satis�ed. It
is easy to check that cpost has �nite products and sums; the former is the usual construction for
posets and the latter is the \coalesced sum". The Kleisli category corresponding to the comonad
(�)? is isomorphic to cpo, so the results of Section 2.4 imply that the �nite products of cpost
make cpo cartesian closed, and the �nite sums of cpost induce a weak �nite sum structure on
cpo; this is the \separated sum".

2.6 Categories of dI-Domains

The category of dI-domains and continuous stable functions, dI, is fairly well known from the
literature. For example it is described in the article [Ber78] and the textbooks [Win87, Gun92].
The category of dI-domains and linear stable functions, dIlin, does not occur so often. It was
originally observed in [Win87] that the functor that forgets the linearity of linear stable functions
between dI-domains has a left adjoint. This is analogous to Girard's observation which gave rise to
Linear Logic; namely that the functor that forgets the linearity of linear stable functions between
coherence spaces has a left adjoint. So the category dIlin is an obvious candidate for a model
for Intuitionistic Linear Logic. The category is described in some details in [Zha93]. The main
goal of this section will be to show that dIlin is a linear category in the sense of [BBdPH92b].
This is analogous to the account of the category of dI-domains and a�ne stable functions given
in [Bra94a, Bra94b]; this category is a model for Intuitionistic A�ne Logic. The category dIlin is
not degenerate in the sense of also being a model for Intuitionistic Relevant Logic or Intuitionistic
A�ne Logic. After de�ning the categories dI and dIlin formally, we introduce the notion of trace
and prove some results showing how this can be used to handle maps of the categories in an easy
way. Then the constructions are given which make dIlin a linear category with �nite products
and sums. This induces a cartesian closed structure on dI.

De�nition 2.6.1 Let (D;v) be a non-empty poset, and assume that every �nitely compatible
subset X has a least upper bound tX. A subset X is �nitely compatible i� every �nite subset of
X has an upper bound. Note that this entails that D has a bottom element ?, and moreover, it
entails that every non-empty subset X has a greatest lower bound uX.

A prime element of D is an element d such that

d v tX) 9x 2 X: d v x

for any �nitely compatible subset X. We will denote the set of prime elements of D by Dp. The
poset D is called prime algebraic i�

8d 2 D: d = tfd0 2 Dp j d
0 v dg:

A �nite element of D is an element d such that

d v tX) 9x 2 X: d v x

for any directed subset X. We will denote the set of �nite elements of D by Do. The poset D is
called �nitary i�

8d 2 Do: jfd
0 2 D j d0 v dgj <1:

The poset D is a dI-domain i� it is prime algebraic and �nitary. A monotone function f : D ! E

between dI-domains is called stable i� f(uX) = uf(X) for any non-empty �nitely compatible
subset X. A monotone function f : D ! E between dI-domains is called continuous i� f(tX) =
tf(X) for any directed subset X. A monotone function f : D ! E between dI-domains is called
linear i� f(tX) = tf(X) for any �nitely compatible subset X.

Proposition 2.6.2 If f : D ! E is a continuous function between two dI-domains such that
e v f(d) where d is an arbitrary element of D and e a �nite element of E, then there exists a
�nite minimal d0 v d with the property that e v f(d0), and moreover, if f is stable, then d0 is the
least d00 v d such that e v f(d00).

36 CHAPTER 2. THE SEMANTIC PICTURE

Proof: Assume that f : D ! E is a continuous function such that e v f(d) where d is arbitrary
and e is �nite. We then have

f(d) = f(tfd0 2 Dp j d
0 v dg)

= f(tfd0 2 Do j d
0 v dg)

= tff(d0) j d0 2 Do ^ d0 v dg

The assumption that D is prime algebraic gives us the �rst equation, the second comes from the
fact that Dp � Do, and the third comes from continuity of f , and the fact that tfd0 2 Do j d

0 v dg
is directed. But e is �nite and ff(d0) j d0 2 Do ^ d0 v dg is directed, so

e v tff(d0) j d0 2 Do ^ d0 v dg

entails that there is at least one �nite d0 v d such that e v f(d0). Now, we can pick a minimal
�nite d0 v d with that property because D is �nitary and because any element below a �nite
element is �nite.

Moreover, assume that f is stable and d00 v d such that e v f(d00), then e v f(d0)u f(d00) and
f(d0) u f(d00) = f(d0 u d00). But d0 u d00 v d0 and d0 is minimal, so d0 = d0 u d00. Thus, d0 v d00. 2

So if we are in the context of Proposition 2.6.2 where the continuous function f is stable, then
e v f(d) implies that we can �nd a �nite least d0 v d such that e v f(d0). This motivates the
following de�nition:

De�nition 2.6.3 If f : D ! E is a continuous stable function then the trace of f , denoted Tr(f),
is de�ned as

f(d; e) 2 Do � Ep j e v f(d) ^ 8d0 v d: (e v f(d0)) d = d0)g

In what follows X " means that X has an upper bound. There is a close connection between
functions and traces:

Theorem 2.6.4 Let f(di; ei) j i 2 Ig � Do � Ep for some indexing set I such that

� 8J �fin I: fdj j j 2 Jg") fej j j 2 Jg"

� 8i; j 2 I: di"dj ^ ei = ej) di = dj

� 8i 2 I: 8e 2 Ep: e v ei) 9j 2 I: (ej = e ^ dj v di)

Then the function f : D ! E de�ned as

f(d) = tfe j 9d0 v d: 9i 2 I: (d0; e) = (di; ei)g

is a continuous stable function, and conversely, if f : D ! E is a continuous stable function, then
Tr(f) has the mentioned three properties. Moreover, the operations are each others' inverses.

Proof: If f(di; ei) j i 2 Ig has the three mentioned properties, then it is straightforward to check
that f is a continuous stable function.

Conversely, let f(di; ei) j i 2 Ig = Tr(f) for some continuous stable function f . The �rst
property is obvious. Assume that di " dj and ei = ej. Then f(di u dj) = f(di) u f(dj) and so
ei v f(di u dj) and ej v f(di u dj), which entails that di = di u dj = dj. This proves the second
property. Assume that e v ei where e 2 Dp. Then e v f(di), so we can �nd a �nite minimal
d0 v di such that e v f(d0), that is, (d0; e) 2 Tr(f), according to Proposition 2.6.2. This proves
the third property. It is straightforward to check that the operations are each others' inverses. 2

From now on, we shall frequently identify a continuous stable function with its trace. Thus,
continuous stable functions between dI-domains can be ordered by inclusion; this order can be
shown to coincide with the stable order de�ned as

f v g i� 8x; y 2 A: x v y) f(x) = f(y) u g(x)

for any continuous stable functions f; g : A! B. There is a nice way of seeing whether a function
is linear or not by looking at its trace:

2.6. CATEGORIES OF DI-DOMAINS 37

Proposition 2.6.5 A continuous stable function f : D ! E is linear i� �0(f) � Dp.

Proof: Assume that �0(f) � Dp, and let X be a �nitely compatible subset. We obviously have
tf(X) v f(tX). Conversely, if e 2 Ep such that e v f(tX), then there exists a d 2 Eo such that
(d; e) 2 f and d v tX cf. Theorem 2.6.4. But d 2 Ep cf. the assumption that �0(f) � Dp. This
entails that there exists an x 2 X such that d v x, and thus, e v f(x) v tf(X). We conclude
that f(tX) v tf(X).

Conversely, assume that f is linear, and let (d; e) 2 f . Then e v f(d). But

f(d) = f(tfd0 2 Dp j d
0 v dg)

which is equal to tff(d0) j d0 2 Dp ^ d0 v dg because f is assumed to be linear. This entails that
there exists a d0 2 Dp such that d0 v d and e v f(d0). We conclude that d = d0, because d is
minimal, and thus d 2 Dp. 2

The following result about composition of functions is useful:

Theorem 2.6.6 If f : C ! D and g : D ! E are continuous stable functions then

f ; g = f(c; e) j 9(c1; d1); :::; (cn; dn) 2 f: fc1; :::; cng" ^ c = t1�i�nci ^ (t1�i�ndi; e) 2 gg:

Proof: First, note that Theorem 2.6.4 entails that fd1; :::; dng". Now, assume that (c; e) 2 f ; g.
Then e v g(f(c)) entails that there exists a d v f(c) such that (d; e) 2 g cf. Proposition 2.6.2.
Now, let fd1; :::; dng = fd0 2 Dp j d

0 v dg. Then we have for each i 2 f1; :::; ng that di v f(c)
entails that there exists a ci v c such that (ci; di) 2 f cf. Proposition 2.6.2. Thus, t1�i�nci v c

and t1�i�ndi = d, which entails that e v g(f(t1�i�nci)) cf. Theorem 2.6.4. We conclude that
c = t1�i�nci, because c is minimal. Conversely, assume that (c1; d1); :::; (cn; dn) 2 f such that
fc1; :::; cng" and (t1�i�ndi; e) 2 g. We have e v g(f(t1�i�nci)) cf. Theorem 2.6.4. Now, assume
that we have a c v t1�i�nci such that e v g(f(c)). This entails that there exists a d v f(c) such
that (d; e) 2 g cf. Proposition 2.6.2. But d v f(c) v f(t1�i�nci) and t1�i�ndi v f(t1�i�nci),
that is, d " t1�i�ndi, which entails that d = t1�i�ndi cf. Theorem 2.6.4. Then we have for
each i 2 f1; :::; ng that di v f(c) entails the existence of a c0i v c such that (c0i; di) 2 f cf.
Proposition 2.6.2. But c0i v c v t1�i�nci and ci v t1�i�nci, that is, c

0
i " ci, which entails that

c0i = ci cf. Theorem 2.6.4. So t1�i�nc
0
i v c v t1�i�nci entails that c = t1�i�nci, and we conclude

that (t1�i�nci; e) 2 f ; g. 2

Also, the following result about composition of functions is useful:

Corollary 2.6.7 If f : C ! D is a continuous stable function and g : D ! E is a linear stable
function then

f ; g = f(c; e) j 9d 2 D: (c; d) 2 f ^ (d; e) 2 gg

that is, the trace of the composition is equal to the traces composed as relations.

Proof: Assume that (c1; d1); :::; (cn; dn) 2 f such that fc1; :::; cng " and (t1�i�ndi; e) 2 g. The
function g is linear, so t1�i�ndi 2 Dp cf. Proposition 2.6.5, which entails that there exists a
q 2 f1; :::; ng such that t1�i�ndi = dq. But then ci v cq for every i 2 f1; :::; ng cf. Theorem 2.6.4,
and we conclude that t1�i�nci = cq. 2

Now, a small de�nition: Given d 2 X � D we de�ne pdq = fd0 2 X j d0 v dg. We will �rst give a
symmetric monoidal structure on the category dIlin.

De�nition 2.6.8 We de�ne I to be the Sierpinsky space. A bifunctor
 is de�ned as follows:
Given dI-domains D and E we de�ne D
E to be the set

ft � Dp � Ep j�1(t)" ^ �2(t)" ^ t is down-closedg

ordered by inclusion, and given linear stable functions f : D ! D0 and g : E ! E0 we de�ne the
linear stable function f
 g : D
 E ! D0
E0 as

f(p(d; e)q; p(d0; e0)q) j (d; d0) 2 f ^ (e; e0) 2 gg:

38 CHAPTER 2. THE SEMANTIC PICTURE

It is now straightforward to check that I together with the bifunctor
 constitutes a symmetric
monoidal structure. Note that

(D
 E)o = ft 2 D
 E j jtj <1g
(D
 E)p = fp(d; e)q j d 2 Dp ^ e 2 Epg

The last equality entails that (D
 E)p is isomorphic to Dp � Ep equipped with the coordinate
wise order. This is the key in showing that every functor (�)
D has a right adjoint D((�).

De�nition 2.6.9 Given dI-domains D and E we de�ne D (E to be the set of linear stable
functions from D to E ordered by inclusion of their traces.

It is easy to check that a function f is prime i� f = f \ p(d; e)q for some (d; e) 2 f ; if the function
f is prime then the uniquely determined (d; e) with that property will be denoted top(f).

De�nition 2.6.10 Given dI-domains E and D we de�ne a linear stable function

(D(E)
D
evalE;D- E

as

f(p(f; d)q; e) j f 2 (D(E)p ^ top(f) = (d; e)g:

It is straightforward to extend the function D ((�) to a functor which is right adjoint to
(�)
 D such that eval is counit: Given a linear stable function f : C
 D ! E we de�ne for
every (p(c; d)q; e) 2 f a linear stable prime function k (d; e) kfc : D ! E as

f(d0; e0) j d0 v d ^ e0 v e ^ 9c0 v c: (p(c0; d0)q; e0) 2 fg

which enables us to de�ne a linear stable function �(f) : C ! (D(E) as

f(c; k (d; e) kfc) j (p(c; d)q; e) 2 fg:

It is then the case that �(f) is a unique linear stable function with the property that the diagram

C
D

@
@
@
@
@

�(f)
D

R
E

f

?
� eval

(D (E)
D

commutes. We will now give a comonad on the category dIlin by giving a left adjoint to the
forgetful functor

U : dIlin ,! dI:

De�nition 2.6.11 Given a dI-domain D we de�ne !D as

ft � Do j t" ^ t is down-closedg

ordered by inclusion.

Note that
(!D)o = ft 2!D j jtj <1g
(!D)p = fpdq j d 2 Dog

The last equality entails that (!D)p is isomorphic to Do. This is the key in showing that U has a
left adjoint.

2.6. CATEGORIES OF DI-DOMAINS 39

De�nition 2.6.12 Given a dI-domain D we de�ne a continuous stable function

D
�D- !D

as

f(d; pdq) j d2 Dog:

It is straightforward to extend the function ! to a functor from dI to dIlin which is left adjoint
to U such that � is unit: Given a continuous stable function f : D ! E we de�ne a linear stable
function lin(f) :!D! E as

f(pdq; e) j (d; e) 2 fg:

It is then the case that lin(f) is a unique linear stable function with the property that the diagram

D
� - !D

	�
�
�
�
�

lin(f)

E

f

?

commutes. Note that the diagram lives in the category dI. The adjunction induces a comonad
on dIlin consisting of the functor ! restricted to an endofunctor on dIlin together with a natural
transformation " where a component "D :!D! D is equal to lin(idD) and a natural transforma-
tion � where a component �D :!D !!!D is equal to !�D. It will be useful to state some of the
constructions explicitly. Given a continuous stable function f : D ! E the linear stable function
!f :!D!!E is equal to

f(pdq; peq) j d 2 Do ^ e 2 Eo ^ e v f(d) ^ 8d0 v d: e v f(d0)) d = d0g

which is also equal to

f(pd1 t :::t dnq; pe1 t :::t enq) j (d1; e1); :::; (dn; en) 2 f ^ fd1; :::; dng"g:

The linear stable function "D :!D ! D is equal to

f(pdq; d) j d 2 Dpg:

The linear stable function �D :!D!!!D is equal to

f(pd1 t :::t dnq; p(pd1q [:::[pdnq)q) j d1; :::; dn 2 Do ^ fd1; :::; dng"g:

We want the comonad (!; "; �) to be symmetric monoidal; this motivates the following de�nition:

De�nition 2.6.13 We de�ne a linear stable function mI : I !!I as

f(>; f?g); (>;f?;>g)g

and we de�ne a natural transformationm with components mD;E :!D
!E !!(D
E) by de�ning
for each pair of dI-domains D and E a linear stable function mD;E as

f(p(pt(�1(t))q; pt(�2(t))q)q; ptq) j t 2 (D
 E)og

It is now straightforward to check that the function mI together with the natural transformation
m gives symmetric monoidal structure to the functor ! such that " and � are monoidal natural
transformations. Furthermore:

40 CHAPTER 2. THE SEMANTIC PICTURE

De�nition 2.6.14 We de�ne a natural transformation e with components eD :!D! I by de�ning
for each dI-domain D a linear stable function eD as

f(f?g;>)g

and we de�ne a natural transformation d with components dD :!D !!D
!D by de�ning for each
dI-domain D a linear stable function dD as

f(pd t d0q; p(pdq; pd0q)q) j d; d0 2 Do ^ d"d0g

It is now straightforward to check that the natural transformations e and d are monoidal such
that the three additional conditions on being a linear category, De�nition 2.2.1, are satis�ed. It
is easy to check that dIlin has �nite products and sums; the former is the usual construction for
posets and the latter is the \coalesced sum". The Kleisli category corresponding to the comonad
! is isomorphic to dI, so the results of Section 2.4 imply that the �nite products of dIlin make dI
cartesian closed, and the �nite sums of dIlin induce a weak �nite sum structure on dI.

Chapter 3

The �-Calculus

The primary goal of this chapter is to introduce the typed �-calculus and show its proof-theoretic
signi�cance. We start out by introducing Intuitionistic Logic in Section 3.1, the syntax of the
�-calculus is introduced in Section 3.2, and Section 3.3 gives an account of the �-calculus as a
Curry-Howard interpretation of Intuitionistic Logic. Given an appropriate categorical model, in
Section 3.4 we recall how this induces a categorical interpretation.

3.1 Intuitionistic Logic

The presentation of Intuitionistic Logic given in this section is based on the book [GLT89]. For-
mulae of Intuitionistic Logic are given by the grammar

s ::= 1 j s � s j s) s j 0 j s + s:

The metavariables A;B;C range over formulae. Proof-rules for a Natural Deduction presentation
of the logic are given in Figure 3.1; they are used to derive sequents

A1; :::; An ` B:

This amounts to a formula expressing that the conjunction of A1; :::; An implies B. The metavari-
ables �;� range over lists of formulae and �; � range over proofs. The � part of a sequent � ` B

is called the context of the sequent.

The Natural Deduction style proof-rules were originally introduced by Gentzen in [Gen34]
and later on considered by Pravitz in [Pra65]. This style of presentation is characterised by the
presence of two di�erent forms of rules for each connective, namely introduction and elimination

rules. Note that in Figure 3.1 the introduction rules have been positioned in the left hand side
column, and the elimination rules have been positioned in the right hand side column.

A notable feature of Intuitionistic Logic is the Brouwer-Heyting-Kolmogorov functional inter-
pretation where formulae are interpreted by means of their proofs:

� A proof of a conjunction A� B consists of a proof of A together with a proof of B,

� a proof of an implication A) B is a function from proofs of A to proofs of B,

� a proof of a disjunction A + B is either a proof of A or a proof of B together with a
speci�cation of which of the disjuncts is actually proved.

The proof-rules for Intuitionistic Logic can then be considered as methods for de�ning functions
such that a proof of a sequent � ` B gives rise to a function which to a list of proofs proving
the respective formulas in the context � assigns a proof of the formula B. Note that tertium non

datur, A_:A, which distinguishes Classical Logic from Intuitionistic Logic, cannot be interpreted

41

42 CHAPTER 3. THE �-CALCULUS

Figure 3.1: Intuitionistic Logic

Axiom
A1; :::; An ` Aq

1I
� ` 1

� ` A � ` B
�I

� ` A �B

� ` A� B
�E1

� ` A

� ` A� B
�E2

� ` B

�; A ` B
)I

� ` A) B

� ` A) B � ` A
)E

� ` B

� ` 0
0E

� ` C

� ` A
+I1

� ` A+ B

� ` B
+I2

� ` A+ B

� ` A+ B �; A ` C �; B ` C
+E

� ` C

in this way. It turns out that the �-calculus is an appropriate language for expressing the Brouwer-
Heyting-Kolmogorov interpretation. We will come back to the �-calculus in the next section, and
in Section 3.3 we will introduce the Curry-Howard isomorphism that makes explicit the relation
between the �-calculus and Intuitionistic Logic.

In Intuitionistic Logic we have the following admissible proof-rules

�; A;A;� ` B

�; A;� ` B

�;� ` B

�; A;� ` B

which are called contraction and weakening , respectively. The presence of contraction and weaken-
ing allows us to consider the context � of a sequent � ` B as a set of formulae instead of a multiset

of formulae, which is a feature distinguishing Intuitionistic Logic from Intuitionistic Linear Logic.

Now, a proof may be rewritten into a simpler form using a reduction rule. The reduction rules
of the presentation of Intuitionistic Logic given here are as follows:

� The (�I ;�E1) case

�
�
�

� ` A

�
�
�

� ` B

� ` A�B

� ` A

;
�
�
�

� ` A

� The (�I ;�E2) case

�
�
�

� ` A

�
�
�

� ` B

� ` A �B

� ` B

;
�
�
�

� ` B

3.2. SYNTAX OF THE �-CALCULUS 43

� The ()I ;)E) case

�; A;� ` A
�
�
�

�; A ` B

� ` A) B

�
�
�

� ` A

� ` B

;

�
�
�

�;� ` A
�
�
�

� ` B

� The (+I1;+E) case

�
�
�

� ` A

� ` A+ B

�; A;� ` A
�
�
�

�; A ` C

�; B;� ` B
�
�
�

�; B ` C

� ` C

;

�
�
�

�;� ` A
�
�
�

� ` C

� The (+I2;+E) case

�
�
�

� ` B

� ` A+B

�; A;� ` A
�
�
�

�; A ` C

�; B;� ` B
�
�
�

�; B ` C

� ` C

;

�
�
�

�;� ` B
�
�
�

� ` C

Note how a reduction rule removes a \detour" in the proof created by the introduction of a
connective immediately followed by its elimination. Intuitionistic Logic satis�es the Church-Rosser
property which means that whenever a proof � reduces to �0 as well as to �00, there exists a proof �000

to which both of the proofs �0 and �00 reduce, and moreover, it satis�es the strong normalisation

property which means that all reduction sequences originating from a given proof are of �nite
length. Church-Rosser and strong normalisation imply that any proof � reduces to a unique proof
with the property that no reductions can be applied; this is called the normal form of �. This
corresponds - via the Curry-Howard isomorphism - to analogous results for reduction of terms of
the �-calculus which we will come back to in the next two sections.

3.2 Syntax of the �-Calculus

The presentation of the �-calculus given in this section is based on the book [GLT89]. In the next
section we shall see how the �-calculus occurs as a Curry-Howard interpretation of Intuitionistic
Logic. Note that we consider products and sums as part of the �-calculus; this convention is not
followed by all authors. Types of the �-calculus are given by the grammar

s ::= 1 j s � s j s) s j 0 j s + s

and terms are given by the grammar

t ::= x j
true j (t; t) j fst(t) j snd(t) j
�xA:t j tt j
falseC(t) j inlA+B(t) j inrA+B(t) j case t of inl(x):t j inr(y):t

44 CHAPTER 3. THE �-CALCULUS

Figure 3.2: Type Assignment Rules for the �-Calculus

x1 : A1; :::; xn : An ` xq : Aq

� ` true : 1

� ` u : A � ` v : B

� ` (u; v) : A� B

� ` u : A� B

� ` fst(u) : A

� ` u : A �B

� ` snd(u) : B

�; x : A ` u : B

� ` �xA:u : A) B

� ` f : A) B � ` u : A

� ` fu : B

� ` w : 0

� ` false
C(w) : C

� ` u : A

� ` inl
A+B(u) : A+B

� ` u : B

� ` inr
A+B(u) : A +B

� ` w : A+ B �; x : A ` u : C �; y : B ` v : C

� ` case w of inl(x):u j inr(y):v : C

where x is a variable ranging over terms. The set of free variables, denoted FV (u), of a term u is
de�ned by structural induction on u as follows:

FV (x) = fxg
FV (true) = ;
FV ((u; v)) = FV (u) [FV (v)

FV (fst(u)) = FV (u)
FV (�x:u) = FV (u) � fxg
FV (fu) = FV (f) [FV (u)

FV (false(u)) = FV (u)
FV (inl(u)) = FV (u)

FV (case w of inl(x):u j inr(y):v) = FV (w) [(FV (u)� fxg)[(FV (v) � fyg)

We say that a term u is closed i� FV (u) = ;. We also say that the variable x is bound in the
term �x:u. A similar remark applies to the case construction. We need a convention dealing with
substitution: If a term v together with n terms u1; :::; un and n pairwise distinct variables x1; :::; xn
are given, then v[u1; :::; un=x1; :::; xn] denotes the term v where simultaneously the terms u1; :::; un
have been substituted for free occurrences of the variables x1; :::; xn such that bound variables in
v have been renamed to avoid capture of free variables of the terms u1; :::; un. Occasionally a list
u1; :::; un of n terms will be denoted u and a list x1; :::; xn of n pairwise distinct variables will
be denoted x. Given the de�nition of free variables above, it should be clear how to formalise
substitution. We also need a convention concerning an \inverse" to substitution: If terms v and
u are given together with a variable x, then v[x=u] denotes the term v where inductively all
occurrences of the term u have been replaced by the variable x. It is clear that if x does not occur
in v and none of the free variables of u are bound in v[x=u], then v[x=u][u=x] = v.

Rules for assignment of types to terms are given in Figure 3.2. Type assignments have the
form of sequents

x1 : A1; :::; xn : An ` u : B

where x1; :::; xn are pairwise distinct variables. It can be shown by induction on the derivation of
the type assignment that

FV (u) � fx1; :::; xng:

The �-calculus satis�es the following properties:

3.2. SYNTAX OF THE �-CALCULUS 45

Lemma 3.2.1 If the sequent � ` u : A is derivable, then for any derivable sequent � ` u : B we
have A = B.

Proof: Induction on the derivation of � ` u : A. 2

The following proposition is the essence of the Curry-Howard isomorphism:

Proposition 3.2.2 If the sequent � ` u : A is derivable, then the rule instance above the sequent
is uniquely determined.

Proof: Use Lemma 3.2.1 to check each case. 2

We need a small lemma dealing with expansion of contexts.

Lemma 3.2.3 If the sequent �;� ` u : A is derivable and the variables in the contexts �;� and
� are pairwise distinct, then the sequent �;�;� ` u : A is also derivable.

Proof: Induction on the derivation of �;� ` u : A. 2

Now comes a lemma dealing with substitution.

Lemma 3.2.4 (Substitution Property) If the sequents � ` u : A and �; x : A;� ` v : B are
derivable, then the sequent �;� ` v[u=x] : B is also derivable.

Proof: Induction on the derivation of �; x : A;� ` v : B. We need Lemma 3.2.3 for the case
where the derivation is an axiom

x1 : A1; :::; xn : An ` xq : Aq

such that the variable x is equal to xq. 2

We also have a lemma dealing with the \inverse" to substitution; this will be useful when in
Chapter 7 we consider PCF. Recall that v[x=u] denotes the term v where inductively all occurrences
of the term u have been replaced by the variable x.

Lemma 3.2.5 If the sequents � ` u : A and �;� ` v : B are derivable, then the sequent
�; x : A;� ` v[x=u] : B is also derivable where x is a new variable. the sequent �;� ` v : B.

Proof: Induction on the derivation of �;� ` v : B. 2

The �-calculus has the following �-reduction rules each of which is the image under the Curry-
Howard isomorphism of a reduction on the proof corresponding to the involved term:

fst((u; v)) ; u

snd((u; v)) ; v

(�x:u)w ; u[w=x]

case inl(w) of inl(x):u j inr(y):v ; u[w=x]

case inr(w) of inl(x):u j inr(y):v ; v[w=y]

We shall not be concerned with �-reductions or commuting conversions. The properties of Church-
Rosser and strong normalisation for proofs of Intuitionistic Logic correspond to analogous notions
for terms of the �-calculus via the Curry-Howard isomorphism, and in [GLT89] it is shown that
these properties are indeed satis�ed by terms of the �-calculus.

In Chapter 7 we will introduce the programming language PCF which is the �-calculus aug-
mented with numerals and recursion where the above mentioned reduction rules are replaced by
an operational semantics.

46 CHAPTER 3. THE �-CALCULUS

3.3 The Curry-Howard Isomorphism

The original Curry-Howard isomorphism, [How80], relates the Natural Deduction formulation of
Intuitionistic Logic to the �-calculus; formulae correspond to types, proofs to terms, and reduction
of proofs to reduction of terms. This is dealt with in [GLT89] and in [Abr90]; the �rst emphasises
the logic side of the isomorphism, the second the computational side. In what follows, we will
consider the Natural Deduction presentation of Intuitionistic Logic given in Figure 3.1. The
relation between formulae of Intuitionistic Logic and types of the �-calculus is obvious; they
are simply identical. The idea of the Curry-Howard isomorphism on the level of proofs is that
proof-rules can be \decorated" with terms such that the term induced by a proof encodes the
proof. An appropriate term language for this purpose is - in the case of Intuitionistic Logic - the
�-calculus. We get the rules for assigning types to terms of �-calculus if we decorate the proof-
rules of Intuitionistic Logic with terms in the appropriate way, and moreover, we can recover the
proof-rules if we take the typing rules of the �-calculus and remove the variables and terms. We
get the Curry-Howard isomorphism on the level of proofs as follows: Given a proof of the sequent
A1; :::; An ` B, that is, a proof of the formula B on assumptions A1; :::; An, one can inductively
construct a derivation of a sequent x1 : A1; :::; xn : An ` u : B, that is, a term u of type B with
free variables x1; :::; x1 of respective types A1; :::; An. Conversely, if one has a derivable sequent
x1 : A1; :::; xn : An ` u : B, there is an easy way to get a proof of A1; :::; An ` B; erase all
terms and variables in the derivation of the type assignment. The two processes are each other's
inverses modulo renaming of variables. The isomorphism on the level of proofs is essentially given
by Proposition 3.2.2.

On the level of reduction the Curry-Howard isomorphism says that a reduction on a proof
followed by application of the Curry-Howard isomorphism on the level of proofs, yields the same
term as application of the Curry-Howard isomorphism on the level of proofs followed by the
term-reduction corresponding to the proof-reduction. This can be veri�ed by applying the Curry-
Howard isomorphism to the proofs involved in the reduction rules of Intuitionistic Logic. For
example, in the case of a ()I;)E) reduction we get

�; x : A;� ` x : A
�
�
�

�; x : A ` u : B

� ` �x:u : A) B

�
�
�

� ` v : A

� ` (�x:u)v : B

;

�
�
�

�;� ` v : A
�
�
�

� ` u[v=x] : B

We see that a �-reduction has taken place on the term encoding the proof on which the reduction
is performed. In fact all �-reductions appear as Curry-Howard interpretations of reductions on
the corresponding proofs.

3.4 Categorical Semantics

The categorical semantics adheres to the following fundamental ideas of the categorical treatment
of proof-theory:

� Formulae (that is, types) are interpreted as objects,

� proof-rules (that is, typing rules) are interpreted as natural operations on maps,

� proofs (that is, derivations of type assignments) are interpreted as maps.

We will interpret the product and function types of the �-calculus using a cartesian closed struc-
ture. It is not so obvious how to interpret the sum type. If we assume the presence of �nite sums,

3.4. CATEGORICAL SEMANTICS 47

then the elimination rule for + can be interpreted using the operation on maps

A� �
u- C B � �

u- C

(A +B) � �
��1([�(u);�(v)])- C

which can be shown to be natural in �. This would be equivalent to using the natural isomorphism

(A+ B) � � �= (A � �) + (B � �)

given by the observation that the functor (�) � � has a right adjoint and thus preserves sums.
An analogous remark applies to the elimination rule for 0. But in [HP90] a cartesian closed
category with �nite sums together with a �xpoint operator is shown to be inconsistent , that is, it
is equivalent to the category consisting of one object and one map. In Chapter 7 we shall add a
�xpoint operator to the picture, so we have to be content with a less demanding assumption than
�nite sums.

De�nition 3.4.1 A categorical model for the �-calculus is a cartesian closed category with weak
�nite sums such that the diagram

A +B
[f; g]- �) C

@
@
@
@
@

[(f ; (h) C)); (g; (h) C))]
R
�) C
?

h) C

commutes for any maps f : A! �) C, g : B ! �) C and h : �! �.

Then the above mentioned operation can still be de�ned, and commutativity of the diagram is
equivalent to the operation being natural in �, as can be shown by some equational manipulation.

Examples 3.4.2 It is made clear in Chapter 2 that the concrete categories cpo and dI are
categorical models for the �-calculus.

Types are interpreted as objects, typing rules as natural operations on maps, and derivations of
type assignments as maps. A derivable sequent

x1 : A1; :::; xn : An ` u : B

is interpreted as a map

[[A1]]� :::� [[An]]
[[u]]- [[B]]

by induction on its derivation using the appropriate operations on maps induced by the categorical
model cf. below. We consider each case except the symmetric ones. When appropriate we will
abuse the notation and omit the [[�]] brackets.

� The derivation

x1 : A1; :::; xn : An ` xp : Ap

is interpreted as

A1 � :::� An

�p- Ap

� The derivation

� ` true : 1

is interpreted as

�
hi- 1

48 CHAPTER 3. THE �-CALCULUS

� The derivation
� ` u : A � ` v : B

� ` (u; v) : A� B

is interpreted as

�
u- A �

v- B

�
hu;vi- A�B

� The derivation
� ` u : A� B

� ` fst(u) : A

is interpreted as

�
u- A�B

�
u- A� B

�1- A

� The derivation
�; x : A ` u : B

� ` �x:u : A) B

is interpreted as

� �A
u- B

�
�(u)- A) B

� The derivation
� ` f : A) B � ` u : A

� ` fu : B

is interpreted as

�
f- A) B �

u- A

�
hf;ui- (A) B) � A

eval- B

� The derivation
� ` w : 0

� ` false(w) : C

is interpreted as

�
w- 0

�
w- 0

[]- C

� The derivation
� ` u : A

� ` inl(u) : A+B

is interpreted as

�
u- A

�
u- A

in1- A +B

� The derivation
� ` w : A+ B �; x : A ` u : C �; y : B ` v : C

� ` case w of inl(x):u j inr(y):v : C

is interpreted as

�
w- A+B �� A

u- C ��B
v- C

�
hw;�i- (A+ B)� �

��1([�(�=;u);�(�=;v)])- C

3.4. CATEGORICAL SEMANTICS 49

Note that the derivation of the sequent is uniquely determined according to Proposition 3.2.2 so it
makes sense to speak of the interpretation of a derivable sequent without mentioning its derivation
explicitly. It can be shown that the operations on maps induced by the typing rules are natural in
the interpretation of the unchanged components of the sequents. The following lemma corresponds
to Lemma 3.2.3 where the categorical interpretation has been taken into account:

Lemma 3.4.3 If the sequent �;� ` u : A is derivable and the variables in the contexts �;�
and � are pairwise distinct, then the sequent �;�;� ` u : A is also derivable and it has the
interpretation

�� �� �
��hi��- �� 1� � �= �� �

[[u]]- A

Proof: Induction on the derivation of �;� ` u : A. We use the observation that the operations on
maps induced by the typing rules are natural in the interpretation of the unchanged components
of the contexts of the sequents. 2

The following lemma corresponds to Lemma 3.2.4 where the categorical interpretation has been
taken into account; it says how substitution relates to composition:

Lemma 3.4.4 (Substitution) If the sequents � ` u : A and �; x : A;� ` v : B are derivable, then
the sequent �;� ` v[u=x] : B is also derivable and it has the interpretation

�� �
���- �� � � �

��[[u]]��- ��A � �
[[v]]- B

Proof: Induction on the derivation of �; x : A;� ` v : B. We use the observation that the
operations on maps induced by the typing rules are natural in the interpretation of the unchanged
components of the contexts of the sequents. 2

Using Lemma 3.4.4, one can show that the categorical interpretation is sound with respect to
�-reductions. It should be emphasised that we give a sound interpretation of the �-calculus by
using weak �nite sums such that the diagram above commutes, and not by using �nite sums. This
is a categorical generalisation of the sound interpretation given in [GLT89], where the category of
coherence spaces and stable continuous functions is used; a category that has weak �nite sums,
but not �nite sums. It is actually the case that if we have a linear category with �nite prod-
ucts and �nite sums, then the induced Kleisli category is a cartesian closed category with weak
�nite sums such that the above mentioned diagram commutes according to Proposition 2.4.2 and

Proposition 2.4.3.

50 CHAPTER 3. THE �-CALCULUS

Chapter 4

The Linear �-Calculus

The primary goal of this chapter is to introduce the linear �-calculus. We start out by introducing
Intuitionistic Linear Logic in Section 4.1. In Section 4.2 we make a digression to Russell's Para-
dox with the aim of illustrating the �ne grained character of Intuitionistic Linear Logic compared
to Intuitionistic Logic. The syntax of the linear �-calculus is introduced in Section 4.3 and Sec-
tion 4.4 gives an account of the linear �-calculus as a Curry-Howard interpretation of Intuitionistic
Linear Logic. Given an appropriate categorical model, in Section 4.5 we recall how this induces
a categorical interpretation. In Section 4.6 we introduce a generalisation of the linear �-calculus
that will be of use later on. In Section 4.7 the generalised version the linear �-calculus is given a
categorical semantics.

4.1 Intuitionistic Linear Logic

Linear Logic was discovered by J.-Y. Girard in 1987 and published in the now famous paper
[Gir87]. In the abstract of this paper, it is stated that \a completely new approach to the whole
area between constructive logics and computer science is initiated". In [Gir89] the conceptual
background of Linear Logic is worked out. This section deals with the intuitionistic fragment
of Linear Logic. The presentation of Intuitionistic Linear Logic we give here is the same as the
one given in [BBdPH92b], and later on
eshed out in detail in [Bie94]. Formulae of Intuitionistic
Linear Logic are given by the grammar

s ::= I j s
 s j s(s j !s j 1 j s� s j 0 j s+ s:

Proof-rules for a Natural Deduction presentation of the logic are given in Figure 4.1; they are used
to derive sequents

A1; :::; An�B:

Note that in Figure 4.1 the introduction rules have been positioned in the left hand side column,
and the elimination rules have been positioned in the right hand side column. A Girardian turnstile
� is used to distinguish sequents of Intuitionistic Linear Logic from sequents of Intuitionistic
Logic, where the usual turnstile ` is used. Intuitionistic Linear Logic does not include the \par"
construct of Classical Linear Logic; but it is possible to deal with it intuitionistically by allowing
sequents to have more than one conclusion - see [BdP96, HdP93].

The fundamental idea of Linear Logic is to control the use of resources which is witnessed by
the observation that the contraction and weakening proof-rules

�; A;A;��B

�; A;��B

�;��B

�; A;��B

are not admissible. The absence of contraction and weakening prevents us from considering the
context � of a sequent ��B as a set of formulae, but we have to consider it to be a multiset of

51

52 CHAPTER 4. THE LINEAR �-CALCULUS

Figure 4.1: Intuitionistic Linear Logic

Axiom
A�A

�; A;B;��C
Exchange

�; B;A;��C

II
� I

�� I ��A
IE

�;��A

��A ��B

I

�;��A
 B

��A
 B �; A;B �C

E

�;��C

�; A�B
(I

��A(B

��A(B ��A
(E

�;��B

�1 � !A1; ::: ;�n� !An !A1; :::; !An�B
Promotion

�1; :::;�n� !B

�� !B
Dereliction

��B

�� !A �; !A; !A�B
Contraction

�;��B

�� !A ��B
Weakening

�;��B

�1 �A1; ::: ;�n�An
1I

�1; :::;�n� 1

��A ��B
�I

��A �B

��A� B
�E1

��A

��A� B
�E2

��B

�1 �A1; ::: ;�n �An �� 0
0E

�1; :::;�n;��C

��A
+I1

��A+ B

��B
+I2

��A +B

��A +B �; A�C �; B �C
+E

�;��C

4.1. INTUITIONISTIC LINEAR LOGIC 53

formulae instead. This should be compared to Intuitionistic Logic where contraction and weaken-
ing are admissible and contexts therefore can be considered as sets of formulae. This means that
every formula occuring in the context of a sequent has to be used exactly once. Therefore the two
conjunctions � and
 of Linear Logic are very di�erent constructs: A proof of A �B consists of
a proof of A together with a proof of B where exactly one of the proofs has to be used. A proof
of A
B also consists of a proof of A together with a proof of B but here both of the proofs have
to be used. A restricted form of contraction and weakening is, however, available by having the
proof-rules

�; !A; !A;��B

�; !A;��B

�;��B

�; !A;��B

explicitly as part of Intuitionistic Linear Logic; they are special cases of the Contraction and
Weakening rules, respectively. So a proof of !A amounts to having a proof of A that can be used
an arbitrary number of times. It turns out that the ! modality enables Intuitionistic Logic to be
interpreted faithfully in Intuitionistic Linear Logic via the Girard Translation - see Section 5.

As in Intuitionistic Logic, a proof might be rewritten into a simpler form using a reduction rule.
The reduction rules of the presentation of Intuitionistic Linear Logic given here are as follows:

� The (II ; IE) case

� I

�
�
�

��A

��A

;
�
�
�

��A

� The (
I ;
E) case

�
�
�

��A

�
�
�

��B

�;��A
B

A�A B �B
�
�
�

�; A;B �C

�;�;��C

;

�
�
�

��A

�
�
�

��B
�
�
�

�;�;��C

� The ((I ;(E) case

A�A
�
�
�

�; A�B

��A(B

�
�
�

��A

�;��B

;

�
�
�

��A
�
�
�

�;��B

54 CHAPTER 4. THE LINEAR �-CALCULUS

� The (Promotion;Dereliction) case

�
�
�

�1 � !A1 ; ::: ;

�
�
�

�n � !An

!A1� !A1 ; :::; !An� !An
�
�
�

!A1; :::; !An�B

�1; :::;�n� !B

�1; :::;�n�B

;

�
�
�

�1 � !A1 ; :::;

�
�
�

�n � !An
�
�
�

�1; :::;�n�B

� The (Promotion;Contraction) case

�
�
�

�1 � !A1 ; ::: ;

�
�
�

�n � !An

!A1� !A1 ; :::; !An� !An
�
�
�

!A1; :::; !An�B

�1; :::;�n� !B

!B � !B !B � !B
�
�
�

�!B; !B �C

�;�1; :::;�n�C

;

�
�
�

�1� !A1 ; ::: ;

�
�
�

�n � !An

!A1 � !A1 ; :::; !An � !An
�
�
�

!A1; :::; !An�B

!A1; :::; !An� !B

!A1� !A1 ; :::; !An� !An
�
�
�

!A1; :::; !An�B

!A1; :::; !An� !B
�
�
�

�; !A1; :::; !An; !A1; :::; !An�C

�;�1; :::;�n�C

where the last used rule is derivable by using the Contraction and Exchange rules. Note
that a special case of the Contraction rule is used.

4.1. INTUITIONISTIC LINEAR LOGIC 55

� The (Promotion;Weakening) case

�
�
�

�1 � !A1 ; ::: ;

�
�
�

�n � !An

!A1 � !A1 ; :::; !An � !An
�
�
�

!A1; :::; !An�B

�1; :::;�n� !B ��C

�;�1; :::;�n�C

;

�
�
�

�1 � !A1 ; ::: ;

�
�
�

�n � !An ��C

�;�1; :::;�n�C

where the last used rule is derivable by using the Weakening rule.

� The (�I ;�E1) case
�
�
�

��A

�
�
�

��B

��A�B

��A

;
�
�
�

��A

� The (�I ;�E2) case
�
�
�

��A

�
�
�

��B

��A �B

��B

;
�
�
�

��B

� The (+I1;+E) case

�
�
�

��A

��A+ B

A�A
�
�
�

�; A�C

B �B
�
�
�

�; B �C

�;��C

;

�
�
�

��A
�
�
�

�;��C

� The (+I2;+E) case

�
�
�

��B

��A+ B

A�A
�
�
�

�; A�C

B �B
�
�
�

�; B �C

�;��C

;

�
�
�

��B
�
�
�

�;��C

56 CHAPTER 4. THE LINEAR �-CALCULUS

If we think of the Promotion rule as putting a \box" around the right hand side proof, then
(Promotion;Dereliction) reduction removes the box, whereas the (Promotion;Contraction) and
(Promotion;Weakening) reductions respectively copy and discard the box. Notions of Church-
Rosser and strong normalisation for Intuitionistic Linear Logic are de�ned in analogy with the
notions of Church-Rosser and strong normalisation for Intuitionistic Logic. Intuitionistic Linear
Logic does indeed satisfy these properties; this corresponds - via a Curry-Howard isomorphism
- to analogous results for reduction of terms of the linear �-calculus which we will return to in
Section 4.3 and Section 4.4.

4.2 A Digression - Russell's Paradox and Linear Logic

In this section we will make a digression with the aim of illustrating the �ne grained character of
Intuitionistic Linear Logic compared to Intuitionistic Logic. We will take set-theoretic comprehen-
sion into account: In both of the logics unrestricted comprehension enables a contradiction to be
proved via Russell's Paradox, but it turns out that Intuitionistic Linear Logic allows the presence
of a restricted form of comprehension, which is not possible in the case of Intuitionistic Logic.

Unrestricted comprehension says that for any predicate A(x) there is a set fx jA(x)g with the
property that

t 2 fx jA(x)g , A(t):

This is a very strong axiom; it has all the axioms of Zermelo-Fraenkel set theory except the Axiom
of Choice as special cases. An informal proof of Russell's Paradox now goes as follows: Using
comprehension we de�ne a set u as

u = fx j :(x 2 x)g:

Thus, u is the famous set of all those sets that are not elements of themselves. We then de�ne a
formula R to be

u 2 u:

We then have R , :R which enables a contradiction to be proved as follows: Assume R, this
entails :R, which together with R entails a contradiction. We have thus proved :R. The proof of
:R also gives a proof of R. But a proof of :R together with a proof of R entails a contradiction.

Note how the contradiction is proved in two stages: First a formula R such that R , :R is
de�ned, then a contradiction is derived in a proof where the assumption R is used twice. The two
applications of the assumption R are emphasised in the informal proof above. The are two ways
of remedying this inconsistency:

� Unrestricted comprehension is replaced by weaker axioms such that it is impossible to de�ne
the set u and hence the formula R with the property that R, :R cannot be de�ned either.
This was the option taken historically and which gave rise to Zermelo-Fraenkel set theory.

� Unrestricted comprehension is kept but the surrounding logic is weakened such that the
existence of a formula R with the property that R , :R does not imply a contradiction.
The !-free fragment of Linear Logic is one such option as assumptions here can be used only
once (recall that in deriving a contradiction from R, :R the assumption R is used twice).

We will now
esh out some details of the second option. First we give a formal proof of Russell's
Paradox in Intuitionistic Logic extended with unrestricted comprehension as prescribed in [Pra65].
Recall that in Intuitionistic Logic negation :A is de�ned as A) 0. The grammar for formulae of
Intuitionistic Logic is extended with an additional clause

s ::= ::: j t 2 t

and a grammar for terms is added
t ::= x j fx j sg

4.2. A DIGRESSION - RUSSELL'S PARADOX AND LINEAR LOGIC 57

where x is a variable ranging over terms. Terms are to be thought of as sets (they should not be
confused with terms of the �-calculus). Furthermore, proof-rules for introduction and elimination
of the connective 2 are added

� ` A[t=x]
2I

� ` t 2 fx jAg

� ` t 2 fx jAg
2E

� ` A[t=x]

The �rst stage of Russell's Paradox is formalised as follows: We de�ne the term u and the formula
R as above and get

� ` R

� ` :R

and vice versa, which is equivalent to provability of ` R) :R and vice versa. The second stage
of the paradox is formalised as follows: Two copies of the proof

R ` R

R ` :R R ` R

R;R ` 0

R ` 0

` :R

are applied in the proof
�
�
�

` :R

` R

�
�
�

` :R

` 0

of a contradiction. Note that we have used the admissible contraction proof-rule together with a
multiplicative version of the)E rule which is also admissible in Intuitionistic Logic. The presence
of contraction is crucial for the proof of inconsistency to go through. In [Pra65] the following
observation is made: It can be shown that the sequent ` 0 is not provable by a normal proof; this
means that no reduction sequences originating from the proof of ` 0 above end in a normal proof.
Indeed, the proof reduces in two stages to itself by carrying out the only performable reductions.

Now, we have shown above that unrestricted comprehension in the context of Intuitionistic
Logic is inconsistent. But it turns out that we do not get inconsistency if we extend the !-free
fragment of Intuitionistic Linear Logic with unrestricted comprehension as above. Negation :A is
here de�ned as A(01. We still have a formula R such that R(:R and vice versa, but now we
cannot prove � 0 as before because contraction is forbidden. The system was proved consistent in
[Gri82] using the following two observations: A proof essentially shrinks under normalisation and
there is no normal proof of � 0. The !-free fragment of Intuitionistic Linear Logic with unrestricted
comprehension is, however, very unexpressive. A partial solution to this lack of expressiveness is
to extend Intuitionistic Linear Logic with comprehension as above but with the restriction that
the ! modality is not allowed to occur in the involved formula A(t). We still have the formula
R such that R (:R and vice versa, but it turns out that this system is consistent, which was
proved in [Shi94].

Hence, the �ne-grainedness of Intuitionistic Linear Logic allows the presence of a restricted
form of comprehension, which is not possible in the context of Intuitionistic Logic. It should
be mentioned that considerations on Russell's Paradox in the context of Linear Logic have been
crucial for Girard's discovery of Light Linear Logic - see [Gir94].

1This is not the same as the negationA? of Classical Linear Logic which is equivalent to A(?. This di�erence
is, however, not of importance here.

58 CHAPTER 4. THE LINEAR �-CALCULUS

Figure 4.2: Type Assignment Rules for the Linear �-Calculus

x : A�x : A

�; x : A; y : B;��u : C

�; y : B; x : A;��u : C

�� : I

��w : I ��u : A

�;�� let w be � in u : A

�� u : A �� v : B

�;��u
 v : A
 B

��w : A
 B �; x : A; y : B �u : C

�;�� let w be x
 y in u : C

�; x : A�u : B

���xA:u : A(B

�� f : A(B ��u : A

�;�� fu : B

�1 � v1 :!A1; ::: ;�n� vn :!An x1 :!A1; :::; xn :!An�u : B

�1; :::;�n� promote v1; :::; vn for x1; :::; xn in u :!B

��u :!B

�� derelict(u) : B

��w :!A �; x :!A; y :!A�u : B

�;�� copy w as x; y in u : B

��w :!A ��u : B

�;�� discard w in u : B

��u : A �� v : B

�� (u; v) : A� B

��u : A �B

�� fst(u) : A

��u : A �B

�� snd(u) : B

�1 �w1 : A1; ::: ;�n �wn : An

�1; :::;�n� true(w1; :::; wn) : 1

�1 �w1 : A1; ::: ;�n�wn : An ��u : 0

�1; :::;�n;�� falseC(w1; :::; wn;u) : C

�� u : A

�� inlA+B(u) : A +B

��u : B

�� inrA+B(u) : A +B

��w : A+ B �; x : A� u : C �; y : B � v : C

�;�� case w of inl(x):u j inr(y):v : C

4.3 Syntax of the Linear �-Calculus

The presentation of the linear �-calculus which we give in this section is the same as the one given
in [BBdPH92b, BBdPH93], and later on
eshed out in detail in [Bie94]. The next section shows
how the linear �-calculus occurs as a Curry-Howard interpretation of Intuitionistic Linear Logic
in the same way as the �-calculus occurs as a Curry-Howard interpretation of Intuitionistic Logic.
Types of the linear �-calculus are given by the grammar

s ::= I j s
 s j s(s j !s j 1 j s � s j 0 j s + s

4.3. SYNTAX OF THE LINEAR �-CALCULUS 59

and terms are given by the grammar

t ::= x j
� j let t be � in t j t
 t j let t be x
 y in t j
�xA:t j tt j
promote t; :::; t for x1; :::; xn in t j derelict(t) j
discard t in t j copy t as x; y in tj
true(t; :::; t) j (t; t) j fst(t) j snd(t) j
falseC(t; :::; t; t) j inlA+B(t) j inrA+B(t) j case t of inl(x):t j inr(y):t

where x is a variable ranging over terms and t; :::; t denotes a list of n occurrences of the symbol t.
The set of free variables, denoted FV (u), of a term u is de�ned by induction on u as follows:

FV (x) = fxg
FV (�) = ;

FV (let w be � in u) = FV (w) [FV (u)
FV (u
 v) = FV (u) [FV (v)

FV (let w be x
 y in u) = FV (w) [(FV (u)� fx; yg)
FV (�x:u) = FV (u)� fxg
FV (fu) = FV (f) [FV (u)

FV (promote v1; :::; vn for x1; :::; xn in u) = FV (v1) [:::[FV (vn) [(FV (u)� fx1; :::; xng)
FV (derelict(u)) = FV (u)

FV (discard w in u) = FV (w) [FV (u)
FV (copy w as x; y in u) = FV (w) [(FV (u)� fx; yg)

FV (true(w1; :::; wn)) = FV (w1) [:::[FV (wn)
FV ((u; v)) = FV (u) [FV (v)

FV (fst(u)) = FV (u)
FV (false(w1; :::; wn;u)) = FV (w1) [:::[FV (wn) [FV (u)

FV (inl(u)) = FV (u)
FV (case w of inl(x):u j inr(y):v) = FV (w) [(FV (u)� fxg)[(FV (v) � fyg)

We use the same convention concerning substitution as for terms of the �-calculus: If a term
v together with n terms u1; :::; un and n pairwise distinct variables x1; :::; xn are given, then
v[u1; :::; un=x1; :::; xn] denotes the term v where simultaneously the terms u1; :::; un have been
substituted for free occurrences of the variables x1; :::; xn such that bound variables in v have
been renamed to avoid capture of free variables of the terms u1; :::; un. We also need a convention
concerning an \inverse" to substitution: If terms v and u are given together with a variable x,
then v[x=u] denotes the term v where inductively all occurrences of the term u have been replaced
by the variable x.

Rules for assignment of types to terms are given in Figure 4.2. Type assignments have the
form of sequents

x1 : A1; :::; xn : An � u : A

where x1; :::; xn are pairwise distinct variables. Note that the de�nition of sequents implicitly
restricts use of the rules. For example, it is not possible to use the rule for introduction of
 if
the contexts � and � have common variables. It can be shown by induction on the derivation of
the type assignment that

FV (u) = fx1; :::; xng:

Note that this is di�erent from the �-calculus where we did not have equality, but only an inclusion.
If we restrict to the fragment of the linear �-calculus without additives, it can be shown by
induction on the derivation of the type assignment that every free variable of the term u occurs

60 CHAPTER 4. THE LINEAR �-CALCULUS

exactly once. Another characteristic feature of the linear �-calculus is that we have two di�erent
\pairing" constructs; in a pair u
 v both of the components have to be used, whereas in a pair
(u; v) exactly one of the components has to be used. Via the Curry-Howard isomorphism this
corresponds to the two di�erent conjunctions of Intuitionistic Linear Logic. The linear �-calculus
satis�es the following properties:

Lemma 4.3.1 If the sequent �� u : A is derivable, then for any derivable sequent �0 �u : B,
where the context �0 is a permutation of the context �, we have A = B.

Proof: Induction on the derivation of ��u : A. 2

The following proposition is the essence of the Curry-Howard isomorphism:

Proposition 4.3.2 If the sequent ��u : A is derivable, then the �rst rule instance above the
sequent which is di�erent from an instance of the Exchange rule is uniquely determined up to
permutation of the context �.

Proof: Use Lemma 4.3.1 to check each case. 2

Now comes a lemma dealing with substitution.

Lemma 4.3.3 (Substitution Property) If the sequents ��u : A and �; x : A;�� v : B are
derivable and the variables in the contexts � and �;� are pairwise distinct, then the sequent
�;�;�� v[u=x] : B is also derivable.

Proof: Induction on the derivation of �; x : A;�� v : B. 2

We now need a couple of conventions: The term

copy w1 as x1; y1 in (:::copy wn as xn; yn in u:::)

is denoted

copy w as x; y in u

and the term

discard w1 in (:::discard wn in u:::)

is denoted

discard w in u:

The linear �-calculus has the following �-reduction rules each of which is the image under the

4.4. THE CURRY-HOWARD ISOMORPHISM 61

Curry-Howard isomorphism of a reduction on the proof corresponding to the involved term:

let � be � in u ; u

u
 v be x
 y in w ; w[u; v=x; y]

(�x:u)w ; u[w=x]

fst((u; v)) ; u

snd((u; v)) ; v

case inl(w) of inl(x):u j inr(y):v ; u[w=x]

case inr(w) of inl(x):u j inr(y):v ; v[w=y]

derelict(promote w for x in u) ; v[w=x]

discard (promote w for x in u) in v ; discard w in v

copy (promote w for x in u) as y; z in v

;

copy w as x0; x00 in (v[promote x0 for x in u; promote x00 for x in u=y; z])

We shall only be concerned with �-reductions. Note how the di�erent character of the two \pair-
ing" constructs u
 v and (u; v) is re
ected in the corresponding reduction rules. The properties
of Church-Rosser and strong normalisation for proofs of Intuitionistic Linear Logic corresponds
to analogous notions for terms of the linear �-calculus via the Curry-Howard isomorphism, and in
[Bie94] it is shown that these properties are indeed satis�ed by terms of the linear �-calculus.

We will in Chapter 9 introduce the programming language LPCF which is the linear �-calculus
augmented with numerals and recursion, appropriate for the linear context, where the above
mentioned reduction rules are replaced by an operational semantics.

4.4 The Curry-Howard Isomorphism

In what follows, we will consider the Natural Deduction presentation of Intuitionistic Linear Logic
given in Figure 4.1. Intuitionistic Linear Logic corresponds to the linear �-calculus via a Curry-
Howard isomorphism in the same way as Intuitionistic Logic corresponds to the �-calculus. The
formulae of Intuitionistic Linear Logic are the same as the types of the linear �-calculus. We
get the rules for assigning types to terms of the linear �-calculus if we decorate the proof-rules
of Intuitionistic Linear Logic with terms in the appropriate way, and moreover, we can recover
the proof-rules if we take the typing rules of the linear �-calculus and remove the terms. The
isomorphism on the level of proofs is essentially given by Proposition 4.3.2.

From a historical point of view, the choice of term corresponding to the rule for introduction of
! has been problematic. In [Abr90] the �rst Curry-Howard interpretation of Intuitionistic Linear
Logic was published. Here the rules are given in Gentzen style, named after the discoverer of a
similar system of proof-rules for Classical Logic, [Gen34, GLT89]. No Natural Deduction formu-
lation was presented in [Abr90]. In Gentzen style we have only introduction rules; a connective
can be introduced on both sides of the sequent, in opposition to Natural Deduction style where
we can either introduce or eliminate a connective on the right hand side. The Promotion rule of

62 CHAPTER 4. THE LINEAR �-CALCULUS

the Natural Deduction formulation corresponds to the rule

!A1; :::; !An�A
Promotion

!A1; :::; !An� !A

of the Gentzen style formulation. Now, the Gentzen style system enjoys the substitution property
simply because it is a rule of the system, namely the Cut rule. In [Abr90] the Gentzen style
Promotion rule is decorated with terms as follows:

x1 :!A1; :::; xn :!An� u : A

x1 :!A1; :::; xn :!An� !u :!A

A serious problem with this term-decoration was pointed out in [Wad91]. The problem is as
follows: The Cut rule together with the Gentzen style Promotion rule, decorated with terms
as above, forces the categorical model corresponding to the system to collapse; the ! modality is
interpreted as a functor, and the two rules together force ! to be isomorphic to !!. The problem
is that a given sequent can have several derivations, and they all ought to give rise to the same
categorical interpretation. The presence of the Cut rule gives us two di�erent interpretations of
the same sequent unless ! �=!! in a canonical way.

In 1992 this was remedied by the authors of [BBdPH92b], and by the author of this thesis, by
changing the decoration of the Gentzen style Promotion rule with terms in an appropriate way,
and by discovering a Natural Deduction formulation equivalent to the Gentzen style formulation
of Intuitionistic Linear Logic (the Natural Deduction formulation known at that time, [Mac91],
did not possess that property). This work settled the question of how to interpret Intuitionistic
Linear Logic via a Curry-Howard isomorphism. The new decoration of the Promotion rule goes
as follows:

x1 :!A1; :::; xn :!An �u : A
Promotion

z1 :!A1; :::; zn :!An� promote z1; :::; zn for x1; :::; xn in u :!A

The new rule can coexist with the Cut rule without collapsing the model, and the derivations
which with the old term decoration ended with identical sequents, now end with di�erent sequents
because the induced terms are di�erent. The new Natural Deduction formulation of Intuitionistic
Linear Logic is the one given in Figure 4.1. We obtain the typing rules for the linear �-calculus as
given in Figure 4.2 by decorating the rules of the Natural Deduction formulation of Intuitionistic
Linear Logic appropriately with terms. If we take the Gentzen style formulation of Intuitionistic
Linear Logic and decorate it with terms as originally done in [Abr90], except that we pick the
new decoration of the Promotion rule according to the discussion above, then we get a system
equivalent to the linear �-calculus.

As with the �-calculus, it is the case that all the �-reductions of the linear �-calculus appear
as Curry-Howard interpretations of reduction rules of Intuitionistic Linear Logic. For example, in
the case of a (
I ;
E) reduction we get

�
�
�

��u : A

�
�
�

�� v : B

�;��u
 v : A
 B

x : A�x : A y : B � y : B
�
�
�

�; x : A; y : B �wC

�;�;�� let u
 v be x
 y in w : C

;

�
�
�

�� u : A

�
�
�

�� v : B
�
�
�

�;�;��w[u; v=x; y] : C

We see that a �-reduction has taken place on the term encoding the proof on which the reduction
is performed. All �-reductions do actually appear as Curry-Howard interpretations of reductions
on the corresponding proofs.

4.5. CATEGORICAL SEMANTICS 63

4.5 Categorical Semantics

We proceed as prescribed in [BBdPH92b] when giving a categorical semantics. In this article
the notion of a linear category is introduced explicitly with the aim of giving a sound categorical
interpretation of the linear �-calculus.

De�nition 4.5.1 A categorical model for the linear �-calculus is a linear category with �nite
products and sums.

Note that we assume the presence of �nite sums, not just weak �nite sums. This does not force the
categorical model to be inconsistent, that is, equivalent to the category consisting of one object
and one map, when in Chapter 9 we add a linear �xpoint operator to the picture. This is contrary
to the cartesian closed case where the presence of �nite sums together with a �xpoint operator
forces the category in question to be inconsistent.

Examples 4.5.2 In Chapter 2 it is made clear that the concrete linear categories cpost and dIlin
are categorical models for the linear �-calculus.

Types are interpreted as objects, typing rules as natural operations on maps, and derivations of
type assignments as maps. A derivable sequent

x1 : A1; :::; xn : An �u : B

is interpreted as a map

[[A1]]
 :::
 [[An]]
[[u]]- [[B]]

by induction on its derivation using the appropriate operations on maps induced by the categorical
model cf. below. We consider each case except the symmetric ones.

� The derivation

x : A�x : A

is interpreted as

A
A- A

� The derivation
�; x : A; y : B;��u : C

�; y : B; x : A;��u : C

is interpreted as

�
 A
 B
�
u- C

�
B
 A
� �= �
A
 B
�
u- C

� The derivation

�� : I

is interpreted as

I
I- I

� The derivation
��w : I ��u : A

�;�� let w be � in u : A

is interpreted as

�
w- I �

u- A

�
 �
�
w- �
 I �= �

u- A

64 CHAPTER 4. THE LINEAR �-CALCULUS

� The derivation
�� u : A �� v : B

�;��u
 v : A
 B

is interpreted as

�
u- A �

v- B

�
�
u
v- A
B

� The derivation
��w : A
B �; x : A; y : B � u : C

�;�� let w be x
 y in u : C

is interpreted as

�
w- A
 B �
A
 B

u- C

�
 �
�
w- �
A
B

u- C

� The derivation
�; x : A�u : B

���x:u : A(B

is interpreted as

�
A
u- B

�
�(u)- A(B

� The derivation
�� f : A(B ��u : A

�;�� fu : B

is interpreted as

�
f- A(B �

u- A

�
�
f
u- (A(B)
A

eval- B

� The derivation

�1 � v1 :!A1; ::: ;�n � vn :!An x1 :!A1; :::; xn :!An�u : B

�1; :::;�n� promote v1; :::; vn for x1; :::; xn in u :!B

is interpreted as

�1
v1- !A1; ::: ;�n

vn- !An !A1
 :::
!An
u- B

�1
 :::
 �n
v1
:::
vn- !A1
 :::
!An

(u)- !B

� The derivation
�� u :!A

�� derelict(u) : A

is interpreted as

�
u- !A

�
u- !A

"- A

� The derivation
��w :!A �; x :!A; y :!A�u : B

�;�� copy w as x; y in u : B

is interpreted as

�
w- !A �
!A
!A

u- B

�
 �
�
w- �
!A

�
d- �
!A
!A
u- B

4.5. CATEGORICAL SEMANTICS 65

� The derivation
��w :!A ��u : B

�;�� discard w in u : B

is interpreted as

�
w- !A �

u- B

�
 �
�
w- �
!A

�
e- �
 I �= �
u- B

� The derivation
�1 �w1 : A1; ::: ;�n�wn : An

�1; :::;�n� true(w1; :::; wn) : 1

is interpreted as

�1
w1- A1; ::: ;�n

wn- An

�1; :::;�n
hi- 1

� The derivation
��u : A �� v : B

�� (u; v) : A �B

is interpreted as

�
u- A �

v- B

�
hu;vi- A�B

� The derivation
��u : A� B

�� fst(u) : A

is interpreted as

�
u- A� B

�
u- A �B

�1- A

� The derivation
�1 �w1 : A1; ::: ;�n�wn : An ��u : 0

�1; :::;�n;�� falseC(w1; :::; wn;u) : C

is interpreted as

�1
w1- A1; ::: ;�n

wn- An �
u- 0

�1
 :::
 �n
 �
w1
:::
wn
u- A1
 :::
 An
 0 �= 0

[]- C

where the isomorphism A1
 :::
 An
 0 �= 0 is given by the observation that the functor
�
 (�) has a right adjoint and thus preserves the initial object.

� The derivation
��u : A

�� inl(u) : A +B

is interpreted as

�
u- A

�
u- A

in1- A +B

66 CHAPTER 4. THE LINEAR �-CALCULUS

� The derivation
��w : A+ B �; x : A� u : C �; y : B � v : C

�;�� case w of inl(x):u j inr(y):v : C

is interpreted as

�
w- A+ B �
A

u- C �
 B
v- C

�
 �
�
w- �
 (A+ B) �= (�
 A) + (�
B)

[u;v]- C

where the natural isomorphism �
 (A+B) �= (�
A)+ (�
B) is given by the observation
that the functor �
 (�) has a right adjoint and thus preserves the binary sums.

Note that the derivation of the sequent is uniquely determined up to permutation of assumptions
according to Proposition 4.3.2 so it makes sense to speak of the interpretation of a derivable
sequent without mentioning its derivation explicitly. It can be shown that the operations on maps
induced by the typing rules are natural in the interpretation of the unchanged components of the
sequents. The following lemma corresponds to Lemma 4.3.3 where the categorical interpretation
is taken into account; it essentially says that substitution corresponds to composition:

Lemma 4.5.3 (Substitution) If the sequents ��u : A and �; x : A;�� v : B are derivable and
the variables in the contexts � and �;� are pairwise distinct, then the sequent �;�;�� v[u=x] : B
is also derivable and it has the interpretation

�
 �
 �
�
[[u]]
�- �
 A
 �

[[v]]- B

Proof: Induction on the derivation of �; x : A;�� v : B. We use the observation that the
operations on maps induced by the typing rules are natural in the interpretation of the unchanged
components of the contexts of the sequents. 2

By using Lemma 4.5.3 it can be shown that the interpretation is sound with respect to �-reductions
- see [BBdPH92b].

4.6 The Generalised Linear �-Calculus - Syntax

In this section we will introduce what we have called the generalised linear �-calculus. This system

was discovered for technical reasons; it enables us to prove adequacy for LPCF, and moreover, to
state and prove an unwinding theorem - see Chapter 9. In certain respects the generalised linear
�-calculus is similar to the variants of Girard's Logic of Unity, [Gir93] considered in [Wad93] and
[Plo93]. The extent of this similarity is to be determined by further work - see Chapter 11.

The types and terms of the generalised linear �-calculus are the same as for the linear �-
calculus, but the rules for type assignment are more general; they have two contexts instead of
one. Rules for assignment of types to terms are given in Figure 4.3; they consist of the rules
of the linear �-calculus extended with an extra context dealt with in an additive fashion, and
furthermore, there is an extra axiom. Type assignments thus have the form of sequents

x1 : A1; :::; xn : An; y1 : B1; :::; ym : Bm �u : C

where x1; :::; xn; y1; :::; ym are pairwise distinct variables. Note how the two contexts of a sequent
are separated by a semicolon. It can be shown by induction on the derivation of the type assignment
that

FV (u) � fx1; :::; xng = fy1; :::; ymg

and
FV (u)� fy1; :::; ymg � fx1; :::; xng:

The variables occuring on the left hand side of the semicolon are called intuitionistic variables
and the variables occuring on the right hand side of the semicolon are called linear variables.

4.6. THE GENERALISED LINEAR �-CALCULUS - SYNTAX 67

Figure 4.3: Type Assignment Rules for the Generalised Linear �-Calculus

�;x : A�x : A x1 : A1; :::; xn : An; �xq : Aq

�;�; x : A; y : B;��u : C

�;�; y : B; x : A;��u : C

�; �� : I

�;��w : I �;�� u : A

�;�;�� let w be � in u : A

�;��u : A �;�� v : B

�;�;��u
 v : A
 B

�;��w : A
B �;�; x : A; y : B �u : C

�;�;�� let w be x
 y in u : C

�;�; x : A�u : B

�;�� �xA:u : A(B

�;�� f : A(B �;��u : A

�;�;�� fu : B

�;�1 � v1 :!A1; ::: ;�;�n� vn :!An �;x1 :!A1; :::; xn :!An�u : B

�;�1; :::;�n� promote v1; :::; vn for x1; :::; xn in u :!B

�;��u :!B

�;�� derelict(u) : B

�;��w :!A �;�; x :!A; y :!A�u : B

�;�;�� copy w as x; y in u : B

�;��w :!A �;��u : B

�;�;�� discard w in u : B

�;��u : A �;�� v : B

�;�� (u; v) : A�B

�;�� u : A� B

�;�� fst(u) : A

�;��u : A� B

�;�� snd(u) : B

�;�1 � v1 : A1; ::: ;�;�n� vn : An

�;�1; :::;�n� true(v1; :::; vn) : 1

�; �1 � v1 : A1; ::: ;�;�n� vn : An �;��u : 0

�; �1; :::;�n;�� falseC(v1; :::; vn;u) : C

�;�� u : A

�;�� inlA+B(u) : A +B

�;��u : B

�;�� inrA+B(u) : A+ B

�;��w : A+B �;�; x : A�u : C �;�; y : B � v : C

�;�;�� case w of inl(x):u j inr(y):v : C

68 CHAPTER 4. THE LINEAR �-CALCULUS

Correspondingly, the context on the left hand side of the semicolon is called the intuitionistic

context and the context on the right hand side of the semicolon is called the linear context.
Note that an intuitionistic variable cannot be bound. It is straightforward to check that the
generalised linear �-calculus is a conservative extension of the linear �-calculus in the sense that
a sequent ��u : A is derivable in the linear �-calculus i� the sequent ; �� u : A is derivable in
the generalised linear �-calculus.

Now, it turns out that we do not have a result dealing with the \inverse" to substitution in the
linear �-calculus analogous to Lemma 3.2.5 of the �-calculus. The role of the intuitionistic context
of the generalised linear �-calculus is to make such a result possible. This is best explained by
looking at an example: The term

promote for in �

(where the lists of variables and terms are empty) is typeable in the linear �-calculus as follows:

� � : I

� promote for in � :!I

It is also typeable in the generalised linear �-calculus as follows:

; �� : I

; � promote for in � :!I

But the term
(promote for in �)[x=�] = promote for in x

is not typeable in the linear �-calculus. Recall that v[x=u] denotes the term v where inductively all
occurrences of the term u have been replaced by the variable x. The mentioned term is, however,
typeable in the generalised linear �-calculus as follows:

x : I; �x : I

x : I; � promote for in x :!I

Note that the variable x is an intuitionistic variable. Such situations are taken care of by
Lemma 4.6.6 below which deals with the \inverse" to substitution in the generalised linear �-
calculus. So, such a result is available for the generalised linear �-calculus, but not for the linear
�-calculus. The generalised linear �-calculus satis�es the following properties:

Lemma 4.6.1 If the sequent �; ��u : A is derivable, then for any derivable sequent �; �0�u : B,
where the context �0 is a permutation of the context �, we have A = B.

Proof: Induction on the derivation of �; ��u : A. 2

The following result says that the term of a derivable sequent essentially encodes the derivation:

Proposition 4.6.2 If the sequent �; ��u : A is derivable, then the �rst rule instance above the
sequent which is di�erent from an instance of the Exchange rule is uniquely determined up to
permutation of the context �.

Proof: Use Lemma 4.6.1 to check each case. 2

We need a small lemma dealing with expansion of intuitionistic contexts.

Lemma 4.6.3 If the sequent �;�;��u : A is derivable and the variables in the contexts �;�;�
and � are pairwise distinct, then the sequent �;�;�;��u : A is also derivable.

Proof: Induction on the derivation of �;�;�� u : A. 2

The Substitution Property now splits up into two cases; one for each kind of variables. The �rst
case deals with linear variables:

4.7. THE GENERALISED LINEAR �-CALCULUS - SEMANTICS 69

Lemma 4.6.4 (Linear Substitution Property) If the sequent �; ��u : A as well as the sequent
�;�; x : A;�� v : B both are derivable and the variables in the contexts � and �;� are pairwise
distinct, then the sequent �;�;�;�� v[u=x] : B is also derivable.

Proof: Induction on the derivation of �;�; x : A;�� v : B. We use Lemma 4.6.3. 2

The second case deals with intuitionistic variables:

Lemma 4.6.5 (Intuitionistic Substitution Property) If the sequent �; �u : A as well as the
sequent �; x : A;�;�� v : B both are derivable, then the sequent �;�;�� v[u=x] : B is also
derivable.

Proof: Induction on the derivation of �; x : A;�;�� v : B. We need Lemma 4.6.3 for the case
where the derivation is an axiom

x1 : A1; :::; xn : An; � xq : Aq

such that the variable x is equal to xq. 2

Note that the linear context in the sequent �; �u : A is empty. The following lemma deals with
the \inverse" to substitution analogous to Lemma 3.2.5 of the �-calculus. This will be necessary
when in Chapter 9 we consider LPCF. Recall that v[x=u] denotes the term v where inductively
all occurrences of the term u have been replaced by the variable x.

Lemma 4.6.6 If the sequents �; �u : A and �;�;�� v : B are derivable, then the sequent
�; x : A;�;�� v[x=u] : B is also derivable where x is a new variable.

Proof: Induction on the derivation of �;�;�� v : B. 2

4.7 The Generalised Linear �-Calculus - Semantics

Given a categorical model for the linear �-calculus we are able to interpret the generalised linear
�-calculus: Types are interpreted as objects, typing rules as natural operations on maps, and
derivations of type assignments as maps. A derivable sequent

x1 : A1; :::; xn : An; y1 : B1; :::; ym : Bm �u : C

is interpreted as a map

![[A1]]
 :::
![[An]]
 [[B1]]
 :::
 [[Bm]]
[[u]]- [[C]]

by induction on its derivation using appropriate operations on maps induced by the categorical
model. Note that !A1
 :::
!An is the underlying object of the coalgebra (!A1; �)
 :::
 (!An; �);
this gives us projection maps

(!A1; �)
 :::
 (!An; �)
�q- (!Aq; �)

together with a diagonal map

(!A1; �)
 :::
 (!An; �)
�- (!A1; �)
 :::
 (!An; �)
 (!A1; �)
 :::
 (!An; �)

and a map

(!A1; �)
 :::
 (!An; �)
hi- I

to the terminal object all living in the category of coalgebras. We use these maps to give operations
on maps corresponding to the typing rules of the generalised linear �-calculus. Only two cases are
considered, the operations on maps corresponding to the other typing rules are straightforward
extensions of the operations on maps induced by the typing rules for the linear �-calculus where
we make use of the above mentioned diagonal map together with the map to the terminal object.

70 CHAPTER 4. THE LINEAR �-CALCULUS

� The derivation

x1 : A1; :::; xn : An; �xq : Aq

is interpreted as

!A1
 :::
!An

�q- !Aq
"- Aq

where �q :!A1
 :::
!An !!Aq is the projection map in the category of coalgebras.

� The derivation

�; �1 � v1 :!A1; ::: ;�;�n� vn :!An �;x1 :!A1; :::; xn :!An�u : B

�;�1; :::;�n� promote v1; :::; vn for x1; :::; xn in u :!B

is interpreted as

�
 �1
v1- !A1; ::: ;�
 �n

vn- !An �
!A1
 :::
!An
u- B

�
 �1
 :::
 �n
l- �
�
 �1
 :::
 �
 �n

�
v1
:::
vn- �
!A1
 :::
!An

(u)- !B

using the map l de�ned as the composition

�
 �1
 :::
 �n
�
�1
:::
�n- �
�
 :::
�
 �1
 :::
 �n �= �
�
 �1
 :::
�
 �n

where � : � ! �
 �
 :::
 � is the diagonal map in the category of coalgebras. Note
that the use of the generalised Kleisli operator,
, is possible because a formula C in the
intuitionistic context � is interpreted as ![[C]].

It can be shown that the operations on maps induced by the typing rules are natural in the
interpretation of the unchanged components of the linear contexts of the sequents, and moreover,
they are natural in the interpretation of the unchanged components of the intuitionistic contexts
of the sequents with respect to maps of coalgebras. Note that the categorical interpretation of
the generalised linear �-calculus is a conservative extension of the categorical interpretation of
the linear �-calculus in the sense that the interpretation of a linear �-calculus sequent �� u : A
coincides with the interpretation of the sequent ; ��u : A of the generalised linear �-calculus.
The following lemma corresponds to Lemma 4.6.3 where the categorical interpretation has been
taken into account:

Lemma 4.7.1 If the sequent �;�;��u : A is derivable and the variables in the contexts �;�;�
and � are pairwise distinct, then the sequent �;�;�;��u : A is also derivable and it has the
interpretation

�
�
 �
 �
�
hi
�
�- �
 I
 �
 � �= �
 �
 �

[[u]]- A

Proof: Induction on the derivation of �;�;��u : A. We use the observation that the operations
on maps induced by the typing rules of the generalised linear �-calculus are natural in the inter-
pretation of the unchanged components of the intuitionistic contexts of the sequents with respect
to maps of coalgebras. 2

The following lemma corresponds to Lemma 4.6.4 where the categorical interpretation has been
taken into account; it essentially says that substitution with respect to linear variables corresponds
to composition:

Lemma 4.7.2 (Linear Substitution) If the sequents �; �� u : A and �;�; x : A;�� v : B are
derivable and the variables in the contexts � and �;� are pairwise distinct, then the sequent
�;�;�;�� v[u=x] : B is also derivable and it has the interpretation

�
�
�
�
�
�
�
�- �
�
�
�
��= �
�
�
�
�

�
�
[[u]]
�- �
�
A
�
[[v]]- B

4.7. THE GENERALISED LINEAR �-CALCULUS - SEMANTICS 71

Proof: Induction on the derivation of �;�; x : A;�� v : B. We use naturality of the appropriate
operations on maps induced by the typing rules of the generalised linear �-calculus. 2

The following lemma corresponds to Lemma 4.6.5 where the categorical interpretation has been
taken into account; it essentially says that substitution with respect to intuitionistic variables
corresponds to composition in the category of coalgebras:

Lemma 4.7.3 (Intuitionistic Substitution) If the sequents �; �u : A and �; x : A;�;�� v : B
are derivable, then the sequent �;�;�� v[u=x] : B is also derivable and it has the interpretation

�
 �
 �
�
�
�- �
�
 �
 �

�

([[u]])
�
�- �
!A
 �
 �
[[v]]- B

Proof: Induction on the derivation of �; x : A;�;�� v : B. We use the observation that the
operations on maps induced by the typing rules of the generalised linear �-calculus are natural in
the interpretation of the unchanged components of the intuitionistic contexts of the sequents with
respect to maps of coalgebras. 2

72 CHAPTER 4. THE LINEAR �-CALCULUS

Chapter 5

The Girard Translation

This chapter introduces the Girard Translation which embeds Intuitionistic Logic into Intuitionistic
Linear Logic. The syntactic matters are dealt with in Section 5.1, and in Section 5.2 the Girard
Translation is shown to be sound with respect to the categorical interpretations induced by an
appropriate categorical model.

5.1 Syntax

The [Gir87] paper introduced the Girard Translation which embeds Intuitionistic Logic into In-
tuitionistic Linear Logic. We will state the Girard Translation in terms of the Natural Deduction
presentations of Intuitionistic Logic and Intuitionistic Linear Logic given in Figure 3.1 and Fig-
ure 4.1, respectively. The translation works at the level of formulae as well as at the level of proofs.
At the level of formulae the Girard Translation is de�ned inductively as follows:

1o = 1
(A �B)o = Ao �Bo

(A) B)o = !Ao (Bo

0o = 0
(A +B)o = !Ao+!Bo

At the level of proofs the Girard Translation inductively translates a proof of a sequent

A1; :::; An ` B

into a proof of the sequent
!Ao

1; :::; !A
o
n�Bo:

In what follows we consider each case except the symmetric ones. Special cases of rules are used
when appropriate, and a double bar means a number of applications of rules.

� A derivation

A1; :::; An ` Ap

is translated into

!Ao
q � !Ao

p

!Ao
q �Ao

p
=============
!Ao

1; :::; !A
o
n�Ao

p

� A derivation

� ` 1

73

74 CHAPTER 5. THE GIRARD TRANSLATION

is translated into

!�o � 1

� A derivation
� ` A � ` B

� ` A�B

is translated into
!�o �Ao !�o �Bo

!�o �Ao �Bo

� A derivation
� ` A�B

� ` A

is translated into
!�o �Ao �Bo

!�o �Ao

� A derivation
�; A ` B

� ` A) B

is translated into
!�o; !Ao�Bo

!�o � !Ao (Bo

� A derivation
� ` A) B � ` A

� ` B

is translated into

!�o � !Ao (Bo

!�o �Ao

!�o � !Ao

!�o; !�o �Bo

==========
!�o �Bo

� A derivation
� ` 0

� ` C

is translated into
!�o � 0

!�o �Co

� A derivation
� ` A

� ` A+B

is translated into
!�o �Ao

!�o � !Ao

!�o � !Ao+!Bo

� A derivation
� ` A+B �; A ` C �; B ` C

� ` C

is translated into
!�o � !Ao+!Bo !�o; !Ao �Co !�o; !Bo �Co

!�o; !�o�Co

==========
!�o �Co

5.1. SYNTAX 75

The translation is sound with respect to provability in the sense that A1; :::; An ` B is provable
(in Intuitionistic Logic) i� !Ao

1; :::; !A
o
n�Bo is provable (in Intuitionistic Linear Logic). Moreover,

it is shown in [Bie94] that the translation preserves �-reductions. Now, the Girard Translation
induces a translation from types and derivable sequents in the �-calculus to types and derivable
sequents in the linear �-calculus via the appropriate Curry-Howard isomorphisms. A type A is
translated into a type Ao and a sequent

x1 : A1; :::; xn : An ` u : B

is translated into a sequent
x1 :!A

o
1; :::; xn :!A

o
n�uo : Bo

where the term uo encodes the translation of the proof encoded by the term u. We obtain
an inductive de�nition of the translation from derivable sequents in the �-calculus to derivable
sequents in the linear �-calculus by decorating the rules of the Girard Translation at the level
of proofs appropriately with terms. In what follows we consider each case except the symmetric
ones. If � denotes a context A1; :::; An and x denotes a list of n pairwise distinct variables, then
x : � denotes the context x1 : A1; :::; xn : An.

� A derivation

x1 : A1; :::; xn : An ` xp : Ap

is translated into

xp :!A
o
q � xp :!A

o
p

xp :!A
o
q � derelict(xp) : A

o
p

===
x1 :!A

o
1; :::; xn :!A

o
n� discard x1; :::; xp�1; xp+1; :::; xn in (derelict(xp)) : A

o
p

� A derivation

x : � ` true : 1

is translated into

x :!�o � true(x) : 1

� A derivation
x : � ` u : A x : � ` v : B

x : � ` (u; v) : A� B

is translated into
x :!�o �uo : Ao x :!�o � vo : Bo

x :!�o � (uo; vo) : Ao �Bo

� A derivation
x : � ` u : A� B

x : � ` fst(u) : A

is translated into
x :!�o� uo : Ao � Bo

x :!�o � fst(uo) : Ao

� A derivation
x : �; x : A ` u : B

x : � ` �x:u : A) B

is translated into
x :!�o; x :!Ao �uo : Bo

x :!�o ��x:uo :!Ao (Bo

76 CHAPTER 5. THE GIRARD TRANSLATION

� A derivation
x : � ` f : A) B x : � ` u : A

x : � ` fu : B

is translated into

x0 :!�o� fo :!Ao (Bo

x00 :!�o �uo : Ao

x00 :!�o� promote x00 for x00 in uo :!Ao

x0 :!�o; x00 :!�o � fopromote x00 for x00 in uo : Bo

===
x :!�o � copy x as x0; x00 in (fopromote x00 for x00 in uo) : Bo

� A derivation
x : � ` w : 0

x : � ` false(w) : C

is translated into
x :!�o �wo : 0

x :!�o � false(;wo) : Co

� A derivation
x : � ` u : A

x : � ` inl(u) : A+ B

is translated into
x :!�o �uo : Ao

x :!�o � promote x for x in uo :!Ao

x :!�o � inl(promote x for x in uo) :!Ao+!Bo

� A derivation

x : � ` w : A+ B x : �; y : A ` u : C x : �; z : B ` v : C

x : � ` case w of inl(y):u j inr(z):v : C

is translated into

x0 :!�o�wo :!Ao+!Bo x00 :!�o; y :!Ao �uo : Co x00 :!�o; z :!Bo � vo : Co

x0 :!�o; x00 :!�o� case wo of inl(y):uo j inr(z):vo : Co

===
x :!�o� copy x as x0; x00 in (case wo

of inl(y):uo j inr(z):vo) : Co

The translation from types and derivable sequents in the �-calculus to types and derivable sequents
in the linear �-calculus induced by the Girard Translation will be extended to a translation from
PCF to LPCF in Chapter 10.

5.2 Soundness

Let C be a categorical model for the linear �-calculus, that is, a linear category with �nite products
and �nite sums; we can then interpret types and derivable sequents of the linear �-calculus as
objects and maps in C. The Kleisli category induced by the ! comonad is cartesian closed with
weak �nite sums such that the diagram of De�nition 3.4.1 commutes according to Proposition 2.4.2
and Proposition 2.4.3. It is therefore a categorical model for the �-calculus, so furthermore we
can interpret types and derivable sequents of the �-calculus as objects and maps in the Kleisli
category. It turns out that the interpretation of a type can be written in a simple way using the
Girard Translation at the level of types:

5.2. SOUNDNESS 77

Proposition 5.2.1 Let C be a categorical model for the linear �-calculus. If a type A of the �-
calculus is interpreted in the Kleisli category, and the type Ao of the linear �-calculus is interpreted
in C, then [[A]] = [[Ao]].

Proof: Induction on the structure of A. 2

Before showing that the Girard Translation is sound with respect to the above mentioned cat-
egorical interpretations we need a convention; we de�ne lin to be the composition of bijections
between maps

C!([[A1]]� :::� [[An]]; [[B]]) = C!([[A
o
1]]� :::� [[Ao

n]]; [[B
o]]) by Proposition 5.2.1

= C(!([[Ao
1]]� :::� [[Ao

n]]); [[B
o]]) because U! a F!

�= C(![[Ao
1]]
 :::
![[Ao

n]]); [[B
o]]) by composition with n

where A1; :::; An and B are types of the �-calculus. The soundness result essentially says that
the Girard Translation corresponds to the adjunction between the Kleisli category and C, or to
be precise, to the function lin. It is a categorical generalisation of a result in [Gir87] which
shows that the Girard Translation is sound with respect to interpretation in a certain concrete
category, namely the category of coherence spaces and linear stable functions. Recently categorical
soundness results in the sense of ours, but for somewhat di�erent calculi, have been given in
[BW96]. Recall that a derivable sequent

x1 : A1; :::; xn : An ` t : B

of the �-calculus is translated into the derivable sequent

x1 :!A
o
1; :::; xn :!A

o
n� to : Bo

of the linear �-calculus, and observe that the maps [[t]] and [[to]] live in the domain and the codomain
of of the function lin, respectively.

Theorem 5.2.2 (Soundness) Let C be a categorical model for the linear �-calculus. If the sequent

x1 : A1; :::; xn : An ` t : B

is derivable in the �-calculus, then lin([[t]]) = [[to]].

Proof: Induction on the derivation of the sequent x1 : A1; :::; xn : An ` t : B. We proceed case
by case. Symmetric cases are omitted.

� In the case

x1 : A1; :::; xn : An ` xp : Ap

the following calculation su�ces:

lin([[xp]]) = n;�p
= n; !�p; " by def. of �p in C!
= �p; " Note 1.
= (e
 :::
 e
 id
 e
 :::
 e);�=; " Note 2.
= [[discard x1; :::; xp�1; xp+1; :::; xn in (derelict(xp))]]
= [[xop]]

Note 1. We obtain the projection map �p in C
! by composing the map n with !�p according

to Section 2.3.
Note 2. By de�nition of �p in C

! according to the discussion in Section 2.3.

� In the case

x : � ` true : 1
the following calculation su�ces:

lin([[true]]) = [[true(x)]] as 1 is terminal
= [[trueo]]

78 CHAPTER 5. THE GIRARD TRANSLATION

� In the case
x : � ` u : A x : � ` v : B

x : � ` (u; v) : A� B

the following calculation su�ces:

lin([[(u; v)]]) = n; h[[u]]; [[v]]i
= h(n; [[u]]); (n; [[v]])i by def. of h�;+i in C!
= hlin([[u]]); lin([[v]])i
= h[[uo]]; [[vo]]i by ind. hyp.
= [[(uo; vo)]]
= [[(u; v)o]]

� In the case
x : � ` u : A� B

x : � ` fst(u) : A

the following calculation su�ces:

lin([[fst(u)]]) = n;
([[u]]);�1
= n; [[u]];�1 by def. of �1 in C!
= lin([[u]]);�1
= [[uo]];�1 by ind. hyp.
= [[fst(uo)]]
= [[fst(u)o]]

� In the case
x : �; x : A ` u : B

x : � ` �x:u : A) B

the following calculation su�ces:

lin([[�x:u]]) = n;�([[u]])
= n;�(n; [[u]]) by def. of � in C!
= �((n
 id);n; [[u]])
= �(n; [[u]]) Note 1.
= �(lin([[u]]))
= �([[uo]]) by ind. hyp.
= [[�x:uo]]
= [[(�x:u)o]]

Note 1. Because n makes ! a monoidal functor from (C; 1;�) to (C; I;
).

� In the case
x : � ` f : A) B x : � ` u : A

x : � ` fu : B

the following calculation su�ces:

lin([[fu]]) = n;
(h[[f]]; [[u]]i); eval
=
(h(n; [[f]]); (n; [[u]])i);n�1; ("
 id); eval def. of op. in C!
=
(hlin([[f]]); lin([[u]])i);n�1; ("
 id); eval
=
(h[[fo]]; [[uo]]i);n�1; ("
 id); eval by ind. hyp.
= h
([[fo]]);
([[uo]])i; ("
 id); eval Note 1.
= D; (
([[fo]])

([[uo]])); ("
 id); eval Note 2.
= D; ([[fo]]

([[uo]])); eval

= [[copy x as x0; x00 in (fopromote x00 for x00 in uo)]]
= [[(fu)o]]

5.2. SOUNDNESS 79

Note 1. We obtain a map hf; gi in C! by composing the map
(h
�1(f);
�1(g)i) with n�1

according to Section 2.3.
Note 2. By de�nition of h�;+i in C! according to the discussion in Section 2.3; recall that
D is the diagonal map.

� In the case
x : � ` w : 0

x : � ` false(w) : C

the following calculation su�ces:

lin([[false(w)]]) = n;
([[w]]); []
= n; [[w]]; [] by def. of [] in C!
= lin([[w]]); []
= [[wo]]; [] by ind. hyp.
= [[false(;wo)]]
= [[false(w)o]]

� In the case
x : � ` u : A

x : � ` inl(u) : A+ B

the following calculation su�ces:

lin([[inl(u)]]) = n;
([[u]]); in1
=
(n; [[u]]); in1 by def. of in1 in C!
=
(lin([[u]])); in1
=
([[uo]]); in1 by ind. hyp.
= [[inl(promote x for x in uo)]]
= [[inl(u)o]]

� In the case
x : � ` w : A+ B x : �; y : A ` u : C x : �; z : B ` v : C

x : � ` case w of inl(y):u j inr(z):v : C

the following calculation su�ces:

lin([[case w of inl(y):u j inr(z):v]])
= n;
(h[[w]]; idi);��1([�(
(�=); [[u]]); �(
(�=); [[v]])])
=
(h(n; [[w]]); (n; ")i);n�1;��1("; [�(n; ! �=; [[u]]); �(n; ! �=; [[v]])]) def. of op. in C!
= h
(n; [[w]]); ni;��1("; [�(n; ! �=; [[u]]); �(n; ! �=; [[v]])]) Note 1.
= D; ((n; [[w]])
 n);��1([�(n; ! �=; [[u]]); �(n; ! �=; [[v]])]) Note 2.
= D; ((n; [[w]])
 id);��1([�((id
 n);n; ! �=; [[u]]); �((id
 n);n; !�=; [[v]])])
= D; ((n; [[w]])
 id);��1([�(�=;n; [[u]]); �(�=;n; [[v]])]) Note 3.
= D; (lin([[w]])
 id);��1([�(�=; lin([[u]])); �(�=; lin([[v]]))])
= D; ([[wo]]
 id);��1([�(�=; [[uo]]); �(�=; [[vo]])]) by ind. hyp.
= D; (id
 [[wo]]);�=; [[[uo]]; [[vo]]]

= [[copy x as x0; x00 in (case wo of inl(y):uo j inr(z):vo)]]
= [[(case w of inl(y):u j inr(z):v)o]]

Note 1. We obtain a map hf; gi in C! by composing the map
(h
�1(f);
�1(g)i) with n�1

according to Section 2.3.
Note 2. By de�nition of h�;+i in C! according to the discussion in Section 2.3; recall that
D is the diagonal map.
Note 3. Because n makes ! a symmetric monoidal functor from (C; 1;�) to (C; I;
).

2

80 CHAPTER 5. THE GIRARD TRANSLATION

Chapter 6

PCF - Semantic Issues

In this chapter appropriate machinery for giving the categorical model for PCF is introduced.
The introductions of categorical constructs are intertwined with examples of such in concrete
categories. Section 6.1 introduces a categorical notion of unde�nedness. Categorical notions of
numerals and �xpoints are given in Section 6.2 and Section 6.3, respectively. Also the axiom of
rational openness on a �xpoint operator is introduced. In Section 6.4 the observational preorder
is introduced and in Section 6.5 it is shown how under certain circumstances a rationally open
�xpoint operator induces a rational category when the quotients of the observational preorders on
hom-sets are considered.

6.1 Unde�nedness

We will introduce a notion of unde�nedness by assuming for each object A the existence of an \un-
de�ned" map ?A: 1! A which is supposed to be the interpretation of arbitrary non-terminating
programs of type A. So we assume that our interpretation identi�es all non-terminating compu-
tations.

De�nition 6.1.1 A category with a terminal object is pointed i� a map ?A: 1! A is given for
each object A. A map f : A! B in a pointed category is strict i� the diagram

1
? - A

@
@
@
@
@

?
R

B
?

f

commutes. A map f : A� B ! C in a pointed cartesian category is left-strict i� the diagram

1
h?; hi- A� B

@
@
@
@
@

?
R

C
?

f

commutes for any map h : 1! B. Right-strictness is de�ned analogously.

Examples 6.1.2 In the categories cpo and dI the obvious choice of ?-maps is the appropriate
bottom elements.

81

82 CHAPTER 6. PCF - SEMANTIC ISSUES

Observation: Strictness of all maps does not go well together with cartesian closure; it can simply
be shown that a pointed cartesian closed category where all maps are strict is inconsistent, that
is, it is equivalent to the category consisting of one object and one map. This problem vanishes
when we replace cartesian closure by monoidal closure.

6.2 Numerals

The following de�nition is essentially as given in [HO96]. Note that booleans are represented by
numerals.

De�nition 6.2.1 An object of numerals in a cartesian category is an object N equipped with
maps zero : 1! N and succ; pred : N ! N such that the diagrams

1
~0 - N

@
@
@
@
@

~0
R

N
?

pred

1
]n+ 1- N

@
@
@
@
@

~n
R

N
?

pred

commute for any number n where the maps ~n : 1 ! N are de�ned in the obvious way using the
zero and succ maps. Furthermore, a map condA : N � (A � A) ! A is given for each object A
such that the diagrams

1
h~0; hg; hii- N � (A �A)

@
@
@
@
@

g
R 	�

�
�
�
�

cond

A

1
h]n + 1; hg; hii- N � (A �A)

@
@
@
@
@

h
R 	�

�
�
�
�

cond

A

commute for any maps g; h : 1 ! A and any number n. An object of numerals in a pointed
cartesian category is standard i� for any h : 1! N we have h =? or h = ~n for some number n.

Note that in a cartesian category C with an object of numerals such that ~0 = ~1 every hom-set
C(1; A) has at most one element. A notable feature of an object of numerals in a pointed cartesian
category is that for each number n it is possible to de�ne a map �n : N ! N with the property
that ~n;�n = ~0 and ~p;�n =? whenever p 6= n. The �n maps are de�ned by the stipulations

�0 = hid; (hi; h~0;?i)i; cond
�n+1 = hid; h(hi;?); (pred;�n)ii; cond

If the map cond is left-strict then each map �n has the property of being strict.

Examples 6.2.2 In what follows we will give a couple of objects of numerals in the concrete
categories cpo and dI; note that the �nite products of dI coincide with the ones of cpo. The
obvious choice of a standard object of numerals in these categories is to take the object N to be
equal to ! with a bottom element adjoined, and equipped with the maps

zero(?) = 0

succ(x) =

�
? if x =?
x+ 1 otherwise

pred(x) =

8<
:

? if x =?
0 if x = 0
x� 1 otherwise

condA(x; (y; z)) =

8<
:

? if x =?
y if x = 0
z otherwise

6.3. FIXPOINTS 83

This is a generalisation of an option considered in [Plo77] where only one condA map is considered,
namely the one where the object A is equal to N .

In [Plo77] another option is suggested; the object N is taken to be equal to ! with a bottom
element adjoined together with an element 1 unrelated to any other element but bottom, and it
is equipped with the maps from the standard object of numerals extended as follows

succ(1) =1 pred(1) =1 condA(1; (y; z)) = z

where we have generalised the original version of cond as appropriate. This gives a non-standard
object of numerals in cpo as well as in dI.

Yet another option is considered in [Plo77]; the object N is taken to be equal to ! with a
bottom element adjoined together with a top element >, and it is equipped with the maps from
the standard object of numerals extended as follows

succ(>) = > pred(>) = > cond(>; (y; z)) = >

where we consider only the original version of cond. It is actually the case that the cond map as
de�ned here cannot be generalised to �t into our notion of object of numerals because cond(>; y; z)
whenever x and y are incompatible cannot be de�ned such that the function cond is monotone. So
it works in cpo if one is content with the original version of cond, but if one goes to the category
dI it does not work anyway because the function is not stable; this can be seen by considering the
compatible elements (0; (1; 1)) and (1; (1; 1)) from the domain of cond.

6.3 Fixpoints

The main concern of this section is �xpoints as introduced in [Law69].

De�nition 6.3.1 Let C be a category with a terminal object. A map h : 1! B is a �xpoint of a
map f : B ! B i� the diagram

1
h - B

@
@
@
@
@

h
R

B
?

f

commutes. A �xpoint operator for an object B is an operation on maps

(�)]B : C(B;B) �! C(1; B)

such that f] is a �xpoint of f for any map f : B ! B.

We now need a convention: Given a map g : B ! B we de�ne a map gn : B ! B for every
number n by stipulating g0 = id and gn+1 = gn; g. So the map gn is simply n iterations of g.

Examples 6.3.2 In the categories cpo and dI the obvious choice of �xpoint operators is the
usual one that de�nes the �xpoint f] of a map f : B ! B as

f] =
G
n2!

fn(?):

De�nition 6.3.3 A �xpoint operator for an object B in a pointed category is rationally open

with respect to an object P i� for all maps f : B ! B and g : B ! P it is the case that

f]; g 6=?) 9n 2 !: ?; fn; g 6=? :

84 CHAPTER 6. PCF - SEMANTIC ISSUES

Note that if a �xpoint operator for an object P is rationally open with respect to P , then id]P =?P

as can be seen by taking f and g in the de�nition to be equal to idP .

Examples 6.3.4 Consider a map g : B ! P living cpo or in dI. In the category cpo the set
fx 2 B j g(x) 6=?g is a Scott-open subset of B, and in the category dI, it is a union of sets of
the form fx 2 B jx � bg where b is a �nite element of B, so it is straightforward to see that the
�xpoint operators in the categories cpo and dI are rationally open with respect to any object.

Under appropriate circumstances rational openness with respect to an object of numerals N can
be restated to a di�erent form.

Proposition 6.3.5 Let C be a pointed cartesian category equipped with a standard object of
numerals N such that the map cond is left strict. Assume that a �xpoint operator is given for
an object B. Then the �xpoint operator is rationally open with respect to N i� for all maps
f : B ! B and g : B ! N and numbers p it is the case that

f]; g = ~p) 9n 2 !: ?; fn; g = ~p:

Proof: A straightforward application of the �p maps de�ned in the remark following De�ni-
tion 6.2.1. 2

The role of rational openness in the adequacy result for PCF in Section 7.1 is analogous to the
role of the absoluteness condition in [Fio94b]. Note, however, that our notion of rational open-
ness does not assume the presence of any order-structure; this is not the case with the notion of
absoluteness.

De�nition 6.3.6 Let C be a cartesian category. A map h : X ! B is a parametrised �xpoint of
a map f : X � B ! B i� the diagram

X
�- X �X

B

h

?
� f

X �B
?

id� h

commutes. A parametrised �xpoint operator for an object B is an operation on maps

(�)
]
X;B : C(X �B;B) �! C(X;B)

for each object X such that f] is a parametrised �xpoint of f for any map f : X � B ! B. A
parametrised �xpoint operator is natural if the operations are natural in X.

Note how the diagonal map �X : X ! X �X is used to copy parameters. We can internalise the
notion of a �xpoint operator when we deal with an exponentiable object in a cartesian category.

De�nition 6.3.7 An internal �xpoint operator for an exponentiable object B in a cartesian cat-
egory is a map YB : B) B ! B such that the diagram

B) B
�- (B) B) � (B) B)

B

Y

?
� eval

(B) B) �B
?

id� Y

commutes.

6.3. FIXPOINTS 85

In [Poi92] it is shown that a cartesian closed category has a parametrised �xpoint operator for
each object i� it has an internal �xpoint operator for each object but here we will show a more
informative result:

Proposition 6.3.8 Let B be an exponentiable object in a cartesian category. There is a bijective
correspondence between natural parametrised �xpoint operators and internal �xpoint operators
for the object B.

Proof: Assume that the category has a natural parametrised �xpoint operator (�)] for an object
B, and de�ne the map Y by the equation

Y = eval] :

This is clearly an internal �xpoint operator for B cf. the diagram in De�nition 6.3.6. Conversely,
assume that Y is an internal �xpoint operator for the object B, and de�ne an operation on maps

(�)] = �(�);Y

for each object X. This is a parametrised �xpoint operator because

�(f);Y = �(f);�; (id� Y); eval
= �; (id� (�(f);Y)); f

for any map f : X � B ! B. Naturality of the operation follows from naturality of �.
The construction of internal �xpoint operators from natural parametrised �xpoint operators

is injective because we have

�(f); eval] = ((�(f) � id); eval)]

= f]

for any map f : X�B ! B, which entails that the natural parametrised �xpoint operator induced
by the internal �xpoint operator eval] is equal to (�)]. The construction of natural parametrised
�xpoint operators from internal �xpoint operators is injective because the following calculation

�(eval);Y = id;Y
= Y

shows that the internal �xpoint operator induced by the natural parametrised �xpoint operator
�(�);Y is equal to Y . 2

Now a remark on notation: Assume that B is an exponentiable object in a monoidal category.
Given a map f : A! B, the map �(�=; f) : I ! A(B will be denoted pfq. It is straightforward
to check that we actually have a bijection between maps

p�q : C(A;B) �= C(I; A(B):

Proposition 6.3.9 Let B be an exponentiable object in a cartesian category. A �xpoint operator
for the object (B) B)) B induces an internal �xpoint operator for B.

Proof: Firstly, de�ne a map

(B) B)) B
HB- (B) B)) B

as the exponential transpose of the map given in Figure 6.1. For every map h : B) B ! B the
diagram

1
phq- B) B) B

@
@
@
@
@

p�; (id� h); evalq
R
B) B) B

?

H

86 CHAPTER 6. PCF - SEMANTIC ISSUES

Figure 6.1: The map used in Proposition 6.3.9

((B) B)) B) � (B) B)

((B) B)) B) � ((B) B)� (B) B))

id ��

?

(((B) B)) B) � (B) B)) � (B) B)

�=

?

B � (B) B)

eval � id

?

(B) B) � B

�=

?

B

eval

?

commutes, which can be shown by some equational manipulation; this entails that phq is a �xpoint
for H i� h = �; (id� h); eval. We now de�ne the internal �xpoint operator Y : B) B ! B by
the equation pY q = H]; hence Y = �; (id� Y); eval. 2

This entails that if every object in a cartesian closed category has a �xpoint operator, then every
object has an internal �xpoint operator too. Note that in the context of Proposition 6.3.9 the map
pfq;Y is a �xpoint for f for every map f : B ! B, and, moreover, if the category in question is
pointed such that the map eval is left-strict, then it can be shown by a small induction proof that

h(?;Hn); pfqi; eval =?; fn:

So indeed the map H does work as expected.

6.4 The Observational Preorder

The goal of this section is to introduce the observational preorder. First, we need a couple
of notions from enriched category theory: A preorder-enriched (poset-enriched, cpo-enriched)
category C is a category where each hom-set C(A;B) is equipped with a preorder (poset, cpo)
.A;B such that each composition function

(�); (+) : C(A;B) � C(B;C) �! C(A;C)

is monotone (monotone, continuous). A preorder-enriched (poset-enriched, cpo-enriched) func-
tor between preorder-enriched (poset-enriched, cpo-enriched) categories C and D is a functor

6.4. THE OBSERVATIONAL PREORDER 87

between the underlying categories such that each function

F : C(A;B) �! D(FA;FB)

is monotone (monotone, continuous). A preorder-enriched category C induces a poset-enriched

category bC by taking the objects of bC to be the objects of C and by taking for each pair of objects
A and B the poset bC(A;B) to be the quotient of the preorder C(A;B). The poset-enriched

category bC is called the quotient of C. This is su�cient enriched category theory for our purpose;
an introduction to the topic can be found in [Poi92]. The de�nitions and results of the remaining
part of this section are essentially as given in [HO96]. To de�ne the observational preorder we
need the notion of observables.

De�nition 6.4.1 Let (C; I;
;() be a symmetric monoidal closed category. A notion of observ-

ables O associates to each object A a set OA of subsets of C(I; A) with the property that if S 2 OA

then g�S 2 OB for any map g : B ! A where g�S = fh 2 C(I; B) jh; g 2 Sg.

De�nition 6.4.2 Let C be a symmetric monoidal closed category with a notion of observables O.
The observational preorder .A;B on each hom-set C(A;B) is de�ned as

f . g i� 8R 2 OA(B: pfq 2 R) pgq 2 R

for any maps f; g : A! B.

The following proposition states that the observational preorder behaves properly with respect to
points, that is, maps with domain I.

Proposition 6.4.3 If C is a symmetric monoidal closed category with a notion of observables O,
then

f . g i� 8R 2 OA: f 2 R) g 2 R

for any maps f; g : I ! A.

Proof: The two maps

A
�(�=)- I (A

and
I (A �= (I (A)
 I

eval- A

make the objects A and I (A isomorphic. The result now follows from the observation that
f = pfq;�=; eval for any map f : I ! A. 2

The following proposition states that all the structure involved enriches with respect to the obser-
vational preorder.

Proposition 6.4.4 Let C be a symmetric monoidal closed category with a notion of observables
and consider the observational preorder. The symmetric monoidal closed category is preorder-
enriched. If the category is actually cartesian closed then it is preorder-enriched as such.

Proof: Let a map h : B ! C be given. The map

A(B
A(h- A(C

has the property that pfq; (A(h) = pf ;hq for any map f : A! B, and analogously, the map

C (A
h(A- B (A

has the property that pgq; (h(A) = ph; gq for any map g : C ! A, which shows that composition
on either side with h preserves the observational preorder. Consider the map

(A(B)
 (A
D) �= ((A(B)
A)
D
eval
D- B
D

88 CHAPTER 6. PCF - SEMANTIC ISSUES

the transpose of which

A(B
�(�=;(eval
D))- (A
D)((B
D)

has the property that pfq;�(�=; (eval
D)) = pf
Dq for any map f : A! B, which shows that
the
 functor preserves the preorder. We will now show that the function between maps

C(A
B;C)
�- C(A;B (C)

preserves the preorder. Consider the map

(((A
B)(C)
 A)
 B �= ((A
 B)(C)
 (A
B)
eval- C

the double transpose of which

(A
B)(C
�(�(�=;eval))- A((B (C)

has the property that pfq;�(�(�=; eval)) = p�(f)q for any map f : A
B ! C, which shows that
� preserves the preorder. It is now straightforward to check that the function ��1 as well as the
(functor preserve the preorder because these constructs can be de�ned in terms of operations
already shown to be preorder preserving. Thus we have shown that the symmetric monoidal closed
structure is preorder-enriched.

If the category is actually cartesian closed then we have to show that it is preorder-enriched
as such, that is, we furthermore have to show that the function between maps

C(A;C)� C(A;D)
h�;+i- C(A;C �D)

preserves the preorder. But this follows from the observation that hf; gi = �; (f�g) for any maps
f : A ! C and g : A ! D because we have already shown that composition and the � functor
are preorder preserving. 2

6.5 Rationality

In this section we will show that a rationally open �xpoint operator under appropriate circum-
stances induces a rational category when the quotients of the observational preorders on hom-sets
are considered. The de�nition of a rational category given here is weaker than the original one
introduced in [AJM96]; the essential di�erence is that we do not assume the eval map to be
left-strict because this condition is irrelevant to the order-theoretic considerations of this section.
In that article a rational category is taken to be an appropriate (order-theoretic) notion of an
adequate categorical model for a certain fragment of PCF.

De�nition 6.5.1 A rational category is a pointed cartesian closed category which is poset-
enriched as a cartesian closed category such that for every object A it is the case that

� the map ?A is least,

� for every map f : A! A the increasing chain f?; fngn2! has a least upper bound f] with
the property that for any map g : A ! D the map f] ; g is a least upper bound for the
increasing chain f?; fn; ggn2!.

Examples 6.5.2 The categories cpo and dI are rational in the obvious way.

We will now consider a notion of observables for a pointed cartesian closed category that assumes
the presence of a distinguished object P . The object P should be thought of as the interpretation
of a distinguished type. In [HO96] the following notion of observables is called the termination
notion of observables when a map f : 1 ! P is taken to be a value i� f 6=?. Recall that a
cartesian closed category is a special kind of symmetric monoidal closed category.

6.5. RATIONALITY 89

De�nition 6.5.3 Let C be a pointed cartesian closed category with a distinguished object P .
The termination notion of observables is de�ned by assigning the set

OA = fOh jh 2 C(A;P)g

to any object A where

Oh = ff 2 C(1; A) j f ;h 6=?g:

This is a notion of observables because g�Oh = Og;h for any maps g : B ! A and h : A! P . The
induced observational preorder can be stated explicitly as

f . g i� 8h 2 C(A) B;P): pfq;h 6=?) pgq;h 6=?

for any maps f; g : A! B. We will refer to this preorder as the termination preorder.

Note that the map?P is minimalwith respect to the termination preorder; this is so because if
f .? for some map f : 1! P , then ?; id =? entails that f ; id =?, that is, f =?. It follows from
Proposition 6.4.4 that C is preorder-enriched (as a cartesian closed category) with respect to the
termination preorder. If � is another preorder-enrichment on C (as a cartesian closed category)
with respect to which ?P is minimal, then � can be shown to be included in . in the sense that
for any objects A and B the preorder �A;B on C(A;B) is included in the .A;B preorder. If we
are dealing with a pointed cartesian closed category equipped with an object of numerals, then
we take the object P to be N unless otherwise is stated.

Examples 6.5.4 In the concrete categories cpo and dI the termination preorder coincides with
the given order.

Now comes the results saying that under appropriate circumstances a rationally open �xpoint
operator induces a rational category.

Theorem 6.5.5 Let C be a pointed cartesian closed category equipped with a standard object of
numerals such that the map cond is left-strict. Assume that a �xpoint operator is given for each
object. Then for any object A it is the case that

� the map ?A is least and for any maps f : A ! A and g : A! D the map f] ; g is an upper
bound for the increasing chain f?; fn; ggn2!,

� the �xpoint operator for A is rationally open with respect to N i� for any maps f : A! A

and g : A! D the map f]; g is a least upper bound for the increasing chain f?; fn; ggn2!,

where we consider the termination preorder.

Proof: Without loss of generality we will assume that ~0 6=? because ~0 =? entails that every
hom-set C(1; A) has exactly one element.

We �rst show that the map ?A is least1. We will use the �n : N ! N maps de�ned in the
remark following De�nition 6.2.1. Recall that each map �n has the property of being strict, and
moreover, ~n;�n = ~0 and ~p;�n =? whenever p 6= n. Take any map h : 1! A. We will then show
that ?. h. Assume ?; f 6=? for some map f : A ! N , that is, ?; f = ~n for some number n; we
then have to show that h; f 6=?. Now, de�ne a map k : N ! A as

k = hid; (hi; hh;?i)i; cond

and consider the �xpoint (k; f ;�n)
] : 1! N of the composition

N
k- A

f- N
�n- N

1Here we essentially make use of an argument suggested by Alex Simpson while the author visited Edinburgh
in March '96.

90 CHAPTER 6. PCF - SEMANTIC ISSUES

which has the property that

(k; f ;�n)
] = (k; f ;�n)

]; k; f ;�n:

We cannot have (k; f ;�n)
] =? because this contradicts ?; f ;�n = ~0, so we have (k; f ;�n)

] = ~0
which entails that h; f ;�n = ~0. We conclude that h; f = ~n, and thus h; f 6=?.

For any maps f : A ! A and g : A ! D it is straightforward to check by induction that the
chain f?; fngn2! is increasing and f] is an upper bound, so the chain f?; fn; ggn2! is increasing
and f]; g is an upper bound.

Assume that the �xpoint operator for the object A is rationally open with respect to N , and
consider any maps f : A ! A and g : A ! D. Let k : 1 ! D be an arbitrary upper bound for
the increasing chain f?; fn; ggn2!. If f]; g;h 6=? for some map h : D ! N then there exists a
number p such that ?; fp; g;h 6=? because the �xpoint operator is assumed to be rationally open
with respect to N , which entails that k;h 6=?. We conclude that f] ; g . k.

Consider any maps f : A ! A and g : A ! N , and assume that the map f]; g is a least
upper bound for the increasing chain f?; fn; ggn2!. Then ?; f

n; g =? for every number n entails
that ? is an upper bound for the increasing chain f?; fn; ggn2!, but f

]; g is a least upper bound,
so f] ; g .? and thus f]; g =?. We conclude that the �xpoint operator is rationally open with
respect to N . 2

Note that in the context of Theorem 6.5.5 none of the maps in the hom-set C(1; N) are equivalent
with respect to the equivalence relation induced by the termination preorder.

Corollary 6.5.6 Let C be a pointed cartesian closed category equipped with a standard object
of numerals such that the map cond is left-strict. For each object assume that a �xpoint operator
which is rationally open with respect to N is given. Then the quotient bC is a rational category
when C is considered as preorder-enriched with respect to the termination preorder.

Proof: Follows from Theorem 6.5.5 and the observation that the �xpoint operator is a congruence
with respect to the equivalence relation induced by the termination preorder. 2

The condition in Theorem 6.5.5 of the object of numerals being standard cannot be left out, as
the following example shows:

Examples 6.5.7 Consider the category where the objects are pairs (D; d) such that D is a cpo
of which d is an element, and where a map from (D; d) to (D0; d0) is a continuous function from
D to D0. The object (f?g;?) is terminal and the category is pointed when each object (D; d)
is equipped with the constantly d function from f?g to D. Note that d might be di�erent from

the bottom element ? of D. This category inherits the cartesian closed structure from cpo; given
objects (D; d) and (D0; d0) the product is de�ned to be (D�D0 ; (d; d0)) and the exponential object
is de�ned to be D) D0 together with the constantly d0 function from D to D0. We de�ne a non-
standard object of numerals (N;1) by taking N to be equal to ! with a bottom element adjoined
together with an element 1 unrelated to any other element but bottom, and it is equipped with
the maps from the standard object of numerals from Section 6.2 extended as follows

succ(1) =1 pred(1) =1 cond(D;d)(1; y; z) = d

This gives a non-standard object of numerals such that the map cond is left-strict, and moreover,
a �xpoint operator for each object is inherited from cpo. Now, the termination preorder coincides
with the dual to the poset on maps inherited from cpo, in which the constantly 1 function from
f?g to N is not least. There is no least element, in fact. Note that the �xpoint operator is not

rationally open with respect to this object of numerals as id]N =?N but ?N 6= 1 cf. the remark
following De�nition 6.3.3.

Above we have considered a notion of observables that gave rise to the termination preorder. We
will now have a look at another notion of observables for a cartesian closed category that assumes
the presence of an object of numerals but does not assume the category in question to be pointed;
in [HO96] it is called the termination to value notion of observables when a map f : 1 ! N is
taken to be a value i� f = ~n for some number n.

6.5. RATIONALITY 91

De�nition 6.5.8 Let C be a cartesian closed category equipped with an object of numerals. The
termination to value notion of observables is de�ned by assigning the set

OA = fOh;n jh 2 C(A;N); n 2 !g

to any object A where
Oh;n = ff 2 C(1; A) j f ;h = ~ng:

This is a notion of observables because g�Oh;n = O(g;h);n for any maps g : B ! A and h : A! N .
The induced observational preorder can be stated explicitly as

f . g i� 8h 2 C(A) B;N):8n 2 !: pfq;h = ~n) pgq;h = ~n

for any maps f; g : A! B. We will refer to this preorder as the termination to value preorder.
Note that for any number p the map ~p is maximal with respect to the termination to value

preorder; this is so because if ~p . f for some map f : 1! N , then ~p; id = ~p entails that f ; id = ~p,
that is, f = ~p. It follows from Proposition 6.4.4 that C is preorder-enriched (as a cartesian closed
category) with respect to the termination to value preorder. If � is another preorder-enrichment
on C (as a cartesian closed category) with respect to which ~p is maximal for every number p, then
� can be shown to be included in ..

Examples 6.5.9 In the concrete categories cpo and dI the termination to value preorder coin-
cides with the given order.

If the category giving rise to the termination to value preorder is pointed such that the object of
numerals is standard and the map cond is left-strict, then for every number p it can be shown
using the map �p : N ! N de�ned in the remark following De�nition 6.2.1 that the map ~p
is maximal with respect to the termination preorder, and furthermore, it can be shown that
the map ?N is minimal with respect to the termination to value preorder, so we conclude that
under such circumstances the two preorders coincide. Thus this is also the case in the context of
Theorem 6.5.5, so this result could equally well have been stated in terms of the termination to
value preorder instead of the termination preorder.

92 CHAPTER 6. PCF - SEMANTIC ISSUES

Chapter 7

The Programming Language PCF

This chapter introduces the programming language PCF. The syntax is introduced in Section 7.1
and a sound categorical interpretation is given in Section 7.2. In Section 7.3 additional non-
order-theoretic axioms are imposed on the categorical model with the aim of proving an adequacy
result. The essential ingredient of the categorical model is a rationally open �xpoint operator.
Observable types are discussed in Section 7.4; an observable type is a type where there is a converse
to adequacy. In Section 7.5 we prove an unwinding theorem for PCF using adequacy. This enables
us to show that a restricted version of our axiom of rational openness is not only su�cient, but
also necessary for the interpretation to be adequate. Essentially, what we do is we restrict rational
openness to maps de�nable in PCF. In Section 7.6 we make a detour to syntactic notions of
rationality and rational openness.

7.1 Syntax and Operational Semantics

The programming language PCF as originally presented in [Sco69] has exponential types and two
ground types, namely types for numerals and booleans. We shall, however, consider a di�erent
version with product and sum types in addition to the exponential types, but only one ground
type, namely a type for numerals. Booleans are then represented by numerals in the traditional
way. It is an extension of the �-calculus with numerals and recursion where the usual reduction
rules are replaced by a Martin-L�of style operational semantics, [ML84]. The units for product
and sum types are of limited computational interest, but we have included them for the sake of
completeness. Types of PCF are given by the grammar

s ::= N j 1 j s � s j s) s j 0 j s + s

and terms are given by the grammar

t ::= x j
zero j succ(t) j pred(t) j if t then t else t j
true j (t; t) j fst(t) j snd(t) j
�xA:t j tt j
falseC(t) j inlA+B(t) j inrA+B(t) j case t of inl(x):t j inr(y):t j

A j YA

93

94 CHAPTER 7. THE PROGRAMMING LANGUAGE PCF

Figure 7.1: Type Assignment Rules for PCF

x1 : A1; :::; xn : An ` xp : Ap

� ` zero : N

� ` u : N

� ` succ(u) : N

� ` u : N

� ` pred(u) : N

� ` u : N � ` v : A � ` w : A

� ` if u then v else w : A

� ` true : 1

� ` u : A � ` v : B

� ` (u; v) : A� B

� ` u : A� B

� ` fst(u) : A

� ` u : A �B

� ` snd(u) : B

�; x : A ` u : B

� ` �xA:u : A) B

� ` f : A) B � ` u : A

� ` fu : B

� ` w : 0

� ` falseC(w) : C

� ` u : A

� ` inlA+B(u) : A+B

� ` u : B

� ` inrA+B(u) : A +B

� ` w : A+ B �; x : A ` u : C �; y : B ` v : C

� ` case w of inl(x):u j inr(y):v : C

� `
A : A � ` YA : (A) A)) A

7.1. SYNTAX AND OPERATIONAL SEMANTICS 95

where x is a variable ranging over terms. The set of free variables, FV (u), of a term u is de�ned by
induction on u. We consider each case except those of the �-calculus which are given in Section 3.2.

FV (zero) = ;
FV (succ(u)) = FV (u)
FV (pred(u)) = FV (u)

FV (if w then u else v) = FV (w) [FV (u) [FV (v)
FV (
) = ;
FV (Y) = ;

Rules for assignment of types to terms are given in Figure 7.1. Type assignments have the form
of sequents

x1 : A1; :::; xn : An ` u : B

where x1; :::; xn are pairwise distinct variables. It can be shown by induction on the derivation of
the type assignment that

FV (u) � fx1; :::; xng

We will now show some properties of PCF that will be of use later on. The following results are
simple extensions of analogous results for the �-calculus - see Section 3.2.

Lemma 7.1.1 If the sequent � ` u : A is derivable, then for any derivable sequent � ` u : B we
have A = B.

Proof: See Lemma 3.2.1. 2

The following result says that the term of a derivable sequent encodes the derivation:

Proposition 7.1.2 If the sequent � ` u : A is derivable, then the rule instance above the sequent
is uniquely determined.

Proof: See Proposition 3.2.2. 2

We need a small lemma dealing with expansion of contexts.

Lemma 7.1.3 If the sequent �;� ` u : A is derivable and the variables in the contexts �;� and
� are pairwise distinct, then the sequent �;�;� ` u : A is also derivable.

Proof: See Lemma 3.2.3. 2

Now comes a lemma dealing with substitution:

Lemma 7.1.4 (Substitution Property) If the sequents � ` u : A and �; x : A;� ` v : B are
derivable, then the sequent �;� ` v[u=x] : B is also derivable.

Proof: See Lemma 3.2.4. 2

We also have a lemma dealing with the \inverse" to substitution; this will be useful when proving
adequacy in Section 7.3. Recall that v[x=u] denotes the term v where inductively all occurrences
of the term u have been replaced by the variable x.

Lemma 7.1.5 If the sequents � ` u : A and �;� ` v : B are derivable, then the sequent
�; x : A;� ` v[x=u] : B is also derivable where x is a new variable.

Proof: See Lemma 3.2.5. 2

We will now give a lazy operational semantics for PCF. A program is an arbitrary closed term and
a value is a closed term of one of the forms

succn(zero) true (v; w) �x:u inl(u) inr(u)

96 CHAPTER 7. THE PROGRAMMING LANGUAGE PCF

Figure 7.2: Operational Semantics for PCF

zero + zero

u + c

succ(u) + succ(c)

u + zero

pred(u) + zero

u + succ(c)

pred(u) + c

u + zero v + d

if u then v else w + d

u + succ(c) w + e

if u then v else w + e

true + true (u; v) + (u; v)

u + (v; w) v + c

fst(u) + c

u + (v; w) w + d

snd(u) + d

�x:u + �x:u

f + �x:v v[u=x] + c

fu + c

inl(u) + inl(u) inr(u) + inr(u)

w + inl(t) u[t=x] + c

case w of inl(x):u j inr(y):v + c

w + inr(t) v[t=x] + c

case w of inl(x):u j inr(y):v + c

Y + �f:f(Yf)

where n is a number and a term succn(zero) is de�ned in the obvious way. Let T be the set
of programs and C the set of values. The evaluation rules given in Figure 7.2 induce a relation
+ � T � C called the evaluation relation. Note how the choice of lazy evaluation strategy is
re
ected in the evaluation rule for application; we do not evaluate an argument before plugging it
into the body of an abstraction. Also note that there is no evaluation rule for the term
A which
entails that the term does not terminate. There is no evaluation rule for the term false(w) either.
Given a program u, we will write u + i� there exists a term c such that u + c. It can be shown
that the evaluation rules corresponding to the �-calculus fragment of PCF can be matched by
�-reductions in the sense that if v + c then the term v reduces to the a value c. So the operational
semantics has a clear logical content via the Curry-Howard interpretation.

The choice of evaluation strategy actually matters for the observational behaviour of PCF
terms. For example, we have (�x:zero)
 + zero with our lazy evaluation rule for application

f + �x:v v[u=x] + c

fu + c

but if we replace it with the eager evaluation rule

f + �x:v u + d v[d=x] + c

fu + c

then the term (�x:zero)
 does not terminate. In Chapter 9 we shall consider a linear version of
PCF, namely LPCF, where it turns out that the choice of evaluation strategy does not matter for
the observable behaviour. The operational semantics enjoys the following properties:

Proposition 7.1.6 (Subject Reduction) If u is a program of type A and u + c then c is also of
type A.

Proof: Induction on the derivation of u + c where we use Lemma 7.1.4. 2

7.2. CATEGORICAL SEMANTICS 97

So if TA is the set of programs of type A and CA the set of values of type A, then this shows that
the evaluation relation + � T � C can be split up into a family of relations such that a relation
+A � TA �CA is given for each type A.

Proposition 7.1.7 (Determinacy) If u + c and u + d then c = d.

Proof: Induction on the derivation of u + c. 2

7.2 Categorical Semantics

In this section we will give a sound categorical interpretation of PCF. In Section 7.3 we shall
impose additional assumptions on our category with the aim of proving an adequacy result.

De�nition 7.2.1 A categorical premodel for PCF is a pointed cartesian closed category equipped
with

� an object of numerals,

� a �xpoint operator for each object,

� weak �nite sums such that the diagram

A +B
[f; g]- �) C

@
@
@
@
@

[(f ; (h) C)); (g; (h) C))]
R
�) C
?

h) C

commutes for any maps f : A! �) C, g : B ! �) C and h : �! �.

Examples 7.2.2 In Chapter 2 and Chapter 6 it is made clear that the concrete categories cpo
and dI are categorical premodels for PCF. This is also the case with the game model of [Abr96].

In Section 3.4 the motivation for the choice of weak �nite sums such that the above mentioned
diagram commutes, instead of the stronger assumption of �nite sums, is discussed. Given a
premodel for PCF, we can interpret types as objects, typing rules as natural operations on maps,
and derivations of type assignments as maps. A derivable sequent

x1 : A1; :::; xn : An ` u : B

is interpreted as a map

[[A1]]� :::� [[An]]
[[u]]- [[B]]

by induction on its derivation using the appropriate operations on maps induced by the categorical
assumptions cf. below. We consider each case except those of the �-calculus which can be found
in Section 3.4.

� The derivation

� ` zero : N

is interpreted as

�
hi- 1

zero- N

98 CHAPTER 7. THE PROGRAMMING LANGUAGE PCF

� The derivation
� ` u : N

� ` succ(u) : N

is interpreted as

�
u- N

�
u- N

succ- N

� The derivation
� ` u : N

� ` pred(u) : N

is interpreted as

�
u- N

�
u- N

pred- N

� The derivation
� ` u : N � ` v : A � ` w : A

� ` if u then v else w : A

is interpreted as

�
u- N �

v- A �
w- A

�
hu;hv;wii- N � (A� A)

cond- A

� The derivation

� `
A : A

is interpreted as

�
hi- 1

?- A

� The derivation

� ` YA : (A) A)) A

is interpreted as

�
hi- 1

H]

- (A) A)) A

using the internal �xpoint operator induced by the appropriate �xpoint operator according
to Proposition 6.3.9.

The following lemma corresponds to Lemma 7.1.3 where the categorical semantics is taken into
account:

Lemma 7.2.3 If the sequent �;� ` u : A is derivable and the variables in the contexts �;�
and � are pairwise distinct, then the sequent �;�;� ` u : A is also derivable and it has the
interpretation

�� �� �
��hi��- �� 1� � �= �� �

[[u]]- A

Proof: Extend the proof of Lemma 3.4.3 for the �-calculus as appropriate. 2

The following lemma corresponds to Lemma 7.1.4 where the categorical semantics is taken into
account; it says essentially that substitution corresponds to composition:

Lemma 7.2.4 (Substitution) If the sequents � ` u : A and �; x : A;� ` v : B are derivable, then
the sequent �;� ` v[u=x] : B is also derivable and it has the interpretation

�� �
���- �� � � �

��[[u]]��- ��A � �
[[v]]- B

7.3. ADEQUACY 99

Proof: Extend the proof of Lemma 3.4.4 for the �-calculus as appropriate. 2

The interpretation is preserved by evaluation:

Theorem 7.2.5 (Soundness) Given a program u such that u + c, then [[u]] = [[c]].

Proof: Induction on the derivation of u + c where we use Lemma 7.2.4. Note that the evaluation
rule for the �xpoint constant preserves the interpretation because it is essentially a syntactic re-
statement of the de�ning diagram for an internal �xpoint operator, De�nition 6.3.7. 2

7.3 Adequacy

In our adequacy proof for PCF we will use the now standard technique of logical relations originally
introduced in [Plo73].

The original adequacy proof in [Plo77] made use of a unary logical relation CompA � TA
called the computability predicate. Recall that TA is the set of programs of type A. The logical
relation CompA is de�ned by induction on the type A such that at ground type N it coincides
with adequacy, that is, CompN (t) is de�ned to hold i� [[t]] 6=? entails t +. It is then proved that
every program satis�es the computability predicate.

Another method for proving adequacy is given in [Gun92, Win93]; here a binary logical relation
�A� [[A]]� TA is used, where d �A t expresses that the element d 2 A \approximates" the term
t. The logical relation �A is de�ned by induction on the type A such that at ground type d �N t

is de�ned to hold i� d 6=? entails t + succq(zero) for some number q such that d = ~q. One
then proves that [[t]] �A t for every program t of type A. A crucial part of this proof amounts to
showing that every predicate (�) �A t is inclusive in the sense of being closed under least upper
bounds of increasing chains, that is, if fdngn2! is an increasing chain in A such that dn �A t holds
for every number n, then tn2!dn �A t also holds. If we disregard sums we could use the same
idea here adapted to our order-free categorical setting; an appropriate inclusiveness result would
then be as follows: Let a program u of type A and maps f : D ! D and g : D ! A be given; it is
then the case that if ?; fn; g �A u holds for every number n, then f]; g �A u holds too. Here we
consider the binary logical relation �A given below. Such a result can be proved by induction on
the type A. Inclusiveness together with Lemma 7.3.7 then gives [[YA]] �(A)A))A YA which allows
us to remove the no-�xpoint-constant restriction of Lemma 7.3.6, and thus obtain [[t]] �A t for
every program t of type A. But it turns out that this approach does not carry over to the linear
version of PCF which we will consider in Section 9.7. We prefer to use a method that generalises
to the linear setting, so we will prove adequacy using the binary logical relation �A in a way that
dodges the inclusiveness result.

Now, we need some extra assumptions on our premodel for PCF:

De�nition 7.3.1 A categorical model for PCF is a categorical premodel in the sense of De�ni-
tion 7.2.1 such that

� the maps �1 and �2 are strict and the map eval is left-strict,

� the maps succ and pred are strict and the map cond is left-strict,

� the map [] : 0 ! C is strict for any object C and the map [f; g] : A + B ! C is strict for
any maps f : A! C and g : B ! C.

Examples 7.3.2 In Chapter 2 and Chapter 6 it is made clear that the concrete categories cpo
and dI are categorical models for PCF. This is also the case with the game model of [Abr96].

Note that the adequacy result below is stated solely in terms of the categorical premodel, De�ni-
tion 7.2.1, but the assumptions added in De�nition 7.3.1 are indeed used in the proof.

100 CHAPTER 7. THE PROGRAMMING LANGUAGE PCF

De�nition 7.3.3 For each type A the binary logical relation

�A � C(1; A)� TA

is de�ned by induction on the structure of A as

f �N t i� f 6=?) 9n 2 !: t + succn(zero) ^ f = ~n

f �1 t i� true

f �B�C t i� (f 6=?) t +) ^
(f ;�1 �B fst(t) ^ f ;�2 �C snd(t))

f �B)C t i� (f 6=?) t +) ^
(8g 2 C(1; B):8v 2 TB : g �B v) hf; gi; eval �C tv)

f �0 t i� f =?

f �B+C t i� f 6=?)
(9h 2 C(1; B):9v 2 TB : f = h; in1 ^ t + inl(v) ^ h �B v) _
(9h 2 C(1; C):9v 2 TC : f = h; in2 ^ t + inr(v) ^ h �C v)

Lemma 7.3.4 For each program t of type A we have ?�A t.

Proof: Induction on the structure of A; note that the induction hypothesis is not needed for the
sum case. 2

In the following lemma an essential connection between the logical relation � and the evaluation
relation + is shown:

Lemma 7.3.5 If f �A t and u + c whenever t + c, then f �A u.

Proof: Induction on the structure of A; we proceed case by case.

� The A = N case. If f 6=? then there exists a number n such that f = ~n and t + succn(zero).
But then also u + succn(zero).

� The A = 1 case. Obvious.

� The A = B � C case. First observe that if f 6=? then t + which entails that u +. We have
to show that f ;�1 �B fst(u) and f ;�2 �C snd(u). The �rst stipulation follows from the
induction hypothesis because f ;�1 �B fst(t), and moreover, fst(t) + c entails fst(u) + c.
The argument is similar for the second stipulation.

� The A = B) C case. First observe that if f 6=? then t + which entails that u +.
Assume that we have a map g and a term v such that g �B v, we then have to show that
hf; gi; eval �B uv. This follows from the induction hypothesis because hf; gi; eval �B tv,
and moreover, tv + c entails uv + c.

� The A = 0 case. Obvious.

� The A = B+C case. If f 6=? then without loss of generality there exists a map h and a term
v such that f = h; in1 and t + inl(v), and moreover, h �A v. But then also u + inl(v).

2

Note that in the following lemma the term u is assumed not to contain any occurrences of the
�xpoint constant. Also note that such a restriction is not imposed on the ti terms.

7.3. ADEQUACY 101

Lemma 7.3.6 Consider a derivable sequent

x1 : A1; :::; xn : An ` u : C

such that the term u does not contain any occurrences of the �xpoint constant. Assume that for
each i 2 f1; :::; ng we have a map fi : 1! Ai and a program ti of type Ai such that fi �Ai

ti. We
then have

hf1; :::; fni; [[u]] �C u[t1; :::; tn=x1; :::; xn]:

Proof: We proceed by induction on the derivation of x1 : A1; :::; xn : An ` u : C. Without loss of
generality we will assume that none of the variables x1; :::; xn are bound in u. In what follows we
will denote the context x1 : A1; :::; xn : An by �, and moreover, � denotes the map

1
hf1;:::;fni- A1 � :::� An

and � denotes the substitution [t1; :::; tn=x1; :::; xn]. We consider each case except symmetric ones.
Note that since the term u is assumed to be without occurrences of the �xpoint constant, there is
no case for that situation.

� In the case

x1 : A1; :::; xn : An ` xp : Ap

we have to show that
hf1; :::; fni;�p �Ap

xp[t1=x1; :::; tn=xn]

which amounts to fp �Ap
tp.

� In the case

� ` zero : N

we have to show that �; hi; zero �N zero� which amounts to zero �N zero.

� In the case
� ` u : N

� ` succ(u) : N

we have to show that �; [[u]]; succ �N succ(u)�. Now, �; [[u]]; succ 6=? entails that �; [[u]] 6=?,
so u� + succn(zero) for some number n such that �; [[u]] = ~n cf. the induction hypothesis.

We therefore get
u� + succn(zero)

succ(u)� + succn+1(zero)

and �; [[u]]; succ =]n + 1.

� In the case
� ` u : N

� ` pred(u) : N

we have to show that �; [[u]]; pred �N pred(u)�. Now, �; [[u]]; pred 6=? entails that �; [[u]] 6=?,
so u� + succn(zero) for some number n such that �; [[u]] = ~n cf. the induction hypothesis.
If n = 0 then we get

u� + zero

pred(u)� + zero

and �; [[u]]; pred = zero. If n � 1 then we get

u� + succn(zero)

pred(u)� + succ
n�1(zero)

and �; [[u]]; pred =]n� 1.

102 CHAPTER 7. THE PROGRAMMING LANGUAGE PCF

� In the case
� ` u : N � ` v : A � ` w : A

� ` if u then v else w : A

we have to show that
l �A (if u then v else w)�

where the map l is de�ned as

l = �; h[[u]]; h[[v]]; [[w]]ii; cond:

Now
l = h(�; [[u]]); h(�; [[v]]); (�; [[w]])ii; cond

so if �; [[u]] =? then l =? and we are done according to Lemma 7.3.4; otherwise �; [[u]] 6=?
and hence u� + succn(zero) for some number n such that �; [[u]] = ~n cf. the induction
hypothesis. If n = 0 then �; [[u]] = ~0 and thus l = �; [[v]]. But �; [[v]] �A v� cf. the induction
hypothesis, and v� + c for some value c entails that we get

u� + zero v� + c

(if u then v else w)� + c

so we are done according to Lemma 7.3.5. If n � 1 then the situation is analogous.

� In the case

� ` true : 1

we have to show that �; hi �1 true� which holds trivially.

� In the case
� ` u : A � ` v : B

� ` (u; v) : A� B

we have to show that �; h[[u]]; [[v]]i �A�B (u; v)�. First, observe that (u; v)� +. Note that

�; h[[u]]; [[v]]i = h(�; [[u]]); (�; [[v]])i:

Now, �; [[u]] �A u� cf. the induction hypothesis, and u� + c for some value c entails that we
get

(u; v)� + (u; v)� u� + c

fst(u; v)� + c

so we conclude that �; [[u]] �A fst(u; v)� according to Lemma 7.3.5. An analogous argument
shows that �; [[v]] �B snd(u; v)�.

� In the case
� ` u : A� B

� ` fst(u) : A

we have to show that �; [[u]];�1 �A fst(u)�. But �; [[u]] �A�B u� cf. the induction hypoth-
esis.

� In the case
�; y : A ` u : B

� ` �y:u : A) B

we have to show that �;�([[u]]) �A)B (�y:u)�. First, observe that (�y:u)� +. For any map
h and term v such that h �A v we have

h(�;�([[u]])); hi; eval �B u�[v=y]

7.3. ADEQUACY 103

cf. the induction hypothesis, and u�[v=y] + c for some value c entails that we get

(�y:u)� + (�y:u)� u�[v=y] + c

(�y:u)�v + c

so we conclude that
h(�;�([[u]])); hi; eval �B (�y:u)�v

according to Lemma 7.3.5.

� In the case
� ` g : A) B � ` u : A

� ` gu : B

we have to show that �; h[[g]]; [[u]]i; eval �B (gu)�. Note that

�; h[[g]]; [[u]]i = h(�; [[g]]); (�; [[u]])i:

But �; [[g]] �A)B g� and �; [[u]] �A u� cf. the induction hypothesis.

� In the case
� ` w : 0

� ` false(w) : C

we have to show that �; [[w]]; [] �C false(w)�. We have �; [[w]] �0 w� cf. the induction
hypothesis, so �; [[w]] =? which entails that �; [[w]]; [] =? and we are done according to
Lemma 7.3.4.

� In the case
� ` u : A

� ` inl(u) : A+B

we have to show that �; [[u]]; in1 �A+B inl(u)�. But we have �; [[u]] �A u� cf. the induction
hypothesis and inl(u)� + inl(u)�.

� In the case
� ` w : A+ B �; y : A ` u : C �; z : B ` v : C

� ` case w of inl(y):u j inr(z):v : C

we have to show that
l �C (case w of inl(y):u j inr(z):v)�

where the map l is de�ned as

l = �; h[[w]]; idi;��1([�(�=; [[u]]); �(�=; [[v]])]):

Now
l = h(�; [[w]]; [�(�=; [[u]]); �(�=; [[v]])]); fi; eval

so if �; [[w]] =? then l =? and we are done according to Lemma 7.3.4; otherwise �; [[w]] 6=?
and without loss of generality we have a map h and a term v such that �; [[w]] = h; in1
and w� + inl(v), and moreover, h �A v cf. the induction hypothesis. This entails that
l = hf; hi; [[u]], but hf; hi; [[u]] �C u�[v=y] cf. the induction hypothesis, and u�[v=y] + c for
some value c entails that we get

w� + inl(v) u�[v=y] + c

(case w of inl(y):u j inr(z):v)� + c

so we are done according to Lemma 7.3.5.

104 CHAPTER 7. THE PROGRAMMING LANGUAGE PCF

� In the case

� `
 : A

we have to show that �; hi;?�A
� which amounts to ?�A
, but this assertion is true
according to Lemma 7.3.4.

2

The following lemma says that the (formal) �nite approximants to an internal �xpoint operator
are �-related to the corresponding �xpoint constant:

Lemma 7.3.7 For every type A and number n we have ?;Hn
A �(A)A))A YA.

Proof: Recall that the map HA is de�ned in the proof of Proposition 6.3.9. We proceed by
induction on n. The assertion is true in case n = 0 according to Lemma 7.3.4. Now assume that
the assertion is true for an arbitrary number n; we then have to show that ?;Hn+1 �(A)A))A Y.
First, observe that Y +. Assume that we have a map h and a term v such that h �A)A v; we then
have to show that

h(?;Hn+1); hi; eval �A Yv: (7.1)

We have
?;Hn+1 = p�; (id� p?;Hnq�1); evalq

cf. the proof of Proposition 6.3.9, so we get

h(?;Hn+1); hi; eval = h;�; (id� p?;Hnq�1); eval
= hh; (h(?;Hn); hi; eval)i; eval

Now
h(?;Hn); hi; eval �A Yv

cf. the induction hypothesis, which entails that

hh; (h(?;Hn); hi; eval)i; eval �A v(Yv)

and v(Yv) + c for some value c entails that we get

Y + �f:f(Yf) v(Yv) + c

Yv + c

so we conclude (7.1) according to Lemma 7.3.5. 2

We are �nally able to state a result expressing that the categorical interpretation is adequate with
respect to the operational semantics. Note how Lemma 7.1.5 is used to \extract" the �xpoint
constants of a term.

Theorem 7.3.8 (Adequacy) Let u be a program of type B. If the �xpoint operator is rationally
open with respect to B, then [[u]] 6=? entails that u +.

Proof: We apply Lemma 7.1.5 to the derivable sequent ` u : B and obtain a derivable sequent

z1 : (A1) A1)) A1; ::: ; zn : (An) An)) An ` u
0 : B

such that
u = u0[YA1

; :::; YAn
=z1; :::; zn]

and such that the term u0 does not contain any occurrences of the �xpoint constant. Note that
only a special case of Lemma 7.1.5 is used where a constant, namely the �xpoint constant, is
replaced by a variable. But

[[u0[YA1
; :::; YAn

=z1; :::; zn]]] = h[[YA1
]]; :::; [[YAn

]]i; [[u0]]

7.4. OBSERVABLE TYPES 105

and for each i 2 f1; :::; ng we have [[YAi
]] = H

]

Ai

so there exist numbers p1; :::; pn such that

h(?;Hp1
A1
); ::: ; (?;Hpn

An
)i; [[u0]] 6=?

because the �xpoint operator is rationally open with respect to B and because [[u]] 6=?. But for
each i 2 f1; :::; ng it is the case that

?;Hpi
Ai

�(Ai)Ai))Ai
YAi

according to Lemma 7.3.7, which entails that

h(?;Hp1
A1
); :::; (?;HAn

)pni; [[u0]] �B u0[YA1
; :::; YAn

=z1; :::; zn]

according to Lemma 7.3.6. We conclude that u + cf. the de�nition of �B . 2

Note that the preceding theorem reveals information about how the semantics is related to
termination/non-termination behaviour at any type in the sense that [[u]] 6=? implies u + whichever
type the program u has.

Examples 7.3.9 The adequacy result, Theorem 7.3.8, holds when PCF is interpreted in the
concrete categories cpo and dI. This is also the case with the game model of [Abr96].

7.4 Observable Types

Types where we have a converse to adequacy, that is, to Theorem 7.3.8, will be called observable.
To be explicit, a type B is observable i� u + entails that [[u]] 6=? for any program u of type B
when we assume that ~0 6= ~1.

Now, the ground type N is observable according to soundness and the observation that if ~n =?
for some number n then ~0 = ~1. It is actually possible to obtain a more informative result, which
is a categorical generalisation of the traditional notion of adequacy for PCF:

Corollary 7.4.1 Let u be a program of type N . If ~0 6= ~1 and the �xpoint operator is rationally
open with respect to N , then [[u]] = ~q i� u + succq(zero).

Proof: The result follows from Theorem 7.2.5 and Theorem 7.3.8 together with the observation
that if ~n =? for some number n, or if ~p = ~q for di�erent numbers p and q, then ~0 = ~1. 2

Sum types are observable too; at binary sum types A + B it follows from soundness and the
observation that if in1 or in2 factors through ?: 1! A+ B, then ~0 = ~1, and at unary sum type
0 it follows from the observation that we cannot have t +, where t is a program of type 0, as there
are no a values of type 0. It actually turns out that a result analogous to Corollary 7.4.1 can be
obtained at binary sum types:

Corollary 7.4.2 Let u be a program of type A+B. If ~0 6= ~1 and the �xpoint operator is rationally
open with respect to A + B, then the map [[u]] has the property that it factors through in1 i�
u + inl(t) for some term t, and analogously, it factors through in2 i� u + inr(v) for some term v.

Proof: The result follows from Theorem 7.2.5 and Theorem 7.3.8 together with the observation
that if in1 or in2 factors through ?: 1! A+B, or if in1 and in2 both factor through an arbitrary
map f : 1! A+ B, then ~0 = ~1. 2

So the (N; 0;+) types are observable. Product and exponential types are not observable as the
following examples show: The programs true and (
;
) of product type are values, but are
interpreted as ?, and the program �x:
 of exponential type is canonical, but is interpreted as ?.

106 CHAPTER 7. THE PROGRAMMING LANGUAGE PCF

7.5 Unwinding

The adequacy result can be used to prove non-trivial syntactic properties of PCF in the presence
of an appropriate model. Here we shall give the unwinding theorem which establishes a relation
between the �xpoint constant Y and its �nite approximants. A purely syntactic proof of a similar
result can be found in [Gun92]. We �rst need a convention: For any type A we de�ne a program
YnA of type (A) A)) A for every number n by the stipulations

Y0 =

Yn+1 = �f:f(Ynf)

The terms Yn are called �nite approximants to the �xpoint constant Y. By a small induction proof
it can be shown that [[Yn]] =?;Hn where the map H is de�ned in the proof of Proposition 6.3.9.

Theorem 7.5.1 (Unwinding) If t is a term of observable type with one free variable z of type
(A) A)) A, then

t[Y=z] + , 9n 2 !: t[Yn=z] + :

Proof: In what follows we will interpret PCF in the concrete category cpo; this is a model for
PCF in the sense of De�nition 7.3.1 such that the �xpoint operator is rationally open with respect
to the interpretation of any observable type as is made clear in Section 7.3 and Section 6.3. We
then have t[Y=z] + i� [[t[Y=z]]] 6=? cf. adequacy and its converse. But [[t[Y=z]]] is a least upper
bound for the increasing chain f[[t[Yn=z]]]gn2! because [[t[Y=z]]] = H]; [[t]] and [[t[Yn=z]]] =?;Hn; [[t]]
according to the remark above, so [[t[Y=z]]] 6=? i� there exists a number n such that [[t[Yn=z]]] 6=?,
that is, i� there exists a number n such that t[Yn=z] + cf. adequacy and its converse. 2

At ground type N it is possible to obtain a more informative result: If t is a term of ground type
N with one free variable z of type (A) A)) A, then t[Y=z] + c i� there exists a number n such
that t[Yn=z] + c. The proof of the result is similar to the proof of Theorem 7.5.1. An analogous
result can be obtained at binary sum types.

In the previous section we showed how the assumption of rational openness on a �xpoint
operator entails that the categorical interpretation is adequate. It is possible to weaken this
assumption such that it is not only su�cient, but also necessary for the interpretation to be
adequate1. Essentially, what we do is we restrict rational openness to maps de�nable in PCF.
Note that the \upwards" direction of the following theorem relies on the unwinding theorem.

Theorem 7.5.2 Assume that we have a category that is a model for PCF in the sense of De�ni-
tion 7.3.1 such that ~0 6= ~1. Let an observable type B be given, then the assertions

� for all types A and programs t of type B with one free variable z of type (A) A)) A it
is the case that

H]; [[t]] 6=?) 9n 2 !: ?;Hn; [[t]] 6=?;

� for every program u of type B we have [[u]] 6=? entails that u +,

are equivalent.

Proof: The \downwards" direction comes from the observation that the assumption made here is
su�cient to prove Theorem 7.3.8 in the relevant case. The proof of the \upwards" direction goes
as follows: Assume that the assumption made here holds, and consider a term t of type B with
one free variable z of type (A) A)) A. If H]; [[t]] 6=? then t[Y=z] + according to the assumption
because H]; [[t]] = [[t[Y=z]]]. But then there exists a number n such that t[Yn=z] + cf. the unwinding
theorem, which entails the existence of a number n such that ?;Hn; [[t]] 6=? because the type B
is observable and [[t[Yn=z]]] =?;Hn; [[t]]. 2

1This result was conjectured by Gordon Plotkin while the author visited Edinburgh in March '96.

7.6. A DIGRESSION - SYNTACTIC RATIONAL OPENNESS 107

7.6 A Digression - Syntactic Rational Openness

Using a preorder on terms, the notions of rationality and rational openness can be cast in a
syntactic fashion. We shall �rst have a look at the contextual preorder on PCF-programs. Recall
that the contextual preorder is de�ned as follows: For every pair u and v of programs of type A
we de�ne u .A v i�

t[u=z] +) t[v=z] +

for every term t of numerals type with one free variable z of type A. The symmetric closure h
of . is then given by h=. \ .op. Using a concrete instance of adequacy it is straightforward
to prove that
 is least with respect to the contextual preorder and that the contextual preorder
satis�es a syntactic version of rationality saying that t[Y=z] is a least upper bound for the increasing
chain ft[Yn=z]gn2! for any term t with one free variable z of type (A) A)) A. This can also
be proved using purely syntactic means - see for example [Pit95] and [Las97]. It follows that a
syntactic version of rational openness is satis�ed, namely

t[Y=z] h
 , 8n 2 !: t[Yn=z] h

for any term t with one free variable z of type (A) A)) A.
We will now have a look at an interesting example2 of a preorder on terms with respect to

which (the syntactic version of) rational openness is satis�ed whereas (the syntactic version of)
rationality does not hold. The starting point is the untyped eager �-calculus extended with a
non-deterministic choice operator. A description of the untyped eager �-calculus can be found in
[Win93]. Terms are given by the grammar

t ::= x j �x:t j tt j t � t

where x is a variable ranging over terms. An operational semantics is given as follows: A program
is an arbitrary closed term and a value is a program of the form �x:t. Let T be the set of programs
and let C be the set of values. An evaluation relation + � T � C is given by the rules

�x:t + �x:t

f + �x:t u + c t[c=x] + d

fu + d

u + c

u� v + c

v + d

u� v + d

We then de�ne an applicative simulation preorder / � T�T as the greatest �xpoint of a monotone
operator

h�i : P(T � T)! P(T � T)

which is de�ned as follows: For every R � T � T we de�ne uhRiv i�

8�x:u0 2 C: u + �x:u0) 9�x:v0 2 C: v + �x:v0 ^ 8c 2 C: u0[c=x]Rv0[c=x]

for any pair u and v of programs. Let � be the symmetric closure of /. Before considering rational
openness and rationality we need a notion of a �xpoint operator: We shall use the standard eager
�xpoint operator Y which is de�ned as

Y = �f:(�x:�y:f(xx)y)(�x:�y:f(xx)y)

The �nite approximants to the �xpoint operator are de�ned by the stipulations

Y0 = (�x:xx)(�x:xx)
Yn+1 = �f:f(�y:Ynfy)

2This example was provided by S�ren B�gh Lassen who has described an analogous situation in [Las96].

108 CHAPTER 7. THE PROGRAMMING LANGUAGE PCF

One can then show that rational openness in the above mentioned sense is satis�ed when consid-
ering �. But rationality does not hold with respect to /.

An example contradicting rationality goes as follows: We can represent natural numbers using
Church numerals; this enables us to de�ne a value zero representing zero and a program succ

representing the successor function, and moreover, we can de�ne a program min representing the
function which returns the least of two numbers. Now, de�ne a program ? as

? = (Y�f:�x:x� (succ(fx)))zero

It is clear that this program has the property that whenever it terminates, the result is a value
representing a random number. This has to be compared to the n'th �nite approximant to ?

(obtained by replacing Y by Yn) which has the property that whenever it terminates, the result is
a value representing is a random number less than n. Then two programs g and h are de�ned as

g = �x:? h = (�y:�x:miny?)?

It is straightforward to check that h is an upper bound for all the �nite approximants to g. But
we do not have g / h because ? may evaluate to a value representing a number greater than it
is possible to simulate by a given result of evaluating h. Hence, rationality is not satis�ed when
considering the applicative simulation preorder. It should, however, be mentioned that the same
calculus satis�es rationality, and thus also rational openness, if the applicative simulation preorder
is replaced by a contextual preorder.

Chapter 8

LPCF - Semantic Issues

In this chapter appropriate machinery for giving the categorical model for LPCF is introduced.
Section 8.1 introduces a categorical notion of unde�nedness appropriate for the linear setting.
Categorical notions of numerals and �xpoints appropriate for the linear setting are given in Sec-
tion 8.2 and Section 8.3, respectively. Also, the axiom of rational openness on a linear �xpoint
operator is introduced. In Section 8.4 a notion of rationality appropriate for the linear setting is
given, and it is shown how under certain circumstances a rationally open linear �xpoint operator
induces a rational linear category.

8.1 Unde�nedness

In this section we will introduce a linear version of the notion of unde�nedness of Section 6.1.

De�nition 8.1.1 A linear category is pointed i� a map ?A: I ! A is given for each object A. A
map f : A! B in a pointed linear category is strict i� the diagram

1
? - A

@
@
@
@
@

?
R

B
?

f

commutes.

Examples 8.1.2 In the categories cpost and dIlin the obvious choice of ?-maps are the appro-
priate bottom elements; it is then the case that every map is strict.

We will now have a look at a simple result concerning the Kleisli category induced by a linear
category.

Proposition 8.1.3 Let C be a linear category with a terminal object. The bijection between
maps C(I; A) �= C!(1; A) given by composition with the isomorphism !1 �= I induces a bijective
correspondence between families of maps making the linear category C pointed in the sense of
De�nition 8.1.1 and families of maps making the Kleisli category pointed in the sense of De�ni-
tion 6.1.1.

Proof: Obvious. Recall that 1 is a terminal object in the Kleisli category. 2

If we have a pointed linear category with �nite products, then the Kleisli category can be considered
as pointed according to Proposition 8.1.3 and it turns out that if every map in the linear category
in question is strict, then the maps �1 and �2 in the Kleisli category are strict and the map eval
is left-strict.

109

110 CHAPTER 8. LPCF - SEMANTIC ISSUES

Examples 8.1.4 If this construction is applied to the pointed linear category cpost, then the
resulting choice of ?-maps in the category cpo is the obvious one, namely the appropriate bottom
elements. An analogous remark applies to the category dIlin.

De�nition 8.1.5 Let C be a pointed linear category. For any pair of objects A and B we de�ne
a map ?A;B: A! B as

?A;B= p?A(Bq
�1:

It can be shown that if every map is strict, then for every object B we have ?I;B=?B. The
?-maps are thus generalised to have arbitrary domains and codomains. We will now prove some
results that will be of use later on; the �rst one says that composition is left-strict:

Proposition 8.1.6 Let C be a pointed linear category where every map is strict. We have

?A;B; f =?A;C

for any map f : B ! C.

Proof: Let a map f : B ! C be given. We have

?A;B; f = �=;��1(?A(B); f
= �=;��1(?A(B; (A(f))
= �=;��1(?A(C)
= ?A;C

2

The following proposition shows that composition is also right-strict:

Proposition 8.1.7 Let C be a pointed linear category where every map is strict. We have

f ;?B;C=?A;C

for any map f : A! B.

Proof: Let a map f : A! B be given. We have

f ;?B;C = f ;�=;��1(?B(C)
= �=;��1(?B(C ; (f (C))
= �=;��1(?A(C)
= ?A;C

2

The following proposition shows that the
 functor is strict in both arguments:

Proposition 8.1.8 Let C be a pointed linear category where every map is strict. We have

?A;B
f =?A
C;B
D

and analogously
f
 ?A;B=?C
A;D
B

for any map f : C ! D.

Proof: Let a map f : C ! D be given. Consider the map

(A(B)
 (A
 C) �= ((A(B)
 A)
 C
eval
f- B
D:

Some equational manipulation shows that ph
fq = phq;�(�=; (eval
f)) for any map h : A! B,
and thus

p?A;B
fq = ?A(B;�(�=; (eval
 f))
= ?(A
C)((B
D)

8.2. LINEAR NUMERALS 111

which entails that ?A;B
f =?A
C;B
D. 2

It should be remarked that the presence of a zero object (an object which is both initial and
terminal) in a linear category (an assumption put forward in [Lam96]) also induces a notion
of unde�nedness in the sense of a family of maps ?A;B: A ! B satisfying the conclusions of
Proposition 8.1.6, Proposition 8.1.7 and Proposition 8.1.8. It is straightforward to see that the
two approaches coincide whenever a zero object is present in a pointed linear category where every
map is strict.

8.2 Linear Numerals

We will now introduce a linear version of the object of numerals of Section 6.2.

De�nition 8.2.1 A linear object of numerals in a linear category with �nite products is an object
N equipped with maps zero : I ! N and succ; pred : N ! N such that the diagrams

I
~0 - N

@
@
@
@
@

~0
R

N
?

pred

I
]n + 1- N

@
@
@
@
@

~n
R

N
?

pred

commute for any number n where the maps ~n : I ! N are de�ned in the obvious way using the
zero and succ maps. Furthermore, a map condA : N
 (A � A) ! A is given for each object A
such that the diagrams

I �= I
 I
~0
 hg; hi- N
 (A �A)

@
@
@
@
@

g
R 	�

�
�
�
�

cond

A

I �= I
 I
]n+ 1
 hg; hi- N
 (A� A)

@
@
@
@
@

h
R 	�

�
�
�
�

cond

A

commute for any maps g; h : I ! A and any number n. An object of numerals in a pointed linear
category with �nite products is standard i� for any map h : I ! N we have h =? or h = ~n for
some number n.

A comparison between the conditional map

condA : N � (A �A)! A

of an object of numerals in the sense of De�nition 6.2.1 and the conditional map

condA : N
 (A �A)! A

of a linear object of numerals in the sense of De�nition 8.2.1 shows how the intuitionistic construct
� splits up into the two linear constructs � and
: Both components of the tensor product
N
 (A � A) have to be used, and exactly one component of A � A has to be used, namely the
one determined by the test. Note that if C is a linear category with �nite products and an object
of numerals such that ~0 = ~1, then every hom-set C(I; A) has at most one element.

Examples 8.2.2 In what follows we will give a couple of linear objects of numerals in the concrete
categories cpost and dIlin. The obvious choice of a standard linear object of numerals in these

112 CHAPTER 8. LPCF - SEMANTIC ISSUES

categories is to take the object N to be equal to ! with a bottom element adjoined, and equipped
with the maps

zero(x) =

�
? if x =?
0 otherwise

succ(x) =

�
? if x =?
x+ 1 otherwise

pred(x) =

8<
:

? if x =?
0 if x = 0
x� 1 otherwise

condA(x; (y; z)) =

�
y if x = 0
z otherwise

Note that the �nite products of dIlin coincide with the ones of cpost, and, moreover, given the
object N here, the part of the monoidal structure on dIlin involved in De�nition 8.2.1 coincides
(up to isomorphism) with the corresponding structure on cpost.

Another option is to take the object N to be equal to ! with a bottom element adjoined
together with an element 1 incompatible with any other element but bottom, and equipped with
the maps from the standard object of numerals extended as follows

succ(1) =1 pred(1) =1 condA(1; (y; z)) = z

Also in this case the relevant structure on dIlin coincides (up to isomorphism) with the corre-
sponding structure on cpost. This gives a non-standard object of numerals in cpost as well as in
dIlin.

Given a linear object of numerals in a linear category with �nite products, the object N together
with the maps

!1 �= I
zero- N

!N
"- N

succ- N !N
"- N

pred- N

!(N � (A� A)) �=!N
!(A�A)
"
"- N
 (A �A)

cond- A

constitutes an object of numerals in the Kleisli category. This can be veri�ed by straightforward
equational manipulation. If the linear category in question is pointed, then the Kleisli category
can be considered as pointed according to Proposition 8.1.3, and it turns out that if every map
in the linear category is strict, then the maps succ and pred in the Kleisli category are strict and
the map cond is left-strict.

Examples 8.2.3 If this construction is applied to any of the two linear objects of numerals in the
linear category cpost, then the resulting choice of object of numerals in the category cpo is the
corresponding one mentioned in Section 6.2. An analogous remark applies to the category dIlin.

8.3 Linear Fixpoints

We will now consider �xpoints in a linear context.

De�nition 8.3.1 Let C be a linear category. A map h : I ! B is a linear �xpoint of a map
f :!B ! B i� the diagram

I

(h)- !B

@
@
@
@
@

h
R

B
?

f

8.3. LINEAR FIXPOINTS 113

commutes. A linear �xpoint operator for an object B is an operation on maps

(�)]B : C(!B;B) �! C(I; B)

such that f] is a linear �xpoint of f for any map f :!B ! B.

The de�nition of a linear �xpoint operator in a linear category C is essentially the de�nition of a
�xpoint operator in the category of coalgebras stated in terms of maps in C. To be precise:

Proposition 8.3.2 Let C be a linear category. A map h : I ! B is a linear �xpoint of a map
f :!B ! B in C i�
(h) : (I;mI)! (!B; �) is a �xpoint of
(f) : (!B; �)! (!B; �) in the category
of coalgebras. There is a bijective correspondence between linear �xpoint operators for the object
B in C and �xpoint operators for the free coalgebra (!B; �) in the category of coalgebras.

Proof: Recall that the coalgebra (I;mI) is a terminal object in the category of coalgebras. The
�rst assertion follows from the observation that
(h) =
(h);
(f) is equivalent to h =
(h); f .
The last assertion follows from the �rst assertion. 2

We will now have a look at a result concerning the Kleisli category induced by a linear category;
the de�nition of a linear �xpoint operator in a linear category C with a terminal object is essentially
the de�nition of a �xpoint operator in the Kleisli category stated in terms of maps in C. To be
precise:

Proposition 8.3.3 Let C be a linear category with a terminal object. The bijection between
maps C(I; B) �= C!(1; B) given by composition with the isomorphism !1 �= I induces a bijective
correspondence between linear �xpoint operators for an object B in C and �xpoint operators for
the object B in the Kleisli category.

Proof: Straightforward. Recall that 1 is a terminal object in the Kleisli category. 2

Examples 8.3.4 In the categories cpo and dI there is an obvious choice of �xpoint operator for
every object; this induces a linear �xpoint operator for every object in the linear categories cpost
and dIlin.

We now need a convention: Given a map g :!B ! B we de�ne a map gn :!B ! B for every number
n by stipulating g0 = " and gn+1 =
(gn); g. The map gn is simply n iterations of g considered
as a map in the Kleisli category.

De�nition 8.3.5 A linear �xpoint operator for an object B in a pointed linear category is ratio-
nally open with respect to an object P i� for all maps f :!B ! B and g :!B ! P it is the case
that

(f]); g 6=?) 9n 2 !:
(
(?); fn); g 6=? :

The de�nition of rational openness of a linear �xpoint operator in a pointed linear category C with
a terminal object is essentially the de�nition of rational openness of the corresponding �xpoint
operator in the Kleisli category stated in terms of maps in C. To be precise:

Proposition 8.3.6 Assume that we have a linear �xpoint operator for an object B in a pointed
linear category with a terminal object. Then the linear �xpoint operator for the object B in C is
rationally open with respect to an object P in the sense of De�nition 8.3.5 i� the corresponding
�xpoint operator for the object B in the Kleisli category is rationally open with respect to the
object P in the sense of De�nition 6.3.3.

Proof: Recall that 1 is a terminal object in the Kleisli category and it can be considered as
pointed according to Proposition 8.1.3, and, moreover, the linear �xpoint operator for the object
B in C corresponds to a �xpoint operator for the object B in the Kleisli category according to
Proposition 8.3.3. The result follows from straightforward calculation. 2

114 CHAPTER 8. LPCF - SEMANTIC ISSUES

Examples 8.3.7 It follows from Proposition 8.3.6 that the obvious linear �xpoint operators in
the linear categories cpost and dIlin are rationally open with respect to any objects.

De�nition 8.3.8 Let C be a linear category. A map h :!X ! B is a parametrised linear �xpoint

of a map f :!X
!B ! B i� the diagram

!X
d- !X
!X

B

h

?
� f

!X
!B
?

id

(h)

commutes. A parametrised linear �xpoint operator for an object B is an operation on maps

(�)]X;B : C(!X
!B;B) �! C(!X;B)

for each object X such that f] is a parametrised linear �xpoint of f for any map f :!X
!B ! B.
A parametrised linear �xpoint operator is natural if the operations are natural in !X with respect
to maps of free coalgebras.

Recall that maps of free coalgebras are the same as maps in the image of
. Note how the
\duplicate" map dX :!X !!X
!X is used to copy parameters. We can internalise the notion of a
linear �xpoint operator using the closed structure of a linear category.

De�nition 8.3.9 An internal linear �xpoint operator for an object B in a linear category is a
map YB :!(!B(B)! B such that the diagram

!(!B(B)
d- !(!B(B)
!(!B (B)

B

Y

?
� eval

(!B (B)
!B
?

"

(Y)

commutes.

The de�nition of an internal linear �xpoint operator in a linear category C is essentially the
de�nition of an internal �xpoint operator in the category of coalgebras stated in terms of maps in
C. To be precise:

Proposition 8.3.10 Let C be a linear category. A map Y :!(!B(B) ! B is an internal linear
�xpoint operator for the object B in C i�
(Y) : (!(!B (B); �) ! (!B; �) is an internal �xpoint
operator for the object (!B; �) in the category of coalgebras.

Proof: Recall that the category of coalgebras has a cartesian structure such that for every object
B the free coalgebra (!B; �) is exponentiable; the internal-hom object of a coalgebra (A; h) and
the free coalgebra (!B; �) is given by the free coalgebra (!(A(B); �). Now

(Y) = �; (id�
(Y)); eval

in C! is equivalent to
Y = �; (id�
(Y)); eval; "

in C, and the calculation

�; (id�
(Y)); eval; " = d; (id

(Y));
(��1(
�1(id))); " by def. of op. in C!

= d; (id

(Y)); ("
 id); eval
= d; ("

(Y)); eval

8.3. LINEAR FIXPOINTS 115

shows that this is equivalent to Y = d; ("

(Y)); eval. 2

One can show that a linear category has a parametrised linear �xpoint operator for each object i�
it has an internal linear �xpoint operator for each object, but we will show here a more informative
result:

Proposition 8.3.11 Let B be an object in a linear category. There is a bijective correspondence
between natural parametrised linear �xpoint operators and internal linear �xpoint operators for
the object B.

Proof: Assume that the category has a natural parametrised linear �xpoint operator (�)] for an
object B, and de�ne the map Y by the equation

Y = (("
 id); eval)]:

It is clearly an internal linear �xpoint operator for B cf. the diagram in De�nition 8.3.8. Con-
versely, assume that Y is an internal linear �xpoint operator for the object B, and de�ne an
operation on maps

(�)] =
(�(�));Y

for each object X. This is a parametrised linear �xpoint operator because

(�(f));Y =
(�(f)); d; ("

(Y)); eval
= d; (id

(
(�(f));Y)); f

for any map f :!X
!B ! B. The operations are natural with respect to maps in the image of

because we have

(h);
(�(f));Y =
(
(h);�(f));Y
=
(�((
(h)
 id); f));Y

for any maps f :!X
!B ! B and h :!X0 ! X.

The construction of internal linear �xpoint operators from natural parametrised linear �xpoint
operators is injective because we have

(�(f)); (("
 id); eval)] = ((
(�(f))
 id); ("
 id); eval)]

= f]

for any map f :!X
!B ! B, which entails that the natural parametrised linear �xpoint operator
induced by the internal linear �xpoint operator (("
 id); eval)] is equal to (�)]. The construction
of natural parametrised linear �xpoint operators from internal linear �xpoint operators is injective
because the following calculation

(�(("
 id); eval));Y =
(�(��1(")));Y
=
(");Y
= Y

shows that the internal linear �xpoint operator induced by the natural parametrised linear �xpoint
operator
(�(�));Y is equal to Y . 2

The following result can be obtained from Proposition 8.3.2, Proposition 6.3.9 and Proposi-
tion 8.3.10, but we will also give a direct proof:

Proposition 8.3.12 A linear �xpoint operator for an object !(!B(B)(B in a linear category
induces an internal linear �xpoint operator for B.

Proof: First de�ne a map

!(!(!B(B)(B)
KB- !(!B (B)(B

116 CHAPTER 8. LPCF - SEMANTIC ISSUES

as the exponential transpose of the map given in Figure 8.1. For every map k :!(!B (B) ! B

the diagram

1

(pkq)- !(!(!B(B)(B)

@
@
@
@
@

pd; ("

(k)); evalq
R
!(!B (B)(B

?

K

commutes, which can be shown by some equational manipulation; this entails that pkq is a linear
�xpoint for K i� k = d; ("

(k)); eval. We now de�ne the internal linear �xpoint operator
Y :!(!B(B) ! B by the equation pY q = K]; hence Y = d; ("

(Y)); eval. 2

This entails that if any object in a linear category has a linear �xpoint operator, then any object
has an internal linear �xpoint operator too. Note that in the context of Proposition 8.3.12 the
map
(pfq);Y is a linear �xpoint for f for every map f :!B ! B, and, moreover, if the linear
category in question is pointed such that every map is strict, then it can be shown by a small
induction proof that

�=; ((
(?);Kn)

(pfq)); eval =
(?); fn:

So indeed the map K does work as expected.

8.4 Linear Rationality

In this section we will show how under appropriate circumstances a rationally open linear �xpoint
operator induces a rational linear category; this is analogous to what is done in Section 6.5 in the
context of a cartesian closed category. In [Bra97a] a rational linear category is taken to be an
appropriate order-theoretic notion of an adequate categorical model for a fragment of LPCF.

De�nition 8.4.1 A rational linear category is a pointed linear category which is poset-enriched
as a linear category such that for every object A it is the case that

� the map ?A is least,

� for every map f :!A ! A the increasing chain f
(?); fngn2! has a least upper bound f]

with the property that for any map g :!A! D the map
(f]); g is a least upper bound for
the increasing chain f
(
(?); fn); ggn2!.

Examples 8.4.2 The linear categories cpost and dIlin are rational in the obvious way.

We will now consider a notion of observables for a pointed linear category that assumes the presence
of a distinguished object P . It will be called the intuitionistic termination notion of observables
because it corresponds to De�nition 6.5.3 in a sense made precise by Proposition 8.4.5 below.

De�nition 8.4.3 Let C be a pointed linear category with a distinguished object P . The intu-

itionistic termination notion of observables is de�ned by assigning the set

OA = fOh jh 2 C(!A;P)g

to any object A where
Oh = ff 2 C(I; A) j
(f);h 6=?g:

This is a notion of observables because g�Oh = O!g;h for any maps g : B ! A and h :!A ! P .
The induced observational preorder can be stated explicitly as

f . g i� 8h 2 C(!(A(B); P):
(pfq);h 6=?)
(pgq);h 6=?

8.4. LINEAR RATIONALITY 117

Figure 8.1: The map used in Proposition 8.3.12

!(!(!B(B)(B)
!(!B (B)

!(!(!B(B)(B)
 (!(!B (B)
!(!B (B))

id
 d

?

(!(!(!B(B)(B)
!(!B (B))
!(!B (B)

�=

?

(!(!(!B(B)(B)
!!(!B(B))
!(!B (B)

(id
 �)
 id

?

!((!(!B(B)(B)
!(!B (B))
!(!B (B)

m
 id

?

!B
 (!B (B)

!eval
 "

?

(!B(B)
 B

�=

?

B

eval

?

118 CHAPTER 8. LPCF - SEMANTIC ISSUES

for any maps f; g : A! B. We will refer to this preorder as the intuitionistic termination preorder.
Note that the map ?P is minimal with respect to the intuitionistic termination preorder. It

follows from Proposition 6.4.4 that the symmetric monoidal closed structure on C is preorder-
enriched with respect to the intuitionistic termination preorder. Moreover, we have the following
result:

Proposition 8.4.4 Let C be a pointed linear category with a distinguished object P . The functor
! is preorder-enriched with respect to the intuitionistic termination preorder.

Proof: Consider the map

!(A(B)
!A
m- !((A(B)
 A)

!eval- !B

the transpose of which

!(A(B)
�(m;!eval)- !A(!B

has the property that
(pkq);�(m; !eval) = p!kq for any map k : A! B, which shows the wanted
result. 2

This entails that C is preorder-enriched (as a linear category) with respect to the intuitionistic
termination preorder. If � is another preorder-enrichment on C (as a linear category) with
respect to which the map ?P is minimal, then � can be shown to be included in . in the sense
that for any objects A and B the preorder �A;B on C(A;B) is included in the .A;B preorder.
The de�nition of the intuitionistic termination preorder on a hom-set of a pointed linear category
C with �nite products and a distinguished object P is essentially the de�nition of the termination
preorder on the corresponding hom-set in the Kleisli category stated in terms of maps in C. To
be precise:

Proposition 8.4.5 Let C be a pointed linear category with �nite products and a distinguished
object P . The bijection between maps

C(I; A) �= C!(1; A)

is an isomorphism of preorders when we consider the intuitionistic termination preorder on C(I; A)
in the sense of De�nition 8.4.3 and the termination preorder on C!(1; A) in the sense of De�ni-
tion 6.5.3.

Proof: Recall that the Kleisli category is cartesian closed, and it can be considered as pointed
according to Proposition 8.1.3. The result follows from straightforward calculation. 2

If we are dealing with a pointed linear category with �nite products and a linear object of numerals,
then we take the object P to be N unless otherwise stated.

Examples 8.4.6 In the linear categories cpost and dIlin the intuitionistic termination preorder
coincides with the given order.

Theorem 8.4.7 Let C be a pointed linear category with �nite products such that every map
is strict. Assume that the category is equipped with a standard linear object of numerals, and
moreover, assume that a linear �xpoint operator is given for each object. Then for any object A
it is the case that

� the map ?A is least and for any maps f :!A ! A and g :!A ! D the map
(f]); g is an
upper bound for the increasing chain f
(
(?); fn); ggn2!,

� the linear �xpoint operator for the object A is rationally open with respect to N i� for any
maps f :!A! A and g :!A! D the map
(f]); g is a least upper bound for the increasing
chain f
(
(?); fn); ggn2!,

where we consider the intuitionistic termination preorder.

8.4. LINEAR RATIONALITY 119

Proof: Recall that the Kleisli category is cartesian closed, and it can be considered as pointed
according to Proposition 8.1.3 and equipped with a standard object of numerals such that the
map cond is left-strict according to Section 8.2, and, moreover, a �xpoint operator is given for
each object in the Kleisli category according to Proposition 8.3.3. So we apply Theorem 6.5.5 and
restate the two assertions of the result appropriately using Proposition 8.4.5. 2

Note that in the context of Theorem 8.4.7 none of the maps in the hom-set C(I;N) are equivalent
with respect to the equivalence relation induced by the intuitionistic termination preorder.

Corollary 8.4.8 Let C be a pointed linear category with �nite products such that every map
is strict. Assume that the category is equipped with a standard linear object of numerals, and,
moreover, assume that a linear �xpoint operator is given for each object. Then the quotientbC is a rational linear category when C is considered as preorder-enriched with respect to the
intuitionistic termination preorder.

Proof: Follows from Theorem 8.4.7 and the observation that the linear �xpoint operator is
a congruence with respect to the equivalence relation induced by the intuitionistic termination
preorder. 2

Above we have considered a notion of observables that gave rise to the intuitionistic termination
preorder. We will now have a look at another notion of observables that assumes the presence of
�nite products and a linear object of numerals but does not assume the linear category in question
to be pointed. It will be called the intuitionistic termination to value notion of observables because
it corresponds to De�nition 6.5.8 in a sense made precise by Proposition 8.4.11 below.

De�nition 8.4.9 Let C be a linear category with �nite products and a linear object of numerals.
The intuitionistic termination to value notion of observables is de�ned by assigning the set

OA = fOh;n jh 2 C(!A;N); n 2 !g

to any object A where
Oh;n = ff 2 C(1; A) j
(f);h = ~ng:

This is a notion of observables because g�Oh;n = O(!g;h);n for any maps g : B ! A and h :!A! N .
The induced observational preorder can be stated explicitly as

f . g i� 8h 2 C(!(A(B); N):8n 2 !:
(pfq);h = ~n)
(pgq);h = ~n

for any maps f; g : A! B. We will refer to this preorder as the intuitionistic termination to value

preorder.
Note that for any number p the map ~p is maximal with respect to the intuitionistic termination

to value preorder. It follows from Proposition 6.4.4 that the symmetric monoidal closed struc-
ture on C is preorder-enriched with respect to the intuitionistic termination to value preorder.
Moreover we have the following result:

Proposition 8.4.10 Let C be a linear category with �nite products and a linear object of nu-
merals. The functor ! is preorder-enriched with respect to the intuitionistic termination to value
preorder.

Proof: Analogous to the proof of Theorem 8.4.4. 2

This entails that C is preorder-enriched (as a linear category) with respect to the intuitionistic
termination to value preorder. If � is another preorder-enrichment on C (as a linear category)
with respect to which ~p is maximal for every number p, then � can be shown to be included
in .. The de�nition of the intuitionistic termination to value preorder on a hom-set of a linear
category C with �nite products and a linear object of numerals is essentially the de�nition of the
termination preorder to value on the corresponding hom-set in the Kleisli category stated in terms
of maps in C. To be precise:

120 CHAPTER 8. LPCF - SEMANTIC ISSUES

Proposition 8.4.11 Let C be a linear category with �nite products and a linear object of nu-
merals. The bijection between maps

C(I; A) �= C!(1; A)

is an isomorphism of preorders when we consider the intuitionistic termination to value preorder
on C(I; A) in the sense of De�nition 8.4.9 and the termination to value preorder on C!(1; A) in the
sense of De�nition 6.5.8.

Proof: Recall that the Kleisli category is cartesian closed, and it can be considered as equipped
with an object of numerals according to Section 8.2. The result follows from straightforward cal-
culation. 2

Examples 8.4.12 In the categories cpost and dIlin the intuitionistic termination to value pre-
order coincides with the given order.

If the linear category giving rise to the intuitionistic termination to value preorder is pointed such
that every map is strict and the linear object of numerals is standard, then it can be shown that
the map ~p is maximal with respect to the intuitionistic termination preorder for every number
p, and, moreover, the map ?N is minimal with respect to the intuitionistic termination to value
preorder, so we conclude that under such circumstances the two preorders coincide. This is thus
also the case in the context of Theorem 8.4.7, so this result could equally well have been stated in
terms of the intuitionistic termination to value preorder instead of the intuitionistic termination
preorder.

For completeness we will have a brief look at yet another couple of notions of observables.
It will, however, turn out that the ! functor does not necessarily enrich with respect to the in-
duced observational preorders. The �rst additional notion of observables will be called the linear
termination notion of observables. Compare with De�nition 8.4.3.

De�nition 8.4.13 Let C be a pointed linear category with a distinguished object P . The linear
termination notion of observables is de�ned by assigning the set

OA = fOh jh 2 C(A;P)g

to any object A where
Oh = ff 2 C(I; A) j f ;h 6=?g:

This is a notion of observables because g�Oh = Og;h for any maps g : B ! A and h : A! P . The
induced observational preorder can be stated explicitly as

f . g i� 8h 2 C(A(B;P): pfq;h 6=?) pgq;h 6=?

for any maps f; g : A! B. We will refer to this preorder as the linear termination preorder. We
have the following result:

Proposition 8.4.14 Let C be a pointed linear category with a distinguished object P . The func-
tor ! is preorder-enriched with respect to the linear termination preorder i� the linear termination
preorder coincides with the intuitionistic termination preorder.

Proof: The \if" direction follows from Proposition 8.4.4. To prove the \only if" direction, assume
that the functor ! is preorder-enriched with respect to the linear termination preorder. It is clear
that the intuitionistic termination preorder is included in the linear termination preorder. The
converse to this inclusion follows from the observation that for any maps f; g : I ! B we have
f . g with respect to the intuitionistic termination preorder i� we have
(f) .
(g) with respect
to the linear termination preorder. 2

8.4. LINEAR RATIONALITY 121

Examples 8.4.15 In the linear categories cpost and dIlin the linear termination preorder coin-
cides with the given order.

The second additional notion of observables will be called the linear termination to value notion
of observables. Compare with De�nition 8.4.9.

De�nition 8.4.16 Let C be a linear category with �nite products and a linear object of numerals.
The linear termination to value notion of observables is de�ned by assigning the set

OA = fOh;n jh 2 C(A;N); n 2 !g

to any object A where
Oh;n = ff 2 C(I; A) j f ;h = ~ng:

This is a notion of observables because g�Oh;n = O(g;h);n for any maps g : B ! A and h :!A! N .
The induced observational preorder can be stated explicitly as

f . g i� 8h 2 C(A(B;N):8n 2 !: pfq;h = ~n) pgq;h = ~n

for any maps f; g : A ! B. We will refer to this preorder as the linear termination to value

preorder. We have the following result:

Proposition 8.4.17 Let C be a linear category with �nite products and a linear object of numer-
als. The functor ! is preorder-enriched with respect to the linear termination to value preorder
i� the linear termination to value preorder coincides with the intuitionistic termination to value
preorder.

Proof: Analogous to the proof of Theorem 8.4.14. 2

Examples 8.4.18 In the categories cpost and dIlin the linear termination to value preorder
coincides with the given order.

122 CHAPTER 8. LPCF - SEMANTIC ISSUES

Chapter 9

The Programming Language

LPCF

This chapter introduces the programming language LPCF, which is a linear version of PCF. The
purpose of LPCF is to give a linear account of computable functions. The syntax is introduced in
Section 9.1 and an eager and a lazy operational semantics is given in Section 9.2 and Section 9.3,
respectively. The choice of evaluation rules for terms of certain types is motivated by interpretation
in an appropriate categorical model; in the case of terms of ! types this dictates evaluation rules
which are di�erent from the ones given in [Abr90, Abr93]. A sound categorical interpretation
for LPCF is given in Section 9.4. In Section 9.5 we introduce a generalisation of LPCF needed
for technical reasons: It enables us to prove adequacy and it enables us to state and prove an
unwinding theorem. In Section 9.6 the generalised version of LPCF is given a categorical semantics.
In Section 9.7 additional non-order-theoretic axioms are imposed on the categorical model with the
aim of proving an adequacy result with respect to the eager operational semantics. The essential
ingredient of the categorical model is a rationally open linear �xpoint operator. In Section 9.8
adequacy is proved with respect to the lazy operational semantics. In Section 9.9 observable types
are discussed. It is shown that the choice of evaluation strategy does not matter for observable
behaviour of programs of observable types. In Section 9.10 we prove an unwinding theorem for
LPCF using adequacy; this enables us to show that a restricted version of our axiom of rational
openness is not only su�cient, but also necessary for the interpretation to be adequate.

9.1 Syntax

The programming language LPCF is an extension of the linear �-calculus with numerals and
recursion, appropriate for the linear context, where the usual reduction rules are replaced by a
Martin-L�of style operational semantics. The �rst operational semantics for the linear �-calculus
was introduced in [Abr90], and numerals and recursion were added in [Mac91]. We shall consider
an eager and a lazy operational semantics in Section 9.7 and Section 9.8, respectively. Types of
LPCF are given by the grammar

s ::= N j I j s
 s j s(s j !s j 1 j s� s j 0 j s+ s

123

124 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Figure 9.1: Type Assignment Rules for LPCF

x : A�x : A

�; x : A; y : B;��u : C

�; y : B; x : A;��u : C

� zero : N

��u : N

�� succ(u) : N

��u : N

�� pred(u) : N

��u : N �� v : A ��w : A

�;�� if u then v else w : A

�� : I

��w : I ��u : A

�;�� let w be � in u : A

�� u : A �� v : B

�;��u
 v : A
 B

��w : A
 B �; x : A; y : B �u : C

�;�� let w be x
 y in u : C

�; x : A�u : B

���xA:u : A(B

�� f : A(B ��u : A

�;�� fu : B

�1 �w1 :!A1; ::: ;�n�wn :!An x1 :!A1; :::; xn :!An�u : B

�1; :::;�n� promote w1; :::; wn for x1; :::; xn in u :!B

�� u :!B

�� derelict(u) : B

��w :!A �; x :!A; y :!A�u : B

�;�� copy w as x; y in u : B

��w :!A ��u : B

�;�� discard w in u : B

��u : A �� v : B

�� (u; v) : A� B

��u : A �B

�� fst(u) : A

��u : A �B

�� snd(u) : B

�1 �w1 : A1; ::: ;�n �wn : An

�1; :::;�n� true(w1; :::; wn) : 1

�1 �w1 : A1; ::: ;�n�wn : An ��u : 0

�1; :::;�n;�� falseC(w1; :::; wn;u) : C

�� u : A

�� inlA+B(u) : A +B

��u : B

�� inrA+B(u) : A +B

��w : A+ B �; x : A� u : C �; y : B � v : C

�;�� case w of inl(x):u j inr(y):v : C

�
A : A � YA :!(!A(A)(A

9.1. SYNTAX 125

and terms are given by the grammar

t ::= x j
zero j succ(t) j pred(t) j if t then t else t j
� j let t be � in t j t
 t j let t be x
 y in t j
�xA:t j tt j
promote t; :::; t for x1; :::; xn in t j derelict(t) j
discard t in t j copy t as x; y in tj
true(t; :::; t) j (t; t) j fst(t) j snd(t) j
falseC(t; :::; t; t) j inlA+B(t) j inrA+B(t) j case t of inl(x):t j inr(y):t

A j YA

where x is a variable ranging over terms and t; :::; t denotes a list of n occurrences of the symbol t.
The set of free variables, FV (u), of a term u is de�ned by induction on u. We consider each case
except those of the linear �-calculus which can be found in Section 4.3.

FV (zero) = ;
FV (succ(u)) = FV (u)
FV (pred(u)) = FV (u)

FV (if w then u else v) = FV (w) [FV (u) [FV (v)
FV (
) = ;
FV (Y) = ;

Rules for assignment of types to terms are given in Figure 9.1. Type assignments have the form
of sequents

x1 : A1; :::; xn : An � u : A

where x1; :::; xn are pairwise distinct variables. It can be shown by induction on the derivation of
the type assignment that

FV (u) = fx1; :::; xng

Note that this is di�erent from PCF where we did not have equality, but only an inclusion. We
will now show some properties of LPCF that will be of use later on. The proofs of the following

results are simple extensions of analogous results for the linear �-calculus - see Section 4.3.

Lemma 9.1.1 If the sequent �� u : A is derivable, then for any derivable sequent �0 �u : B,
where the context �0 is a permutation of the context �, we have A = B.

Proof: See Lemma 4.3.1. 2

The following result says that the term of a derivable sequent essentially encodes the derivation:

Proposition 9.1.2 If the sequent ��u : A is derivable, then the �rst rule instance above the
sequent which is di�erent from an instance of the Exchange rule is uniquely determined up to
permutation of the context �.

Proof: See Proposition 4.3.2. 2

Now comes a lemma dealing with substitution:

Lemma 9.1.3 (Substitution Property) If the sequents ��u : A and �; x : A;�� v : B are
derivable and the variables in the contexts � and �;� are pairwise distinct, then the sequent
�;�;�� v[u=x] : B is also derivable.

Proof: See Lemma 4.3.3. 2

126 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

9.2 Eager Operational Semantics

It turns out that eager as well as lazy evaluation rules for terms of certain types behave properly
with respect to an appropriate categorical model. For terms of other types an appropriate cate-
gorical model motivates a certain choice of evaluation rules. In this section we will give an eager
operational semantics for LPCF. It is eager in the sense that we take the evaluation strategy used
in each particular evaluation rule to be eager whenever there is a choice. In the next section we
consider an operational semantics where a lazy evaluation strategy is taken when possible.

A program is an arbitrary closed term. A value for the eager operational semantics is a program
of one of the forms

succ
p(zero) � d
 e �x:u promote c1; :::; cn for x1; :::; xn in u

true(c1; :::; cn) (v; w) inl(c) inr(d)

where d; e; c1; :::; cn are values and where a term succp(zero) is de�ned in the obvious way. Let
T be the set of programs and C the set of values. The evaluation rules given in Figure 9.2 induce
an evaluation relation + � T �C. It can be shown that the eager evaluation rules corresponding
to the linear �-calculus fragment of LPCF can be matched by �-reductions in the sense that if
v + c then the program v reduces to the value c. So the operational semantics has a clear logical
content via the Curry-Howard interpretation.

It turns out that eager as well as lazy evaluation rules for terms of the types (
;(; 1;+) give
rise to sound and adequate interpretations. The choice of evaluation rules for terms of LPCF
outside the (
;(; 1;+) fragment is motivated by interpretation in an appropriate categorical
model. This is made explicit for some cases below.

� The operational semantics involving terms of binary product types is motivated by the
following considerations: The interpretation of a program fst((u; v)) is not strict in the
interpretation of the program v, which motivates a lazy evaluation strategy where we have
the rule

w + (u; v) u + c

fst(w) + c

and any pair (u; v) of programs is a value. It actually turns out that the interpretation is
not adequate if we take an eager evaluation strategy where we have the rule

w + (c; d)

fst(w) + c

and any pair (c; d) of values is a value. This can be seen by considering the non-terminating
program fst((�;
)) whose interpretation is equal to idI , and thus di�erent from ?.

� The operational semantics involving terms of ! types is motivated by the following consid-
erations: The evaluation rules for the terms taking care of copying and discarding, that is,
the terms

copy w as x; y in u discard w in u

have to give rise to a sound interpretation. Semantically, only maps of coalgebras can
be copied or discarded in general, so to obtain soundness we have to restrict copying and
discarding to programs of ! types whose interpretations indeed are maps of coalgebras. But
the interpretation of a value of ! type will always be a map of coalgebras when it is de�ned
to be a closed term of the form

promote c1; :::; cn for x1; :::; xn in u

where c1; :::; cn are values. We thus obtain a sound interpretation by restricting copying and
discarding to values, which amounts to the evaluation rules

w + d u[d; d=x; y] + c

copy w as x; y in u + c

w + d u + c

discard w in u + c

9.2. EAGER OPERATIONAL SEMANTICS 127

Figure 9.2: Eager Operational Semantics for LPCF

zero + zero

u + c

succ(u) + succ(c)

u + zero

pred(u) + zero

u + succ(c)

pred(u) + c

u + zero v + d

if u then v else w + d

u + succ(c) w + e

if u then v else w + e

� + �

w + � u + c

let w be � in u + c

u + c v + d

u
 v + c
 d

w + c
 d u[c; d=x; y] + e

let w be x
 y in u + e

�x:u + �x:u

f + �x:v u + d v[d=x] + c

fu + c

w1 + c1; ::: ; wn + cn

promote w1; :::; wn for x1; :::; xn in u + promote c1; :::; cn for x1; :::; xn in u

u + promote c1; :::; cn for x1; :::; xn in v v[c1; :::; cn=x1; :::; xn] + c

derelict(u) + c

w + d u[d; d=x; y] + c

copy w as x; y in u + c

w + d u + c

discard w in u + c

(u; v) + (u; v)

u + (v; w) v + c

fst(u) + c

u + (v; w) w + d

snd(u) + d

w1 + c1; ::: ; wn + cn

true(w1; :::; wn) + true(c1; :::; cn)

u + c

inl(u) + inl(c)

u + d

inr(u) + inr(d)

w + inl(c) u[c=x] + c

case w of inl(x):u j inr(y):v + c

w + inr(d) v[d=x] + c

case w of inl(x):u j inr(y):v + c

Y + �f:copy f as g; h in (derelict(g)promote h for k in (Yk))

128 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

In [Abr90] another choice of evaluation rules for the terms taking care of copying and dis-
carding is made, namely

u[w;w=x; y] + c

copy w as x; y in u + c

u + c

discard w in u + c

But in the presence of non-terminating programs the second of these evaluation rules is not
sound. For example, we have discard
 in � + �, but the interpretation of the program
discard
 in � is strict in the interpretation of
 and therefore equal to ?, whereas the
interpretation of � is equal to idI .

� Also, the way of introducing recursion in LPCF is motivated by interpretation in an appro-
priate categorical model: The interpretation of (the evaluation rule for) the linear �xpoint
constant of LPCF corresponds to the interpretation of (the evaluation rule for) the �xpoint
constant of PCF in the induced Kleisli category. This is consistent with syntactic notions in
the sense that the linear �xpoint constant of LPCF is the image under the Girard translation
of the �xpoint constant of PCF, and, moreover, the evaluation rule for the linear �xpoint
constant is essentially the image under the Girard translation of the evaluation rule for the
�xpoint constant of PCF.

The operational semantics enjoys the following properties:

Proposition 9.2.1 (Eager Subject Reduction) If u is a program of type A and u + c then c is
also of type A.

Proof: Induction on the derivation of u + c where we use Lemma 9.1.3. 2

This shows that the evaluation relation + � T �C can be split up into a family of relations such
that a relation +A � TA � CA is given for each type A.

Proposition 9.2.2 (Eager Determinacy) If u + c and u + d then c = d.

Proof: Induction on the derivation of u + c. 2

9.3 Lazy Operational Semantics

We will now give a lazy operational semantics for LPCF. It is lazy in the sense that the evaluation
strategy used in each particular evaluation rule is taken to be lazy whenever there is a choice.

Recall that a program is an arbitrary closed term. A value for the lazy operational semantics
is a program of one of the forms

succp(zero) � u
 v �x:u promote c1; :::; cn for x1; :::; xn in u

true(w1; :::; wn) (v; w) inl(u) inr(v)

where c1; :::; cn are values. The evaluation rules given in Figure 9.3 induce an evaluation relation
� T �C. The lazy evaluation rules for terms within the (
;(; 1;+) fragment are di�erent from
the corresponding eager rules. It can be shown that the evaluation rules corresponding to the
linear �-calculus fragment of LPCF can be matched by �-reductions in the sense that if v # c then
the program v reduces to the value c. So the operational semantics has a clear logical content via
the Curry-Howard interpretation. The operational semantics enjoys the following properties:

Proposition 9.3.1 (Lazy Subject Reduction) If u is a program of type A and u # c then c is also
of type A.

9.3. LAZY OPERATIONAL SEMANTICS 129

Figure 9.3: Lazy Operational Semantics for LPCF

zero # zero

u # c

succ(u) # succ(c)

u # zero

pred(u) # zero

u # succ(c)

pred(u) # c

u # zero v # d

if u then v else w # d

u # succ(c) w # e

if u then v else w # e

� # �

w # � u # c

let w be � in u # c

u
 v # u
 v

w # u
 v t[u; v=x; y] # e

let w be x
 y in t # e

�x:u # �x:u

f # �x:v v[u=x] # c

fu # c

w1 # c1; ::: ; wn # cn

promote w1; :::; wn for x1; :::; xn in u # promote c1; :::; cn for x1; :::; xn in u

u # promote c1; :::; cn for x1; :::; xn in v v[c1; :::; cn=x1; :::; xn] # c

derelict(u) # c

w # d u[d; d=x; y] # c

copy w as x; y in u # c

w # d u # c

discard w in u # c

(u; v) # (u; v)

u # (v; w) v # c

fst(u) # c

u # (v; w) w # d

snd(u) # d

true(w1; :::; wn) # true(w1; :::; wn)

inl(u) # inl(u) inr(u) # inr(u)

w # inl(u) t[u=x] # c

case w of inl(x):t j inr(y):v # c

w # inr(u) v[u=x] # c

case w of inl(x):t j inr(y):v # c

Y # �f:copy f as g; h in (derelict(g)promote h for k in (Yk))

130 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Proof: Analogous to the proof of Proposition 9.2.1. 2

So the evaluation relation # � T �C can be split up into a family of relations such that a relation
#A � TA �CA is given for each type A.

Proposition 9.3.2 (Lazy Determinacy) If u # c and u # d then c = d.

Proof: Analogous to the proof of Proposition 9.2.2. 2

9.4 Categorical Semantics

In this section we will give a sound categorical interpretation of LPCF. In Section 9.7 and Sec-
tion 9.8 we shall impose additional assumptions on our category with the aim of proving adequacy.

De�nition 9.4.1 A categorical premodel for LPCF is a pointed linear category equipped with

� �nite products and sums

� a linear object of numerals,

� a linear �xpoint operator for each object.

Examples 9.4.2 In Chapter 2 and Chapter 8 it is made clear that the concrete linear categories
cpost and dIlin are categorical premodels for LPCF.

Given a premodel for LPCF, we can interpret types as objects, typing rules as natural operations
on maps, and derivations of type assignments as maps. A derivable sequent

x1 : A1; :::; xn : An �u : B

is interpreted as a map

[[A1]]
 :::
 [[An]]
[[u]]- [[B]]

by induction on its derivation using the appropriate operations on maps induced by the categorical
assumptions cf. below. We consider each case except those of the linear �-calculus which can be
found in Section 4.5.

� The derivation

� zero : N

is interpreted as

I
zero- N

� The derivation
��u : N

�� succ(u) : N

is interpreted as

�
u- N

�
u- N

succ- N

� The derivation
��u : N

�� pred(u) : N

is interpreted as

�
u- N

�
u- N

pred- N

9.5. GENERALISED LPCF - SYNTAX 131

� The derivation
��u : N �� v : A ��w : A

�;�� if u then v else w : A

is interpreted as

�
u- N �

v- A �
w- A

�
 �
u
hv;wi- N
 (A� A)

cond- A

� The derivation

�
A : A

is interpreted as

I
?- A

� The derivation

� YA :!(!A(A)(A

is interpreted as

I
K]

- !(!A(A)(A

using the internal linear �xpoint operator induced by the appropriate linear �xpoint operator
according to Proposition 8.3.12.

The following lemma corresponds to Lemma 9.1.3 where the categorical semantics is taken into
account; it says essentially that substitution corresponds to composition:

Lemma 9.4.3 (Substitution) If the sequents ��u : A and �; x : A;�� v : B are derivable and
the variables in the contexts � and �;� are pairwise distinct, then the sequent �;�;�� v[u=x] : B
is also derivable and it has the interpretation

�
 �
 �
�
[[u]]
�- �
 A
 �

[[v]]- B

Proof: Extend the proof of Lemma 4.5.3 for the linear �-calculus as appropriate. 2

The interpretation is preserved by eager evaluation:

Theorem 9.4.4 (Eager Soundness) Given a program u such that u + c, then [[u]] = [[c]].

Proof: Induction on the derivation of u + c where we use Lemma 9.4.3. Note that the evaluation
rule for the �xpoint constant preserves the interpretation because it is essentially a syntactic
restatement of the de�ning diagram for an internal linear �xpoint operator, De�nition 8.3.9. 2

And analogously, the interpretation is preserved by lazy evaluation:

Theorem 9.4.5 (Lazy Soundness) Given a program u such that u # c, then [[u]] = [[c]].

Proof: Analogous to the proof of Theorem 9.4.4. 2

132 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Figure 9.4: Type Assignment Rules for Generalised LPCF

�;x : A�x : A x1 : A1; :::; xn : An; �xq : Aq

�;�; x : A; y : B;��u : C

�;�; y : B; x : A;��u : C

�; � zero : N

�;��u : N

�;�� succ(u) : N

�;�� u : N

�;�� pred(u) : N

�;�� u : N �;�� v : A �;��w : A

�;�;�� if u then v else w : A

�; �� : I

�;��w : I �;�� u : A

�;�;�� let w be � in u : A

�;��u : A �;�� v : B

�;�;��u
 v : A
 B

�;��w : A
B �;�; x : A; y : B �u : C

�;�;�� let w be x
 y in u : C

�;�; x : A�u : B

�;�� �xA:u : A(B

�;�� f : A(B �;��u : A

�;�;�� fu : B

�;�1 � v1 :!A1; ::: ;�;�n� vn :!An �;x1 :!A1; :::; xn :!An�u : B

�;�1; :::;�n� promote v1; :::; vn for x1; :::; xn in u :!B

�;��u :!B

�;�� derelict(u) : B

�;��w :!A �;�; x :!A; y :!A�u : B

�;�;�� copy w as x; y in u : B

�;��w :!A �;��u : B

�;�;�� discard w in u : B

�;��u : A �;�� v : B

�;�� (u; v) : A�B

�;�� u : A� B

�;�� fst(u) : A

�;��u : A� B

�;�� snd(u) : B

�;�1 � v1 : A1; ::: ;�;�n� vn : An

�;�1; :::;�n� true(v1; :::; vn) : 1

�; �1 � v1 : A1; ::: ;�;�n� vn : An �;��u : 0

�; �1; :::;�n;�� falseC(v1; :::; vn;u) : C

�;�� u : A

�;�� inlA+B(u) : A +B

�;��u : B

�;�� inrA+B(u) : A+ B

�;��w : A+B �;�; x : A�u : C �;�; y : B � v : C

�;�;�� case w of inl(x):u j inr(y):v : C

�; �
A : A �; � YA :!(!A(A)(A

9.5. GENERALISED LPCF - SYNTAX 133

9.5 Generalised LPCF - Syntax

In this section we will introduce what we call Generalised LPCF. The goal is twofold: It enables
us to prove the adequacy results of Section 9.7 and Section 9.8 and it enables us to state and prove
the unwinding theorem of Section 9.9. Generalised LPCF is an extension of the generalised linear
�-calculus with numerals and recursion, appropriate for the linear context.

Types and terms of Generalised LPCF are the same as for LPCF, but the rules for type
assignment are more general; they have two contexts instead of one. Rules for assignment of types
to terms are given in Figure 9.4. They consist of the rules of LPCF extended with an extra context
dealt with in an additive fashion, and furthermore, there is an extra axiom. Type assignments
thus have the form of sequents

x1 : A1; :::; xn : An; y1 : B1; :::; ym : Bm �u : C

where x1; :::; xn; y1; :::; ym are pairwise distinct variables. It can be shown by induction on the
derivation of the type assignment that

FV (u) � fx1; :::; xng = fy1; :::; ymg

and
FV (u) � fy1; :::; ymg � fx1; :::; xng

We use the same convention concerning the two di�erent kinds of variables as for the generalised
linear �-calculus: The variables occuring on the left hand side of the semicolon are called intu-

itionistic variables and the variables occuring on the right hand side of the semicolon are called
linear variables. Correspondingly, the context on the left hand side of the semicolon is called the
intuitionistic context and the context on the right hand side of the semicolon is called the linear
context. Note that an intuitionistic variable cannot be bound. It is straightforward to check that
Generalised LPCF is a conservative extension of LPCF in the sense that a sequent �� u : A is
derivable i� the sequent ; �� u : A is derivable.

The role of the intuitionistic context is best explained by looking at an example: The term

promote for in YA

(where the lists of variables and terms are empty) is typeable in LPCF as follows:

� YA :!(!A(A)(A

� promote for in YA :!(!(!A(A)(A)

It is also typeable in Generalised LPCF as follows:

; � YA :!(!A(A)(A

; � promote for in YA :!(!(!A(A)(A)

We want to express this term as the result of substituting the linear �xpoint constant Y for a free
variable in a suitable term where the linear �xpoint constant does not occur. The only choice of
term

promote for in x

is, however, not typeable in LPCF, but it is typeable in Generalised LPCF as follows:

x :!(!A(A)(A; �x :!(!A(A)(A

x :!(!A(A)(A; � promote for in x :!(!(!A(A)(A)

Note that the variable x is an intuitionistic variable. Such situations are taken care of by
Lemma 9.5.8. We will now show some properties of Generalised LPCF that will be of use later on.
The following results are simple extensions of analogous results for the generalised linear �-calculus
- see Section 4.6.

134 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Lemma 9.5.1 If the sequent �; ��u : A is derivable, then for any sequent �; �0� u : B which
also is derivable where the context �0 is a permutation of the context �, we have A = B.

Proof: See Lemma 4.6.1. 2

The following result says that the term of a derivable sequent essentially encodes the derivation:

Proposition 9.5.2 If the sequent �; ��u : A is derivable, then the �rst rule instance above the
sequent which is di�erent from an instance of the Exchange rule is uniquely determined up to
permutation of the context �.

Proof: See Proposition 4.6.2. 2

We need a small lemma dealing with expansion of intuitionistic contexts.

Lemma 9.5.3 If the sequent �;�;��u : A is derivable and the variables in the contexts �;�;�
and � are pairwise distinct, then the sequent �;�;�;��u : A is also derivable.

Proof: See Lemma 4.6.3. 2

The Substitution Property now splits up into two cases; one for each kind of variables. The �rst
case deals with linear variables:

Lemma 9.5.4 (Linear Substitution Property) If the sequent �; ��u : A as well as the sequent
�;�; x : A;�� v : B both are derivable and the variables in the contexts � and �;� are pairwise
distinct, then the sequent �;�;�;�� v[u=x] : B is also derivable.

Proof: See Lemma 4.6.4. 2

The preceding result might be more comprehensible if we restrict to substitution of programs
which is what we will need later on.

Corollary 9.5.5 If the sequents ; �u : A and ;�; x : A;�� v : B are derivable, then the sequent
; �;�� v[u=x] : B is also derivable.

Proof: Restrict Lemma 9.5.4. 2

The second case deals with intuitionistic variables:

Lemma 9.5.6 (Intuitionistic Substitution Property) If the sequent �; �u : A as well as the

sequent �; x : A;�;�� v : B both are derivable, then the sequent �;�;�� v[u=x] : B is also
derivable.

Proof: See Lemma 4.6.5. 2

This result might be more comprehensible if we restrict to substitution of programs which is what
we will need later on.

Corollary 9.5.7 If the sequents ; �u : A and x : A;�;�� v : B are derivable, then the sequent
�;�� v[u=x] : B is also derivable.

Proof: Restrict Lemma 9.5.6. 2

The following lemma is dealing with the \inverse" to substitution in LPCF analogous to Lemma7.1.5
of PCF. Recall that v[x=u] denotes the term v where inductively all occurrences of the term u

have been replaced by the variable x.

Lemma 9.5.8 If the sequents �; �u : A and �;�;�� v : B are derivable, then the sequent
�; x : A;�;�� v[x=u] : B is also derivable where x is a new variable.

Proof: See Lemma 4.6.6. 2

9.6. GENERALISED LPCF - SEMANTICS 135

9.6 Generalised LPCF - Semantics

Given a categorical premodel for LPCF we are able to interpret Generalised LPCF; types are inter-
preted as objects, typing rules as natural operations on maps, and derivations of type assignments
as maps. A derivable sequent

x1 : A1; :::; xn : An; y1 : B1; :::; ym : Bm �u : C

is interpreted as a map

![[A1]]
 :::
![[An]]
 [[B1]]
 :::
 [[Bm]]
[[u]]- [[C]]

by induction on its derivation using appropriate operations on maps induced by the categorical
model. The cases corresponding to the generalised linear �-calculus are considered in Section 4.7;
the operations on maps corresponding to the remaining typing rules are straightforward extensions
of the operations on maps induced by the typing rules for LPCF. The categorical interpretation
of Generalised LPCF is a conservative extension of the categorical interpretation of LPCF in the
sense that the interpretation of a LPCF sequent �� u : A coincides with the interpretation of the
Generalised LPCF sequent ; ��u : A.

The following lemma corresponds to Lemma 9.5.3 where the categorical semantics is taken into
account:

Lemma 9.6.1 If the sequent �;�;��u : A is derivable and the variables in the contexts �;�;�
and � are pairwise distinct, then the sequent �;�;�;��u : A is also derivable and it has the
interpretation

�
�
 �
 �
�
hi
�
�- �
 I
 �
 � �= �
 �
 �

[[u]]- A

Proof: Extend the proof of Lemma 4.7.1 for the generalised linear �-calculus as appropriate. 2

The following lemma corresponds to Lemma 9.5.4 where the categorical semantics is taken into
account; it essentially says that substitution with respect to linear variables corresponds to com-
position:

Lemma 9.6.2 (Linear Substitution) If the sequents �; �� u : A and �;�; x : A;�� v : B are
derivable and the variables in the contexts � and �;� are pairwise distinct, then the sequent
�;�;�;�� v[u=x] : B is also derivable and it has the interpretation

�
�
�
�
�
�
�
�- �
�
�
�
��= �
�
�
�
�

�
�
[[u]]
�- �
�
A
�
[[v]]- B

Proof: Extend the proof of Lemma 4.7.2 for the generalised linear �-calculus as appropriate. 2

The preceding result might be more comprehensible if we restrict to the special cases dealing with
substitution of programs. In fact this is what we will need later on.

Corollary 9.6.3 If the sequents ; �u : A and ;�; x : A;�� v : B are derivable, then the sequent
; �;�� v[u=x] : B is also derivable and it has the interpretation

�
 � �= �
 I
 �
�
[[u]]
�- �
 A
 �

[[v]]- B

Proof: Restrict Lemma 9.6.2. 2

The following lemma corresponds to Lemma 9.5.6 where the categorical semantics is taken into
account; it essentially says that substitution with respect to intuitionistic variables corresponds to
composition in the category of coalgebras:

136 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Lemma 9.6.4 (Intuitionistic Substitution) If the sequents �; �u : A and �; x : A;�;�� v : B
are derivable, then the sequent �;�;�� v[u=x] : B is also derivable and it has the interpretation

�
 �
 �
�
�
�- �
�
 �
 �

�

([[u]])
�
�- �
!A
 �
 �
[[v]]- B

Proof: Extend the proof of Lemma 4.7.3 for the generalised linear �-calculus as appropriate. 2

This result might be more comprehensible if we restrict to the special cases dealing with substi-
tution of programs. In fact this is what we will need later on.

Corollary 9.6.5 If the sequents ; �u : A and x : A;�;�� v : B are derivable, then the sequent
�;�� v[u=x] : B is also derivable and it has the interpretation

�
 � �= I
�
 �

([[u]])
�
�- !A
�
 �

[[v]]- B

Proof: Restrict Lemma 9.6.4. 2

9.7 Eager Adequacy

In this section we will show that the categorical interpretation is adequate when LPCF is equipped
with the eager operational semantics. Our adequacy proof proceeds using logical relations in a
way analogous to the use of logical relations in the adequacy proof for PCF. We use the binary
logical relations ��A and �A given below.

While it is possible to prove adequacy for PCF without sums using an inclusiveness result
adapted to our order-free categorical setting, it turns out that this approach does not carry over
to LPCF. In the setting here an appropriate inclusiveness result would be as follows: Let a
program u of type A and maps f :!D ! D and g :!D ! A be given; it is then the case that if

(
(?); fn); g �A u holds for every number n, then
(f]); g �A u holds too. We will illustrate
the problems involved in carrying out an induction proof of this assertion by considering a couple
of special cases, namely the two \pairing" constructs (u; v) and u
 v. The map
(f]); g will be
denoted l and for every number n the map
(
(?); fn); g will be denoted ln. The (u; v) case works
well: If ln �B�C (u; v) for every number n, then ln;�1 �B u and ln;�2 �C v for every number n,
which gives by induction l;�1 �B u and l;�2 �C v, and thus l �B�C (u; v). But this cannot be
done in the u
 v case because there are no projections around for the tensor product B
C, and
moreover, there does not seem to be any other reasonable way to prove that case. It is actually a
characteristic feature of the pair u
v that both components have to be used, whereas exactly one
of the components of the pair (u; v) has to be used, corresponding to the presence of projections.
So we prove adequacy in a way dodging inclusiveness since the obstacle in obtaining such a result
corresponds to a feature characteristic to LPCF. It should be mentioned that an adequacy result
using a computability predicate, Section 7.3, involves an analogous obstacle.

We need an extra assumption on our premodel for LPCF.

De�nition 9.7.1 A categorical model for LPCF is a categorical premodel in the sense of De�ni-
tion 9.4.1 such that every map is strict.

Examples 9.7.2 In Chapter 2 and Chapter 8 it is made clear that the concrete linear categories
cpost and dIlin are categorical models for LPCF.

Note that the adequacy result below is stated solely in terms of the categorical premodel, De�ni-
tion 9.4.1, but the assumption added in De�nition 9.7.1 is indeed used in the proof. Recall that
TA is the set of programs of type A and CA the set of values of type A.

9.7. EAGER ADEQUACY 137

De�nition 9.7.3 For each type A the binary logical relations

��A � (C(I; A) � f?g)�CA �A � C(I; A) � TA

are de�ned by induction on the structure of A. The relation ��A is de�ned as

f ��N succn(zero) i� f = ~n

f ��I � i� f = id

f ��B
C d
 e i� 9g 2 C(I; B):9h 2 C(I; C):
f =�=; (g
 h) ^ g ��B d ^ h ��C e

f ��B(C �x:u i� 8g 2 C(I; B):8c 2 CB:

g ��B c)�=; (f
 g); eval �C u[c=x]

f ��!B promote c for x in u i� f ; � = mI ; !f ^ f ; " �B u[c=x]

f ��B�C (v; w) i� f ;�1 �B v ^ f ;�2 �C w

f ��B+C inl(c) i� 9h 2 C(1; B): f = h; in1 ^ h ��B c

f ��B+C inr(d) i� 9h 2 C(1; C): f = h; in2 ^ h ��C d

and the relation �A is de�ned as

f �A u i� f 6=?) 9c 2 CA: u + c ^ f ��A c:

Note that f ��A c entails f �A c because c + c for any value c. The equation f ; � = mI ; !f in
the ! case simply says that f is a map of coalgebras. In the de�nition there is no case for the ��1
relation because every map f : I ! 1 is equal to ?, and similarly, there is no case for the ��0
relation because there are no values of type 0.

Note that in the following lemma the term u is assumed not to contain any occurrences of the
linear �xpoint constant. Also note that such a restriction is not imposed on the ri and sj terms.

Lemma 9.7.4 Assume that � denotes a context x1 : A1; :::; xn : An and � denotes a context
y1 : B1; :::; ym : Bm and consider a derivable sequent

�; �� u : C

of Generalised LPCF such that the term u does not contain any occurrences of the linear �xpoint
constant. Assume that for each i 2 f1; :::; ng we have a map fi : I ! Ai and a program ri of
type Ai such that fi �Ai

ri, and similarly, assume that for each j 2 f1; :::;mg we have a map
lj : I ! Bj and a program sj of type Bj such that lj �Bj

sj . We then have

��;�; [[u]] �C u[r; s=x; y]

where the map ��;� is de�ned as

I �= I
 I
��
��- !A1
 :::
!An
 B1
 :::
Bm

using the maps �� and �� de�ned as

I �= I
 :::
 I

(f1)
:::

(fn)- !A1
 :::
!An

and
I �= I
 :::
 I

l1
:::
lm- B1
 :::
 Bm

respectively.

138 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Proof: We proceed by induction on the derivation of the sequent. The substitution [r=x] is
denoted ��, the substitution [s=y] is denoted �� and the substitution [r; s=x; y] is denoted ��;�.
We consider each case except symmetric ones. Note that since the term u is assumed to be without
occurrences of the linear �xpoint constant, there is no case for that situation.

� In the case

�; y : B � y : B

we have to show
�=; (��
 l); [[y]] �B y��[s=y]:

But �=; (��
 l); [[y]] = l and y��[s=y] = s, and moreover, l �B s.

� In the case

x1 : A1; :::; xn : An; �xq : Aq

we have to show
��; [[xq]] �Aq

xq��:

But ��; [[xq]] = fq and xq�� = rq, and moreover, fq �Aq
rq.

� In the case

�; � zero : N

we have to show
��; [[zero]] �N zero��:

But this amounts to zero �N zero.

� In the case
�; ��u : N

�;�� succ(u) : N

we have to show
��;�; [[succ(u)]] �N succ(u)��;�:

Note that
��;�; [[succ(u)]] = ��;�; [[u]]; succ:

Assume ��;�; [[succ(u)]] 6=?. We then have ��;�; [[u]] 6=?which entails that u��;� + succn(zero)
for some number n such that ��;�; [[u]] = ~n cf. the induction hypothesis. We then get

u��;� + succ
n(zero)

succ(u)��;� + succn+1(zero)

such that ��;�; [[succ(u)]] =]n+ 1.

� In the case
�; ��u : N

�;�� pred(u) : N

we have to show
��;�; [[pred(u)]] �N pred(u)��;�:

Note that
��;�; [[pred(u)]] = ��;�; [[u]]; pred:

Assume ��;�; [[pred(u)]] 6=?. We then have ��;�; [[u]] 6=?which entails that u��;� + succn(zero)
for some number n such that ��;�; [[u]] = ~n cf. the induction hypothesis. If n = 0 then we
get

u��;� + zero

pred(u)��;� + zero

9.7. EAGER ADEQUACY 139

such that ��;�; [[pred(u)]] = zero. If n � 1 then we get

u��;� + succ
n(zero)

pred(u)��;� + succ
n�1(zero)

such that ��;�; [[pred(u)]] =]n� 1.

� In the case
�;�� u : N �;�� v : A �;��w : A

�;�;�� if u then v else w : A

we have to show
l �A (if u then v else w)��;�;�

where the map l is de�ned as

l = ��;�;�; [[if u then v else w]]:

Note that
l =�=; ((��;�; [[u]])
 h(��;�; [[v]]); (��;�; [[w]])i); cond:

Assume l 6=?. We then have ��;�; [[u]] 6=? which entails that u��;� + succn(zero) for some
number n such that ��;�; [[u]] = ~n cf. the induction hypothesis. If n = 0 then l = ��;�; [[v]]
which entails that v��;� + c for some value c such that ��;�; [[v]] �

�
A c cf. the induction

hypothesis. We then get
u��;� + zero v��;� + c

(if u then v else w)��;�;� + c

such that l ��A c. If n � 1 then the situation is analogous.

� In the case

�; � � : I

we have to show
��; [[�]] �B ���:

But ��; [[�]] = id and ��� = �.

� In the case
�;��w : I �;��u : C

�;�;�� let w be � in u : C

we have to show
l �C (let w be � in u)��;�;�

where the map l is de�ned as

l = ��;�;�; [[let w be � in u]]:

It can be shown that
l = ��;�; [[w]]; ��;�; [[u]]:

Assume l 6=?. We then have ��;�; [[w]] 6=? which according to the induction hypothesis
entails that w��;� + � and ��;�; [[w]] �

�
I �. This entails that ��;�; [[w]] = id. We thus have

l = ��;�; [[u]] which according to the induction hypothesis entails that u��;� + c for some
value c such that ��;�; [[u]] �

�
C c. We then get

w��;� + � u��;� + c

(let w be � in u)��;�;� + c

such that l ��C c.

140 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

� In the case
�; ��u : A �;�� v : B

�;�;�� u
 v : A
B

we have to show
��;�;�; [[u
 v]] �A
B (u
 v)��;�;�:

It can be shown that

��;�;�; [[u
 v]] =�=; ((��;�; [[u]])
 (��;�; [[v]])):

Assume ��;�;�; [[u
 v]] 6=?. We then have ��;�; [[u]] 6=? and ��;�; [[v]] 6=? which according
to the induction hypothesis entails that u��;� + d and v��;� + e for some values d and e

such that ��;�; [[u]] �
�
A d and ��;�; [[v]] �

�
B e. We then get

u��;� + d v��;� + e

(u
 v)��;�;� + d
 e

such that ��;�;�; [[u
 v]] ��A
B d
 e.

� In the case
�;��w : A
B �;�; x : A; y : B �u : C

�;�;�� let w be x
 y in u : C

we have to show
l �C (let w be x
 y in u)��;�;�

where the map l is de�ned as

l = ��;�;�; [[let w be x
 y in u]]:

It can be shown that
l =�=; (��;�
 (��;�; [[w]])); [[u]]:

Assume l 6=?. We then have ��;�; [[w]] 6=? which according to the induction hypothesis
entails that w��;� + d
 e for some value d
 e such that ��;�; [[w]] �

�
A
B d
 e. This

entails that ��;�; [[w]] =�=; (g
 h) for some maps g and h such that g ��A d and h ��B e. We
thus have l =�=; (��;�
 g
 h); [[u]] which according to the induction hypothesis entails that
u��;�[d; e=x; y] + c for some value c such that �=; (��;�
 g
 h); [[u]] ��C c. We then get

w��;� + d
 e u��;�[d; e=x; y] + c

(let w be x
 y in u)��;�;� + c

such that l ��C c.

� In the case
�; �; x : A�u : B

�;���x:u : A(B

we have to show
��;�; [[�x:u]] �A(B (�x:u)��;�:

First observe that (�x:u)��;� + (�x:u)��;�. Assume ��;�; [[�x:u]] 6=?. We then have to show
that

��;�; [[�x:u]] �
�
A(B (�x:u)��;�

So assume that a map g and a value c is given such that g ��A c; we then have to show that

�=; (��;�; [[�x:u]]
 g); eval �B u��;�[c=x]

which follows from

�=; (��;�; [[�x:u]]
 g); eval =�=; (��;�
 g); [[u]]:

cf. the induction hypothesis.

9.7. EAGER ADEQUACY 141

� In the case
�;�� f : A(B �;��u : A

�;�;�� fu : B

we have to show
��;�;�; [[fu]] �B (fu)��;�;�:

It can be shown that

��;�;�; [[fu]] =�=; ((��;�; [[f]])
 (��;�; [[u]])); eval:

Assume ��;�;�; [[fu]] 6=?. We then have ��;�; [[f]] 6=? and ��;�; [[u]] 6=? which accord-
ing to the induction hypothesis entails that f��;� + �x:t for some value �x:t such that
��;�; [[f]] �

�
A(B �x:t and u��;� + d for some value d such that ��;�; [[u]] �

�
A d. But we then

have
�=; ((��;�; [[f]])
 (��;�; [[u]])); eval �B t[d=x]

which entails that t[d=x] + c for some value c such that

�=; ((��;�; [[f]])
 (��;�; [[u]])); eval �
�
B c:

We then get
f��;� + �x:t u��;� + d t[d=x] + c

(fu)��;�;� + c

such that ��;�;�; [[fu]] �
�
B c.

� In the case

�; �1 � v1 :!A1; ::: ;�;�n� vn :!An �;x1 :!A1; :::; xn :!An�u : B

�;�1; :::;�n� promote v1; :::; vn for x1; :::; xn in u :!B

we have to show
l �!B (promote v for x in u)��;�1;:::;�n

where the map l is de�ned as

l = ��;�1;:::;�n; [[promote v for x in u]]:

It can be shown that

l =�=; (��
 (��;�1 ; [[v1]])
 :::
 (��;�n ; [[vn]]));
([[u]]):

Assume l 6=?. For each i 2 f1; :::; ng we then have ��;�i ; [[vi]] 6=? which according to the
induction hypothesis entails that vi��;�i + ci for some value ci such that ��;�i ; [[vi]] �

�
!Ai

ci.
We therefore have

v1��;�1 + c1; ::: ; vn��;�n + cn

(promote v for x in u)��;�1;:::;�n + promote c for x in (u��)

so we now have to show that

l ��!B (promote c for x in u)�:

But l is a map of coalgebras because the map ��;�i ; [[vi]] is a map of coalgebras for each
i 2 f1; :::; ng, and moreover

�=; (��
 (��;�1 ; [[v1]])
 :::
 (��;�n ; [[vn]])); [[u]] �B u��[c=x]

cf. the induction hypothesis.

142 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

� In the case
�;�� u :!B

�;�� derelict(u) : B

we have to show

��;�; [[derelict(u)]] �B derelict(u)��;�:

Note that

��;�; [[derelict(u)]] = ��;�; [[u]]; ":

Assume ��;�; [[derelict(u)]] 6=?. We then have ��;�; [[u]] 6=? which according to the induc-
tion hypothesis entails that u��;� + d for some value

d = promote c for x in v

such that ��;�; [[u]] �
�
!B d. But we then have ��;�; [[u]]; " �B v[c=x] and thus v[c=x] + e for

some value e such that ��;�; [[u]]; " �
�
B e. We then get

u��;� + promote c for x in v v[c=x] + e

derelict(u)��;� + e

such that ��;�; [[derelict(u)]] �
�
B e.

� In the case
�;��w :!A �;�; x :!A; y :!A�u : B

�;�;�� copy w as x; y in u : B

we have to show

l �B (copy w as x; y in u)��;�;�

where the map l is de�ned as

l = ��;�;�; [[copy w as x; y in u]]:

It can be shown that

l =�=; (��;�
 (��;�; [[w]]; d)); [[u]]:

Assume l 6=?. We then have ��;�; [[w]] 6=? which according to the induction hypothesis
entails that w��;� + d for some value d such that ��;�; [[w]] �

�
!A d. This entails that ��;�; [[w]]

is a map of coalgebras and thus

l =�=; (��;�
 (��;�; [[w]])
 (��;�; [[w]])); [[u]]

which according to the induction hypothesis entails that u��;�[d; d=x; y] + c for some value
c such that

�=; (��;�
 (��;�; [[w]])
 (��;�; [[w]])); [[u]] �
�
B c:

We then get
w��;� + d u��;�[d; d=x; y] + c

(copy w as x; y in u)��;�;� + c

such that l ��B c.

� In the case
�;��w :!A �;��u : B

�;�;�� discard w in u : B

we have to show

l �B (discard w in u)��;�;�

9.7. EAGER ADEQUACY 143

where the map l is de�ned as

l = ��;�;�; [[discard w in u]]:

It can be shown that
l = ��;�; [[w]]; e; ��;�; [[u]]:

Assume l 6=?. We then have ��;�; [[w]] 6=? which according to the induction hypothesis
entails that w��;� + d for some value d such that ��;�; [[w]] �

�
!A d. This entails that ��;�; [[w]]

is a map of coalgebras and thus l = ��;�; [[u]] which according to the induction hypothesis
entails that u��;� + c for some value c such that ��;�; [[u]] �

�
B c. We then get

w��;� + d u��;� + c

(discard w in u)��;�;� + c

such that l ��B c.

� In the case
�; �1�w1 : A1; ::: ;�;�n�wn : An

�;�1; :::;�n� true(w1; :::; wn) : 1

we have to show
l �1 true(w1; :::; wn)��;�1;:::;�n

where the map l is de�ned as

l = ��;�1;:::;�n; [[true(w1; :::; wn)]]:

But this holds trivially as l =?.

� In the case
�; ��u : A �;�� v : B

�;�� (u; v) : A� B

we have to show
��;�; [[(u; v)]] �A�B (u; v)��;�:

First observe that (u; v)��;� + (u; v)��;�. Assume ��;�; [[(u; v)]] 6=?. We then have to show
that

��;�; [[(u; v)]] �
�
A�B (u; v)��;�

which follows from
��;�; [[(u; v)]] = h(��;�; [[u]]); (��;�; [[v]])i

cf. the induction hypothesis.

� In the case
�;�� u : A� B

�;�� fst(u) : A

we have to show
��;�; [[fst(u)]] �A fst(u)��;�:

Note that
��;�; [[fst(u)]] = ��;�; [[u]];�1:

Assume ��;�; [[fst(u)]] 6=?. We then have ��;�; [[u]] 6=? which according to the induction
hypothesis entails that u��;� + (v; w) for some value (v; w) such that ��;�; [[u]] �

�
A�B (v; w).

But we then have ��;�; [[u]];�1 �A v and thus v + e for some value e such that ��;�; [[u]];�1 �
�
A

e. We then get
u��;�(v; w) v + e

fst(u)��;� + e

such that ��;�; [[fst(u)]] �
�
A e.

144 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

� In the case
�; �1�w1 : A1; ::: ;�;�n�wn : An �;��u : 0

�; �1; :::;�n;�� false(w1; :::; wn;u) : C

we have to show

l �C false(w1; :::; wn;u)��;�1;:::;�n;�

where the map l is de�ned as

l = ��;�1;:::;�n;�; [[false(w1; :::; wn;u)]]:

Note that

l =�=; ((��;�1 ; [[w1]])
 :::
 (��;�n ; [[wn]])
 (��;�; [[u]]));�=; []:

But we have ��;�; [[u]] � u��;� cf. the induction hypothesis, so ��;�; [[u]] =? and thus l =?.

� In the case
�; ��u : A

�;�� inl(u) : A +B

we have to show

��;�; [[inl(u)]] �A+B inl(u)��;�:

Note that

��;�; [[inl(u)]] = ��;�; [[u]]; in1:

Assume ��;�; [[inl(u)]] 6=?. We then have ��;�; [[u]] 6=? which according to the induction
hypothesis entails that u��;� + d for some value d such that ��;�; [[u]] �

�
A d. We then get

u��;� + d

inl(u)��;� + inl(d)

such that ��;�; [[inl(u)]] �
�
A+B inl(d).

� In the case
�;�� v : A +B �;�; x : A� t : C �;�; y : B �u : C

�;�;�� case v of inl(x):t j inr(y):u : C

we have to show

l �C (case v of inl(x):t j inr(y):u)��;�;�:

where the map l is de�ned as

l = ��;�;�; [[case v of inl(x):t j inr(y):u]]:

Note that

l = ��;�; [[v]]; [(�=; (��;�
 A); [[t]]); (�=; (��;�
B); [[u]])]:

Assume l 6=?. We then have ��;�; [[v]] 6=? which without loss of generality entails that
v��;� + inl(d) for some value inl(d) such that ��;�; [[v]] �

�
A+B inl(d) cf. the induction

hypothesis. This entails that ��;�; [[v]] = h; in1 for some map h such that h ��A d. We
thus have l =�=; (��;�
 h); [[t]] which according to the induction hypothesis entails that
t��;�[d=x] + c for some value c such that �=; (��;�
 h); [[t]] ��C c. We then get

v��;� + inl(d) t��;�[d=x] + c

(case v of inl(x):t j inr(y):u)��;�;� + c

such that l ��C c.

9.7. EAGER ADEQUACY 145

� In the case

�; �
 : A

we have to show
��; [[
]] �A
��:

But this holds trivially as ��; [[
]] =?.

2

The following lemma says that the (formal) �nite approximants to an internal linear �xpoint
operator are �-related to the corresponding linear �xpoint constant:

Lemma 9.7.5 For every type A and number n we have
(?);Kn
A �!(!A(A)(A YA.

Proof: Recall that the map KA is de�ned in the proof of Proposition 8.3.12. We proceed by
induction on n. The assertion is clearly true in case n = 0. Assume that the assertion is true for
an arbitrary number n, and assume that
(?);Kn+1 6=?. We then have to show that

(?);Kn+1 ��!(!A(A)(A

�f:copy f as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000))

So assume we are given a map g : I !!(!A(A) and a value

d = promote c for x in u

such that g ��!(!A(A) d. Note that this entails that g is a map of coalgebras and g; " �!A(A u[c=x].
We then have to show that

�=; ((
(?);Kn+1)
 g); eval �A d0 (9.1)

where
d0 = copy d as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000)):

So assume �=; ((
(?);Kn+1)
 g); eval 6=?. We have

(?);Kn+1 = pd; ("

(p
(?);Knq�1)); evalq

cf. the proof of Proposition 8.3.12, so we get

�=; ((
(?);Kn+1)
 g); eval = �=; (pd; ("

(p
(?);Knq�1)); evalq
 g); eval
= g; d; ("

(p
(?);Knq�1)); eval
= �=; ((g; ")

(g; p
(?);Knq�1)); eval
= �=; ((g; ")

(�=; ((
(?);Kn)
 g); eval)); eval

which entails that g; " 6=? and
(�=; ((
(?);Kn)
g); eval) 6=?. Note that g; " 6=? entails u[c=x] +
�y:t for some value �y:t such that g; " ��!A(A �y:t.

We now want to show that

(�=; ((
(?);Kn)
 g); eval) ��!A d00 (9.2)

where
d00 = promote d for f 000 in (Yf 000)

which amounts to
�=; ((
(?);Kn)
 g); eval �A Yd: (9.3)

But �=; ((
(?);Kn)
 g); eval 6=? entails that
(?);Kn 6=? and thus cf. to the induction hypoth-
esis

(?);Kn ��!(!A(A)(A

�f:copy f as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000))

146 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

which entails that
�=; ((
(?);Kn)
 g); eval �A d0

because g ��
!(!A(A) d so we get d

0 + c for some value c and thus

Y + �f:copy f as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000)) d + d d0 + c

Yd + c

such that �=; ((
(?);Kn)
 g); eval ��A c and therefore (9.3). We conclude (9.2).
Now, (9.2) entails

�=; ((g; ")

(�=; ((
(?);Kn)
 g); eval)); eval �A t[d00=y]

because g; " ��!A(A �y:t. But we have shown that

�=; ((g; ")

(�=; ((
(?);Kn)
 g); eval)); eval =�=; ((
(?);Kn+1)
 g); eval

and we assume �=; ((
(?);Kn+1)
 g); eval 6=? so t[d00=y] + e for some value e such that

�=; ((
(?);Kn+1)
 g); eval ��A e: (9.4)

By putting together the derivations obtained under the assumption that

�=; ((
(?);K
n+1)
 g); eval 6=?

we get the derivation

d + d

d + d u[c=x] + �y:t

derelict(d) + �y:t d00 + d00 t[d00=y] + e

derelict(d)d00 + e

copy d as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000)) + e

which together with (9.4) entails (9.1). 2

We are �nally able to state a result expressing that the categorical interpretation is adequate with
respect to the eager operational semantics. Note how Lemma 9.5.8 is used to \extract" the linear
�xpoint constants of a term.

Theorem 9.7.6 (Eager Adequacy) Let u be a program of type B. If the linear �xpoint operator
is rationally open with respect to B, then [[u]] 6=? entails that u +.

Proof: We apply Lemma 9.5.8 to the derivable sequent ; � u : B of Generalised LPCF and obtain
a derivable sequent

z1 :!(!A1(A1)(A1; ::: ; zn :!(!An(An)(An; �u0 : C

of Generalised LPCF such that

u = u0[YA1
; :::; YAn

=z1; :::; zn]

and such that the term u0 does not contain any occurrences of the linear �xpoint constant. Note
that only a special case of Lemma 9.5.8 is used where a constant, namely the linear �xpoint
constant, is replaced by a variable. But

[[u0[YA1
; :::; YAn

=z1; :::; zn]]] =�=; (
([[YA1
]])
 :::

([[YAn

]])); [[u0]]

and for each i 2 f1; :::; ng we have [[YAi
]] = K

]
Ai

so there exist numbers p1; :::; pn such that

�=; (
(
(?);K
p1
A1
)
 :::

(
(?);Kpn

An

)); [[u0]] 6=?

9.8. LAZY ADEQUACY 147

because the linear �xpoint operator is rationally open with respect to B and because [[u]] 6=?. But
for each i 2 f1; :::; ng it is the case that

(?);Kpi
Ai
�(Ai)Ai))Ai

YAi

according to Lemma 9.7.5 which entails that

�=; (
(
(?);K
p1
A1
)
 :::

(
(?);Kpn

An
)); [[u0]] �B u0[YA1

; :::; YAn
=z1; :::; zn]

according to Lemma 9.7.4. We conclude that u + cf. the de�nition of �B . 2

Examples 9.7.7 The eager adequacy result, Theorem 9.7.6, holds when LPCF is interpreted in
the concrete linear categories cpost and dIlin.

We have thus proved an adequacy result where the eager operational semantics is considered.
In the next section we shall prove adequacy where we consider the lazy operational semantics.
The reason why both of the operational semantics give rise to adequacy is that the di�erences
between them only occur at types where the evaluation strategy is not modelled by the categorical
interpretation.

9.8 Lazy Adequacy

In this section we will show that the categorical interpretation is adequate when LPCF is equipped
with the lazy operational semantics; it is analogous to the result of the previous section dealing
with the eager operational semantics. We use the binary logical relations ��A and �A given below.
The following de�nition is similar to De�nition 9.7.3. Recall that TA is the set of programs of type
A and CA the set of values of type A.

De�nition 9.8.1 For each type A the binary relations

��A � (C(I; A) � f?g)�CA �A � C(I; A) � TA

are de�ned by induction on the structure of A. The relation ��A is de�ned as

f ��N succn(zero) i� f = ~n

f ��I � i� f = id

f ��B
C u
 v i� 9g 2 C(I; B):9h 2 C(I; C):
f =�=; (g
 h) ^ g �B u ^ h�C v

f ��B(C �x:u i� 8g 2 C(I; B):8v 2 TB :

g �B v) �=; (f
 g); eval �C u[v=x]

f ��!B promote c for x in u i� f ; � = mI ; !f ^ f ; "�B u[c=x]

f ��B�C (v; w) i� f ;�1 �B v ^ f ;�2 �C w

f ��B+C inl(u) i� 9h 2 C(1; B): f = h; in1 ^ h �B u

f ��B+C inr(v) i� 9h 2 C(1; C): f = h; in2 ^ h �C v

and the relation �A is de�ned as

f �A u i� f 6=?) 9c 2 CA: u # c ^ f ��A c:

148 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Note that f ��A c entails f �A c because c + c for any value c. In the de�nition there is no case for
the ��1 relation because every map f : I ! 1 is equal to ?, and similarly, there is no case for the
��0 relation because there are no values of type 0.

The following lemma is similar to Lemma 9.7.4.

Lemma 9.8.2 Assume that � denotes a context x1 : A1; :::; xn : An and � denotes a context
y1 : B1; :::; ym : Bm and consider a derivable sequent

�; �� u : C

of Generalised LPCF such that the term u does not contain any occurrences of the linear �xpoint
constant. Assume that for each i 2 f1; :::; ng we have a map fi : I ! Ai and a program ri of
type Ai such that fi �Ai

ri, and similarly, assume that for each j 2 f1; :::;mg we have a map
lj : I ! Bj and a program sj of type Bj such that lj �Bj

sj . We then have

��;�; [[u]]�C u[r; s=x; y]

where the map ��;� is de�ned as

I �= I
 I
��
��- !A1
 :::
!An
 B1
 :::
Bm

using the maps �� and �� de�ned as

I �= I
 :::
 I

(f1)
:::

(fn)- !A1
 :::
!An

and
I �= I
 :::
 I

l1
:::
lm- B1
 :::
 Bm

respectively.

Proof: We proceed by induction on the derivation of the sequent. We make use of some conven-
tions from Lemma 9.7.4: The substitution [r=x] is denoted ��, the substitution [s=y] is denoted
�� and the substitution [r; s=x; y] is denoted ��;�. We consider each case except those covered by
analogous cases of Lemma 9.7.4. Also symmetric cases are omitted.

� In the case
�; ��u : A �;�� v : B

�;�;�� u
 v : A
B

we have to show
��;�;�; [[u
 v]]�A
B (u
 v)��;�;�:

First observe that (u
 v)��;�;� # (u
 v)��;�;�. Assume ��;�;�; [[u
 v]] 6=?. We then have
to show that

��;�;�; [[u
 v]]��A
B (u
 v)��;�;�

which follows from
��;�;�; [[u
 v]] =�=; ((��;�; [[u]])
 (��;�; [[v]]))

cf. the induction hypothesis.

� In the case
�;��w : A
 B �;�; x : A; y : B � t : C

�;�;�� let w be x
 y in t : C

we have to show
l �C (let w be x
 y in t)��;�;�

where the map l is de�ned as

l = ��;�;�; [[let w be x
 y in t]]:

9.8. LAZY ADEQUACY 149

It can be shown that
l =�=; (��;�
 (��;�; [[w]])); [[t]]:

Assume l 6=?. We then have ��;�; [[w]] 6=? which according to the induction hypothesis
entails that w��;� # u
 v for some value u
 v such that ��;�; [[w]] �

�
A
B u
 v. This

entails that ��;�; [[w]] =�=; (g
 h) for some maps g and h such that g �A u and h�B v. We
thus have l =�=; (��;�
 g
 h); [[t]] which according to the induction hypothesis entails that
t��;�[u; v=x; y] # c for some value c such that �=; (��;�
 g
 h); [[t]]��C c. We then get

w��;� # u
 v t��;�[u; v=x; y] # c

(let w be x
 y in t)��;�;� # c

such that l ��C c.

� In the case
�; �; x : A�u : B

�;���x:u : A(B

we have to show
��;�; [[�x:u]]�A(B (�x:u)��;�:

First observe that (�x:u)��;� # (�x:u)��;�. Assume ��;�; [[�x:u]] 6=?. We then have to show
that

��;�; [[�x:u]]�
�
A(B (�x:u)��;�:

So assume that a map g and a program v is given such that g �A v; we then have to show
that

�=; (��;�; [[�x:u]]
 g); eval �B u��;�[v=x]

which follows from

�=; (��;�; [[�x:u]]
 g); eval =�=; (��;�
 g); [[u]]:

cf. the induction hypothesis.

� In the case
�;�� f : A(B �;��u : A

�;�;�� fu : B

we have to show
��;�;�; [[fu]]�B (fu)��;�;�:

It can be shown that

��;�;�; [[fu]] =�=; ((��;�; [[f]])
 (��;�; [[u]])); eval:

Assume ��;�;�; [[fu]] 6=?. We then have ��;�; [[f]] 6=? which according to the induction
hypothesis entails that f��;� # �x:t for some value �x:t such that ��;�; [[f]] �

�
A(B �x:t.

Moreover, ��;�; [[u]]�A u��;� cf. the induction hypothesis. But we then have

�=; ((��;�; [[f]])
 (��;�; [[u]])); eval �B t[u��;�=x]

which entails that t[u��;�=x] # c for some value c such that

�=; ((��;�; [[f]])
 (��;�; [[u]])); eval �
�
B c:

We then get
f��;� # �x:t t[u��;�=x] # c

(fu)��;�;� # c

such that ��;�;�; [[fu]]�
�
B c.

150 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

� In the case
�; �1�w1 : A1; ::: ;�;�n�wn : An

�;�1; :::;�n� true(w1; :::; wn) : 1

we have to show

l �1 true(w1; :::; wn)��;�1;:::;�n

where the map l is de�ned as

l = ��;�1;:::;�n; [[true(w1; :::; wn)]]:

But this holds trivially as l =?.

� In the case
�; ��u : A

�;�� inl(u) : A +B

we have to show

��;�; [[inl(u)]]�A+B inl(u)��;�:

First observe that inl(u)��;� # inl(u)��;�. Assume ��;�; [[inl(u)]] 6=?. We then have to
show that

��;�; [[inl(u)]]�
�
A+B inl(u)��;�

which follows from

��;�; [[inl(u)]] = ��;�; [[u]]; in1

cf. the induction hypothesis.

� In the case
�;�� v : A +B �;�; x : A� t : C �;�; y : B �u : C

�;�;�� case v of inl(x):t j inr(y):u : C

we have to show

l �C (case v of inl(x):t j inr(y):u)��;�;�

where the map l is de�ned as

l = ��;�;�; [[case v of inl(x):t j inr(y):u]]:

Note that

l = ��;�; [[v]]; [(�=; (��;�
 A); [[t]]); (�=; (��;�
B); [[u]])]:

Assume l 6=?. We then have ��;�; [[v]] 6=? which without loss of generality entails that
v��;� # inl(u) for some value inl(u) such that ��;�; [[v]] �

�
A+B inl(u) cf. the induction

hypothesis. This entails that ��;�; [[v]] = h; in1 for some map h such that h �A u. We
thus have l =�=; (��;�
 h); [[t]] which according to the induction hypothesis entails that
t��;�[u=x] # c for some value c such that �=; (��;�
 h); [[t]]��C c. We then get

v��;� # inl(u) t��;�[u=x] # c

(case v of inl(x):t j inr(y):u)��;�;� # c

such that l ��C c.

2

The following lemma is similar to Lemma 9.7.5; it says that the (formal) �nite approximants to
an internal linear �xpoint operator are �-related to the corresponding linear �xpoint constant:

Lemma 9.8.3 For every type A and number n we have
(?);Kn
A �!(!A(A)(A YA.

9.8. LAZY ADEQUACY 151

Proof: Recall that the map KA is de�ned in the proof of Proposition 8.3.12. We proceed by
induction on n. The assertion is clearly true in case n = 0. Assume that the assertion is true for
an arbitrary number n, and assume that
(?);Kn+1 6=?. We then have to show that

(?);Kn+1��!(!A(A)(A

�f:copy f as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000))

So assume we are given a map g : I !!(!A(A) and a program v such that g �!(!A(A) v. We
then have to show that

�=; ((
(?);Kn+1)
 g); eval�A

copy v as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000))
(9.5)

So assume �=; ((
(?);Kn+1)
 g); eval 6=?. Then g 6=? which entails that v # d for some value

d = promote c for x in u

such that g��!(!A(A) d. Note that this entails that g is a map of coalgebras and g; "�!A(A u[c=x].
We have

(?);Kn+1 = pd; ("

(p
(?);Knq�1)); evalq

cf. the proof of Proposition 8.3.12, so we get

�=; ((
(?);Kn+1)
 g); eval = �=; (pd; ("

(p
(?);Knq�1)); evalq
 g); eval
= g; d; ("

(p
(?);Knq�1)); eval
= �=; ((g; ")

(g; p
(?);Knq�1)); eval
= �=; ((g; ")

(�=; ((
(?);Kn)
 g); eval)); eval

which entails that g; " 6=? and
(�=; ((
(?);Kn)
g); eval) 6=?. Note that g; " 6=? entails u[c=x] #
�y:t for some value �y:t such that g; "��!A(A �y:t.

We now want to show that

(�=; ((
(?);Kn)
 g); eval) ��!A d00 (9.6)

where

d00 = promote d for f 000 in (Yf 000)

which amounts to
�=; ((
(?);Kn)
 g); eval �A Yd: (9.7)

But �=; ((
(?);Kn)
 g); eval 6=? entails that
(?);Kn 6=? and thus cf. the induction hypothesis

(?);Kn��!(!A(A)(A

�f:copy f as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000))

which entails that
�=; ((
(?);Kn)
 g); eval �A d0

where

d0 = copy d as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000))

because g ��!(!A(A) d so we get d
0 # c for some value c and thus

Y # �f:copy f as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000)) d # d d0 # c

Yd # c

such that �=; ((
(?);Kn)
 g); eval ��A c and therefore (9.7). We conclude (9.6).

152 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Now, (9.6) entails

�=; ((g; ")

(�=; ((
(?);Kn)
 g); eval)); eval �A t[d00=y]

because g; "��!A(A �y:t. But we have shown that

�=; ((g; ")

(�=; ((
(?);Kn)
 g); eval)); eval =�=; ((
(?);Kn+1)
 g); eval

and we assume �=; ((
(?);Kn+1)
 g); eval 6=? so t[d00=y] # e for some value e such that

�=; ((
(?);Kn+1)
 g); eval ��A e: (9.8)

By putting together the derivations obtained under the assumption that

�=; ((
(?);Kn+1)
 g); eval 6=?

we get the derivation

v # d

d # d u[c=x] # �y:t

derelict(d) # �y:t d00 # d00 t[d00=y] # e

derelict(d)d00 # e

copy v as f 0; f 00 in (derelict(f 0)promote f 00 for f 000 in (Yf 000)) # e

which together with (9.8) entails (9.5). 2

We are �nally able to state a result expressing that the categorical interpretation is adequate with
respect to the lazy operational semantics.

Theorem 9.8.4 (Lazy Adequacy) Let u be a program of type B. If the linear �xpoint operator
is rationally open with respect to B, then [[u]] 6=? entails that u #.

Proof: Analogous to the proof of Theorem 9.7.6. 2

Examples 9.8.5 The lazy adequacy result, Theorem 9.8.4, holds when LPCF is interpreted in
the concrete linear categories cpost and dIlin.

Together with the adequacy result of the previous section we have thus shown that the categorical
semantics is adequate with respect to the eager as well as the lazy operational semantics. We
discuss the signi�cance of this result further in the next section

9.9 Observable Types

Types where we have a converse to eager adequacy, that is, to Theorem 9.7.6, will be called
observable. To be explicit, a type B is observable i� u + entails that [[u]] 6=? for any program u of
type B when we assume that ~0 6= ~1. This is analogous to the notion of observable types for PCF.
Formally, we have de�ned the notion of observable types using the eager operational semantics,
but this choice does not matter because the considerations below would have been the same had
we taken the lazy operational semantics instead.

Now, the ground type N is observable according to soundness and the observation that if ~n =?
for some number n then ~0 = ~1. It is actually possible to obtain a more informative result:

Corollary 9.9.1 Let u be a program of type N . If ~0 6= ~1 and the �xpoint operator is rationally
open with respect to N , then [[u]] = ~q i� u + succq(zero).

9.10. UNWINDING 153

Proof: The result follows from Theorem 9.4.4 and Theorem 9.7.6 together with the observation
that if ~n =? for some number n, or if ~p = ~q for di�erent numbers p and q, then ~0 = ~1. 2

Also ! types are observable, which follows from soundness and the observation that if ?: I !!A
is a map of coalgebras, then ~0 = ~1. The type I is observable according to soundness and the
observation that if ?: I ! I is equal to the identity, then ~0 = ~1. Furthermore, the unary sum type
0 is observable, which follows from the observation that we cannot have t +, where t is a program
of type 0, as there are no values of type 0.

So the types (N; I; !; 0) are observable. Product and exponential types are not observable as
the following examples show: The programs true() and (
;
) of product types are values, but
are interpreted as ?, and similarly, the program �x:discard x in
 of exponential type is a value,
but is interpreted as ?. Neither are
 types observable; the program true()
 true() is a value,
but has interpretation ?. Binary sum types are not observable; the program inl(true()) is a
value, but is interpreted as ?.

The choice of evaluation strategy does not matter for the notion of observable types. We can
actually use this observation together with adequacy to show a purely syntactic result saying that
the choice of evaluation strategy does not matter for the observable behaviour of programs of
observable types.

Theorem 9.9.2 If t is a program of observable type, then t + i� t #.

Proof: In what follows we will interpret LPCF in the concrete linear category cpost; this is a
model for LPCF in the sense of De�nition 9.7.1 such that the linear �xpoint operator is rationally
open with respect to the interpretation of any observable type, as is made clear in Section 9.7 and
Section 8.3. We then have t + i� [[t]] 6=? cf. eager adequacy and its converse. But [[t]] 6=? i� t #
cf. lazy adequacy and its converse. 2

At ground type N it is possible to obtain a more informative result: If t is a program of ground
type N then t + c i� t # c. The proof of this result is similar to the proof of Theorem 9.9.2.

There are two reasons why the observable behaviour of a program of observable type is the
same whichever of the evaluation strategies is chosen: The linear character of LPCF and the fact
that in both of the operational semantics a program of ! type is always evaluated before it is
discarded. So it is simply impossible to get rid of a non-terminating program without trying to
evaluate it. For example, in the evaluation rule for application it does not matter whether or
not an argument is evaluated before it is plugged into the body u of an abstraction �x:u because
linearity entails that the variable x has to occur in u.

So we have shown that the choice of operational semantics does not matter for the observable
behaviour of programs of observable types. One might think that this contradicts the point of
view put forward in [Abr90] that the linear context motivates a certain choice of evaluation rules,
but this is not quite true as the considerations of the mentioned article include the question of
e�ciency, with respect to which the evaluation strategies of the article are sensible.

9.10 Unwinding

We will now use the adequacy result of the previous section to give an unwinding theorem for
LPCF in a way analogous to the unwinding theorem for PCF. In the considerations below we
have used the eager operational semantics, but this choice is not essential; the lazy operational
semantics would do as well. Note how the statement and proof of the unwinding theorem hinges
crucially on the intuitionistic variables of Generalised LPCF. We �rst need a convention: For any
type A we de�ne a program YnA of type !(!A(A)(A for every number n by the stipulations

Y0 =

Yn+1 = �f:copy f as g; h in (derelict(g)promote h for k in (Ynk))

It can be shown by a small induction proof that [[Yn]] =
(?);Kn where the map K is de�ned in
the proof of Proposition 8.3.12.

154 CHAPTER 9. THE PROGRAMMING LANGUAGE LPCF

Theorem 9.10.1 (Unwinding) If t is a term of observable type with one free intuitionistic variable
z of type !(!A(A)(A and no free linear variables, then

t[Y=z] + , 9n 2 !: t[Yn=z] + :

Proof: In what follows we will interpret LPCF in the concrete linear category cpost; this is a
model for LPCF in the sense of De�nition 9.7.1 such that the linear �xpoint operator is rationally
open with respect to the interpretation of any observable type, as is made clear in Section 9.7 and
Section 8.3. We then have t[Y=z] + i� [[t[Y=z]]] 6=? cf. adequacy and its converse. But [[t[Y=z]]]
is a least upper bound for the increasing chain f[[t[Yn=z]]]gn2! because [[t[Y=z]]] =
(K]); [[t]] and
[[t[Yn=z]]] =
(
(?);Kn); [[t]] according to the remark above, so [[t[Y=z]]] 6=? i� there exists a number
n such that [[t[Yn=z]]] 6=?, that is, i� there exists a number n such that t[Yn=z] + cf. adequacy and
its converse. 2

At ground type N it is possible to obtain a more informative result: If t is a term of ground type
N with one free intuitionistic variable z of type !(!A(A)(A and no free linear variables, then
t[Y=z] + c i� there exists a number n such that t[Yn=z] + c. The proof of this result is similar to
the proof of Theorem 9.10.1.

It is possible to weaken the assumption of rational openness such that it is not only su�cient,
but also necessary for the interpretation to be adequate; this is analogous to Theorem 7.5.2 for
PCF. Note that the \upwards" direction of the following theorem relies on the unwinding theorem.

Theorem 9.10.2 Assume that we have a category that is a model for LPCF in the sense of
De�nition 9.7.1 such that ~0 6= ~1. Let an observable type B be given, then the assertions

� for all types A and terms t of type B with one free intuitionistic variable z having the type
!(!A(A)(A and no free linear variables it is the case that

(K]); [[t]] 6=?) 9n 2 !:
(
(?);Kn); [[t]] 6=?;

� for any program u of type B we have [[u]] 6=? entails that u +,

are equivalent.

Proof: The \downwards" direction comes from the observation that the assumption made here is
su�cient to prove Theorem 9.7.6 in the relevant case. The proof of the \upwards" direction goes
as follows: Assume that the assumption made here holds, and consider a term t of type B with one
free intuitionistic variable z of type !(!A(A)(A and no free linear variables. If
(K]); [[t]] 6=?
then t[Y=z] + according to the assumption because
(K]); [[t]] = [[t[Y=z]]]. But then there exists a
number n such that t[Yn=z] + cf. the unwinding theorem, which entails the existence of a number
n such that
(
(?);Kn); [[t]] 6=? as the type B is observable and [[t[Yn=z]]] =
(
(?);Kn); [[t]]. 2

Chapter 10

Extension of the Girard

Translation

In this chapter the Girard Translation of Chapter 5 is extended to a translation from PCF to
LPCF. The syntactic matters are dealt with in Section 10.1 and in Section 10.2 the extended
Girard Translation is shown to be sound with respect to the categorical interpretations induced
by an appropriate categorical model. Using the soundness result together with adequacy for PCF
and LPCF it is shown in Section 10.3 that the extended Girard Translation preserves and re
ects
evaluation of programs of numerals type.

10.1 Syntax

In this section we will extend the Girard Translation to a translation from PCF to LPCF. To
be precise: In Section 5.1 it is shown how the Girard Translation corresponds to a translation
from types and derivable sequents in the �-calculus to types and derivable sequents in the linear
�-calculus via the Curry-Howard isomorphisms. A type A is translated into a type Ao and a
sequent

x1 : A1; :::; xn : An ` u : B

is translated into a sequent
x1 :!A

o
1; :::; xn :!A

o
n�uo : Bo:

We have seen that PCF is an extension of the �-calculus, and similarly, we have seen that LPCF is
an extension of the linear �-calculus. It will now be shown how to extend the Girard Translation
to a translation from types and derivable sequents of PCF into types and derivable sequents of
LPCF. At the level of types the translation is extended as follows:

N o = N:

At the level of derivable sequents the translation is extended below. Each case is considered.

� A derivation

x : � ` zero : N

is translated into

� zero : N
==========================
x :!�o� discard x in (zero) : N

� A derivation
x : � ` u : N

x : � ` succ(u) : N

155

156 CHAPTER 10. EXTENSION OF THE GIRARD TRANSLATION

is translated into
x :!�o �uo : N

x :!�o � succ(uo) : N

� A derivation
x : � ` u : N

x : � ` pred(u) : N

is translated into
x :!�o �uo : N

x :!�o � pred(uo) : N

� A derivation
x : � ` u : N x : � ` v : A x : � ` w : A

x : � ` if u then v else w : A

is translated into

x0 :!�o �uo : N x00 :!�o� vo : Ao x00 :!�o �wo : Ao

x0 :!�o; x00 :!�o � if uo then vo else wo : Ao

===
x :!�o� copy x as x0; x00 in (if uo then vo else wo) : Ao

� A derivation

x : � `
 : A

is translated into

�
 : Ao

=======================
x :!�o� discard x in
 : Ao

� A derivation

x : � ` Y : (A) A)) A

is translated into

� Y :!(!Ao(Ao)(Ao

===================================
x :!�o � discard x in Y :!(!Ao(Ao)(Ao

10.2 Soundness

In this section we will extend the soundness result of Section 5.2 to dealing with the translation
from types and derivable sequents of PCF into to types and derivable sequents of LPCF obtained by
extending the Girard Translation as appropriate. Assume that we have a categorical premodel C for
LPCF in the sense of De�nition 9.4.1; we can then interpret types and derivable sequents of LPCF
as objects and maps in C. The Kleisli category induced by the ! comonad is a categorical premodel
for PCF in the sense of De�nition 7.2.1 according to Section 8.1, Section 8.2 and Section 8.3, so
furthermore we can interpret types and derivable sequents of PCF as objects and maps in the
Kleisli category. We then have the following result:

Proposition 10.2.1 Let C be a categorical premodel for LPCF. If a type A of PCF is interpreted
in the Kleisli category, and the type Ao of LPCF is interpreted in C, then [[A]] = [[Ao]].

Proof: The proof of Proposition 5.2.1 is extended in the obvious way. 2

Analogous to in Section 5.2 we de�ne lin to be the composition of bijections between maps

C!([[A1]]� :::� [[An]]; [[B]]) = C!([[A
o
1]]� :::� [[Ao

n]]; [[B
o]]) by Proposition 10.2.1

= C(!([[Ao
1]]� :::� [[Ao

n]]); [[B
o]]) because U! a F!

�= C(![[Ao
1]]
 :::
![[Ao

n]]); [[B
o]]) by composition with n

10.2. SOUNDNESS 157

where A1; :::; An and B are types PCF. Recall that a derivable sequent

x1 : A1; :::; xn : An ` t : B

of PCF is translated into the derivable sequent

x1 :!A
o
1; :::; xn :!A

o
n� to : Bo

of LPCF, and observe that the maps [[t]] and [[to]] live in the domain and the codomain of the
function lin, respectively.

Theorem 10.2.2 (Soundness) Let C be a categorical premodel for LPCF. If the sequent

x1 : A1; :::; xn : An ` t : B

is derivable in PCF, then lin([[t]]) = [[to]].

Proof: The proof of Theorem 5.2.2 is extended as appropriate. Induction on the derivation of
the sequent x1 : A1; :::; xn : An ` t : B. We proceed case by case.

� In the case

x : � ` zero : N

the following calculation su�ces:

lin([[zero]]) = n;
(hi); zero
= n;
(hi);�=; zero by def. of zero in C!
= (e
 :::
 e);�=; zero Note 1.
= [[discard x in (zero)]]
= [[zeroo]]

Note 1. Because I is a terminal object in C! cf. Section 2.3.

� In the case
x : � ` u : N

x : � ` succ(u) : N

the following calculation su�ces:

lin([[succ(u)]]) = n;
([[u]]); succ
= n; [[u]]; succ by def. of succ in C!
= lin([[u]]); succ
= [[uo]]; succ by ind. hyp.
= [[succ(uo)]]
= [[succ(u)o]]

� In the case
x : � ` u : N

x : � ` pred(u) : N

the following calculation su�ces:

lin([[pred(u)]]) = n;
([[u]]); pred
= n; [[u]]; pred by def. of pred in C!
= lin([[u]]); pred
= [[uo]]; pred by ind. hyp.
= [[pred(uo)]]
= [[pred(u)o]]

158 CHAPTER 10. EXTENSION OF THE GIRARD TRANSLATION

� In the case
x : � ` u : N x : � ` v : A x : � ` w : A

x : � ` if u then v else w : A

the following calculation su�ces:

lin([[if u then v else w]])
= n;
(h[[u]]; h[[v]]; [[w]]ii); cond
=
(h(n; [[u]]); h(n; [[v]]); (n; [[w]])ii);n�1; ("
 "); cond by def. of op. in C!
=
(hlin([[u]]); hlin([[v]]); lin([[w]])ii);n�1; ("
 "); cond
=
(h[[uo]]; h[[vo]]; [[wo]]ii);n�1; ("
 "); cond by ind. hyp.
= h
([[uo]]);
(h[[vo]]; [[wo]]i)i; ("
 "); cond Note 1.
= D; ([[uo]]
 h[[vo]]; [[wo]]i); cond Note 2.

= [[copy x as x0; x00 in (if uo then vo else wo)]]
= [[(if u then v else w)o]]

Note 1. We obtain a map hf; gi in C! by composing the map
(h
�1(f);
�1(g)i) with n�1

according to Section 2.3.
Note 2. By de�nition of h�;+i in C! according to the discussion in Section 2.3; recall that
D is the diagonal map.

� In the case

x : � `
 : A

the following calculation su�ces:

lin([[
]]) = n;
(hi);?
= n;
(hi);�=;? by def. of ? in C!
= (e
 :::
 e);�=;? Note 1.
= [[discard x in
]]
= [[
o]]

Note 1. Because I is a terminal object in C! cf. Section 2.3.

� In the case

x : � ` Y : (A) A)) A

the following calculation su�ces:

lin([[Y]]) = n;
(hi);H]

= n;
(hi);n�1;H] by def. of (�)] in C!
= (e
 :::
 e);�=;K] Note 1.
= [[discard x in Y]]
= [[Yo]]

Recall that the maps HA and KAo are de�ned in the proofs of Proposition 6.3.9 and Propo-
sition 8.3.12, respectively.
Note 1. Because I is a terminal object in C! cf. Section 2.3, and moreover, HA = KAo as
can be shown by some equational manipulation.

2

10.3. RELATING OPERATIONAL SEMANTICS 159

10.3 Relating Operational Semantics

In this section we will prove a purely syntactic result saying that evaluation of programs of numerals
type is preserved and re
ected by the extended Girard Translation. The proof exploits concrete
instances of adequacy results for PCF and LPCF together with a concrete instance of the soundness
result of the preceding section. In the considerations below we have used the eager operational
semantics, but this choice is not essential.

Theorem 10.3.1 If t is a PCF-program of ground type N , then t + c i� to + c.

Proof: In what follows we will interpret LPCF in the concrete linear category cpost; this is a
model for LPCF in the sense of De�nition 9.7.1 such that the linear �xpoint operator is rationally
open with respect to N , as is made clear in Section 9.7 and Section 8.3. Moreover, we will interpret
PCF in the induced Kleisli category; this is a model for PCF in the sense of De�nition 7.3.1 such
that the �xpoint operator is rationally open with respect to N according to Section 8.1, Section 8.2
and Section 8.3. Note that the Kleisli category is isomorphic to the category cpo. We then have
t + succn(zero) i� [[t]] = ~n cf. Corollary 7.4.1. But [[t]] = ~n is equivalent to [[to]] = ~n according to
Theorem 10.2.2 and we have [[to]] = ~n i� to + succn(zero) cf. Corollary 9.9.1. 2

Note that in Theorem 10.3.1 we use the observation that a PCF-value of ground type N can be
considered as a LPCF-value of ground type N , and vice versa. The point in Theorem 10.3.1 is
that the type N of PCF is observable which is also the case with the type N o = N of LPCF.
Strictly speaking we have an analogous result for PCF-programs of type 0 because both of the
types 0 and 0o = 0 are observable. But this holds trivially as there are no values of any of the
types.

The image of PCF under the extended Girard Translation can be considered as a version of
PCF living inside LPCF. Semantically, this is analogous to the construction of a categorical model
for PCF from a categorical model for LPCF (the Kleisli category). Theorem 10.3.1 shows that
evaluation in the PCF-fragment of LPCF actually corresponds to evaluation in PCF. The evalu-
ation strategy for PCF is lazy but the theorem works whatever evaluation strategy for LPCF is
chosen; this suggests that the evaluation strategy for the PCF-fragment of LPCF has an inherently
lazy character. Semantically, this is corroborated by the observation of Section 6.1 saying that
cartesian closure does not go well together with strictness.

The paper [MOTW95] is concerned with results similar to Theorem 10.3.1. The setting of this
paper is, however, di�erent from ours: The presentation of the linear �-calculus used is di�erent,
and moreover, the paper is concerned with reduction rules in general rather than operational
semantics. Given an essentially lazy reduction strategy for the linear �-calculus it is shown how
various translations from the �-calculus into the linear �-calculus correspond to various reduction
strategies for the �-calculus: Lazy reduction is preserved and re
ected by the Girard Translation
(which maps A) B to !A(B) and eager reduction is preserved and re
ected by a translation
based on mapping A) B to !(A (B). The approach taken by the authors of the mentioned
paper seems to be orthogonal to ours as in this thesis we are interested in various operational
semantics for the linear �-calculus (in fact for LPCF) whereas we exclusively consider a lazy
operational semantics for the �-calculus (in fact for PCF).

160 CHAPTER 10. EXTENSION OF THE GIRARD TRANSLATION

Chapter 11

Further Work

In this �nal chapter we outline some possibilities for extension of our work.

In certain respects the generalised linear �-calculus is similar to the variants of Girard's Logic of
Unity, [Gir93] considered in [Wad93] and [Plo93]. This connection should be explored further. An
operational theory for LPCF should be developed along the lines of [Pit95, Pit96]. We conjecture
that the appropriate contextual preorder on terms is based on the intuitionistic variables of the
generalised linear �-calculus. This is justi�ed by the results of Section 8.4 saying that ! enriches
with respect to the intuitionistic observational preorders whereas this is not necessarily the case
with respect to the linear observational preorders.

A clear-cut problem is to carry out what we have done in this thesis but with recursive types
(from which �xpoint constants will follow). Another possible extension is to consider Full Intu-
itionistic Linear Logic, [BdP96, HdP93], which is an intuitionistic system where the \par" con-
struct known from Classical Linear Logic is included by allowing sequents to have more than one
conclusion.

In this thesis we have considered the categories cpost and dIlin as our primary examples
of concrete models for LPCF. The induced Kleisli categories, that is, the categories cpo and
dI, respectively, have been considered as primary examples of concrete models for PCF. Other
concrete models ought to be taken into account with the aim of corroborating the minimality of
our categorical axioms as well as the point of view that partiality is the fundamental notion from
which order-structure is to be derived. In particular, the game models of [AJM96, HO96, Nic94]
seem interesting because the order-structure here is derived rather that given as part of the model.
In [Abr96] rational openness is actually recognised as the essential property of the game model
given in [AJM96] when it comes to giving an axiomatic account of adequacy. In [Cur93b] a game
model is shown to be equivalent to the category of sequential data structures and symmetric
algorithms, suggesting that the concrete data structures of [Cur93a] should be amenable to the
same treatment as game semantics. In another vein, the bistructure model of [PW94] and the
category of hypercoherences and strongly stable functions of [Ehr93] ought to be considered, along
with the traditional coherence space model for linear logic of [Gir87]. In all these categories
rational openness is indeed satis�ed because maps are some kind of continuous functions. In
the concrete categories given in this thesis the observational preorders coincide with the natural
orders on hom-sets. This is, however, not the case with certain game models. An interesting line
of research would be the study of circumstances under which this correspondence holds.

The logic implicitly used in the adequacy proofs is classical rather than intuitionistic. For
example, we frequently split up into cases depending upon whether or not certain maps are equal.
It could be interesting to try casting the adequacy result in an intuitionistic fashion1. This is
relevant to the area of Synthetic Domain Theory where the goal is to obtain constructs similar to
the usual ones of domain theory, but living in an intuitionistic universe.

Originally, the notion of �xpoints in a cartesian closed category was introduced in [Law69] to

1This problem was mentioned by Gordon Plotkin while the author visited Edinburgh in March '96.

161

162 CHAPTER 11. FURTHER WORK

turn the famous arguments of Cantor, Russell, G�odel and Tarski into special cases of one single
theorem. It could be interesting to see whether the considerations on �xpoints of this thesis, where
a notion of unde�nedness is taken into account, has something to say from the point of view of
logic. Certainly, unde�nedness in an appropriate sense does arise in a logical context; for example,
the proof of Russell's Paradox using unrestricted comprehension does not have a normal form,
which entails that the normalisation process does not terminate.

Bibliography

[Abr90] S. Abramsky. Computational interpretations of linear logic. Technical Report 90/20,
Department of Computing, Imperial College, 1990.

[Abr93] S. Abramsky. Computational interpretations of linear logic. Theoretical Computer

Science, 111, 1993.

[Abr96] S. Abramsky. Axioms for full abstraction and full completeness. Manuscript, 1996.

[AJM96] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Submitted
for publication, 1996.

[BBdPH92a] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Linear �-calculus and categori-
cal models revisited. In Proceedings of CSL '92, LNCS, volume 702. Springer-Verlag,
1992.

[BBdPH92b] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Term assignment for intu-
itionistic linear logic. Technical Report 262, Computer Laboratory, University of
Cambridge, 1992.

[BBdPH93] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term calculus for intuition-
istic linear logic. In Proceedings of TLCA '93, LNCS, volume 664. Springer-Verlag,
1993.

[BCL86] G. Berry, P.-L. Curien, and J.-J. Levy. Full abstraction for sequential languages:
the state of the art. In Algebraic Semantics. Cambridge University Press, 1986.

[BdP96] T. Bra�uner and V. de Paiva. Cut-elimination for full intuitionistic linear logic. Tech-
nical Report 395, Computer Laboratory, University of Cambridge, 1996. 27 pages.
Also available as Technical Report RS-96-10, BRICS, Department of Computer Sci-
ence, University of Aarhus.

[Ber78] G. Berry. Stable models of typed lambda-calculi. In Proceedings of ICALP '78,

LNCS, volume 62. Springer-Verlag, 1978.

[Bie94] G. Bierman. On Intuitionistic Linear Logic. PhD thesis, Computer Laboratory,
University of Cambridge, 1994.

[Bra94a] T. Bra�uner. A model of intuitionistic a�ne logic from stable domain theory. In
Proceedings of ICALP '94, LNCS, volume 820. Springer-Verlag, 1994. 12 pages.

[Bra94b] T. Bra�uner. A model of intuitionistic a�ne logic from stable domain theory (re-
vised and expanded version). Technical Report RS-94-27, BRICS, Department of
Computer Science, University of Aarhus, 1994. Revised and expanded version of
Technical Report DAIMI IR-118. Full version of paper in Proceedings of ICALP '94,
LNCS 820, 1994.

[Bra95a] T. Bra�uner. The Girard translation extended with recursion. In Proceedings of

CSL '94, LNCS, volume 933. Springer-Verlag, 1995. 15 pages.

163

164 BIBLIOGRAPHY

[Bra95b] T. Bra�uner. The Girard translation extended with recursion. Technical Report RS-
95-13, BRICS, Department of Computer Science, University of Aarhus, 1995. Full
version of paper in Proceedings of CSL '94, LNCS 933, 1995.

[Bra97a] T. Bra�uner. A general adequacy result for a linear functional language. Theoretical
Computer Science, 1997. 32 pages. To appear.

[Bra97b] T. Bra�uner. A simple adequate categorical model for PCF. In Proceedings of

TLCA '97, LNCS. Springer-Verlag, 1997. To Appear.

[BW90] M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, 1990.

[BW96] N. Benton and P. Wadler. Linear logic, monads, and the lambda calculus. In 11th

LICS Conference. IEEE, 1996.

[Cur93a] P.-L. Curien. Categorical Combinaters, Sequential Algorithms and Functional Pro-

gramming. Birkh�auser, 1993.

[Cur93b] P.-L. Curien. On the symmetry of sequentiality. In Proceedings of MFPS '93, LNCS,
volume 802. Springer-Verlag, 1993.

[Ehr93] T. Ehrhard. Hypercoherences: A strongly stable model of linear logic. Mathematical

Structures in Computer Science, 3, 1993.

[EK66] S. Eilenberg and G. M. Kelly. Closed categories. In Proceedings of the Conference

on Categorical Algebra, La Jolla, 1965. Springer-Verlag, 1966.

[Fio94a] M. P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. PhD thesis,
University of Edinburgh, 1994.

[Fio94b] M. P. Fiore. First steps on the representation of domains. Manuscript, 1994.

[FP94] M. P. Fiore and G. D. Plotkin. An axiomatisation of computationally adequate
domain theoretic models of FPC. In 9th LICS Conference. IEEE, 1994.

[Fre92] G. Frege. �Uber Sinn und Bedeutung. Zeitschrift f�ur Philosophie und Philosophische

Kritik, 100, 1892.

[Gen34] G. Gentzen. Untersuchungen �uber das logische Schliessen. Mathematische

Zeitschrift, 39, 1934.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1987.

[Gir89] J.-Y. Girard. Towards a geometry of interaction. In Contemporary Mathematics,

Categories in Computer Science and Logic, volume 92. American Mathematical So-
ciety, 1989.

[Gir93] J.-Y. Girard. On the unity of logic. Annals of Pure and Applied Logic, 59, 1993.

[Gir94] J.-Y. Girard. Light linear logic. Manuscript, 1994.

[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1989.

[G�od58] K. G�odel. �Uber eine bisher noch nicht ben�utzte Erweiterung des �niten Standpunk-
tes. Dialectica, 12, 1958.

[Gri82] V. N. Grishin. Predicate and set-theoretic calculi based on logics without contrac-
tions. Math. USSR Izvestiya, 18, 1982.

[Gun92] C. A. Gunter. Semantics of Programming Languages: Structures and Techniques.
The MIT Press, 1992.

BIBLIOGRAPHY 165

[HdP93] M. Hyland and V. de Paiva. Full intuitionistic linear logic (extended abstract).
Annals of Pure and Applied Logic, 64, 1993.

[HO96] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF. Submitted for
publication, 1996.

[How80] W. A. Howard. The formulae-as-type notion of construction. In To H. B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press,
1980.

[HP90] H. Huwig and A. Poigne. A note on inconsistencies caused by �xpoints in a cartesian
closed category. Theoretical Computer Science, 73, 1990.

[Jac94] B. Jacobs. Semantics of weakening and contraction. Annals of Pure and Applied

Logic, 69, 1994.

[Lam96] F. Lamarche. Dialectics: a model of linear logic and PCF. Mathematical Structures

in Computer Science, 1996. To Appear.

[Las96] S. B. Lassen. Action semantics reasoning about functional programs. Mathematical

Structures in Computer Science, 1996. To Appear.

[Las97] S. B. Lassen. Relational reasoning about contexts. In Andrew D. Gordon and
Andrew M. Pitts, editors, Higher Order Operational Techniques in Semantics. Cam-
bridge University Press, 1997. (To appear).

[Law69] F. W. Lawvere. Diagonal arguments and cartesian closed categories. In Category

Theory, Homology Theory and their Applications II, LNM, volume 92. Springer-
Verlag, 1969.

[Mac71] S. Mac Lane. Categories for the Working Matematician. Springer-Verlag, 1971.

[Mac91] I. Mackie. Lilac : A Functional Programming Language Based on Linear Logic.
M.Sc. thesis, Imperial College, 1991.

[ML84] P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis, 1984.

[Mog86] E. Moggi. Categories of partial morphisms and the partial lambda-calculus. In
Proceedings Workshop on Category Theory and Computer Programming, Guildford

1985, LNCS, volume 240. Springer-Verlag, 1986.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In 4th LICS Conference.
IEEE, 1989.

[MOTW95] J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name, call-by-value,
call-by-need and the linear lambda calculus. In Proceedings of MFPS '95, Electronic

Notes in Theoretical Computer Science, volume 1, 1995.

[Nic94] H. Nickau. Hereditarily sequential functionals. In Proceedings of LFCS '94, LNCS,
volume 813. Springer-Verlag, 1994.

[Pit95] A. M. Pitts. Operationally-based theories of program equivalence. Notes to accom-
pany lectures given at the Summer School Semantics and Logics of Computation,
Isaac Newton Institute for Mathematical Sciences, University of Cambridge, 1995.

[Pit96] A. M. Pitts. A note on logical relations between syntax and semantics. Journal of
the Interest Group in Pure and Applied Logics, 1996. Submitted.

[Plo73] G. D. Plotkin. Lambda-de�nability and logical relations. Memorandum SAI-RM-4,
University of Edinburgh, 1973.

166 BIBLIOGRAPHY

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer

Science, 5, 1977.

[Plo93] G. D. Plotkin. Type theory and recursion (extended abstract). In 8th LICS Con-

ference. IEEE, 1993.

[Poi92] A. Poigne. Basic category theory. In Handbook of Logic in Computer Science. Oxford
University Press, 1992.

[Pra65] D. Pravitz. Natural Deduction. A Proof-Theoretical Study. Almqvist and Wiksell,
1965.

[PW94] G. Plotkin and G. Winskel. Bistructures, bidomains and linear logic. In Proceedings

of ICALP '94, LNCS, volume 820. Springer-Verlag, 1994.

[Ros86] G. Rosolini.Continuity and E�ectiveness in Topoi. PhD thesis, University of Oxford,
1986.

[Sco69] D. S. Scott. A type theoretical alternative to CUCH, ISWIM, OWHY. Manuscript,
1969.

[Sco93] D. S. Scott. A type theoretical alternative to CUCH, ISWIM, OWHY. In B�ohm

Festscrift, Theoretical Computer Science, volume 121. Elsevier, 1993.

[See89] R. A. G. Seely. Linear logic, �-autonomous categories, and cofree coalgebras. In
Contemporary Mathematics, Categories in Computer Science and Logic, volume 92.
American Mathematical Society, 1989.

[Shi94] M. Shirahata. Linear Set Theory. PhD thesis, Stanford University, 1994.

[Sto77] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. The MIT Press, 1977.

[Wad91] P. Wadler. There's no substitute for linear logic. Manuscript, 1991.

[Wad93] P. Wadler. A taste of linear logic. In Proceedings of MFCS '93, LNCS, volume 711.
Springer-Verlag, 1993.

[Win87] G. Winskel. Event structures. In LNCS, volume 255. Springer-Verlag, 1987.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,
1993.

[Zha93] G.-Q. Zhang. Some monoidal closed categories of stable domains and event struc-
tures. Mathematical Structures in Computer Science, 3, 1993.

Index

adequacy for eager LPCF, 146
adequacy for lazy LPCF, 152
adequacy for PCF, 104

category of coalgebras, 27, 28
category of free coalgebras, 28
coalgebra, 27
comonad, 27
comonoid, 25
comonoid map, 25
cpo, 32

continuous function, 32
extensional order, 33
strict function, 32

cpo-enriched category, 86
cpo-enriched functor, 86

dI-domain, 35
continuous function, 35
linear function, 35
stable function, 35
stable order, 36
trace, 36

extended Girard Translation, 155
relating operational semantics, 159
soundness, 156

�nitary, 35
�nite element, 35
�nitely compatible, 35
�xpoint, 83

parametrised, 84
�xpoint operator, 83

internal, 84
natural parametrised, 84
parametrised, 84
rationally open, 83

free coalgebra, 28

generalised linear lambda-calculus, 66
categorical semantics, 69
intuitionistic context of sequent, 68
intuitionistic variables, 66
linear context of sequent, 68
linear variables, 66

type assignment, 67
generalised LPCF, 133

categorical semantics, 135
intuitionistic context of sequent, 133
intuitionistic variables, 133
linear context of sequent, 133
linear variables, 133
type assignment, 132

Girard Translation, 73
soundness, 76

Intuitionistic Linear Logic, 51

no contraction, 51
Curry-Howard isomorphism, 61
elimination rules, 51
introduction rules, 51
Natural Deduction presentation, 52
no weakening, 51
reduction rules, 53

Intuitionistic Logic, 41

contraction, 42
Curry-Howard Isomorphism, 46
elimination rules, 41
functional interpretation, 41
introduction rules, 41

Natural Deduction presentation, 42
reduction rules, 42
weakening, 42

Kleisli category, 28, 31
Kleisli operator, 28

generalised, 29

lambda-calculus, 43
categorical model, 47
categorical semantics, 47
Curry-Howard isomorphism, 46

free variables, 44
inverse to substitution, 44
reduction rules, 45
substitution, 44
terms, 43
type assignment, 44
types, 43

left-strict map in pointed category, 81

167

168 INDEX

linear category, 26
linear �xpoint, 112

parametrised, 114

linear �xpoint operator, 113
internal, 114
natural parametrised, 114
parametrised, 114
rationally open, 113

linear lambda-calculus, 58
categorical model, 63
categorical semantics, 63
Curry-Howard isomorphism, 61
free variables, 59
inverse to substitution, 59
reduction rules, 60
substitution, 59
terms, 59
type assignment, 58
types, 58

linear object of numerals, 111
LPCF, 123

categorical model, 136
categorical premodel, 130
categorical semantics, 130
eager adequacy, 146
eager logical relations, 137
eager operational semantics, 127
eager value, 126
free variables, 125
lazy adequacy, 152
lazy logical relations, 147
lazy operational semantics, 129
lazy value, 128
observable types, 152
program, 126

terms, 125
type assignment, 124
types, 123
unwinding theorem, 154

monoidal category, 23
monoidal comonad, 26

monoidal functor, 24
monoidal natural transformation, 25

notion of observables, 87
intuitionistic termination, 116
intuitionistic termination to value, 119

linear termination, 120
linear termination to value, 121
termination, 89
termination to value, 91

object of numerals, 82

observational preorder, 87
intuitionistic termination, 118
intuitionistic termination to value, 119
linear termination, 120
linear termination to value, 121
termination, 89
termination to value, 91

PCF, 93
adequacy, 104
categorical model, 99
categorical premodel, 97
categorical semantics, 97
free variables, 95
logical relations, 100
observable types, 105
operational semantics, 96
program, 95
terms, 93
type assignment, 94
types, 93
unwinding theorem, 106
value, 95

pointed category, 81
pointed linear category, 109
poset-enriched category, 86
poset-enriched functor, 86
preorder-enriched category, 86
preorder-enriched functor, 86
prime algebraic, 35
prime element, 35

quotient category, 87

rational category, 88
rational linear category, 116
rationally open �xpoint operator, 83
rationally open linear �xpoint operator, 113
right-strict map in pointed category, 81

strict map in pointed category, 81
strict map in pointed linear category, 109

unwinding theorem for LPCF, 154
unwinding theorem for PCF, 106

Recent Publications in the BRICS Dissertation Series

DS-96-4 Torben Bräuner. An Axiomatic Approach to Adequacy.
November 1996. Ph.D. thesis. 168 pp.

DS-96-3 Lars Arge.Efficient External-Memory Data Structures and
Applications. August 1996. Ph.D. thesis. xii+169 pp.

DS-96-2 Allan Cheng.Reasoning About Concurrent Computational
Systems. August 1996. Ph.D. thesis. xiv+229 pp.

DS-96-1 Urban Engberg. Reasoning in the Temporal Logic of Ac-
tions — The design and implementation of an interactive
computer system. August 1996. Ph.D. thesis. xvi+222 pp.

